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1 Introduction

Recent advances in industrial robotics are making it possible to automate
many production processes, especially in manufacturing. The question about
their role in labour markets most frequently raised in the empirical literature
is whether the new technologies are taking jobs away from workers; more
formally, whether robots and human labour are substitutes or complements.
In this paper we examine the impact of the introduction of robots on the
equilibrium allocation of hours of work, in an economy with automatable and
non-automatable tasks; namely, on hours spent on tasks with high and low
robot substitution elasticities. In a theory section we develop a conventional
model based on a production function with two different labour inputs, one a
substitute and the other a complement to robots. We show that allocations
depend on several elasticities of demand and production, and a fall in the
price of robots could lead to either an increase or a decrease in overall hours
of work, depending on the values taken by these elasticities. We then switch
to multi-country empirical work and show that the institutional structures of
a country that are summarized in the country’s “national innovation system”
play a crucial role in determining which effects will dominate the equilibrium
responses of hours to the introduction of more robots in production.
A national innovation system is defined as the network of institutions,

such as universities, industrial research units and other technical and sci-
entific establishments, whose activities and interactions affect the rate and
direction of technological change in the economy. It includes the areas of the
economy that affect searching, exploring and learning, which are all critical
activities for the acquisition and generation of knowledge.1 A national inno-
vation system depends crucially on the quality of human capital that firms
have access to, but as we make explicit in the main part of the paper, an
effective national innovation system requires more than just good quality hu-
man capital. There are complementarities between human capital and other
institutional features that make up a strong innovation system.
We view the introduction of robots in production as the adoption of a

new capital good that might displace or complement labour, measured by
hours of work. In our empirical work we show that as in the pioneering work
of Douglas North (1990), or the more recent work by Daron Acemoglu and
James Robinson (2012), the impact of the new technology depends on the
institutional structure of the country. In estimates with data from thirteen

1Different aspects of this institutional structure are discussed by Christopher Freeman
(1987), Bengt-Ake Lundvall (1992), Richard Nelson (1993), Richard Nelson and Sydney
Winter (2002), the European Commission (2018) and the Organisation for Economic Co-
operation and Development (OECD, 1997 and 1999).
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industrial countries over the period 2006-2016, we find that although when
we omit the innovation system of a country in our estimation the impact
of robots on employment at the industrial level is not precisely estimated,
once the national innovation system is taken into account results change.
Countries that rank low in their national innovation system substitute robots
for human labour much more than countries that rank higher, which might
even increase hours when robots are introduced.
We organize our thoughts around a model that consists of a robot-using

sector (essentially manufacturing) and a labour intensive one that does not
use robots (services). The driving force for the introduction of more robots is
the fall in their price, which is widely documented and which we take as ex-
ogenous.2 An innovation of our CES production structure in manufacturing
is that hours are employed in two types of tasks. One type has high elas-
ticity of substitution with robots, which we call automatable and intuitively
associate with production workers, and a second one has low elasticity of
substitution, which we associate with tasks such as management, research,
sales and robot maintenance. Intuitively we can think of the automatable
part as producing intermediate goods which are then combined with the sec-
ond type of task into final output. The economy is closed by a second sector
that has a simple linear technology in labour only.
In the derivation of the impact of a lower robot price on hours, we find

that several elasticities interact to produce the equilibrium net effect. These
are the elasticity of substitution between hours and robots in the automatable
part of production, which works against hours when robots are introduced;
the complementary elasticity in the non-automatable part, which works to
increase hours when the intermediate output of the automatable part in-
creases; and the elasticity of final demand for output, which is influenced
by the substitution possibilities of both domestic demand and demand for
exports and imports, given that manufacturing produces tradable output.
The main result of our theoretical model is that if the demand elasticity

for final output exceeds the low elasticity of substitution between the inter-
mediate output and the labour employed in non-automatable tasks, there
are two opposing influences on overall hours in manufacturing: a negative
one that originates in the production technology of the automatable part
and a positive one that originates in the comparison between the final de-
mand elasticity and the supply elasticity in the production of final output.
The innovation in this result is that unlike earlier derivations, the second

2See for example, International Federation of Robotics (IFR, 2017) and Georg Graetz
and Guy Michaels (2018). The underlying assumption is that the fall in the price of robots
is due to improvements in their production technology, which we do not include in the
model.
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effect does not depend on a comparison of the high elasticity of substitution
between robots and hours in the automatable part of production, but on the
low elasticity in the non-automatable part.3 Of course, the final outcome
might still be negative, in the case where the negative effect that originates
in the automatable part dominates the positive one. This is where we bring
in the national innovation system and argue that it influences the relative
strengths of each effect, such that in more innovative countries the positive
(complementary) effect is stronger than the negative (substitutable) effect.
There are two channels in which the innovation environment of a country

can have this effect on robot-labour substitutions. The first influences the
elasticity of demand for manufacturing output. Although in a closed economy
the elasticity for aggregate manufacturing output is small (closer to zero than
one), it is higher for individual sectors and especially for sectors that trade.
For reasons explained later in this paper, a country with a better innovation
system will have higher manufacturing productivity, the sector that benefits
most from innovation. As Kiminory Matsuyama (2009) has shown, a country
with relatively faster productivity growth shifts the comparative advantage in
the production of manufactured goods in its favour. This raises its elasticity
for final output and has a positive impact on employment, which mitigates
the negative closed-economy effect.
The second channel through which the innovation environment influences

the robot-labour substitution is related to the availability of good quality hu-
man capital. Our model is one of homogeneous labour so we cannot formalize
this idea explicitly but we can still represent it within the parameters of our
model, by reasoning as follows. The complementary tasks of production,
especially those in research, management, design, marketing and new tech-
nology implementation, require highly qualified labour. In countries that
have better availability of scientists and engineers, and more generally better
quality human capital, firms will create more complementary tasks to em-
ploy more of these workers, if it increases their profit. We show that if it is
profitable for the firm to operate on average with more complementary tasks,
then a lower robot price shifts relatively more weight to a positive impact on

3There is a large literature that derives results of the kind referred to here, associ-
ated with the structural transformation of economies that experience uneven technological
progress. Our model can be interpreted as one in which technological progress takes place
only in the sector producing robots, which are then used as inputs in some other sectors.
See for example Berthold Herrendorf, Richard Rogerson and Akos Valentinyi (2014) for
a survey. For the “earlier derivations” referred to in the text see Graetz and Michaels
(2018) and an earlier version of this paper that circulated in September 2020 as Discus-
sion Paper no. CFM-DP2020-23 of the Centre for Macroeconomics of the London School
of Economics.
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overall hours than to a negative one.4

We then turn to data and test our propositions about the role of the
national innovation system in robot-hours substitutions. Our data are annual
observations for 2006-2016 from thirteen OECD countries.5 The level at
which we do our empirical work is closest to the paper by Graetz andMichaels
(2018) but we focus on a different question. Graetz and Michaels focused on
industrial productivity in a set of industries and countries comparable to
ours (although for a much earlier time period). They examined the impact
of robots on productivity by regressing the difference between the 2007 and
1993 productivity levels on robot density (the ratio of robots to one million
hours) and some other variables. They find a strong impact of robots on
productivity, something that our model requires, but when they considered
their impact on employment they found that robots do not influence it, except
for a small impact on low-skill workers. We use annual observations, which
give richer results for hours of work, and show that taking into account the
national innovation system ties down a statistically strong impact of robots
on employment that varies across countries and sectors.
Making use of a similar data set, Francesco Carbonero, Ekkehart Ernst

and Enzo Weber (2018) find a small negative impact on hours in industrial
sectors in developed countries but a larger negative impact in emerging coun-
tries. Their findings can be given an interpretation that is consistent with
ours. Emerging countries on average have poorer innovation structures than
industrial countries, so they are more likely to use robots to substitute labour
without complementary job creation.6

We take country-industry data from the International Federation of Ro-
botics (IFR) and EU KLEMS to compute the number of robots per million
working hours and some other economic variables. To compute our innova-
tion index we extract from the World Economic Forum’s Global Competitive-
ness Report (Klaus Schwab, 2017, and earlier versions) country-level mea-
sures of “innovation capacity.” Our index of a country’s national innovation
system is the simple average of six scores for as many indicators: the avail-

4Note that this is not a trivial prediction driven by the assumptions. On average a firm
could operate with more complementary tasks and yet shift production to the automatable
part at a lower robot price, because of the lower cost of production that it implies.

5The thirteen countries are the United States and twelve European countries, Aus-
tria, Belgium, Chechia, Denmark, France, Finland, Germany, Italy, Netherlands, Spain,
Sweden, and the United Kingdom.

6Another set of studies consider the impact of robotics on employment across regions,
an issue that we do not address here. See Daron Acemoglu and Pascual Restrepo (2020)
for a study of the impact of robots in US commuting zones and Francesco Chiacchio,
Georgios Petropoulos and David Pichler (2018) for local labour markets in the European
Union. Both sets of authors find large negative effects on local employment.
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ability of scientists and engineers, collaborations between universities and
industry in R&D, government procurement of technology products, quality
of scientific research institutions, company spending on R&D and capacity
for innovation. The individual scores are compiled by the World Economic
Forum from surveys of senior company executives.
In our tests we found that there are statistically significant differences

between the two “high-tech” sectors of electronics and electrical goods and
transport equipment, and the “low-tech” sectors that make up the rest of
our sample. The innovation system plays an important role in signing the
impact of robot density on hours in all manufacturing sectors, but not in
non-manufacturing. Its biggest impact is in electronics, which is not surpris-
ing given the innovation activity in that sector. The introduction of robots
in that sector has a strong negative impact on hours in countries with a
poor innovation system, like Italy and Spain, but a strong positive impact
in countries with a strong innovation system, like Germany and the United
States. In transport equipment, which is by far the biggest user of robots, all
statistically significant coefficients are negative but the national innovation
system still plays an important role; in countries with a strong system the es-
timates are not significantly different from zero. We also tested substitutions
in three production sectors that do not belong to manufacturing, which are
very small users of robots, and found that robots substitute hours regardless
of the innovation system of the country.
These results are confirmed by two other indices of innovation perfor-

mance, theGlobal Innovation Index (Cornell University, INSEAD andWIPO,
2019) and the European Union’s Summary Innovation Index (European
Commission, 2019). They are also confirmed when we disaggregate our index
of innovation performance. Five of the six indicators that make up our index
give significant and comparable results when tested individually, so our re-
sults are not driven by outliers in the indicators or by the aggregation method.
We did a number of other robustness checks to our empirical estimates and
we also estimated using three different sets of instruments to remove any
biases due to the endogeneity of robot density, but the basic result of the
influence of the innovation environment on robot-labour substitution did not
change.
The rest of the paper is organized as follows. Section 2 describes our

model that is used to organize our thoughts. Section 3 defines the innovation
environment and discusses the two channels by which it influences the robot-
labour substitution. In section 4 we discuss our data and in section 5 we
report our estimation results. Section 6 further tests the specification with a
number of extensions and robustness checks.
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2 A two-sector model with robots and labour

The objective of this section is to formulate an equilibrium model that can be
used to derive the connections between robots and hours of work. In section
3 we discuss how the results of the model are affected by a country’s national
innovation system. The description in this section gives the bare-bones of a
model and derives the main results for the closed economy.
The empirical literature that calculates the number of jobs that robots

could potentially replace usually lists tasks and examines whether robots
have the capability of performing these tasks. The econometric literature
has followed a similar approach and modelled the adoption of robots as the
profit-maximizing choice between humans and robots in the performance of
particular tasks.7 Here we follow a more conventional production function
approach that is consistent with two observations. First, a company that
employs workers in tasks that can be done by robots also employs workers
in tasks that are complementary to robots. When new robots are intro-
duced, the company reallocates its labour input across those tasks. If this
reallocation involves increasing the number of hours allocated to tasks that
are complementary to robots, statistically it will show up as new tasks (or
jobs) created (Lin, 2011, Acemoglu and Restrepo, 2019). Second, as in the
structural transformation literature, the introduction of robots is not uniform
across sectors, and this causes employment reallocations across sectors (for
references see footnote 9).
To illustrate our first point, which is the new feature in our production

technology, consider a car manufacturer. There is a car production side,
which is capital intensive and employs robots and workers, who are engaged
in tasks that can be automated. There is also a research and administrative
side, which consists of managers, research workers, new model developers,
sales people, drivers who test and demonstrate cars, capital maintenance
workers, real estate maintenance workers, and possibly others. This side of
the overall production is labour-intensive and complementary to the output
of the production side. The elasticity of substitution between workers and
cars on this part of production is low, as the people working here are engaged
in improving car quality, improving the organization of production, and when

