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Outcomes in matching markets depend on which agents match and to whom. In teacher labor
markets, the literature has focused on the former, as large cross-sectional dispersion in estimated
productivity naturally leads to proposals for replacing low-performing teachers (Chetty, Friedman
and Rockoff (2014b), see Jackson, Rockoff and Staiger (2014) for a review).1 Additional gains
are possible on two margins through which within-district reassignments can produce aggregate
gains: match effects and differential class sizes. If these two margins are quantitatively large, then
changing where a teachers work could also be an important policy tool.

Yet reassigning teachers to achieve allocative gains is not easy because, unlike other inputs,
teachers have preferences over assignments and may choose not to supply labor (Rothstein, 2015).
Moreover, in most public school districts, salaries are set by rigid schedules (Biasi, 2021). Observed
allocations therefore reflect an equilibrium of teacher preferences over amenities like student com-
position (Antos and Rosen, 1975), principal preferences, and market institutional features, including
timing and equilibrium selection.

This paper explores the potential student achievement gains from within-district teacher reas-
signment and the effectiveness of combinations of different policy levers in achieving these gains.
We have two central findings. First, because teachers vary in their absolute and comparative ad-
vantage, there is scope for meaningful gains from reallocating teachers within a district—the real-
location that maximizes achievement raises student test scores by 0.05 student standard deviations
(s) per student. These gains are significant relative to several benchmarks. Second, the most effec-
tive policies directly affect teachers’ preferences over schools (using teacher bonuses). In contrast,
directly affecting principals’ selection of teachers (Ballou, 1996) can lower student achievement
by giving highly sought-after teachers the ability to choose positions where they have a compar-
ative disadvantage. This asymmetry in the effect of seemingly symmetric policies highlights the
importance of equilibrium reasoning in policy analysis in this setting.

We arrive at these findings using an equilibrium model of the teacher labor market combined
with novel data on job vacancies and applications. In our model, teachers and schools meet and
form matches. Reflecting the rolling timing of the labor market, teachers may only match with
school openings that are active at the same time. Teachers have non-wage preferences over the
set of positions, and principals serve as hiring intermediaries who use their preferences to rank
teachers on behalf of the district. Each match generates student achievement based on the absolute
and comparative advantage of teachers. To predict the equilibrium matches, we use the concept of
pair-wise stability (Roth and Sotomayor, 1992; Hitsch, Hortaçsu and Ariely, 2010; Banerjee et al.,
2013; Boyd et al., 2013).

The model allows us to study several proposed or implemented policy interventions to increase
student achievement. Policies that change the market’s timing enter the model as changes to the

1For cross-sectional dispersion see, e.g., Hanushek, Kain and Rivkin (2004); Rockoff (2004); Chetty, Friedman and
Rockoff (2014a).
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subset of teachers and schools that meet, and we model changes to the market’s institutions as
selecting among the pair-wise stable equilibria.2 Teacher and principal bonuses change teacher and
principal preferences over matches.3 Bonuses for match effects can be made large enough so that
allocative efficiency perfectly shapes teacher and principal choice.

Even in the “best case” version of these policies, where all matches are available and teach-
ers and principals only rank on output, there may still be unrealized gains from prices not being
completely flexible. In a decentralized equilibrium, teachers are often assigned to schools based
on absolute advantage, but the first-best allocation leans more heavily on comparative advantage.4

Hence, we also consider unrestricted wages in each match that implement the first-best allocation by
giving teachers incentives to seek out positions that make the most of their comparative advantage.

Estimating an equilibrium model allows us to characterize a variety of policy effects, especially
in cases that do not lend themselves easily to program evaluation because the policies tend to be
implemented in isolation, on a small scale, and with limited variation in policy parameters.5 The
complex equilibrium in the teacher labor market makes us cautious in extrapolating policy effects.
In some cases, the sign of a simple policy’s effect may be ambiguous, depending on the other
policies in place.

To make these counterfactual predictions, the model highlights the four empirical objects we
need to estimate: teachers’ output from each potential assignment, teachers’ non-wage preferences
over positions, principals’ non-wage preferences over teachers, and the timing of when teachers and
positions are active. Inferring these objects from observed equilibrium allocations requires strong
assumptions.

We therefore supplement data on actual assignments with novel data from the job application
system of a school district in North Carolina. These data include the timing of all teacher appli-

2For example, some districts have focused on changing the algorithm that clears the market (Davis, 2021). Other
districts allow some schools to hire first (Levin and Quinn, 2003; Kraft et al., 2020). Many districts, like New York City,
have moved from teacher transfer priority based on experience to mutual consent where teacher and principal must each
agree to the assignment (Daly et al., 2008).

3Examples of teacher-level output bonuses include Indiana (Marcotte, 2015) and the ProComp policy in Denver
(Atteberry and LaCour, 2020). North Carolina implemented bonuses for teaching in hard-to-staff schools from 2001-
2004 (Clotfelter et al., 2008) while South Carolina provides high poverty districts with funding for teacher bonuses (Fox,
2017). Examples of principal-level bonuses include North Carolina, which instituted principal bonuses as a function of
the growth in student test scores in 2017-2018 (Pridemore, 2017), and New York City, which piloted a program giving
principals information about their teachers’ performance in 2007-2008 (Rockoff et al., 2012).

4 To see why the stable and first best allocations can be different, suppose that teacher 1 has output {10,9} at schools
1 and 2, respectively, and teacher 2 has output {8,0} at schools 1 and 2. Then in any stable equilibrium where both
teachers and principals only value output, teacher 1 is assigned to school 1 and teacher 2 is assigned to school 2. In
contrast, in the first best, teacher 1 is assigned to school 2 and teacher 2 to school 1. This assignment reflects teachers’
comparative advantage. If the comparative advantage of teacher 2 is strong enough, say, her output is {11,0}, then the
decentralized and first-best allocations coincide.

5While a growing empirical literature evaluates the responsiveness of teacher labor supply to bonus or incentive
schemes (Clotfelter et al., 2008; Falch, 2010; Steele, Murnane and Willett, 2010; Falch, 2011; Glazerman et al., 2013;
Protik et al., 2015; Springer, Swain and Rodriguez, 2016; Cowan and Goldhaber, 2018; Feng and Sass, 2018), even in
this literature, it is hard to find analogues to the types of targeted policies we consider.
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cations to open vacancies and the outcome of each application (including whether the teacher was
hired and whether the hiring principal rated the application positively).

Importantly, we also link the applicant data to the classroom assignment and student achieve-
ment data in North Carolina. These data allow us to characterize each teacher’s (possibly multi-
dimensional) value-added, and to estimate the joint distribution of preferences and value-added.

We start with the first empirical object: teachers’ output from each potential assignment. We
specify a multi-dimensional value-added model where teachers may have absolute advantage and
comparative advantage in teaching specific student types (Condie, Lefgren and Sims, 2014; Del-
gado, 2021; Bau, Forthcoming; Biasi, Fu and Stromme, 2021). We divide students based on whether
they are economically disadvantaged, and we find robustness to other forms of heterogeneity. We
estimate that teachers’ value-added across student types is highly dispersed across teachers and
highly correlated within teacher. Nonetheless, we can reject a homogeneous value-added model.

We use these estimates to solve for the student achievement-maximizing allocation of teachers
to positions and find gains of 0.054s per student. Just under half of these gains are from sorting
teachers based on comparative advantage (Delgado, 2021), while the rest comes from assigning high
absolute advantage teachers to larger classes. These gains are the equivalent of 39% of a standard
deviation in teacher forecasted value-added, or an additional year of experience for a novice teacher,
and larger than the 0.012s gains we estimate from replacing the bottom 5% of teachers with the
median teacher (Staiger and Rockoff, 2010; Neal, 2011).