7On the former, see the pioneering work of Carl Frey and Michael Osborne (2017)
and the many studies that followed, e.g., McKinsey Global Institute (2017), Ljubika
Nedelkoska, and Glenda Quintini (2018) and Cecily Josten and Grace Lordan (2020). On
empirical modelling see Daron Acemoglu and Pascual Restrepo (2020) and Georg Graetz
and Guy Michaels (2018). A notable early exception using more conventional techniques
to study the substitutions between labour and capital is Joseph Zeira (1998).
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the output is done, turn the cars into company revenue.8

Companies that introduce robots are competing with other companies
that provide services in which humans have the comparative advantage. This
competition has price and wage implications that feed back on the impact of
robots on employment in the robot-using sectors of the economy. Because of
this feedback from prices, we need an equilibrium model to evaluate the net
impact of robots on employment.
Given that robots are introduced in their very large majority in manufac-

turing, our argument is essentially that as robots displace workers in manu-
facturing, new tasks are created in manufacturing itself to take on some of
the workers losing their jobs, but other tasks and jobs are created in the ser-
vice sectors of the economy to take any workers leaving manufacturing. Our
argument will be that manufacturing companies in countries with a stronger
innovation environment are more likely to create new tasks for displaced
workers, than do companies in countries with weaker innovation systems.
The reasons for this are discussed more fully in the next section.
We consider a full employment model in which price and wage adjust-

ments ensure that there are enough jobs created to employ all displaced
workers. In the empirical work we estimate the impact of robots on hours of
work in the manufacturing sector, which introduces the robots. Our model
and estimation are partial, in the sense that we ignore other long-term trends
that have been reducing manufacturing employment in all countries in our
sample. These trends are the topic of the structural transformation litera-
ture.9

Our model has two sectors. Sector 1 produces a consumption good, which
is tradeable if the economy is open, and has a technology that can use both
labour and robots. Sector 2 uses only labour as an input and produces a
consumption good that is not tradeable. Sector 2 is modelled as a labour
intensive sector with linear technology. We model a closed economy but
discuss in the next section the implications of foreign trade for employment,
which turn out to be important for our empirical work with several small
open economies. Sector 1 can be identified with manufacturing, and sector
2 is the rest of the economy, which is dominated by services. We derive the
equilibrium of this economy under the assumption that robots can be hired

8Although our model is one of homogeneous labour, in the data we would expect the
workers that are close substitutes to robots to be the less skilled workers employed by the
company, and those in the complementary tasks, especially the managerial and research
workers, to be the more skilled. See section 3 for more discussion of this issue.

9See for example L. Rachel Ngai and Christopher Pissarides (2007), Daron Acemoglu
and Veronica Guerrieri (2008) and Berthold Herrendorf, Richard Rogerson and Akos
Valentinyi (2014)
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at a fixed and exogenous price ρ, expressed in wage units. This price has been
falling in the international economy because of technological improvements in
the production of robots and it is the driving force of changes in our model.10

As discussed above, our innovation in the theoretical part of this paper is
that a typical robot-using sector has a two-part production structure. One
part consists of tasks that can be performed by both robots and labour, with
some finite but large elasticity of substitution, and produces an intermediate
output F . We call this the automatable part of production. A second part of
the overall production structure employs labour in non-automatable tasks,
which is combined with the intermediate goods produced by the automatable
part to produce the final output of the sector. We call this side of production
the non-automatable part.
The automatable part has production function,

F =
[
αH

(s−1)/s
1R + (1− α)R(s−1)/s

]s/(s−1)
, (1)

where H1R are the hours supplied by human labour, R are the robots em-
ployed in the sector, and α ∈ [0, 1], s > 0 are parameters. Introducing
other productivity parameters, which might be neutral or factor-augmenting,
would make no difference to our results. By our assumption that tasks in this
sector are automatable, we derive our qualitative results under the restriction
s > 1.
Parallel to this production activity, firms in the robot-using sector employ

labour in the non-automatable part of production, which is influenced by the
introduction of robots through the intermediate output F . We show this by
writing the aggregate production function of the sector as follows:

Y1 = A1

[
βH

(σ−1)/σ
1N + (1− β)F (σ−1)/σ

]σ/(σ−1)
. (2)

Here Y1 is the output of sector 1, H1N are the hours of work employed in the
non-automatable part of production, and σ > 0 is the elasticity of substitu-
tion between the automatable sector of production and the non-automatable
one. The parameter β ∈ [0, 1] shows the intensity of non-automatable labour
in the overall production process of the industrial sector.
In conformity with our discussion, we assume that σ < 1; i.e., that the

output of the automatable part of production is complementary to the labour
employed in the non-automatable part. As in our previous example, a man-
ufacturing company needs R&D, design, administrative and advertising ser-
vices, supplied by labour, to promote its output. The manufacturing firm

10See International Federation of Robotics (2017) and Georg Graetz and Guy Michaels
(2018).
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chooses its inputs, R,H1R and H1N subject to given prices of output p1 and
prices of factors, respectively ρW,W and W, to maximize profits.
We complete the description of the labour market by introducing the

labour intensive sector 2,
Y2 = A2H2, (3)

with obvious notation that parallels sector 1, and output price p2.
The demand side of the model is derived from the consumer maximization

problem,

max
c1,c2

U (c) = ln
[
ωc

(ε−1)/ε
1 + (1− ω)c

(ε−1)/ε
2

]ε/(ε−1)
(4)

p1c1 + p2c2 ≤ Y, (5)

where c1 and c2 are the consumption levels of goods 1 and 2 and Y is aggregate
income. The parameters ω and ε satisfy ω ∈ (0, 1) and ε ≥ 0.
Labour markets clear subject to the resource constraint,

H1 +H2 ≤ 1, where (6)

H1 = H1R +H1N . (7)

Output markets clear according to

c1 ≤ Y1, c2 ≤ Y2 (8)

Y = p1Y1 + p2Y2 (9)

Definition. Equilibrium is defined by an allocation for consumption
goods that satisfies the consumer maximization problem (4)-(5), a labour and
robot allocation that maximizes profit p1Y1− (H1R +H1N)W −RρW, subject
to exogenous relative price ρ and the resource constraint (6), and prices p1, p2
and W that satisfy the market clearing conditions (8)-(9).

We state here the main results of the model in the form of two Proposi-
tions and collect all derivations and proofs in Appendix 1.

Proposition 1 Lower robot price raises robot density (R/H1) and output
per hour (Y1/H1) in sector 1 and lowers relative price (p1/p2).

The intuition behind these results is that lower robot price is equivalent to
a technological improvement that benefits the robot-using sector. In a more
complete model the lower price would be due to technological improvements
in the robot-producing sector of the economy, so it is an example of a tech-
nological improvement in an intermediate goods sector that transfers to the
firms that use the intermediate good as an input. The results of Proposition
1 about output per hour have been the focus of the empirical work of Graetz
and Michaels (2018) and we will not test them further.

10



Proposition 2 For β ∈ (0, 1), lower robot price has two effects on hours of
work in sector 1. A negative one that holds whenever σ < s (which we always
assume) and a second one which is also negative if ε < σ, zero if ε = σ and
positive if ε > σ. For β = 0, lower robot price lowers hours whenever ε < s.

The case β = 0 is the standard CES production function formulation
of capital-labour substitutions in the face of sectoral productivity growth
(refer, e.g., to the structural transformation literature). A fall in the price
of robots is a technological improvement that raises sector 1 output, reduces
its relative price and increases its relative demand with elasticity ε. If the
elasticity of demand is low (ε < s) the rise in demand is not enough to absorb
the additional output, so hours have to fall to restore equilibrium. We argue
in the next section, summarizing results from the empirical literature, that
the restriction ε ≤ s is likely to be satisfied by the data.
Once the second type of labour input is allowed, the result changes dra-

matically. Whereas the high s still has a negative impact on hours, if ε
exceeds σ, which is low by the nature of the tasks that this type of labour
performs, there is also a positive impact on hours, which might dominate
the negative impact. Under the plausible restriction (see the next section)
s > ε > σ, the net impact of lower robot price on hours of work is ambiguous.
The intuition for this ambiguous result, which emerges from the expressions
derived in Appendix 1, is the following.
Referring to the production function for final output (2), we see that out-

put can be thought of as produced by a two-factor CES with elasticity of
substitution σ. In that case the standard result emerges, that if the elastic-
ity of demand exceeds the elasticity of substitution, technological progress
increases employment. But in addition to the demand for final output, there
is a second production function for the intermediate output F, for which
the demand is from the final output producer with elasticity σ, whereas the
production elasticity is s. Therefore, in parallel with the standard result,
technological progress reduces employment in this production function if the
elasticities satisfy σ < s. In our formulation, the positive impact from ε ≥ σ
applies to both labour inputs, H1N and H1R, because they are both in (2),
whereas the negative impact affects only H1R, which is the only one used in
the production of the intermediary good.
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3 The innovation environment

Our model points to three elasticities of critical importance in signing the
net impact of robot price on hours of work, s, ε and σ.11 The elasticities
s and σ are technological constants of the production function. But in the
open economy, the relevant demand elasticity for manufacturing goods is not
constant, even if the elasticity of substitution between consumption goods in
the utility function is a constant. It is a weighted average of the elasticities
of substitution between foreign and domestic goods and domestic manufac-
turing and non-manufacturing goods. Making use of this property, which is
demonstrated formally in this section, we argue that the a better innovation
environment mitigates the negative impact of robots on hours through two
channels. First, through the elasticity of demand for manufacturing goods
and second through the relative weights that are attached to the two opposing
impacts of the fall in robot price on hours when ε > σ.
Before putting forward the arguments and summarize evidence, we do two

things. We first define more precisely our concept of innovation environment
and describe the data that we used to construct our innovation index. Second,
we make explicit the condition under which the positive impact of a robot
price fall dominates the negative one.
We used the innovation capabilities pillar (no. 12) of the World Economic

Forum’s Global Competitiveness Report, which has been available in its cur-
rent form since 2006. Up to the 2017-2018 Global Competitiveness Report the
innovation capabilities pillar was computed in comparable format and it was
the average of seven indicators: capacity for innovation; quality of scientific
research institutions; company spending on R&D; university-industry collab-
oration in R&D; government procurement of advanced technology products;
the availability of scientists and engineers; and patent applications (see Klaus
Schwab, 2019, p. 323). The main input to the index is the annual Executive
Opinion Survey, which records the opinions of business leaders about the
indicators that make up the index, except for patent applications. The first
six indicators derived from the Survey are based on the subjective responses
of the business people and expressed as scores on a scale of 1—7, with 7 being
the most favourable (for innovations) outcome. Our index is the average of
these six indicators.12 The country sample means for the index and some

11Richard Baldwin et al. (2021), in a paper that circulated after these sections were
completed, also discuss the role of elasticities in signing the direction of capital-labour
substitutions. Their model has the first two elasticities of this section but not σ or the
innovation environment, which play a critical role here.
12For patents the World Economic Forum takes the number of applications filed under

the Patent Cooperation Treaty (PCT) and normalizes it to a scale of 1-7 to align it with the
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comments about the data are postponed to section 4.
It is important to realise at this stage that since we measure the innovation

environment by “innovation capabilities,” human capital plays an important
role in our analysis. Innovation is the result of R&D and R&D is conducted
by highly trained employees, working in the non-automatable part of produc-
tion. Other available innovation indices, discussed in section 6.3, refer more
explicitly to the importance of human capital in their construction. It is not
surprising therefore that there is a good correlation between our innovation
index and the human capital of a country. But a good innovation environ-
ment requires more than human capital. It also requires favourable policy,
certain types of human capital more than others and generally incentives to
companies to spend resources on R&D. This is reflected in the six pillars
that make up our innovation index and it is also the reason that we refer to
it as the overall innovation index rather than just an index of the quality of
human capital.
To derive now the condition under which the positive impact of a robot

price fall dominates the negative, we differentiate with respect to robot price
expression (37) of the Appendix, which gives the equilibrium ratio H1/H2

derived from our model. We derive that the net elasticity is positive when,

(ε− σ)
q(σ−1)/s

(1− β)σασ−1q(σ−1)/s + βσ
> (s− σ)αq(σ−s)/s, (10)

where q is defined in the Appendix as a function of parameters, including
robot price ρ, and satisfying q′(ρ) < 0. The left term is the impact of the price
fall on the complementary tasks in the non-automatable part of production,
which is positive when ε > σ, and the right term is the impact of the price fall
on hours in the automatable part of production, which is negative because
s > σ.
We argue that the innovation environment of a country influences this

expression in two ways. First, more innovative countries have a comparative
advantage in international markets and trade more in manufacturing goods.
We discuss the ways in which trade influences the two sides of (10). Second,
in more innovative countries firms employ more workers in complementary
tasks. In our model this is shown as a higher β in the production function

results of the Executive Opinion Survey. The way of counting patents, however, changed
during the years of the sample and it was not possible to go back and adjust the earlier
numbers on the basis of the new counting method. Partly because of this change, partly
because the patent indicator is based on a different collection method from the other six,
we did not include it in our index. We repeated all our regressions with the average value
for pillar 12 given by the World Economic Forum and results were comparable throughout,
with small changes in point estimates only.
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of firms in countries with a more favourable innovation environment. We
discuss evidence that this is the case and derive the impact of higher β
on (10). Before we develop these two arguments, we note that the right-
hand side of (10) is a function of technological parameters that cannot be
influenced by either international trade or β, the parameter for the creation
of complementary tasks. Therefore everything we do in the remainder of this
section concerns the impact of the innovation environment on the expression
on the left-hand side of (10).

3.1 The open economy and the elasticity of demand

In our derivation of a closed economy equilibrium, the elasticity of demand
ε was derived from a utility function with two goods. In the closed economy
and for the whole of manufacturing, this elasticity is likely to be a very small
number. In the survey of estimates examined by Ngai and Pissarides (2008),
a plausible range for ε was found to be between 0 to 0.3. Similar results were
derived by Berthold Herrendorf et al. (2013) for value added consumption
bundles. These estimates are derived from consumer demand equations or
spending shares, mainly from the United States, so they approximate the
closed economy values.
Results, however, could be different if we consider individual industries

or open economies. Worldwide, the closed economy result holds and robots,
like other productivity-enhancing technologies, reduce global manufacturing
employment. Individual manufacturing sectors might have a different expe-
rience, because of substitution possibilities across products which are either
used as final consumption products or as intermediate goods. For example,
metal products can be substitutes for plastics, so the elasticity applying to
each separately is higher than the average for manufacturing as a whole.
Electronic products, including robots, are inputs into other industries, which
will have a higher elasticity of demand as there are competing factors.
Open economy considerations could substantially raise the elasticity of

demand in small open economies. The elasticity of demand for a firm that
trades is a combination of the domestic elasticity of substitution between
manufacturing and non-manufacturing goods, and the elasticity of substi-
tution between domestically-produced and foreign-produced manufacturing
goods. The latter is much higher than the former because the predominant
manufacturing trade flow is of differentiated products, e.g., German cars ver-
sus French cars.
Appendix 1 extends the closed economy model of the preceding section

by introducing a foreign manufacturing good that can be bought at constant
and exogenous price. The objective is to show how our expression for the
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impact of robot price on hours of work, (10), is altered by the introduction of
another good that is a close substitute of the domestic good. We do not claim
to have an open economy model, which would require much more modelling
of the foreign sector. Kiminory Matsuyama (2009) shows that in the open
economy the introduction of new technology in one country has ambiguous
effects on employment, because the higher productivity that pushes labour to
the service sector also improves the country’s comparative advantage in inter-
national markets. The improvement in international comparative advantage
increases demand for the country’s exports and this is a positive influence
on manufacturing employment that might offset the negative impact of the
substitution of labour for robots. Similar results arise here, which we now
make explicit within the framework of our model.
We state the main result in the form of a Proposition (see Appendix 1

for proof)

Proposition 3 Suppose there is an imported manufacturing good which has
elasticity of substitution vis-a-vis the domestic manufacturing good η > 0.
If the relative price of the foreign to the domestic manufacturing good is
inversely related to the ratio of manufacturing productivities (as in the closed
economy model), then in the case of η = 1 the elasticity of demand facing
domestic producers is the weighted average of ε and η, with fixed weights the
shares of each product in consumption. If η 6= 1, the weights are not fixed
but for as long as η ≥ ε, the introduction of the open economy mitigates (and
might reverse) the negative impact of robots on hours of work when robot
price falls.

To make more explicit the result of this Proposition, the model in the
Appendix replaces the domestic manufacturing good c1 in the utility function
(4) by

c̃1 =
[
ψc

(η−1)/η
1 + (1− ψ)c

∗(η−1)/η
1

]η/(η−1)
, (11)

retaining the structure of the rest of the model. c∗1 is the imported good.
In the case of η = 1, the ε elasticity in (10) is replaced by ψε + (1 − ψ)η,
whereas in the case η 6= 1, the left-hand side of the inequality in (10) is
more conveniently split into two terms, the one in (10) and a second one
that multiplies (η − ε) by a new positive coefficient that is a function of the
parameters of the model. Since η > ε (see below for evidence), the inequality
in (10) is more likely to be satisfied when there is trade than in the closed
economy.13 We summarize some evidence on openness and elasticities here.

13Recall that this extension considers only competition from imports. The introduction
of export markets would add another margin of competition that adds another positive
term to the left side of (10).
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Our sample consists of the United States, the United Kingdom and eleven
European Union countries, which trade substantially, so manufacturing ex-
ports and imports are high. Table 1 illustrates. Outside the United States,
exports of domestically produced goods range from 37.4% of output in the
United Kingdom to 76.3% in Belgium, and imports from 26.5% in Italy to
60.2% in Belgium (the United States is an outlier at 16.9% and 19.6% re-
spectively). Their sum exceeds 100% in five of the thirteen countries in the
sample.
Jean Imbs and Isabelle Mejean (2010, 2015) estimate import and export

elasticities for several countries, ten of which are also included in our sample.
In their benchmark estimation, the only elasticity that is below one is for
imports into Austria, which is 0.7. For the other countries the range is 1.3
for Belgium to 2.8 for Italy. Export elasticities ranged from 2.6 in Finland to
3.4 in Spain. It is clear that with the openness of our economies and the high
elasticity values estimated for imports and exports, the effective elasticity
of manufactures facing domestic producers is a high number. For example,
even for a large country like France, the demand elasticity for imports is
estimated to be 1.74, so if we use its import share of 0.392 as weight, the
contribution to the overall manufacturing elasticity coming from imports is
0.686. This is substantially higher than the elasticity of substitution between
manufacturing and services estimated for closed economies. In addition there
is an impact from the high elasticity of demand for exports. We conclude that
existing evidence is consistent with a sufficiently high elasticity of demand
for manufacturing output and other non-trivial positive terms being added
to the left-hand side of (10) due to foreign trade.
Do countries with a better innovation environment put more weight on

the terms on the left-hand side of (10) than countries with a poorer innovation
environment? We claim that this is the case because of the connection be-
tween the favourable innovation environment, R&D and productivity growth.
As Matsuyama (2009) has shown, firms with higher average levels of produc-
tivity growth have a comparative advantage in manufactures in international
markets (in the notation of the Appendix, because of higher A1/A

∗

1), and so
trade more. A direct implication of the definition of our innovation index
is that firms in countries that rank higher in the innovation index do more
R&D and produce more advanced technology products. They are therefore
likely to achieve higher rates of productivity growth.14

14Countries with a better innovation environment are also characterized by larger robot
density, and as Graetz and Michaels (2018) have shown, this improves their productivity.
This is another reason for a better comparative advantage in international markets.
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3.2 Complementary job creation

In this sub-section we return to the closed economy model and discuss factors
and evidence that support more complementary job creation in economies
with more advanced innovation systems. In our formal model the comple-
mentary job creation is shown by a positive β. As Appendix equation (20)
shows, at the profit maximizing point, a higher β implies that relatively more
workers are employed in the non-automatable part of production. We show
that there is a strong correlation between our innovation index and the skills
of workers who are not close substitutes to robots, and argue that within
the framework of our model, this indicates that in countries with a richer
innovation environment firms are operating with higher β. Since a firm has
the choice of operating with a lower β by not hiring research or management
workers, if they are operating with a higher β, it must mean that the higher
β yields higher profit. We show that in the range of β values in which a
higher β yields higher profit, the higher β adds more weight on the left-hand
side of the inequality in (10); it follows that the higher β in countries with a
better innovation environment mitigates the negative employment impact of
a lower robot price, or reverses it altogether.
We have argued that by the definition of the innovation environment,

countries with a higher innovation index have access to better qualified hu-
man capital, more engineers and scientists and are faced with better incen-
tives to undertake R&D. All six indicators that make up the innovation index
directly or indirectly point to more R&D activity. Two are directly referring
to R&D at the company level. Another two point that in more innovative
countries companies are more outwardly-looking and have more collabora-
tions with universities and government. A company that does more R&D or
one that is more outward-looking will create tasks for qualified workers that
will do the R&D and promote collaborations with universities and govern-
ment. That more qualified workers are available to take these jobs in coun-
tries with higher values of the innovation index is shown in our index by the
indicator for the availability of scientists and engineers; in other related in-
dices it is even more explicit. Section 6.3 below discusses other indices, which
are highly correlated with our own. All indices of innovation performance
pay particular attention to the quality of human capital and the availability
of good education and training systems (see also Figure 1). For example, the
Global Innovation Index, includes measures for “information about the de-
gree of sophistication of the local human capital currently employed” as well
as “the conception or creation of new knowledge, products, processes, meth-
ods and systems, including business management.” Better qualified and more
sophisticated human capital, and especially one that specializes on methods,
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systems, business management, and more directly on R&D, are less substi-
tutable by robots than manual or less well-trained human capital; in terms
of our model, their hours of work belong to the complementary tasks in the
non-automatable part of production.15

It follows from this argument that firms in countries with a more favourable
innovation environment should be employing more workers in tasks that are
complementary to the production tasks for manufacturing goods. These tasks
belong to the category that we called non-automatable; the tasks that better
qualified workers are engaged in are not ones that can be done by robots.
In contrast, robots as defined by the International Federation of Robot-

ics, do manual unskilled tasks, such as handling, welding, assembling and
dismantling (see the data section 4). The workers that are engaged in these
types of tasks are the ones classified as low-skill by databases such as EU
KLEMS, which is the one that we use here.
In our data sets, the measures of skills of workers actually employed in

manufacturing are not good enough to enable a formal test of the hypothesis
that firms in more innovative countries employ more skilled workers.16 But we
give here some correlations that provide strong support for the hypothesis.
We use data from EU KLEMS which categorizes workers into three skill
types, high, medium and low. There are some missing observations and
some inconsistencies (like sudden jumps in the numbers) but taking sample
averages makes it possible to construct sample means of workers in each of
these categories, except for the United States, which has no available data
for skills in manufacturing in our database.17 Table 2 gives the percentage of
high and low skills in the European countries in our sample. The correlations
of each with the innovation index are shown in the bottom two rows of the
table. The correlations are good for the entire sample and point in the
predicted direction, but rise to much higher levels once the two outliers are
removed, with +83 for the correlation between the high-skilled group and the
innovation index and −0.85 for the correlation of the index with the low-skill
group.
We now show that if firms are willing to take on relatively more workers in

15See also International Federation of Robotics, (2018) and Konstantinos Pouliakas
(2018). Both these references go further and suggest that robots are complementary to
better trained human capital, reaching the conclusion that lifelong learning and upskilling
can lead to complementarity between hours and robots.
16See also Graetz and Michaels (2018) who faced a similar problem.
17There are also two other single observations that are implausible. In the Czech Re-

public, EU KLEMS has a very low entry for low-skill workers and a very high one for
medium-skill ones, and in Spain the number of highly skilled workers is implausibly high,
at the expense of medium skilled workers.
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complementary tasks, they might increase (or reduce by less) overall employ-
ment when the price of robots falls. Firms are willing to take on workers in
complementary tasks if a higher β does not reduce profit. By differentiation
of the profit function of the firm at the profit-maximizing point, Appendix 1
shows that a higher β does not reduce profit if β is in the range given by