Despite a negative correlation between teacher experience and student disadvantage (Lankford,
Loeb and Wyckoff, 2002; Clotfelter, Ladd and Vigdor, 2005), the actual allocation is close to equi-
table in value-added (similar to Mansfield (2015) and Angrist et al. (2021)). The allocation slightly
favors economically disadvantaged students, with the potential gains for reallocation concentrated
among advantaged students. The distributional consequences of gains from reallocation reflect
two competing forces. First, high absolute advantage teachers tend to have comparative advantage
in teaching economically disadvantaged students; and, second, advantaged students are in larger
classes on average. The latter force dominates such that maximizing achievement sends more of the
best teachers toward advantaged students.

We then turn to the second empirical object: teachers’ non-wage preferences over positions
(Barbieri, Rossetti and Sestito, 2011; Engel, Jacob and Curran, 2014; Bonhomme, Jolivet and Leu-
ven, 2016; Fox, 2016; Johnston, 2021). Based on institutional features and analysis of application
behavior, we argue that teachers apply non-strategically to positions they prefer relative to their
outside option. We specify a rich characteristics-based model of teacher utility with observed and
unobserved preference heterogeneity. Teachers prefer schools where they have comparative ad-
vantage (higher value-added), which might lead teachers to sort optimally if allowed to choose
their positions. This pattern, however, is overwhelmed by teachers’ preferences against schools
with more economically disadvantaged students. High absolute advantage teachers have the lowest
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preferences for schools with more economically disadvantaged students, but we estimate a large
random component to such preferences. In general, we find significant preference heterogeneity
across teachers.

The third empirical object is principals’ preferences over teachers (Ballou, 1996; Boyd et al.,
2011; Jacob et al., 2018; Jatusripitak, 2018). Using the observed set of applications to each position,
we model whether principals give an application a positive outcome: a positive rating without an
interview, an interview without a hire, or a hire. We combine these outcomes because principals
might interview or offer strategically by passing on preferred teachers who are unlikely to accept
an offer. As long as these teachers receive at least a positive rating, then we can model positive
outcomes as non-strategic choices. We estimate that principals prefer teachers who would produce
high value-added in the position. Principals consider a variety of other observed and unobserved
factors such that the highest value-added teacher does not always receive a positive outcome.

Finally, we estimate market timing based on applicants’ and vacancies’ periods of activity in
our administrative records.

With these four empirical objects, we use our model to evaluate how far various policies could
move the teacher allocation from the status quo toward the first-best. To characterize potential gains,
we start with the maximal form of each policy. There is little role for equilibrium selection since
there is nearly always a unique stable equilibrium. Complete market coordination such that teachers
can apply to any position in a cycle—not just those concurrently active—has a somewhat larger
effect, moving student achievement 15% of the way toward the first-best.

Principal output bonuses, when added to the status quo, actually lead to lower value-added,
while teacher output bonuses yield about 75% of the total potential achievement gains. The remain-
ing gains come from completely flexible prices that vary with potential output at all matches, not
just at the assigned ones.

The surprising negative effect of principal output bonuses reflects the theory of the second-best
(Lipsey and Lancaster, 1956). We have documented that both principal and teacher preferences are
not aligned with the planner. By standard intuition, aligning either one in isolation should improve
outcomes. Instead, aligning principal preferences alone lowers student achievement. The reason is
that principal bonuses lead to more homogeneous rankings of teachers so that the highest absolute
advantage teachers have many options to choose from. When teachers rank schools according to
their estimated preferences, in which output plays a small role relative to a school’s student body
composition, increased choice leads to misallocation.

Of the policies we consider, only teacher bonuses have the potential to close most of the gap
between the status quo and output-maximizing allocations. We end by considering realistic bonus
schemes that pay teachers a piece rate bonus and a participation subsidy which guarantees that all
teachers are weakly better off. We find that when teacher bonuses are added to the status quo, target-
ing value-added is, unsurprisingly, the most cost-effective way to produce value-added. When prin-
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cipals also have output bonuses, teacher bonuses that target teaching economically disadvantaged
students are more cost-effective in producing value-added because they more quickly counteract
teachers’ preferences toward advantaged students. More generally, we find that teacher bonuses
are considerably more costly than flexible prices that implicitly only pay more to teachers with the
weakest preferences for their optimal assignment.

We show that our main results are robust to sensible permutations in the value-added model
(what student characteristics matter for match effects, whether our model of match effects under-
states the total match component), the teacher preference model (smaller or larger empirical choice
sets, the form of heterogeneity), and the principal preference model (modeling hires instead of pos-
itive outcomes, smaller or larger empirical choice sets).

Our paper fits in an emerging literature that uses teacher labor market equilibrium models to
assess the gains in student achievement from various policies. These papers range in the alloca-
tion problem they consider from national (Combe, Tercieux and Terrier, Forthcoming; Bobba et al.,
2021; Combe et al., 2021) to state cross-district (Biasi, Fu and Stromme, 2021) to local within-
district (Boyd et al., 2013; Laverde et al., 2021) to sectoral (Tincani, 2021).6 Our unique com-
bination of detailed data on teacher applications, principal ratings, and student-teacher classroom
assignments allows us to identify a two-sided heterogeneous preference and multi-dimensional pro-
duction model with straightforward assumptions on behavior.

1 An equilibrium model of the teacher labor market

We begin with an equilibrium model of the labor market for teachers. The model allows us to
define the school district’s (first-best) allocation problem and the decentralized equilibrium. We
then discuss how we use the model to consider the impact of various policies to affect the matching
process. The model highlights the empirical objects that we estimate in Sections 3, 5, and 6.

We defer a full description of the empirical setting to Section 4, but we highlight a few features
that inform the model. First, the teacher labor market operates on a rolling basis from April to
August each year. This segments the market in time. Second, the market is decentralized such
that teachers choose which positions to apply to, and principals choose whom to interview and then
whom to offer jobs. Finally, a teacher’s wage does not vary based on the offer she accepts.

1.1 Set-up

We begin with specialized notation that we generalize in the next section. Denote teachers by j,
and schools and principals by k (for notational compactness, we consider single-position schools).

6Bau (Forthcoming) studies an equilibrium model of school competition with school-student match effects. A
broader literature considers non-education allocation problems with non-choice outcomes (Agarwal, Hodgson and So-
maini, 2020; Ba et al., 2021; Cowgill et al., 2021; Dahlstrand, 2021).
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Teachers and principals both receive quasi-linear utility from an assignment. Teacher j derives
utility u jk from teaching at school k:

u jk = ũ jk +w jk, (1)

where w jk is the wage, and ũ jk is a match-specific amenity. School k (or the principal who runs it)
derives utility, v jk, from hiring teacher j. This utility is linear in a non-wage component less the
wage paid to teacher j:

v jk = ṽ jk �w jk. (2)

A teacher-school assignment produces student value-added VA jk. Below, we specify a func-
tional form for VA jk.

Finally, let J be the set of teachers, K be the set of schools, and assume for simplicity that the
number of teachers and schools is the same. An assignment of teachers to classrooms is a one-to-
one and onto function (bijection): f : J ! K so that f( j) = k, the school k to which teacher j is
assigned. Denote by F the set of all possible assignments.

1.2 First-best problems

We consider a school district’s first-best assignment problem, where the district values students’
outcomes and teachers’ preferences over assignment (non-wage utility):

max
f2F

{w Â
j2J

VA jf( j) + Â
j2J

ũ jf( j)}. (3)

To understand this allocation problem, note that the the first term (Â j2J VA jf( j)) is the output
achieved given an assignment f. The second term (Â j2J ũ jf( j)) is the total amenity value that teach-
ers gain from this allocation. Finally, w is the weight that the district places on student achievement
relative to teacher preferences.