1 > β ≥ β0 =
αq1/s

1 + αq1/s
. (12)

To give some more information about this range, we note that Appendix
equation (23) implies that at β = β0, robot density is given by

R

H1

= (1− α)−s/(s−1)
(
q(s−1)/s − α

)s/(s−1)

1 + q
, (13)

where now q is the value taken by the relative employment levels H1N/H1R.
There is no data that can be used to inform the actual ratio H1N/H1R in
manufacturing, or the value of parameter α, so we do not have information
about β0. But since robot density falls in β, restricting β to the range β ≥ β0,
is equivalent to restricting robot density to a range below the one in (13).
To obtain a rough measure of the critical value of robot density in (13), we
used parameter values α = 0.3, s = 3.8 and ρ = 1. Since α is the share of
labour in the automatable part of production, it should be a small number,
even below the 0.3 that we selected (lower α gives higher critical value for
density). The elasticity s is from Cheng et al. (2021), the only study that
we could find that estimates substitution elasticities in the automatable part
of production (for Chinese industries) and ρ is the relative price of one hour
of robot work to one hour of labour input. We selected unity in the absence
of good data on the flow inputs (data on prices for robots do of course exist
but they do not take into account the time that robots are operating or the
cost of running and maintaining them). The values obtained for the critical
density were so far in excess of observed densities, even in Germany, that
small variations in parameters would not violate the assumption that the
range of β is within the values shown in (12).
Referring now to condition (10), which needs to be satisfied for an increase

in equilibrium hours when the price of robots falls, we find that its left side
is a rising function of β when β ≥ β0. So, provided that ε > σ, the inequality
is satisfied over a bigger range of parameters at higher β. This establishes
our main result for the role of complementary task creation in robot-using
sectors of the economy.
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Proposition 4 If it is profitable for the firm to operate at a higher value of
β because of the availability of more scientists and engineers and other highly
qualified workers, then, provided the elasticities are such that ε > σ, lower
robot price yields either a positive or a smaller negative impact on hours of
work.

4 The data

Our data are annual observations of robot use and hours of work across
industrial sectors and countries. We have already discussed our definitions
and sources for national innovation systems.18 We use annual observations
of the innovation index, although it is a slow-changing index and there are
no country reorderings during the sample period. In the sample means Table
3, three countries stand out as having the lowest index values for innovation,
Italy, Spain and the Czech Republic (Czechia), with a gap between them
and the rest. These are the only countries that we have outside the United
States and North-Western Europe. At the more innovative end progression
is smoother, although the next six countries could be described as middling
and the remaining four as the innovation leaders, which includes Germany,
Sweden, Finland and the United States. The mean value of the index is 4.85,
with France approximately in the middle, four other countries below it and
the rest above it.
The source that we use for the number of productive robots in employ-

ment is the International Federation of Robotics (https://ifr.org), and the
source for the labour market variables is the 2019 update of EU KLEMS
(Robert Stehrer et al. 2019). Our sample is 2006-2016, from the earliest year
for which we have complete data sets for industrial robots and the innovation
index, to the most recent year of the EU KLEMS data. We focus mainly
on seven manufacturing sectors but we also include three non-manufacturing
sectors in some of the tests. We have consistent data from thirteen industrial
countries with some missing observations, especially in the early years. The
list of countries and sectors, with sample means, are shown in Tables 2 and
3.19

18Appendix 2 gives more details on sources and the construction of variables.
19Initially we also included construction in our sample but results were poor. It is a

large sector, its average hours being about 70% of average manufacturing hours, but a very
small user of robots. Its average robot number in our sample was 0.16% of the average
number of manufacturing robots (one sixth of 1%). In addition to the countries that we
use here, we compiled data for Greece and Slovakia. Both countries are small uses of
robots that turned out to be outliers when compared with the rest, with a big impact on
results, so we removed them from our final sample.
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The IFR defines industrial robots as fully autonomous machines that can
be programmed to perform several manual tasks without human intervention.
These tasks include handling, welding, dispensing, processing, assembling
and dismantling. The data are collected from deliveries by the suppliers of
manufactured robots. They are adjusted by the IFR for depreciation by
assuming that the average service life of a robot is 12 years and that there is
an immediate withdrawal of the robot after this time (IFR, 2017).20

Our employment variable is hours of work in each sector and country.
We also obtain data for wages, the total capital stock and ICT capital. We
convert nominal variables to 2010 US dollar prices using purchasing power
parity (PPP) exchange rates. ICT capital turned out to be statistically
insignificant in our key regressions and we did not include it as a separate
capital variable in the reported results.
The IFR uses the International Standard Industrial Classification (ISIC)

for industries, whereas EU KLEMS uses the General Industrial Classification
of Economic Activities (NACE). We matched the two sources by allocating
the original nineteen ISIC Rev.4 industries from the IFR to the NACE Rev.2
industries. We were able to match most sectors one for one but the data for
chemicals and rubber, and plastics and other non-metallic mineral products,
are not reported separately in the IFR dataset. We aggregated these indus-
tries in EU KLEMS, together with coke and refined petroleum products, into
the plastics and chemical products category. Finally, we excluded from our
analysis the residual categories “all other non-manufacturing sectors” and
“all unspecified sectors”. These categories account for about 15% of robot
deliveries.
There are large differences in robot density, both across countries and

across industries (Tables 3 and 4). Perhaps a surprising result is that there
is no correlation at all between a country’s innovation score and robot den-
sity. Italy, for example, is one of the biggest robot users, although it has
the lowest value for innovation capacity. Given the relatively high robot
density in the manufacture of transport equipment, there is some correla-
tion between industrial structure and country robot density, with Germany,
Italy and France having high densities and a relatively large automotive sec-
tor. But robot density is also high in Denmark and Finland, which do not
produce cars. Non-manufacturing sectors are very low users of robots when
compared with manufacturing, so we do not make them part of our core
regressions. We do test, however, for their consistency with manufacturing.

20When countries calculate their own operational stock the IFR uses that figure instead.
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5 Empirical model: The basic equation esti-

mates

Our empirical strategy is to estimate log-linearized semi-reduced form equa-
tions for annual hours worked in production industries in terms of robot
density, the index for the innovation system of the country and a number of
other labour market variables:

lnHict = β0 + β1 ln(Rict/Hict) + β2 ln(Rict/Hict) ∗ Vct + Zict + εict (14)

Hict is the number of annual hours worked in millions, Rict is the number of
robots in production, each distinguished by industry i, country c and year t,
and Vct is the innovation index for each country. The vector Zict represents
other control variables: hourly wages, the capital stock, and country and
year fixed effects; εict is the error term. We have tested for other labour
market variables, such as the capital stock classified as ICT by EU KLEMS,
but they were not significant.
It is not possible to derive an explicit equation of this kind from our

model, mainly because of the split in hours of work between the automat-
able and non-automatable parts of production. This split is not empirically
observed, although skill, had there been good data at the level of this analy-
sis, could have been used as a way to discriminate between them somewhat.
Appendix equation (18) is an equation in non-automatable hours in terms
of the variables on the right-hand side of (14), and equation (17) is a similar
equation for the automatable part of hours. When the two are added and
log-linearized they yield an equation of the kind that we estimate, although
the estimated coefficients do not have counterparts in the model, except for
net effects. We follow the tradition of earlier literature and we look for ro-
bust estimates of these net effects that enable us to make inferences about
the model.
A key claim of our model is that the country response of industrial hours

to the introduction of robots varies, depending on their innovation environ-
ment. Countries with a more favourable national innovation system are in a
position to either mitigate or reverse any negative impact that the introduc-
tion of robots might have on hours of work. The net elasticity with which
hours of work respond to an increase in robot density is (β1 + β2Vct) and
we expect the sign of the estimated β1 to be negative but that of β2 to be
positive. The Appendix equations referred to in the preceding paragraph
make the key independent variable robot density in the automatable part of
production; since we do not have data for hours in the automatable part of
production, we follow the literature and write robot density in terms of all
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hours (e.g., Graetz and Michaels, 2018). An alternative specification is to
specify the right-hand side variable in levels. We estimated the same regres-
sions for levels and results were similar to the ones with density for the key
net elasticity estimate. They are reported briefly in section 6.
We estimate equation (14) for manufacturing and for the full sample that

includes the three non-manufacturing sectors. We estimate it with OLS as
well as with instruments that deal with any endogeneity bias in robot density.
We also explore further the role of the innovation environment by estimating
it with available alternative measures and by breaking down the innovation
system into its component parts and estimating the impact of each, to test for
any big differences between them. Some other robustness tests are performed
and reported in the section that follows.
Table 5 shows the results of the estimation of the basic equation (14)

for the seven manufacturing sectors. We separated transport equipment and
electronics from the rest of manufacturing. Transport equipment and elec-
tronics are defined by the OECD as high-tech and both are heavy users of
robots; electronics is a producer as well as user of robots whereas transport
equipment is by far the biggest user of robots. The other five sectors are
low-tech except for some elements of our chemicals sector, which could not
be separated out. We refer to their aggregate as low-tech. We tested for
equality of the estimated coefficients across the three industrial groups, with
a view to aggregating them into a single manufacturing sector, but equality
was strongly rejected, by an F test that gave F (4, 946) = 37.5.
Consider first results for the simple regression without taking into ac-

count the innovation system of the country. In column (1) of Table 5, the
impact of robot density on hours of work is negative but not significant for
the transport equipment industry and positive for electronics and the rest
of manufacturing. In addition to robot density and country and time fixed
effects, we include two other economic variables, the capital stock, and the
total wage bill for the industrial sector divided by hours of work. The elas-
ticities of the two economic variables are estimated precisely and the point
estimates are plausible. These estimates are robust to differences in the spec-
ification of the equation; the capital elasticity is 0.65, and the hourly wage
elasticity is −0.39.
In column (3) we estimate the same equation with 2SLS using our pre-

ferred instrument, robot density in the Republic of Korea. The idea of the
instrument is to isolate the impact of technological improvements in the man-
ufacture of robots. We have chosen Korea as it is sufficiently removed from
our sample of Europe and the United States, so other common influences are
remote, and it is the country with the largest robot densities in manufacturing
worldwide. The choice of instrument was dictated by the Cragg-Donaldson
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Wald F statistic, which gave a higher value for this instrument than the
alternatives tested (see below). The results of the IV regression show sub-
stantial changes in the point estimates of the coefficients, and there is a sign
reversal for transport equipment.
So overall, the conclusion from the estimation of equation (14) for man-

ufacturing, under the restriction β2 = 0, is that although across countries
there is on average a positive impact of robot density on hours of work in the
electronics and low-tech industries, and an imprecise impact for transport
equipment, they are not robust across estimation specifications. The same
can be said for the coefficient on wages, which drops substantially in the IV
estimation.
In column (2) of Table 5 we show OLS estimates when the innovation en-

vironment is taken into account. The coefficient estimates have the expected
sign, with β1 negative and β2 positive for all industries. This indicates that
in countries with higher index value for innovation, the impact of robots on
hours of work is either weaker negative or positive. The point estimates bring
out more contrasts between the industrial sectors. We highlight two of these
differences, one for electronics and one for transport equipment.
In electronics the innovation environment plays a more important role

than in other sectors, driving more substitutions between robots and hours at
both the weakest and strongest countries. The difference in the net coefficient
(β1 + β2Vic) between the most innovative and the least innovative countries
(United States and Italy, respectively) is 0.387 for electronics but only 0.067
for transport equipment and 0.111 for the non-tech industries. This is to
be expected, as electronics is the most research-driven industrial sector in
manufacturing. It is also a producer of new technologies, including robots.
By its definition, the innovation environment is important in driving research.
In this sector, the point at which the sign of the net impact of robot density
on hours switches from negative to positive is at Vct = 4.40, which is below
the sample mean. The significance of this point is further discussed further
down in this section with reference to Table 6.
In contrast to electronics, the transport equipment industry is not very