We exclude principal preferences from the district’s value of an allocation to focus on the es-
sential elements of the problem. Specifically, the district could plausibly bypass the intermediary
of the principal and direct schools on whom to hire. In this sense, we do not commit to a utility
interpretation of principals’ preferences, and could instead interpret them simply as a hiring rule.

We consider a range of district first-best problems where the relative weight on students varies.
We refer to the resulting set of optimal allocations as the production possibilities frontier. The slope
of the frontier captures the trade-off between student achievement and teacher utility.
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1.3 Decentralized equilibrium

We have three agent types (teachers, principals, and students) with asymmetric roles. Teachers and
principals/schools determine the allocation, and the district values the allocation based on teacher
and student payoffs.

To characterize which allocations are implementable with different policy tools, we use a de-
centralized matching model. Schools meet with all teachers who are in the market at the same time.
The equilibrium concept is pair-wise stability. Under a stable allocation, no teacher and school pair
would prefer to jointly deviate and match (Roth and Sotomayor (1992), Definition 2.3).

To model the empirical status quo, we assume (1) teachers and principals have the preferences
we estimate for them and (2) the timing of the market follows that which we observed in the ad-
ministrative records, where not all matches are feasible. There is not necessarily a unique stable
equilibrium. We model the status quo using the teacher-proposing deferred-acceptance algorithm
(DA).

1.4 Policies

We are interested in the effects of five policies, both by themselves as well as their combination. The
first two policies affect market institutions. The first policy is equilibrium selection. The teacher-
proposing DA is the teacher-optimal stable allocation (Roth and Sotomayor (1992), Corollary 2.14)
meaning every teacher would (weakly) prefer their assignment to that in every other stable allo-
cation. In contrast, the school-proposing DA (where schools only value output) is the best stable
allocation in terms of student achievement. Thus, a policymaker might wish to shift the effective
equilibrium. The second policy is market coordination. We model this policy by expanding each
teacher’s (school’s) choice set to include all openings (candidates) available at any time during that
cycle.

The next two policies affect the choices of agents over matches. The third policy provides
teachers with output bonuses. We simulate the effect of an extreme version of this policy in which
teachers’ only preference is to go where they maximize student achievement (in Section 8 we con-
sider intermediate versions of this policy). Parallel to teacher bonuses, the fourth policy provides
principals with output bonuses.

Finally, all four of these policies—even in combination—are not necessarily sufficient to achieve
the first-best allocations described in the previous section. The reason is that even when teachers
and principals only value output, the allocation sorts teachers based in part on absolute rather than
comparative advantage. To achieve the first-best allocations, it is sufficient to have the follow-
ing combination of policies: (1) districts compensate principals for output (so that principals rank
teachers by match-specific value-added, VA jk), (2) all teachers and schools are in the market si-
multaneously, and (3) wages may vary with each teacher-school pair. This last policy makes utility
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transferable. Whereas output bonuses only let wages vary depending on the output in the assigned
position, flexible wages would let wages depend on a teacher’s output in other assignments, teacher
preferences, and the distribution of other teachers’ potential output and preferences. Having this
flexibility guarantees that the district can implement any first-best allocation (Shapley and Shubik,
1971).

Other than for equilibrium selection, there is no theorem that the other policies in isolation
necessarily improve output. The theory of the second-best states that when we are away from the
first-best allocation because of multiple factors, then fixing any one factor can worsen outcomes.

1.5 Empirical plan

The model highlights the empirical objects we need to estimate to be able to simulate the impact
of the above policies. We start by estimating the potential outcomes of teachers across schools,
VA jk. We then estimate teachers’ amenity value across all assignments, ũ jk, and principals’ non-
wage utility from hiring each teacher, ṽ jk. Finally, we model which positions were available to each
teacher in the observed equilibrium, which we read directly from administrative records.

2 Data

To estimate the objects of interest from the previous section, we use rich data on the labor market for
teachers. The first type of data comes from the platform used to hire teachers in our focal district.
We use this data to estimate teacher and principal preferences. The second type of data comes
from staffing and achievement records from state accountability records. This data provides us
with student-level test score data that we link to teachers and use to estimate value-added models.
In addition, these records provide information about a variety of demographic characteristics of
teachers and students as well as teachers’ education and experience in the district. In this section, we
briefly describe the data. See Appendix A for further details and Appendix Table A1 for summary
statistics across samples.

2.1 Job application and vacancy data

We obtained application records from our focal district’s system, which spans 2010 through 2019
and records 346,663 job applications. In the system, schools post job vacancies, and applicants
apply for jobs. The system also records various actions that principals take.

For every posted position, the vacancy files indicate the school, position title, and whether the
position is full-time or part-time. We use the detail on the position title to isolate non-specialized
elementary school teacher jobs (i.e., we omit elementary school jobs such as “literary facilitator
elementary”).
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We use two features of the teacher file. First, the file records which vacancies the candidate
applied to, and when she submitted the application. The timing information allows us to construct
choice sets, which we detail in Section 4. Second, the file records the city, zip code, and, in some
cases, exact address where the teacher lives. This feature allows us to construct the commute time
for each teacher-position combination.

We also have data in which principals record their assessments of teachers. Principals record
their interest in different applicants, the equivalent of a “good” and a “bad” pile. Principals also
often record which candidates they invited to interview, which candidates were offered the position,
and which candidates were hired.

2.2 Administrative data

We link the platform data to state administrative records on teachers and students. For teachers, we
have their experience, salary, licensing, certification scores, class assignments, and the school where
they work. For students, we have scores on standardized exams, grades, race, sex, and whether they
qualify as disadvantaged based on Federal programs. Records on class assignments allow us to link
teachers to students.

The North Carolina Education Research Data Center (NCERDC) matched the data from the
job-market platforms to the state’s administrative data. They performed an interactive fuzzy match
using names and birth year. For teachers who had a sufficiently good match (that is, a unique name-
birth-year combination), we have a de-identified ID that allows us to connect their platform data to
their staffing records and students’ achievement.

3 Production of student achievement

In this section, we first specify the production model, which generates a low-dimensional form of
match effects between teachers and schools. Second, we describe our three-step estimation pro-
cedure and discuss parameter estimates. Third, we present a range of validation checks. Finally,
we use our estimates to show that there are meaningful efficiency gains from reallocating teachers
across schools.

3.1 Model

Our model needs to predict how teacher output would change depending on the teacher-school
match. Given the heterogeneity of student compositions across schools and the quickly expand-
ing literature documenting match effects, we allow for comparative advantage (Dee, 2004, 2005;
Jackson, 2013; Aucejo et al., 2021; Delgado, 2021; Graham et al., 2020; Biasi, Fu and Stromme,
2021).
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We specify a model of match effects that is identified with our data and allows us to make output
predictions in unobserved matches. Since a teacher typically works in just a few schools during her
career, we cannot identify fully flexible match effects. Instead, we use low-dimensional match
effects where teachers have different value-added with students of different observable types; here,
we focus on a single student characteristic—economic disadvantage. Thus, a teacher’s school-level
match effect depends on the observable demographic composition of the school and the teacher’s
comparative advantage with each type of student.

We use notation that follows Chetty, Friedman and Rockoff (2014a) and Delgado (2021). Let i

index students and t index years, where t refers to the spring of the academic year, e.g., 2016 refers
to 2015-2016. Each student i has an exogenous type m(i, t) 2 {0,1} in year t (whether the student is
economically disadvantaged or not). Student i attends school k = k(i, t) in year t and is assigned to
classroom c = c(i, t). Each classroom has a single teacher j = j(c(i, t)), though teachers may have
multiple classrooms.

Student achievement depends on observed student characteristics, teacher value-added, school
effects, time effects, classroom-student-type effects, and an error term. Formally, we model student
achievement A

⇤
it

as:
A
⇤
it
= bsXit +nit (4)

where Xit is a set of observable determinants of student achievement and

nit = f (Z jt ;a)+µ jmt +µk +µt +qcmt + ẽit . (5)

Here, Z jt is teacher experience (and f maps experience into output) and µ jmt is teacher j’s value-
added in year t for student type m, excluding the return to experience. As in Chetty, Friedman and
Rockoff (2014a), we allow a teacher’s effectiveness to “drift” over time. µk captures school factors,
such as an enthusiastic principal, while µt are time shocks. qcmt are classroom shocks specific to a
student type, and ẽit is idiosyncratic student-level variation.

We make three assumptions, which are standard in the literature (see Appendix B for formal
statements of these assumptions). The first assumption is that classroom-student type shocks and
idiosyncratic student-level variation are orthogonal to teacher and school assignments and follow
a stationary process. We allow classroom shocks to be correlated across student types in the same
classroom, but restrict all cross-classroom or cross-year correlations in shocks to be zero.

The second assumption is that the non-experience part of teacher value-added for each student
type follows a stationary process that does not depend on the teacher’s school. We also assume that
the covariances between the teacher’s value-added across student types depend only on the number
of years elapsed.

The third assumption is that drift and school effects are independent. This assumption rules out
teacher mobility (or initial assignments) related to the drift of the teacher’s effect. We still permit
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teacher-school assignments to be non-random, and quite possibly related to a teacher’s comparative
advantage in teaching different student types.

Our object of interest is a forecast of teacher j’s value-added from a hypothetical assignment to
a new classroom (or set of classrooms) in school k. Define pkmt as the proportion of type-m students
in school k in year t. Given our low-dimensional model of match effects, a teacher’s predicted mean
value-added at school k in year t is:

VA
p

jkt
= pk0tµ j0t + pk1tµ j1t + f (Z jt ;a), (6)

such that a teacher’s total value-added for n jkt students is VA jkt = n jktVA
p

jkt
. We use data through

t�1 from the whole state to forecast VA
p

jkt
for assignments we see in the data and for counterfactual

assignments. For the observed assignments, we forecast the teacher’s value-added were she to
receive a new draw of students and classrooms at that school. For the counterfactual assignments,
we predict a teacher’s value-added for schools at which she did not teach.

3.2 Estimation

We estimate our model in three steps using math scores.7 In the first step, we estimate the coefficient
on characteristics by regressing test scores (standardized to have mean 0 and standard deviation 1 in
each grade-year) on a set of student characteristics and classroom-student-type fixed effects. In the
second step, we project the residuals (Ait) onto teacher fixed effects, school fixed effects, and the
teacher experience return function. In the final step, we form our estimate of teacher j’s value-added
(net of experience effects) in year t for type m (µ jmt) as the best linear predictor based on the prior
data in our sample. Since in this final step we shrink the estimates, we understate the dispersion
in match effects relative to the true dispersion. That said, using shrunken estimates and prior data
means that we use the information available to policy-makers. See Appendix B.2 for estimation
details and a discussion of what variation pins down parameters.

The first key parameter estimate is the significant dispersion in value-added for both student
types of about 0.24s. The second key parameter estimate is the strong correlation of 0.86 between
the teacher’s value added with the two types of students (Appendix Table A2). We find large returns
to experience in the first year, and then a profile that flattens out after about four years of experience
(Appendix Table A3). Appendix Figure A1 plots the drift parameters.

7Focusing on a single subject allows us to rank all possible levels of output. We follow Biasi, Fu and Stromme (2021)
in choosing math because it is typically more responsive to treatment (e.g., Rivkin, Hanushek and Kain (2005), Kane and
Staiger (2008), and Chetty, Friedman and Rockoff (2014a) for evidence).
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3.3 Validation of the match effects model

To test whether our estimates of teacher comparative advantage with different types of students
simply reflect statistical noise, we perform three tests of our multi-dimensional value-added model
versus a single-dimensional model. First, we estimate confidence intervals for the structural param-
eters in our production model. The 95 percent confidence interval allows us to reject a correlation
coefficient of 1. Second, we perform a likelihood-ratio test comparing our model to a model with
one-dimensional teacher value-added. We reject the homogeneous value-added model in favor of
the heterogeneous model with a high degree of significance. Third, we test whether teachers who
have previously been stronger with disadvantaged students see increases in estimated value-added
when transferring to schools with greater shares of disadvantaged students. Similarly, we test the
reverse relationship. If our comparative advantage estimates only reflected spurious relationships,
then they would not predict changes in output upon transfer. In both cases, we find statistically
strong evidence that this relationship indeed holds. See Appendix B.3 for further details on all three
tests.

To validate our value-added model, we slightly modify Chetty, Friedman and Rockoff (2014a)’s
test for mean forecast unbiasedness. We predict a teacher j’s value-added in school k in year t (µ jkt)
using data from all years prior to t. We then regress the realized mean student residuals in year
t (Ā jt) and test whether the coefficient on our prediction equals 1. Column (1) of Table 1 shows
that the math value-added estimate is an unbiased predictor of residualized output, with a tight
confidence interval around 1.05. Figure 1 shows that the forecast unbiasedness holds throughout
the distribution of teacher value-added.

We conduct a similar test for the comparative advantage component of value-added, which will
be important for the potential reallocation gains. If teachers’ heterogeneous effects by student type
vary with the environment—for instance, teachers might target instruction toward the median stu-
dent in the class—then our model may poorly forecast a teacher’s comparative advantage. In column
(2) we compare our forecast of the difference in a teacher’s value-added across (economically) dis-
advantaged and advantaged students with the realized test score difference. Again, we find that our
estimates are nearly forecast unbiased. Appendix Figure A2 shows that the forecast unbiasedness
holds throughout the distribution.

We perform three tests of whether our measure of teacher value-added also forecasts output
across the types of teacher moves that we consider in counterfactuals. Our motivation in specifying
a low-dimensional model of match effects is that we do not observe a teacher’s potential outcomes at
all schools, and so we cannot directly assess the quality of our model across all potential outcomes.
What we can do, however, is look at the types of changes in the data that are closest to those that
we contemplate in counterfactuals. First, we consider moving teachers across schools. Second, we
consider moving teachers across classrooms (schools) with large changes in classroom composition
in terms of advantaged and disadvantaged students. Third, we consider moving teachers across
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classrooms (schools) with different numbers of students.
How well do our measures predict output when teachers switch schools? In column (3) of Table

1 we show how output changes when teachers change schools and find no systematic change in
value-added after transferring.8 We also test how well our value-added estimates predict transfer
effects in column (4). We find that our value-added measure is mean forecast unbiased, as we
estimate a prediction coefficient of 0.97 (1.060�0.885), which is not statistically different from 1.

How well do our measures predict output when there are large changes in student composition?
We split the data into three groups based on the size of the change between the estimation sample
(before year t) and the prediction sample (year t) in the share of disadvantaged students. To ex-
amine the validity of our prediction in extreme reassignments, we look at changes below the 10th
percentile, above the 90th percentile, and between the 10th to the 90th percentiles. For large neg-
ative changes (in Column (5) of Table 1), we find that our measure is forecast unbiased while, for
large positive changes, we find a small forecast bias of 7%.

How well do our measures predict output when there are large changes in class size? We per-
form a parallel analysis for class size as we did for student composition and find similar answers.
Specifically, in Column (6) of Table 1 we find that for large negative changes our measure is forecast
unbiased, while for large positive changes we find slight evidence of forecast bias.9

Our parsimonious model’s ability to predict value-added across settings with minimal bias in-
stills confidence that we can predict the production effects from counterfactual allocations of teach-
ers to schools.