sensitive to the innovation environment. The point at which the sign of the
net impact of robot density on hours switches is at Vct = 5.05, above the sam-
ple mean, and its impact in driving differences between countries, although
statistically significant, is small. This sector is an outlier in the use of ro-
bots and indeed the possibility of assembling cars with robots was a major
impetus to the development of robot technology, so it is not surprising that
the large use of robots does not create as many new jobs in complementary
tasks. A favourable innovation environment in the country still saves some
jobs from replacement by robots in this sector, but it does not yield net job
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creation.
The low-tech industries fall between the two high-tech sectors. We discuss

further the net coefficients in all industries later in this section, when we
report both point estimates and standard errors for net effects.
The instrumental variables estimation of the regression with the innova-

tion index is in column (4) of Table 5. The results confirm an even stronger
influence of the innovation index on the impact of robots on hours in all three
sectors. In the two high-tech sectors the coefficient on the non-interactive
term falls, but because of the larger estimate on the interactive term, the
value of the index at which the net coefficient switches from negative to posi-
tive is lower than in the OLS estimates. In the low-tech industries the impact
of the innovation index is also higher, through a larger coefficient estimate
for the interactive term. Overall, the IV estimation confirms a large role for
the innovation environment in determining the impact of robot density on
hours of work.
In order to gain more information on the role of the innovation environ-

ment, in Table 6 we estimate the net elasticities at sample means implied by
the OLS estimate for all countries, with their robust standard errors. The
importance of the innovation environment comes out clearly in the electronics
sector. In Italy and Spain, the poorest innovation countries, the net effect of
robot density on hours is negative and statistically significant, but with the
exception of the Czech Republic, in which it is statistically insignificant, in
all other countries the net coefficient on robot density is positive and statis-
tically significant. In contrast, in the transport equipment industry the net
impact of robot density is negative and statistically significant in the three
weakest countries and in all the others there is no statistically significant
effect on hours.
The results for low-tech industries are perhaps surprising, because in no

industry is the impact of robot density on hours of work negative and sig-
nificant, whereas with the exception of the weakest three countries, all other
countries have statistically significant and positive net effects. But the im-
pact of the innovation environment is not very strong, in the sense that the
rise in the point estimate of the net effect as we move from less to more
innovative countries is small.
The IV results give similar conclusions about net effects but point esti-

mates differ somewhat. Overall, the IV results give a stronger impact of the
innovation environment, and make the positive effects stronger, especially in
the low-tech sectors.
We shed more light on the quantitative importance of these estimates

by calculating the implied change in hours of work due to robot density
between two sub-periods of the sample, from the average of 2011-13 to the
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average of 2014-16. We selected these periods to avoid cyclical effects due to
the financial crisis. There is a trend decline in manufacturing employment
throughout the sample period, which in the estimation is picked up by time
dummies. The estimates reported in Tables 5 and 6 detrend the data by
entering a (0, 1) dummy variable for each year in the sample. Results were
virtually identical when a single time trend was introduced instead, and
also when the time trend was interacted either with the industry dummies
or with the country dummies. This is perhaps surprising, given the large
cyclical fluctuations due to the financial crisis, which are picked up by the
yearly dummies but not by the single time trend. However the estimates on
each time dummy are not significantly different from the single estimate on
the time trend.
In order to obtain more accurate quantitative measures of the impact of

robot density on hours of work we detrended the series for each industry
by using the coefficient estimated for a time trend specific to each industry.
These coefficients are, respectively, −0.029,−0.022 and −0.081 for electron-
ics, transport equipment and low-tech industries. We report the results for
three representative countries only to save space, the two countries at the
extremes of the innovation index, Italy and the United States and a major
economy closer to the middle, Germany. The results are shown in Table 7.
All the net coefficient estimates used, taken from Table 6, are significantly
different from zero except for the three shown with an asterisk in Table 7,
two for transport equipment and one for low-tech industries.
In all cases except for low-tech industries in Italy, in which the net coeffi-

cient estimate is not significantly different from zero, the predicted change is
in the direction of the actual change. Looking at electronics first, the contrast
between Italy and Germany reveals an interesting pattern: In Italy it went
down by 31.5 hours, 10.9 of which are accounted for by robot substitutions,
whereas in Germany it went up by 31.3 hours, 10.7 of which are accounted
by robot substitutions. In the United States hours of work in this industry
also increased but not by as much as is predicted by the rise in robot density.
Robot density in this country increased very fast in recent years and this
increase is not reflected in a very fast increase in hours of work, which is pre-
dicted by its high innovation index. In the other two sectors the change in the
detrended series is closer to the prediction obtained from the change in robot
density, although the point estimate in the transport equipment industry is
not statistically different from zero at the 5% level. We note that since the
other economic variables in the regression are the capital stock and wages,
the remainder of the change in hours is either in the unexplained residual or
the result of changes in wages or the capital stock.
Actual and predicted changes in the other two sectors in Germany and
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Italy are also in the same direction and reasonably close to each other, except
for the two estimates that are not significantly different from zero. The
Italian estimate for transport equipment is quite interesting, in the sense
that the detrended series went up by 4.9 million hours, virtually all of which
is explained by a fall in robot density in that sector during this period.

6 Extensions and robustness checks

6.1 Alternative instruments and fixed effects

To test further the robustness of the basic equation estimate, we estimated
the same equation with two alternative instruments, robot density in Ger-
many from 1995 to 2005 and robot density in Japan from 2006 to 2016. The
justification is similar to our preferred instrument of robots in Korea. Ger-
many is the country in our sample with the biggest robot penetration in its
manufacturing and has good data going back to 1995. Since the price of
robots has been falling long before our sample begins (IFR, 2017), any cor-
relations between the German trends before 2005 and our sample are likely
to be due to technological improvements in robot production, as reflected in
their price. Our third instrument, robots in Japan, is another signal of tech-
nology trends across industries. Japan is a big user of robots and the world’s
leading supplier of industrial robots. Like Korea, it is sufficiently removed
from our sample of Europe and the United States to be less influenced by
other shocks in industrial hours in the countries of our sample.
Results with these instruments were similar to each other. Without the

innovation index, the estimate of the impact of robot density on hours became
stronger positive in the regression without industry dummies but it became
completely insignificant when industry dummies were introduced. This is
more evidence that without the innovation index the estimation results are
sensitive to small changes in the specification. In contrast, in the regression
with the innovation index the estimates with the two new instruments were
very similar to the IV estimation in Table 5. As before, instrumentation of
the regression that includes the innovation index shows more robustness than
the one without the index, confirming the point estimates in Table 5.
The results reported so far introduce country and time fixed effects but

not industry effects. We repeated the estimation with a full set of industry
dummies for the seven sectors and results were very similar to the regres-
sions without industry dummies. In the first three columns of Table 8 we
report the results with industry dummies either individually or interacted
with country and time effects, for the regressions with the interactions with
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the innovation index. These estimates should be compared with the second
column estimates of Table 5 for robustness. It is clear from this comparison
that the results are virtually identical in all cases.
We tried one other specification, two-way clustering with 77 industry/year

clusters. The results are shown in the final column of Table 8 and again they
should be compared with the second column of Table 5. Estimates are very
close to each other for all coefficients.

6.2 Sample exclusions

With seven industrial sectors and thirteen countries, mostly small European
ones, it is possible that single important sectors or countries drive the re-
sults. Given our split of manufacturing into three groups, there are no single
important sectors within groups that might drive the results. But across
geographies, Germany is a large country and by some margin the biggest
user of robots in its manufacturing (see Table 3). We re-estimated our main
regression by excluding Germany but this made virtually no difference to
the estimated coefficients in Table 5. This is consistent with the fact that
Germany is fairly close to the mean of the innovation index distribution, at
which point the impact of robots on hours of work is small.

6.3 Alternative measures of innovation performance

There are two other widely-available measures of a country’s innovation en-
vironment, the Global Innovation Index and the Summary Innovation Index
of the European Innovation Scoreboard. The Global Innovation Index has
been published since 2007 by Cornell University, INSEAD and the World
Intellectual Property Organization (WIPO) and is the average of scores in
two sub-indices, the Innovation Input Sub-Index and Innovation Output Sub-
Index (see the latest edition, Cornell University, INSEAD and WIPO, 2019,
especially Appendix 1). The innovation input sub-index consists of five pil-
lars which capture the country’s enabling environment for innovation. The
innovation output sub-index is the average of two pillars that capture the
outputs of the innovation activities within the country. The overall index is
the average of the two sub-indices. The five pillars of the input index are
the quality of institutions, human capital, infrastructure, market sophistica-
tion and business sophistication, and the two pillars of the output index are
knowledge and technology outputs and “creative” outputs. The data sources
are all secondary published sources, mostly by international organizations
such as the OECD and Eurostat.
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The Summary Index of the European Commission Scoreboard is an un-
weighted average of several indicators (see European Commission, 2019).
Currently the number is 27, but in earlier years there were fewer. In the
years of our sample they were divided into three categories, enablers, in-
cluding factors like education standards and availability of venture capital,
firm activities, such as R&D and patent applications, and outputs, such as
employment in knowledge-intensive industries and exports of high-tech prod-
ucts. The data sources are again publications of international organizations
such as Eurostat, OECD and the United Nations. The index covers all mem-
bers of the European Union and in the early years of our sample it covered
the United States as well, although inclusion of the United States has now
been discontinued.
The simple correlation coefficient of our index with the Global Innovation

Index is 0.86 and with the European index (excluding the United States) 0.93.
The ranking of countries is also very close to each other in the three indices.
Not surprisingly, given the high correlation between the three indices, the
estimation results with the two new indices are very similar to the ones in
columns (2) and (4) of Table 5. In the interests of space we do not report
the estimated regressions but give here only some key coefficients for the net
effects. Statistical significance for the point estimates is comparable to that
for the regressions in Table 5.21

Table 9 gives the net elasticity estimates for the least innovative country
(Italy) and the most innovative one (the United States in our index and the
Global Innovation Index or Sweden for the European Union index, which
in the absence of the United States is the most innovative country). The
estimates for our index are taken from Table 6. It is clear that with minor
exceptions, our estimates can be replicated with alternative indices for a
country’s innovation environment and they are not due to any peculiarities in
our index. The main difference between our index and the two alternatives is
that the latter two use data published by international organizations whereas
the source of data for our index is a survey of firms conducted by the World
Economic Forum. In both cases the correlation between our index and the
alternatives is extremely high and the estimated elasticities are very close to
each other in all three cases. We continue with our index only, which gives
more complete data information for our sample.

21The results shown are for the OLS estimate without industry fixed effects. Results
are very similar if instruments are used and if industry fixed effects are included.
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6.4 Non-manufacturing industries

Table 10 shows the results of estimation when we add three non-manufacturing
production sectors to the sample, agriculture, mining and quarrying, and wa-
ter supply, gas and electricity (utilities). These three sectors are small users
of robots and there are several zero entries for robot density in some coun-
tries, which we classify as missing observations. We use a common industry
fixed effect for non-manufacturing, although the results are virtually identi-
cal with a full set of manufacturing and non-manufacturing fixed effects. We
show only OLS results, as the instrumental variable estimates were not very
precise. The general message, however, in the IV estimates was the same as
the one shown in the OLS regression.
Hours of work in the non-manufacturing sectors are large, being more

than a third of manufacturing hours, and dominated by agriculture. Robot
density in agriculture is less than one-tenth of the least robotized manufac-
turing sector, and there are several zero entries in the sample, which force
us to discard several observations from our manufacturing sectors as well.
So it is not surprising to find that the results do not replicate very precisely
the results that we obtained in Table 5 for manufacturing. Our main find-
ing is replicated, namely that the innovation environment of a country is an
important influence on the impact of robotics on hours of work in manufac-
turing. But the point estimates give much more importance to the innovation
environment than is shown in our estimates in Table 5.
The result that we consistently derive for non-manufacturing is that the

innovation environment has no influence on the impact of robots on hours.
This is not surprising, given the low robot density and low research potential
in these sectors. The net impact of robot density on hours that we estimate
is negative, i.e., the introduction of robots unambiguously reduces hours in
non-manufacturing in all our countries. The coefficient estimate is robust
to the introduction of the innovation index, which has very large standard
error when included in the estimation. It is at about the level estimated
for the countries with the weakest innovation environment in the manufac-
turing sector, with the strongest negative substitutions (Italy and transport
equipment). So overall, non-manufacturing sectors experience stronger sub-
stitutions than any of the manufacturing sectors in any country.

6.5 Decomposing the innovation index

Our final robustness test for robot density is a very stringent one that breaks
up the innovation index into its six components and runs the OLS regression
in column (2) of Table 5 again, with each replacing the national innovation
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index. It is stringent because our innovation index might average out any
fluctuations in a single pillar, which will influence the estimation in this
decomposition. The coefficient estimates are in Table 11.
All indicators except for the availability of scientists and engineers give

statistically significant results that conform to the estimates of Table 5. Two
of the indicators, R&D spending and government procurement of tech prod-
ucts, are flow concepts, whereas the others are closer to institutional features,
yet there is no discernible difference between them in the estimation.

6.6 Level of robots

Finally, we report the main regressions in Table 5 when robot density in (14)
is replaced by the log of the number of robots. The results are in Table 12.
The main message comes through in the sense that a good innovation envi-
ronment acts to mitigate, or reverse, any negative impact of robots on hours
of work. This result is statistically significant in both the OLS estimates and
the IV estimates. But a difference in the point estimates that runs through
all regressions in Table 12 is that the impact of robots on hours is not statis-
tically significant negative even in the countries with the weakest innovation
systems. For example, none of the estimated robot coefficients on hours in
Italy is significantly different from zero, whereas in countries with stronger
innovation environments it is positive in all cases. When estimated with the
level of robots, our model implies less substitution between robots and hours
of work than when estimated with robot density.

7 Conclusions

Our argument in this paper is that as emphasized by many authors, robots
have the technical capabilities to replace humans in manufacturing and some
other sectors; but whether they do or not depends on the institutional en-
vironment of the country and the incentives that firms have to take them
on. We have shown that the institutions shaped by the innovation environ-
ment of a country, such as the extent of R&D, the quality of human capital,
the quality of scientific research and the collaboration between companies,
universities and governments, play a critical role in shaping those incentives.
Countries with a poor innovation environment, mainly located in the Euro-
pean South and East, on average substitute robots for labour, but countries
with a more favourable environment, such as the United States, Germany
and the Nordic countries, might even add labour when they recruit more
robots.
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Some notable and intuitive differences between sectors have been iden-
tified. In electronics and electrical equipment, the innovation environment
plays a more important role than in other sectors. This is intuitive because
this sector is among the main research sectors, being also a producer of ro-
bots. In this sector countries with a more favourable innovation environment
increase hours of work when more robots are employed. In contrast, trans-
port equipment, which is the biggest user of robots, substitutes robots for
hours more than other sectors. There is no country with more hours when
robot density in this sector is higher, but there are some with strong and
statistically significant substitutions.
In predictions with the manufacturing estimates, we were able to show

that the adoption of more robots during our sample period can explain large
parts of the detrended changes in manufacturing employment. For example,
hours of work in German electronics are shown to be above trend and in
Italy they are below trend, by about the same percentage. About one third
of this divergence from trend in each country is explained by the adoption
of robots, in Germany increasing hours because of its favourable innovation
environment and in Italy decreasing them because of its unfavourable inno-
vation environment.
We find strong substitutions as well in non-manufacturing production

sectors. We tested the impact of robot density in three sectors, agriculture,
mining and utilities, which are very small users of robots, and found that the
innovation environment played no role in these sectors. They consistently
used robots to replace human labour, with a higher negative elasticity than
the one estimated for transport equipment in the countries with the weakest
innovation environments.
We have rationalized these results in a model in which the firm creates

two types of jobs. One type is engaged in tasks that can also be done by
robots and one engaged in tasks that are complementary to the output of
robots. For example, welding can be done by both humans and robots but
research or managerial work is done by humans and it complements the
output of the production part of the firm, in which robots are engaged. In
this model, whether robots replace or complement labour depends on the
relation between three elasticities, the elasticity of the demand for the final
product and the two elasticities of substitution between the two types of
human tasks and robots.
We have argued that there are two channels in this framework that jus-

tify the claim that a more favourable innovation environment is associated
with higher robot density and hours of work. The first is based on the
open economy. Countries that engage more in innovation gain a comparative
advantage in international markets for manufactures and through trade ex-
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perience a higher elasticity of demand for their final products. Germany and
the United States might fit this argument. The second is partly based on the
special features of an innovative country, such as engagement in more R&D
and the availability of better qualified human capital, which make it easier
for them to create complementary tasks when robots are introduced. The
Nordic countries might fit this scenario, in contrast to countries like Italy
and Spain, which do not create enough complementary tasks when robots
replace labour in competing tasks.
Overall, our results point to the fact that it is not possible to use estimates

from one country to make inferences about robot-labour substitutions in
another, even if the countries are broadly similar. There are interactions
between robot-labour substitutions and other features of the economy which
influence the estimated elasticities. We have identified one - the innovation
environment - but there could be others that future work could identify.
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8 Appendix 1. Derivations

The profit of the firm in sector 1 is

Π = p1Y1 − ρWR−W (H1R +H1N), (15)

with Y1 given by (2) and (1). The maximum satisfies the marginal produc-
tivity conditions,

p1A1(1− β)

(
Y1
A1F

)1/σ
(1− α)

(
F

R

)1/s
= ρW, (16)

p1A1(1− β)

(
Y1
A1F

)1/σ
α

(
F

H1R

)1/s
= W, (17)

p1A1β

(
Y1

A1H1N

)1/σ
= W. (18)

Dividing (16) by (17) we get the robot density in the automatable part
of production,

R

H1R

=

(
1− α

αρ

)s
≡ r. (19)

Clearly, lower robot price leads to a rise in robot density. In the derivations
in this Appendix, it is convenient to use r in place of the exogenous price ρ,
given that we always treat α and s as fixed parameters. We refer to a rise in
r as equivalent to a fall in the exogenous price of robots.
Dividing (17) by (18) we get,

H1N

H1R

=

(
β

1− β

)σ
α−σq(r)(s−σ)/s, (20)

with q defined by,

q(r) ≡
[
α + (1− α)r(s−1)/s

]s/(s−1)
, q′(r) > 0. (21)

The function q(r) is another uniquely defined function of ρ, given the fixity
of α and s. Higher r (lower robot price) raises H1N/H1R under the restriction
σ < s.
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Robot density in sector 1 is given by

R

H1

=
R

H1R

1

1 +H1N/H1R

, (22)

or alternatively,
R

H1

=
r

1 +
(

β
1−β

)σ
α−σq(r)(s−σ)/s

. (23)

Result 1. Robot density rises with r
Differentiation of (23) with respect to r shows that the sign of the partial

is the same as the sign of

1 +

(
β

1− β

)σ
α−σq(r)(s−σ)/s

(
1−

s− σ

s

rq′(r)

q

)
. (24)

The elasticity of q(r) is,

rq′(r)

q
=

(1− α)r(s−1)/s

α + (1− α)r(s−1)/s
< 1, (25)

which establishes the result, given 0 < σ < s.
We note that this result was derived from the first-order conditions of the

firm’s maximum, without making use of the equilibrium conditions.
Result 2. Hourly productivity rises with r.Making use of conditions (19)

and (20), we get,

F = q(r)H1R, (26)

Y1 = A1H1Nβ
−σXσ/(σ−1), (27)

X ≡ (1− β)σασ−1q(r)(σ−1)/s + βσ. (28)

Hourly productivity Y1/H1 is given by

Y1
H1

= A1
H1N

H1

β−σXσ/(σ−1), (29)

which by differentiation with respect to r, given the expressions in (23), (21)
and (28) gives the result. The restriction s ≥ σ is sufficient for this result
but not necessary.
To complete the demonstration of the results in Proposition 1 we need

to complete the equilibrium, as prices are equilibrium outcomes. The equi-
librium is completed by the marginal rate of substitution between the two
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goods obtained from the consumer maximization and the firm’s marginal
productivity condition in sector 2,

p1
p2

=
ω

1− ω

(
c1
c2

)
−1/ε

=
ω

1− ω

(
Y1
Y2

)
−1/ε

(30)

p2A2 = W (31)

We simplify the expressions by dividing (18) by (31), and then using (27) to
substitute out Y1, we get

p1A1
p2A2

X1/(σ−1) = 1. (32)

Result 3. Relative prices p1/p2 fall with r. Differentiation of (32) immedi-
ately yields the result
This completes the proof of Proposition 1. To prove now the statements

in Proposition 2, we make use of the production functions for sectors 1 and
2, (27) and (3), and the consumption MRS condition (30), to obtain,

p1A1
p2A2

=
ω

1− ω

(
A1
A2

)(ε−1)/ε (
βX−1/(σ−1)

)σ/ε
(
H1N

H2

)
−1/ε

. (33)

Equations (32), (33) and (20) give, after simple substitutions,

H1N

H2

= AβσX(ε−σ)/(σ−1), (34)

H1R

H2

= A(1− β)σασq(r)(σ−s)/sX
ε−σ
σ−1 , (35)

with A defined by productivity and preference constants that play no further
role in our analysis,

A =

(
ω

1− ω

)ε(
A1
A2

)ε−1
. (36)

Given now that H1 = H1N +H1R, we obtain from (34) and (35) the ratio of
hours of work in the two sectors,

H1

H2

= A[(1− β)σασq(r)(σ−s)/s + βσ]X
ε−σ
σ−1 , (37)

which, together with (6) solves for the labour allocations in the two sectors.
Result 4. For β = 0, the condition s > ε implies that H1 falls when r

rises; it rises with r if s < ε. From (34)-(35), when β = 0, H1 = H1R and
from (28),

X = ασ−1q(r)(σ−1)/s. (38)
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Therefore,
H1 = H1R = Aασ−1q(r)(ε−s)/s, (39)

which delivers the result.
Result 5. For β > 0, a sufficient condition for a fall in H1 when r rises

is σ ≥ ε. If σ < ε there are two conflicting effects on H1, a negative one
due to s > σ and a positive one due to ε > σ.

Equation (37) has two terms, the one in the square brackets and X
ε−σ
σ−1 .

Differentiating each separately delivers the result. The explicit condition for
a net positive effect is shown in equation (10) in the main text.