3.4 Gains from alternate allocations

We solve the district’s problem in Equation 3 where the district only values student output. Ta-
ble 2 shows that there are sizeable output gains from hypothetical re-allocations of all teachers
in our district in 2016. To focus solely on gains from reallocating teachers across schools, we
give each classroom within a school the same composition and number of students. The top panel
shows per-student gains or losses (column 1) from movements to the output-maximizing (“best”) or
output-minimizing (“worst”) allocations. The per-student gain of 0.054s in the output-maximizing
allocation reflects improved sorting of teachers to schools without changing the set of available
teachers. The actual allocation is only slightly better than randomly assigning teachers to schools
(row 2 of Table 2), and the range of annual output between the best and worst allocations is 0.11s

8In the same setting but in an earlier sample, Jackson (2013) estimates increases in output following transfers. In
our later sample, we see zero or negative effects when estimating Jackson (2013)’s event study specification (Appendix
Figure A3).

9The regressions assess forecast unbiasedness with a linear model. We show how our predictions perform nonpara-
metrically in Appendix Figures A4a and A4b for large decreases and increases in class size, respectively. We see that
our predictions are forecast unbiased throughout the quality distribution such that quality differences across teachers are
likely to remain across schools with different class sizes. Note that we are not ruling out class size effects, but rather that
these enter the school fixed effects, and we assume that class size effects do not interact with the teacher’s identity.
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(row 1 minus row 3 of Table 2).
Are these gains large or small? One way of contextualizing these gains is to compare them

with the cross-sectional standard deviation of predicted teacher value added in our district, which is
about 0.14s (see Appendix Figure A5 for the distribution). The effect of the first-best reallocation
is to increase teacher output by about a third of a standard deviation.

Another way of contextualizing the size of the gains is to compare them to the impacts of
two commonly-proposed policies or allocation rules. Re-allocations within schools—i.e., matching
teachers based on within-school variation in classroom composition—would only achieve 28% of
the gains from the cross-school gains (row 4). Replacing the bottom 5% of teachers with teachers of
median quality (as in Hanushek (2009) and Chetty, Friedman and Rockoff (2014a)), would achieve
22% of the gains from better sorting of the existing teacher pool (row 5), where we rank teachers
based on their forecasted value added in their actual assignment.

In our reallocation analysis, we move more than 5% of teachers, so this comparison to teacher
replacement policies might seem unbalanced. In Appendix Figure A6, we show that even replacing
all below median teachers would achieve per-student gains of less than 0.054s. Going the other
way, in Appendix Figure A7 we show that reassigning just 10% of teachers delivers gains of over
0.02s per student and full gains are nearly realized once 80% of teachers are reassigned.

In terms of distributional consequences, the first-best allocation entails larger gains for “advan-
taged” students than for disadvantaged students. The top panel of Figure 2 shows that schools with
more disadvantaged students have smaller class sizes, and thus the first-best allocation favors advan-
taged students who tend to be assigned larger classes. At the same time, the bottom panel shows that
teachers with high absolute advantage also tend to have a comparative advantage for disadvantaged
students, so there is also a reason to send the best teachers to disadvantaged students. Here, we
find that the first data pattern (the relationship between advantaged students having larger classes)
dominates so that non-disadvantaged students have larger gains in the first-best allocation.

These distributional consequences come from a policy where the district weighs student types
equally. If the district cared only about a single student type, then it could achieve large gains for
that type. The bottom panel of Table 2 shows that targeting non-disadvantaged students would yield
a 0.137s per-student gain. But the non-targeted group sustains significant losses such that overall
per-student gains are 30-45% of the potential efficiency gains.

The overall gains come (1) from sorting teachers to schools based on comparative advantage and
(2) from placing high absolute advantage teachers in schools with larger class sizes (see Appendix
Figure A8). These assignments may be very different from the ones in the data, which introduces
two concerns. First, if our “reassignments” are farther away than the in-sample variation we use to
validate our value-added model, then we may be less confident in our output predictions. We find
that while some teachers end up in classrooms with different composition or sizes from the ones
where we observe them, this variation is still within the support of our data (see Appendix Figure
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A9). Second, by moving teachers across different student types, we are relying on the cardinality in
the test score measures. As an alternative way to scale test scores, we express them in percentiles
and find that the predicted gains from reallocation are nearly identical (see Appendix Table A4).

We include sorting based on class size for three reasons. First, it is a feature of the environment:
there is class size dispersion and we show in Appendix C that this variation is persistent over time.10

Second, teachers differ in their absolute advantage such that reassignments based on class size have
the potential to matter for student achievement. Third, our validation exercise found that our output
measures were mean forecast unbiased across class size changes. But because some readers may
prefer reassignments based solely on comparative advantage, in row (4) we present the potential
gains where we impose constant class sizes across all schools (see Appendix Table A5 for the full set
of constant class size results). We estimate gains of 0.021s, which are nearly identical to Delgado
(2021)’s estimates using race-based match effects. These gains are 38% as large as the gains that
incorporate class size variation. Thus, the potential to sort solely on comparative advantage remains
economically meaningful.

Our specification likely misses some match effects.11 We find similar results when we allow for
match effects to vary with different student observable characteristics. In Appendix Table A7 we
show the structural parameters we estimate from a model where student types are summarized by
race (White or non-White) or lagged math achievement (above or below median). In Section 7.4 we
show that our allocation conclusions are similar for these other forms of heterogeneity. Further, we
conduct a simulation exercise where we allow our modeled form of match effects to be incomplete.
Specifically, we add i.i.d. match effects and assess how the potential gains vary with the size of the
unmodelled match effect. We present the result in the top panel of Appendix Figure A10 and find
that the potential gains only increase, such that our results may be a lower bound. We also find that
our results from Section 7 are qualitatively unchanged.

4 The vacancy posting, application, and hiring process

We focus on the market for elementary-school classroom teachers for two reasons. First, teachers in
these positions are typically responsible for instruction in the tested subjects and thus we can infer
their quality from systematic gains in their students’ test scores. Second, because these positions
also have common certification requirements, we can reliably classify which teachers are eligible
for the position.

10In that Appendix, we also show that there are not systematic patterns of teachers “bargaining” over assignments
within schools: i.e., we show that newly hired and more experienced teachers are not assigned smaller classes or fewer
disadvantaged students within a school.

11A form of potential match effects we have not included are same-race (between teacher and student) match effects
(Dee, 2004, 2005; Gershenson et al., 2018), and same-gender match effects (Dee, 2005; Lim and Meer, 2017). In our
data, we find minimal evidence of same-race or same-gender effects (see Appendix Table A6). A form of match effects
we cannot test for in our data is that of teaching practices discussed in Aucejo et al. (2021) and Graham et al. (2020).
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4.1 Market overview

Our district organizes a decentralized hiring and transfer process in which teachers choose where
to apply and principals choose whom to hire. External and internal (transfer) applicants are pooled
into one market. Here we describe the basic market structure.

Market organization: The school district runs a centralized online hiring platform. Each school
posts its openings on the platform, and teachers choose whether to apply to each posting.

Timing: We examine the “on-cycle” part of the market, which dictates hiring and transfers be-
tween school years. It begins in the winter, when the district notifies each school of known and
expected attrition among the school’s work force and of how many positions that school may hire.
It ideally ends with filled positions by late August before the new school year. Similar to Papay and
Kraft (2016), some schools are unable to fill all positions by the start of the new school year.

Postings: The number of postings at a school reflects a combination of enrollment, budget, and
the number of teachers who leave. All three pieces of information are not necessarily known before
the main hiring season starts. This information delay generates variation within and across schools
in the timing of postings. For example, late information about enrollment or budget fluctuations
often necessitate late posting. Or if there is mid-year attrition, then the school would know long
before hiring season started that there would be a vacancy, which allows for early posting.

Applications: An application consists of a variety of documents including a teacher certification
and a brief diversity statement. The same set of documents applies to all positions. Thus, a prospec-
tive teacher faces a fixed cost of applying.