8.1 Imports

Suppose that consumers have the choice of two manufacturing goods, one
produced domestically as in the main text and an imported good c∗1, which
has elasticity of substitution with the domestic good η > 0. The consumer
maximization problem is

max
c1,c∗1,c2

U (c) = ln
[
ωc̃

(ε−1)/ε
1 + (1− ω)c

(ε−1)/ε
2

]ε/(ε−1)
(40)

c̃1 =
[
ψc

(η−1)/η
1 + (1− ψ)c

∗(η−1)/η
1

]η/(η−1)
(41)

2∑

i=1

pici + p
∗

1c
∗

1 ≤ Y. (42)

We assume 0 < ω < 0 and 0 < ψ ≤ 1, allowing for the case of the closed
economy when ψ = 1.
The production side of the economy is the same as before, except for

one small change in sector 1 that makes no difference to the results derived
here, but it shows how exports might be introduced in an extended model.
The firm still sells all its output at price p1, with c1 bought and consumed
domestically, but another part c∗∗1 is bought by an exogenous agent. We
assume that c∗∗1 = (1 − k)Y1, i.e., that the exogenous demand is a fixed
fraction of output, with k ∈ [0, 1). The market clearing condition in sector 1
then becomes, c1 + c

∗∗

1 = Y1, or simply

c1 ≤ kY1, (43)

which replaces the first inequality of (8). Everything else on the production
side remains the same as before, including all elasticities, ε, σ and s.
It follows that Results 1 and 2 hold as before. The only real change with

the introduction of imports comes from a new condition for consumption
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allocations, replacing (30). The new marginal rate of substitution conditions
are,

c1
c∗1

=

(
ψ

1− ψ

)η (
p1
p∗1

)
−η

(44)

c̃1
c2

=

(
ω

1− ω

)ε(
p̃1
p2

)
−ε

(45)

p̃1 =
[
ψηp1−η1 + (1− ψ)ηp∗1−η1

]1/(1−η)
(46)

From these we get,

c1
c2

=

(
c̃1
c1

)
−1(

c̃1
c2

)
(47)

=

(
c̃1
c1

)
−1(

ω

1− ω

)ε(
p̃1
p2

)
−ε

(48)

=

(
ω

1− ω

)ε(
p1
p2

)
−ε(

p̃1
p1

)
−ε(

c̃1
c1

)
−1

(49)

=

(
ω

1− ω

)ε(
p1
p2

)
−ε

ψ−η
(
p̃1
p1

)η−ε
, (50)

which is the generalization of (30), written in more comparable form as,

p1
p2
=

ω

1− ω
ψ−η/ε

(
p̃1
p1

)(η−ε)/ε(
c1
c2

)
−1/ε

. (51)

Going through the same substitutions as the ones that gave (33)-(37), we
find that the relative employment levels are given by

H1

H2

= A[(1− β)σασq(r)(σ−s)/s + βσ]X
ε−σ
σ−1

(
p̃1
p1

)η−ε
, (52)

where now,

A =

(
ω

1− ω

)ε(
A1
A2

)ε−1
1

kψη
. (53)

The new term in (52) is the “terms of trade” effect, p̃1/p1. Without a model
for foreign sector equilibrium we assume, in parallel with our earlier result
for domestic prices (32), that the ratio of foreign to domestic prices is equal
to the inverse of the ratio of sector productivities:

p∗1
p1
=
A1
A∗1
X1/(σ−1). (54)
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The numerator is the productivity of the domestic sector 1, with A1 repre-
senting the neutral component and X1/(σ−1) the component originating in
the automatable part of sector 1 production. The denominator is the ex-
ogenous rest-of-world manufacturing productivity, which in general would
include non-neutral components due to robots and other capital in the rest-
of-world economy, but which we assume to be exogenous here. It follows
that

p̃1
p1

=

[

ψη + (1− ψ)η
(
p∗1
p1

)1−η]1/(1−η)

=

[

ψη + (1− ψ)η
(
A1
A∗1

)1−η
X(1−η)/(σ−1)

]1/(1−η)
(55)

and so ∂ p̃1
p1
/∂q > 0. It follows from (52) that the introduction of competition

from imports for domestic producers adds another impact term on H1/H2

when robot price falls [or q(r) increases], which is equal to (η − ε) times a
positive expression derived from the differentiation of (55).
A special case arises when η = 1. In that case (55) becomes,

p̃1
p1

= ψ−ψ(1− ψ)1−ψ
(
p∗1
p1

)1−ψ

= ψ−ψ(1− ψ)1−ψ
(
A1
A∗1

)1−ψ
X(1−ψ)/(σ−1) (56)

and so (37) simplifies to

H1

H2

= A[(1− β)σασq(r)(σ−s)/s + βσ]X
ψε+1−ψ−σ

σ−1 , (57)

with A now also including the constants in (56). From this it immediately
follows that the elasticity difference term on the left side of (10) changes
from (ε− σ) to (ψε+ 1− ψ − σ). As ψ in this case is the share of domestic
goods in consumption, the expression (ψε + 1 − ψ) is the weighted average
elasticity of domestic and foreign goods consumed [ψε+(1− ψ) η for η = 1].
For values of η 6= 1, however, the combination of the elasticities is non-linear,
as in (55), and it is not possible to write a simple expression like the one in
(57) for H1/H2.
We finally note that if the exogenous “foreign” demand for output, 1−k,

increases, it is shown by a fall in k and so through (53) and (52) a rise in A
and H1/H2, giving another reason for complementary job creation.
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8.2 Complementary job creation

In order to find the partial derivative of output with respect to β, differentiate
(2) to get,

∂Y1
∂β

1

Y1
=

σ

σ − 1
A
(σ−1)/σ
1

[

(1− β)

(
F

Y1

)(σ−1)/σ
+ β

(
H1N

Y1

)(σ−1)/σ]σ/(σ−1)
.

(58)
Making use of the first-order conditions (16)-(18), to substitute out the frac-
tions in the square brackets, we get,

∂Y1
∂β

1

Y1
=

σ

σ − 1
(A1p1W )

σ−1
[
βσ−1 −

(
(1− β)αq(r)1/s

)σ−1]
. (59)

Given the restriction σ < 1, this is positive when condition (12) is satisfied.
Differentiation of the equilibrium condition (10) with respect to β imme-

diately yields that the left side rises in β when β ≥ β0, as defined in the
text.

9 Appendix 2. Data: Definitions and sources

Hours of work — The total number of annual hours worked by all persons
engaged in production by industrial group, 2006-2016. Source: EU KLEMS,
2019 release.
Robots — The total number of robots by industrial group, annual ob-

servations for 2006-2016, as estimated by the International Federation of
Robotics. The IFR estimates the operational stock by assuming a service life
of 12 years followed by an immediate withdrawal from service. Source, IFR
(2017)
Robot density — The number of robots divided by hours of work in

millions. In the early years, a very small number of year-country-industry
entries show zero robots or an unexplained big jump, which we treat as
omitted variables.
Capital — We use the EU KLEMS 2019 dataset, listed by industry,

country and year, which provides information on net capital stock, vol-
ume 2010 reference prices. We convert to US dollars using PPP exchange
rates from the OECD, https://data.oecd.org/conversion/purchasing-power-
parities-ppp.htm . Total capital includes ten asset types: residential struc-
tures; total non-residential investment; transport equipment; computing equip-
ment; communications equipment; other machinery, equipment and weapons
systems; cultivated assets and intellectual property products including R&D,
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computer software and databases, and others. EU KLEMS calculates the
stock using the perpetual inventory method. We exclude R&D from our
measure of the capital stock.
ICT —EU KLEMS defines ICT capital as computing equipment, com-

munications equipment and computer software and databases. We take this
from the definition of overall capital and use its ratio to total capital in our
regressions.
Compensation of employees — Compensation includes wages, salaries

and all the other costs of employing labour which are borne by the employer.
We convert to constant 2010 US dollar prices using PPP exchange rates. For
hourly compensation we divide the total compensation in EU KLEMS 2019
by hours of work, in millions.
Innovation Index — The average of the first six indicators of Pillar 12

of the World Economic Forum Global Competitiveness Index, available on a
consistent basis for all countries in our sample in 2006-2016. Two additional
composite indicators that we used are the Global Innovation Index and the
European Union Summary Innovation Index. The Global Innovation Index
(GII) was first published in 2007 by Cornell University, INSEAD and the
World Intellectual Property Organization. The Summary Innovation Index
(SII), developed by the European Commission, covers European countries
only.
Instrumental variables — The following instruments were used. Robot

density in South Korea, defined as in our countries. The total number of
annual hours worked by industrial groups is available up to 2012. We impute
the industry-level hours worked for the years 2013-2016 using the average
annual change of an industry’s hours worked during the years 2004-2012.
Sources: IFR (2017), World KLEMS, http://www.asiaklems.net/.
Robot density in Germany, annual observations for 1995-2005. Sources:

EU KLEMS, 2012 release; 2019 release, IFR (2017).
Robot density in Japan, annual observations for 2006-2016. The total

number of annual hours worked by industrial groups is available up to 2015.
We impute the industry-level hours worked for the year 2016 using the aver-
age annual change of an industry’s hours worked during the years 2006-2015.
Sources: EU KLEMS, 2019 release, IFR (2017).
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Table 1. Manufacturing trade flows, 2014 

  Country  Manufacturing 

%GDP 

Exports 

%Manufacturing 

Imports 

%Manufacturing Austria 27.7 64.4 45.0 Belgium  25.5  76.3  60.2 Czechia  39.0  68.6  44.3 Denmark  19.5  63.7  41.2 Finland  27.3  52.3  35.5 France  19.3  46.7  39.2 Germany  33.0  55.6  32.4 Italy  28.8  40.8  26.5 Nether  22.8  66.6  58.1 Spain  27.2  37.9  33.7 Sweden  23.3  57.0  30.1 UK  15.1  37.4  39.9 USA  18.0  16.9  19.6 

       

Sources 

Manufacturing output (gross) as percent of GDP, KLEMS 2019 release     

Exports of domestically produced manufacturing goods, gross, Input‐Output tables, 
WIOD database, November 2016 release         

Imports of manufacturing goods, including intermediate goods and final 
consumption goods, Input‐Output tables, WIOD database, November 2016 release. 

   



 
     

Table 2. Skills in manufacturing industries 
 

Country  Innovation  High             Low  Index  Skill  Skill  . 

  scale 1‐7  (percent)  (percent)   

       

Austria  4.7  17.5  16.8 

Belgium  5.0  26.4  26.7 

Chechia  4.2  9.1  6.8 

Denmark  5.0  20.3  27.7 

Finland  5.5  31.4  16.3 

France  4.8  26.4  24.2 

Germany  5.3  23.4  15.4 

Italy  3.8  8.0  45.4 

Netherlands  5.0  21.4  33.3 

Spain  3.9  31.4  46.1 

Sweden  5.4  19.1  17.5 

UK  5.0  21.9  31.8 

Correlations, all    0.431  ‐0.541   

Correlations, excluding 2 outliers  0.829  ‐0.849 

 
Notes         

For the construction of the innovation index see text.   

The columns headed high skill and low skill show the percentages of high skill and low skill 
workers employed in manufacturing industries, as defined by EU KLEMS 2019 release. The 
remainder percentage is that for medium skill workers. 

The skill percentage numbers are mean values of all positive entries in the sample. Comparable 
percentages for the United States are not published. 

The correlations show the correlation of each skill with the innovation index. The first row 
includes all the skill entries and the second drops two outliers, low skill for Chechia and high skill 
for Spain.  



 
     

 

Table 3. Country means of key variables 
 

Country  Innovation  Annual  Robot density  Index  Hours  manufacturing  Non‐manuf. 

  scale 1‐7  (millions)     

         

Italy  3.79  8,713  10.91  0.04 

Spain  3.92  5,421  9.21  0.10 

Czechia  4.24  2,003  2.31  0.04 

Austria  4.73  1,341  5.98  0.27 

France  4.81  5,820  11.06  0.24 

Belgium  4.96  886  7.56  0.09 

Netherlands  4.98  1,231  4.57  0.21 

Denmark  4.99  469  12.16  1.52 

UK  5.04  5,461  3.49  0.10 

Germany  5.28  10,115  14.30  0.04 

Sweden  5.36  1,045  8.57  0.45 

Finland  5.49  745  8.76  0.12 

USA  5.50  24,403  5.44  0.02 

 
Notes         

For the construction of the innovation index see text.   

Annual hours are defined as the annual average of total hours actually worked in the sectors in 
the sample, 2006‐2016. 

Robot density is the unweighted average of the annual ratio of robots in production to hours of 
work, again for the sectors in the sample. 

In the calculation of sample means only observations for which a positive number of robots is 
shown are included.  

     



 
 

Table 4. Industry means of key variables 
 

  Annual  Robot 

Industry  hours  density 

  (millions)   

    

Manufacturing    

Electronics  488  4.91 

Food and beverages  695  2.28 

Metal  768  5.9 

Plastics and chemical  792  5.77 

Textiles  215  0.32 

Transport Equipment  523  32.65 

Wood and paper  349  1.3 

     

Non‐manufacturing     

Agriculture  1,045  0.03 

Utilities  293  0.04 

Mining and quarrying  66  0.26 

 
Notes         

Annual hours are defined as the annual average of hours of work in each sector and country 
for which the reported number of robots is positive. 

Robot density is the unweighted average of the annual ratio of robots in production to hours 
of work (in millions) for all countries in the sample. 

In the calculation of sample means only observations for which a positive number of robots is 
shown are included.    



 
Table 5. Results for manufacturing industries 

 

 
Dependent variable in all regressions: log 
hours by country, industry and year, ln 𝐻   

  (1) OLS  (2) OLS  (3) IV  (4) IV ln 𝑅 /𝐻  ∗ 𝛪   0.152  ‐0.956  0.248  ‐1.020 

  (0.018)  (0.147)  (0.029)  (0.249) ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝛪2  ‐0.005  ‐0.194  0.026  ‐0.240 

  (0.008)  (0.051)  (0.010)  (0.058) ln 𝑅 /𝐻 ∗ 𝛪    0.052  ‐0.274  0.137  ‐0.275 

  (0.008)  (0.049)  (0.014)  (0.070) ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝐼1 ∗ 𝑉𝑐𝑡    0.218    0.247 

    (0.029)    (0.047) ln 𝑅 /𝐻  ∗ 𝐼 ∗ 𝑉     0.038    0.054 

    (0.01)    (0.012) ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝐼3 ∗ 𝑉𝑐𝑡    0.068    0.087 

    (0.01)    (0.015) ln 𝐾𝑖𝑐𝑡    0.651  0.634  0.593  0.560 

  (0.013)  (0.012)  (0.017)  (0.018) ln 𝑊 /𝐻    ‐0.391  ‐0.332  ‐0.554  ‐0.467 

  (0.043)  (0.042)  (0.057)  (0.055) 

country dummies yes  yes  yes  yes 

time dummies  yes  yes  yes  yes 

industry dummies no  no  no  no 

Number of obs.  977  977  977  977 

F(27, 949)  1290    1151.48   

F(30,  946)    1265.26    1089.68 

Cragg‐Donald Wald F      161.7  64.69 

Notes         

Subscript 1 denotes electronics,2 transport equipment, and 3 low‐tech industries. 
The instrument used is robot density in South Korea over the period of the sample. 
Robust standard errors in parentheses 



Table 6. Estimates of the net effect of robot density on hours of work, by country and manufacturing sectors 

 

Country  Electronics  Transport 
equipment 

Low‐tech 
industries 

  Country  Electronics  Transport 
equipment 

Low‐tech 
industries 

Italy  ‐0.131  ‐0.049  ‐0.018    Denmark  0.129  ‐0.004  0.062 
  (0.040)  (0.013)  (0.013)      (0.017)  (0.008)  (0.008) 
                 
Spain  ‐0.104  ‐0.044  ‐0.010    UK  0.141  ‐0.002  0.066 
  (0.037)  (0.012)  (0.012)      (0.017)  (0.008)  (0.008) 
                 
Czechia  ‐0.034  ‐0.032  0.012    Germany  0.193  0.008  0.082 
  (0.029)  (0.010)  (0.010)      (0.018)  (0.009)  (0.009) 
                 
Austria  0.073  ‐0.013  0.045    Sweden  0.210  0.011  0.088 
  (0.019)  (0.008)  (0.008)      (0.019)  (0.009)  (0.009) 
                 
France  0.091  ‐0.010  0.051    Finland  0.238  0.015  0.096 
  (0.018)  (0.008)  (0.008)      (0.021)  (0.010)  (0.010) 
                 
Belgium  0.122  ‐0.005  0.060    USA  0.240  0.016  0.097 
  (0.017)  (0.008)  (0.008)      (0.021)  (0.010)  (0.010) 
                 
Netherlands  0.128  ‐0.004  0.062           
  (0.017)  (0.008)  (0.008)           

 

Notes 

The table shows the net effect of the OLS estimated coefficients (𝛽 𝛽 𝑉 ), where 𝑉  is the sample mean of the innovation index for each country. 
Countries are listed in terms of increasing innovation index. Robust standard errors of the net effect are in parentheses 



Table 7. Impact of robot density on hours change, 2011‐13 to 2014‐16 

 

 
 

Italy 
 

Germany 
 

USA  
electronics  transport 

eq. 
low‐
tech 

 
electronics  transport 

eq. 
low‐
tech 

 
electronics  transport 

eq. 
low‐
tech                        

mean hours 2011‐13 (millions)  473.6  396.1  897.6 
 

1206.7  1338.7  1108.9 
 

2868.4  3001.5  20129.8                        

detrended change 2011‐13 to 
2014‐16 

‐31.5  4.9  13.6 
 

31.3  17.5  18.1 
 

31.3  40.3  937.8 
                       

change attributed to robot 
density 

‐10.9  4.3  ‐2.6* 
 

10.7  0.1*  9.6 
 

327.6  14.3*  858.3 

 

Notes 

Detrending was done by including a time trend for hours in the regression and interacted with each industry separately 

A * indicates not significantly different from zero. 

Robot density increased in all entries between the two periods except for Italy’s transport equipment industry 

 



 
Table 8. Alternative specifications for manufacturing industries 

 

 
Dependent variable in all regressions: log 
hours by country, industry and year, ln 𝐻   

 
Industry 
dummies 

Inter‐
actions 

Inter‐
actions 

2‐way 
clustering ln 𝑅 /𝐻  ∗ 𝛪   ‐1.143  ‐0.984  ‐1.177  ‐0.956 

  0.133  0.160  0.140  0.152 ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝛪2  ‐0.213  ‐0.207  ‐0.214  ‐0.194 

  0.047  0.055  0.049  0.052 ln 𝑅 /𝐻 ∗ 𝛪    ‐0.364  ‐0.282  ‐0.370  ‐0.274 

  0.044  0.054  0.046  0.111 ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝐼1 ∗ 𝑉𝑐𝑡  0.240  0.224  0.246  0.218 

  0.026  0.031  0.027  0.030 ln 𝑅 /𝐻  ∗ 𝐼 ∗ 𝑉   0.032  0.041  0.031  0.038 

  0.010  0.011  0.010  0.010 ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝐼3 ∗ 𝑉𝑐𝑡  0.071  0.070  0.071  0.068 

  0.009  0.011  0.009  0.020 ln 𝐾𝑖𝑐𝑡    0.638  0.631  0.635  0.634 

  0.016  0.013  0.017  0.047 ln 𝑊 /𝐻    ‐0.278  ‐0.338  ‐0.281  ‐0.332 

  0.044  0.047  0.047  0.100 

country dummies yes  no  yes  yes 

time dummies  yes  no  no  yes 

industry dummies yes  no  no  no 

Country*year  no  yes  no  no 

Industry*year  no  no  yes  no 
Notes         
Subscript 1 denotes electronics, 2 transport equipment, and 3 low‐tech industries. 
All estimates are with OLS (with robust standard errors) for 977 observations. The 
two‐way clustering in the last column is for 77 industry‐year clusters.  



Table 9. Net coefficient estimates with alternative innovation indices 
 

Industry  Index  Italy  US/Sweden 

       

  WEF  ‐0.131  0.240 

Electronics  GII  0.011  0.226 

  EU  ‐0.150  0.341 

       

  WEF  ‐0.049  0.016 

Transport  GII  ‐0.025  0.012 

Equipment  EU  ‐0.042  0.016 

       

  WEF  ‐0.018  0.097 

Non‐tech  GII  0.029  0.071 

  EU  ‐0.011  0.127 

Notes 

The table shows the net coefficient estimated for the impact of robot density on hours of 
work. See Table 6 for details. The three innovation indices are the World Economic Forum 
(WEF, as in Table 6), Global Innovation Index (GII) and the European Union Summary Index 
(EU) 

   



 
 

Table 10. Results for manufacturing and non‐manufacturing industries 
 

 

 
Dependent variable in all regressions: log hours by country, 
industry and year, ln 𝐻   

  (1) OLS  (2) OLS ln 𝑅 /𝐻  ∗ 𝛪   0.251  ‐0.595 

  (0.018)  (0.181) ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝛪2  0.041  ‐0.061 

  (0.008)  (0.061) ln 𝑅 /𝐻 ∗ 𝛪    0.083  ‐0.075 

  (0.008)  (0.059) ln 𝑅 /𝐻 ∗ 𝛪   ‐0.065  ‐0.065 

  (0.011)  (0.011) ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝐼1 ∗ 𝑉𝑐𝑡    0.167 

    (0.036) ln 𝑅 /𝐻  ∗ 𝐼 ∗ 𝑉     0.021 

    (0.013) ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝐼3 ∗ 𝑉𝑐𝑡    0.033 

    (0.012) 

country dummies yes  yes 
time dummies  yes  yes 
industry dummies no  no 
Number of obs.  1285  1285 
F(29, 1225)  1156.12   
F(30,  946)    1068.49 
Notes         

 
Subscript 1 denotes electronics, 2 transport equipment, 3 low‐tech industries, and 4 the non‐
manufacturing sectors (agriculture, mining and quarrying and utilities). Robust standard errors 
in parentheses 



 
Table 11. Components of the innovation index 

 
  Dependent variable in all regressions ln 𝐻  
    Scientific  R&D  University  Government  Scienti

st 
  Innovation  research  company  industry  Tech  Engine

er 
  capacity  quality  spending  collaboration  procurement  availab

le 
             ln 𝑅 /𝐻  ∗ 𝛪   ‐0.257  ‐0.245  ‐0.213  ‐0.188  ‐0.132  0.081 
  (0.047)  (0.045)  (0.036)  (0.036)  (0.038)  (0.052) ln 𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡  ∗ 𝛪2  ‐0.777  ‐0.447  ‐0.739  ‐0.681  ‐0.386  ‐0.310 
  (0.135)  (0.147)  (0.106)  (0.109)  (0.112)  (0.130) ln 𝑅 /𝐻 ∗ 𝛪    ‐0.123  ‐0.109  ‐0.135  ‐0.167  ‐0.135  ‐0.119 

  (0.047)  (0.046)  (0.036)  (0.037)  (0.045  (0.063) ln 𝑅 /𝐻 ∗ 𝛪 ∗ 𝑉  0.062  0.055  0.057  0.049  0.046  ‐0.005 
  (0.009)  (0.008)  (0.007)  (0.007)  (0.009)  (0.010) ln 𝑅 /𝐻 ∗ 𝛪 ∗ 𝑉  0.175  0.107  0.175  0.161  0.129  0.089 
  (0.025)  (0.026)  (0.021)  (0.021)  (0.027)  (0.025) ln 𝑅 /𝐻 ∗ 𝛪 ∗ 𝑉  0.023  0.019  0.027  0.033  0.032  0.023 
  (0.009)  (0.008)  (0.008)  (0.007)  (0.011)  (0.013) 

             

No. obs.  977  977  977  977  977  977 

F (30,946)  1251.23  1223.68  1290.97  1274.49  1210.23  1178.1 

Notes 
 

           

The coefficients in this table were estimated with OLS regressions like the one in column (2) of Table 5, 
with each of the six components of the National Innovation Index replacing the aggregate index in 
turn. Robust standard errors in parentheses.   
 

  



Table 12. Results for manufacturing industries 

 

 
Dependent variable in all regressions: log 
hours by country, industry and year, ln 𝐻   

  (1) OLS  (2) OLS  (3) IV  (4) IV ln 𝑅  ∗ 𝛪   0.113  ‐0.117  0.248  ‐0.231 

  (0.0074)  (0.037)  (0.029)  (0.049) ln 𝑅  ∗ 𝛪   0.068  ‐0.077  0.026  ‐0.342 

  (0.0058)  (0.027)  (0.010)  (0.067) ln 𝑅 ∗ 𝛪    0.099  ‐0.015  0.137  ‐0.226 

  (0.0069)  (0.028)  (0.014)  (0.063) ln 𝑅  ∗ 𝐼 ∗ 𝑉     0.046    0.065 

    (0.007)    (0.010) ln 𝑅  ∗ 𝐼 ∗ 𝑉     0.029    0.098 

    (0.005)    (0.013) ln 𝑅  ∗ 𝐼 ∗ 𝑉     0.023    0.073 

    (0.006)    (0.013) ln 𝐾    0.552  0.537  0.593  0.560 

  (0.015)  (0.015)  (0.017)  (0.018) ln 𝑊 /𝐻    ‐0.439  ‐0.393  ‐0.554  ‐0.467 

  (0.044)  (0.044)  (0.057)  (0.055) 

country dummies yes  yes  Yes  Yes 

time dummies  yes  yes  Yes  Yes 

industry dummies no  no  No  No 

Number of obs.  977  977  977  977 

F(27, 949)  1463.22    1151.48   
F(30,  946)    1381.22    1089.68 
Cragg‐Donald Wald F      161.66  64.69 
Notes         

Subscript 1 denotes electronics,2 transport equipment, and 3 low‐tech industries. 
The instrument used is robot density in South Korea over the period of the sample. Robust 
standard errors in parentheses 