Evaluation and hiring: When a teacher applies to a position, the hiring school receives her ap-
plication materials through the platform. The school’s principal may then rate the applications and
choose to interview applicants on a rolling basis. For known positions at the beginning of the hiring
period, there is a short window during which only transfers from within the district are able to apply.
Schools can either hire from this pool or wait and consider more applicants.

If the principal wants to hire the candidate, she extends a job offer. The candidate has 24 hours
to accept the offer, and if the teacher accepts, she commits to not accepting an alternate offer in the
same cycle.

4.2 Empirical features and implications for modeling teacher applications

We document eight empirical patterns (or features of the market) that inform how we model the
labor market.
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The first set of features leads us to treat teacher applications as non-strategic. The natural alter-
natives to non-strategic applications would be a portfolio choice problem (Chade, Lewis and Smith,
2014), possibly involving a waiting strategy. A portfolio choice problem would arise through pos-
itive marginal costs of each application or other interactions across applications. The following
two features are inconsistent with these rationales for modeling applications as a portfolio choice
problem:

Feature #1: The marginal cost of applications is essentially zero. Applying amounts to clicking
a button that sends the standardized materials to the particular position. Indeed, a teacher certifies
that she will not dis-intermediate the process. The website asks a teacher to sign the following state-
ment: “I understand that I should not send materials to individual hiring managers or principals.”

Feature #2: Principals do not see what other applications a teacher submits.

Some versions of waiting strategies amount to dynamic portfolio management, and so the pre-
vious two institutional features push against these being empirically relevant. More generally, a
waiting strategy would be sub-optimal in the sense that a teacher could miss many potentially de-
sirable vacancies because of the following feature:

Feature #3: Posting, applications, and hiring happen on a rolling basis throughout the hiring
season. From April to August, both sides of the market operate on a rolling basis (Appendix
Figure A11). The left columns in Table 3a show that the modal month for posting is June, with only
16% posting in April. The middle columns show that applications lag postings. The right columns
show that hiring occurs on a rolling basis and tends to lag posting by about a month. Over half of
hires are made by the end of June, even though over a quarter of positions have yet to be posted.

In practice, teacher application behavior appears inconsistent with a waiting strategy as the
following feature shows:

Feature #4: Teachers who are on the platform apply to vacancies very soon after they are
posted. To characterize the timing of applications, we construct a measure of a teacher’s wait
time to apply to a vacancy. The wait time is the time elapsed between the first day a teacher could
have applied to a vacancy and the day the teacher actually applied to the vacancy, where we assume
that the teacher only learns that a vacancy is available on days she logs into the system and applies.12

12More formally, let A jt denote the set of days where teacher j applied to at least one vacancy in year t, with a jt 2 A jt

measured in calendar days. Let bkt be the (calendar) day that position k’s vacancy is posted, and let c jkt be the day that
teacher j applies to position k. For every application j sent in year t, we define wait time w jkt as:

w jkt ⌘ c jkt � min
a jt2A jt :a jt�bkt

a jt .
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Figure 3 shows that the wait time to apply for vacancies is typically very short. The top panel of
Figure 3 shows that the median wait time to apply to vacancies that were already posted on the first
day the teacher logged into the system (the “stock” of vacancies) is 0 days. Thus, the applicant’s first
day likely includes searching for older vacancies. Indeed, the mean vacancy an applicant applies
to on day one has been posted for 23 days (Appendix Table A8). The bottom panel shows that the
median wait time to apply to vacancies that were posted after the first day the teacher applies (the
“flow” of vacancies) is also 0 days.

This feature leads us to treat applications as non-strategic and teachers’ choice sets as all po-
sitions with postings active between a teacher’s first and last application. In a full information
environment, we would interpret the applications as revealing that these vacancies were preferred to
the vacancies that the teacher did not apply to. But if teachers were inattentive, then this inference
would be mistaken. One empirical implication of inattention would be that teachers wait to apply
to vacancies because they only notice the vacancy on the second or third (or nth) time that they use
the platform. The absence of waiting is inconsistent with this implication of inattentiveness.

These assumptions imply very large applicant choice sets (Panel A of Figure 4), from which
applicants apply to many positions (Panel B of Figure 4). These large choice sets and application
sets allow us to precisely estimate heterogeneous preferences. For a case study of this heterogeneity,
in Appendix D we present descriptive evidence of significant amounts of cross-teacher heterogene-
ity in application rates to Title I (high-poverty schools), which our model interprets as preference
heterogeneity.

We now turn to principals’ choice sets, which we define as all of the applications they receive.
Natural alternative assumptions include (1) due to rolling nature of the market, the position receives
a meaningful number of applications after the principal has made a decision, or (2) because those
teachers might still be in the market, the principal pays attention to the most recent applications.
The following feature is inconsistent with both of these alternatives (and is evidence against another
strategic motive for teachers to time their applications):

Feature #5: The timing of applications that principals rate and do not rate is similar. We
view all applications to each position. Table 4 shows that we see a hire in 80% of the postings. In
12% of postings, we see a declined offer. In 18% of postings, we see further principal evaluations
and outcomes. We classify these into five groups: (1) interviews, (2) positive assessments, (3)
neutral assessments, (4) negative assessments, and (5) application withdrawals.

From the data on the subset of vacancies for which we have multiple outcomes, the applications
that receive comments have similar timing to those that principals do not rate. Table 4 shows the
day of application relative to the application date of the eventual hire. Applications with principals’
comments are received on average only 2.2 days earlier than applications without comments.

Our construction of choice sets implies that teachers and positions are not active for the whole
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cycle. With respect to identifying preferences, the concern would be that there is some systematic
correlation between teacher and position characteristics and the timing of when they are active.
Naturally, we cannot rule out all forms of sorting. We can, however, explore various forms of
sorting based on observables. The following features show that there is little evidence for such
sorting:

Feature #6: The timing of postings is hard to predict based on school observables. Institu-
tionally, we have already discussed why posting—even within a school—is likely spread out: the
arrival of relevant information is spread out.

One key source of heterogeneity in the timing of vacancies is that the the district has tradition-
ally allocated replacement positions only once it is aware that a teacher is leaving, rather than “in
expectation” of the number of vacancies. Since most teacher attrition occurs over the summer, this
policy necessarily generates spread out posting. There are many reasons why teachers would not
notify the schools they are leaving early enough for the school to post the job in April. For example,
teachers may not know that they will leave a given school until they have secured another position,
setting up a vacancy chain in which schools that lose a transferring teacher must search later in
the market. Or, teachers may withhold the information, particularly if they fear their leaving could
negatively affect them.

While some of these factors suggest that there could be a systematic relationship between post-
ing date and school type, we do not observe such patterns in the data. First, Table 3a shows that
the months with highest shares of Title I postings occur early in the cycle (in April (62%) and May
(52%)). This finding runs counter to a vacancy chain in which teachers systematically flee Title I
schools as jobs in non-Title I schools become available. Second, there is vast variation in the timing
of job postings within the same school. Table 3c pools posting dates across the years in our data and
shows that 89% of schools that post jobs in July also post jobs in April. A similar pattern holds for
schools with April postings.

Feature #7: The timing of applications is hard to predict based on teacher observables. We
focus on one key observable: the value-added score of a teacher. In Table 3b we show that teachers
with above-median value-added scores apply slightly earlier in the cycle, but that these differences
are small.

Feature #8: Teachers’ application stopping behavior is hard to predict. In terms of applicants
ending their search, many applicants’ final applications come early enough in the cycle (9% in April
or before, 16% in May, 22% in June) that they are potentially forgoing many yet-to-be-posted va-
cancies (Appendix Table A8, panel C). While some teachers who stop searching may have accepted
a job, we see similar patterns among teachers who do not transfer that cycle. Thus, the end of search
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might be driven by shocks unrelated to accepting a job.13

4.3 Modeling principals

Principals take three actions: rating applicants, interviewing applicants, and hiring applicants.
While it is conceivable that the offer decision might reflect strategic considerations (e.g., is this

teacher likely to accept the offer?), such considerations are not relevant in the principal rating. We
therefore use the principal rating as our primary indicator of principal preferences. (In our data,
there is only a single field that records the principals’ actions. If a positive assessment turns into an
interview, then the field records an interview. Hence, we interpret the entry “interview” or “hired”
as being an application that received a positive rating.)

In terms of the principal choice set, we view Feature #5 (the timing of applications that princi-
pals do and do not rate is similar) as suggestive that principals consider all applications. But we do
not have additional evidence on the timing of principals’ actions that would allow a more precise
characterization of the process. In Section 7.4 we pursue a variety of robustness checks around this
assumption.

5 Teacher preferences

5.1 Applications Model

We specify a model that formalizes the discussion of how to infer teacher utilities from application
choices. The district’s labor market consists of a finite set of potential teachers, indexed by j, and
a finite set of positions, indexed by p. Each position is associated with a specific school, k = k(p),
and may be assigned to at most one teacher. The exception is the outside option (p = 0), which is
not part of any school and may be filled by an unlimited number of teachers. This outside option
includes leaving the district or leaving teaching.

At the beginning of year t, each teacher may have an initial assignment, denoted by c. For
teachers new to the district, this assignment is the outside option (c = 0), while for incumbent
teachers, the assignment is j’s position in the prior year, c = p( j, t �1). Teachers may always keep
their initial assignment as their final assignment. On an exogenous date d = d( j, t), teacher j enters
the transfer system.14 If she enters, then she is active in the transfer system until an exogenous end
date, d

0 = d
0( j, t).

If the teacher enters the transfer system, then she may apply to any position p that is active
at some point between d and d

0. There is no marginal cost to applying and there is no limit on
13Teachers may continue searching after their final application day. The frequency of applications after the first

application day is low enough that statistically we cannot rule out long periods of search without making an application.
In Section 7.4, we report a robustness check of adding a seven day buffer to the end of the window.

14We treat the decision to enter the system as exogenous. We discuss selection into the system in Appendix E.
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the number of applications she can submit. Let a jpt be an indicator for whether teacher j applied
to position p in year t. Teachers’ application decisions are private information known only to the
position p and the teacher j.

These assumptions lead teachers to treat the application process non-strategically by applying to
any position with utility higher than her current position and the outside option.15 Slightly abusing
notation (since c = 0 for teachers outside the district), a teacher submits an application to position
p if:

a jpt = 1{u jpt > max{u jct ,u j0t}}, (7)

where u jpt is teacher j’s utility from working at position p in time t.

5.2 Parameterization

We adopt a characteristics-based representation of teacher utilities over positions. By summarizing
the position in terms of a lower-dimensional set of characteristics, we allow teachers to vary in their
valuations of these characteristics.

We specify teacher utilities over positions as:

u jpt =�gd jpt +p jVA jpt +b jXpt +h jt + e jpt . (8)

d jpt is the one-way commute time (in minutes) between the teacher and the position and will serve
as a numeraire for exposition (Appendix Figure A12 shows a binscatter of application probabilities
against distance, revealing a strong downward slope until about 40 minutes). VA jpt is teacher j’s
total value added at position p in year t.

Value-added, VA jpt , combines absolute and comparative advantage. We define a teacher’s abso-
lute advantage to be her predicted value-added at a representative school: AA jt = n1t µ̂ j1t + n2t µ̂ j2t ,
where nmt is the average number of type m students in a classroom in the district. Comparative ad-
vantage, CA jpt , at a specific position is then the difference between predicted value-added at school
k(p) and absolute advantage: CA jpt = VA jpt �AA jt . Because we control for absolute advantage in
the person-time effects, h jt , the coefficient on VA jpt , p j, captures the strength of teachers’ pref-
erences for schools where their comparative advantage is high, reflecting the alignment between
teachers’ preferences and student output. We allow for preference heterogeneity by including a
random coefficient in p j:

p j = p̄+sVAnVA

j
, (9)

15We assume that any post-application steps necessary to be assigned to a position – e.g., interviews – are costless.
In our data, teachers with multiple interviews are so rare that even if interviews are costly, they are rare enough that it is
unlikely teachers consider dependence across applications.
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where nVA

j
⇠iid

N(0,1). Since p j varies across teachers but we do not have random coefficients
on absolute advantage, p j includes both the preference over comparative advantage and any cross-
teacher heterogeneity in preference over output.

Xpt is a vector of observed characteristics of positions: the fraction of a school’s students that
are economically disadvantaged (e), the fraction that are Black (b), the fraction that are Hispanic
(h), and the fraction with an above median prior year math test score (s). We allow teachers to have
heterogeneous preferences over these school characteristics. Specifically,

be

j
= be

j0 +be

j1AA jt +sene

jt

bb

j
= bb

j0 +bb

j1AA jt +bb

j2Black j +sbnb

jt

bh

j
= bh

j0 +bh

j1AA jt +bh

j2Hispanic j +shnh

jt

bs

j
= bs

j0 +bs

j1AA jt +ssns

jt

(10)

where Black j and Hispanic j are indicators for teacher race categories and n jt is a vector of indepen-
dent, standard normal random coefficients. Thus, the s parameters capture the standard deviation
of idiosyncratic preferences over each school characteristic.

We follow Mundlak (1978) and Chamberlain (1982) and model h jt using correlated random
effects. We model teacher-year unobserved heterogeneity in preferences for teaching in the district
as the sum of several components:

h jt = lZ jt +rCM jt +shnh
jt
. (11)

Z jt are teacher-year characteristics – whether the teacher is in the district, whether the teacher
is Black, whether the teacher is Hispanic, whether the teacher is female, the teacher’s predicted
value-added for economically disadvantaged students, the teacher’s predicted value-added for non-
economically disadvantaged students, and dummy variables for whether the teacher has 2-3 years
of prior experience, 4-6 years of prior experience, or more than 6 years of prior experience. CM jt

is a set of teacher-year averages of the variables that vary across the job postings within teacher-
year (value-added, commute time, interactions of teacher and school characteristics). Thus, through
CM jt , we allow unobserved heterogeneity to be correlated with CA jpt and Xpt . Finally, nh

jt
is an

independent standard normal random effect.
e jpt is an iid Type I extreme value error. Let Vjpt = u jpt � e jpt be j’s representative value for

position p in year t. Then the distributional assumption on e jpt implies that:

Pr(a jpt = 1) =
exp(Vjpt)

1+ exp(Vjct)+ exp(Vjpt)
and Pr(a jpt = 1) =

exp(Vjpt)

1+ exp(Vjpt)
, (12)

for teachers already in the district and teachers new to the district, respectively.
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5.3 Estimation and Identification

We estimate the teacher preference parameters using the teachers’ applications to positions. We
define a teacher’s choice set, P jt , to be the set of vacancies that were active at the same time as
the teacher. We estimate a teacher’s start and end (search) date as the dates of her first and last
application. Similarly, we estimate a vacancy’s start and end (active) date as the dates it receives its
first and last application.

We estimate teacher preferences via maximum simulated likelihood, where we simulate from
the normal distributions of the random coefficients. Let n index each simulation iteration and let
A jptn(q) be the model-predicted probability that j applies to position p in year t in simulation
iteration n at parameter vector q. For each teacher j in year t, we construct the simulated likelihood
as:

L jt =
1

100

100

Â
n=1

’
p2P jt

(a jptA jptn(q)+(1�a jpt)(1�A jptn(q))), (13)

where a jpt is an indicator for whether j applied to p in the data. Our full simulated log likelihood
function is:

l =
1
J
Â

j

logL jt . (14)

Variation within choice sets help us identify the model’s parameters. For mean coefficients, the
relevant features of the data are the mean application rates to schools with certain characteristics.
We use the variation in these application rates across teacher characteristics to identify observable
teacher preference heterogeneity. Finally, if individual teachers have high correlations in the charac-
teristics of the positions they apply to (relative to those they do not) beyond what we would predict
based on observables, then we would infer unobservable preference heterogeneity for these position
characteristics.

We seek to predict teachers’ valuations over positions rather than causal effects of changes in
position characteristics on choices. As a convenient way to interpret magnitudes, we will sometimes
convert utility to minutes of commute time, which requires the stronger assumption that commute
time is exogenous. But because we primarily make relative comparisons of the costs of various
policies, we do not rely on having consistently estimated the causal effect of commute time, unless
noted.

5.4 Teacher Preference Estimates

Table 5 presents the teacher preference model estimates. First, teachers prefer positions with greater
shares of advantaged students. Second, teachers dislike positions with longer commutes. Finally,
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teachers have only slight preference toward positions where they have higher value-added.
Responsiveness to school and match characteristics varies with observable and unobservable

heterogeneity. For example, teachers with higher absolute advantage have more negative prefer-
ences over the school’s fraction of students that are disadvantaged. We also find a large positive
same-race premium for Black teachers and schools with large fractions of Black students. In terms
of unobservables, we typically find substantial dispersion in the random coefficients. For example, a
standard deviation of the random coefficients on comparative advantage and fraction disadvantaged
are each about 1.5 times the mean valuation.

To help interpret the strength of some of these relationships, Panels (a) through (c) of Figure
5 show how the average rank of positions in teachers’ preferences change as single characteristics
change. We do not hold fixed other characteristics so that, for example, when we study commute
time, other characteristics of schools are potentially changing. The figure emphasizes that commute
time is a powerful predictor of rankings: changing commute time from 5 minutes to 25 minutes
decreases the average rank of a position (for the average teacher) from about the 80th percentile to
the 50th percentile. Similarly, the fraction of students that are disadvantaged is a powerful predictor
of ranking: across the support, the mean ranking moves by about 20 percentiles, and if teachers
were given their top choice there would be oversupply toward economically advantaged students
(Appendix Figure A13). In contrast, while teachers do pursue comparative advantage, this relation-
ship is quite weak: across the support of the data, varying teachers’ comparative advantage only
increases the rank of a position by a couple percentiles.

Teachers’ preferences are not particularly aligned with the first-best allocation that maximizes
student achievement. Panel (d) of Figure 5 shows that the mean ranking of the first-best position
in teachers’ preferences is the 48th percentile (we use the same sample as in Section 7). Even if
on average teacher preferences do not align with the planner, stronger teachers having more aligned
preferences could limit the misallocation resulting from teachers’ preferences. The figure shows that
this possibility does not occur: for the average strong teacher, the first-best position remains below
her 50th percentile ranking. Thus, giving teachers more choice might not produce achievement
gains.

6 Principal preferences

6.1 Model and parameterization

Each position p is associated with a principal with the same index. Principal p derives non-wage
utility ṽ jpt from teacher j holding position in year t. Because principals in our empirical context do
not have to pay teacher wages out of a school budget, we model a principal as giving teacher j a
positive rating (b jpt = 1) if the non-wage utility is positive: ṽ jpt > 0.

We adopt a characteristics-based model and parameterize ṽ jpt to be a linear function of position
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and teacher characteristics, a random effect, and an idiosyncratic teacher-position error:

ṽ jpt = apWjpt +skkpt +u jpt . (15)

To allow principal preferences to possibly align with output, Wjpt includes j’s total value-added at
school k(p). We further include common teacher characteristics: teacher prior experience (in bins
of 2-3 years, 4-6 years, and 7+ years), whether the teacher has a Masters degree, whether the teacher
is Black, whether the teacher is Hispanic, and whether the teacher is female.16 Finally, we include
a constant and interact whether the teacher is Black with the fraction of the school’s students that
are Black and whether the teacher is Hispanic with the fraction of the school’s students that are
Hispanic. We allow principals to have heterogeneous valuations over Wjpt by letting ap vary with
whether the school has Title I status.

To capture principals’ heterogeneous outside options and variation in a principal’s propensity to
assign ratings, we include a normally distributed random effect (kpt). Finally, u jpt is i.i.d. Type I
extreme value.

6.2 Estimates

Table 6 shows that principals favor teachers with higher value-added.17 Principals in general rate
non-novice teachers and those with Masters degrees more highly. Title I school principals rate
Black and Hispanic teachers more positively than non-Title I teachers. Because Title I schools have
a larger share of Black students, schools with higher fractions of Black students assign higher total
valuations to Black teachers.

To help interpret the strength of the value-added relationship, Panel (e) of Figure 5, shows how
the average percentile of teachers in principals’ preferences changes as the teacher’s projected value
added in the position changes. The figure shows that projected value-added meaningfully changes
the principal’s ranking of a teacher: across the support, the mean percentile goes from about the 25th
percentile to the 60th percentile. That said, there is clearly substantial noise in principal’s rankings
since even the best teachers are on average only in the 60th percentile.

How aligned are principals’ preferences with the first-best allocation that maximizes student
achievement? From the difference in the slope between Panels (c) and (e) in Figure 5, we might ex-
pect that the principals’ preferences are more aligned with the first-best ranking than teachers’. This
increased strength is quantitatively small: Panel (f) of Figure 5 shows that the average percentile of
the first-best teacher for a principal is the 52nd (compared to the 48th for teachers). Thus, schools’
preferences are not very aligned with the planner’s preferred allocation.

16We also include indicators for whether each demographic covariate is missing.
17See Appendix F for the likelihood, which closely parallels the one for teachers.
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7 Main results

7.1 Simulation details

We make several choices in how we simulate allocations.

Sample: We restrict attention to the teachers for whom we can compute value-added. This restric-
tion drops a large number of teachers: in the labor market for the 2015-2016 school year, we end up
with 178 teachers and 296 positions. Because we do not want artificial imbalance in the number of
agents on each side of the market to play a role in our estimates (as highlighted by Ashlagi, Kanoria
and Leshno (2017)), in each simulation run we randomly drop positions so that there are the same
number of teachers and positions.

Randomness: While we estimate a distribution of random coefficients, in simulations we use
a single draw of the random coefficients per teacher. This draw is the one used in estimation that
maximizes the likelihood for the teacher. We draw the errors in the teacher and principal preferences
in an i.i.d. fashion.

Preferences: In using DA to find stable allocations, we have teachers and principals submit rank-
ings according to their true preferences. If there are multiple equilibria, then for one side of the
market it is not a dominant strategy to report truthfully. Below we show, however, that the equilib-
rium is essentially always unique.

To average over the randomness in both the errors and the random dropping of vacancies, we
average over 200 simulation runs.

7.2 Model fit

We begin by considering the model’s fit under status quo policies. We model the status quo as the
teacher-propose equilibrium with restricted timing, and estimated teacher and school preferences.
Figure 6 shows that the model matches the basic qualitative patterns in the data: schools with a larger
share of disadvantaged students have teachers (a) with stronger absolute advantage in teaching, (b)
with comparative advantage in teaching economically disadvantaged students, (c) less likely to be
experienced, and (d) more likely to be Black. Quantitatively, the model almost exactly matches
the slope for teacher experience and whether teachers are Black. The model slightly underpredicts
the slope in absolute advantage and misses the intercept on absolute and comparative advantage
and experience. The difference in intercept comes from the data and model samples differing (see
Appendix E).

To assess whether our model fits better than alternate equilibrium assumptions, we examine
the fit of models where schools and teachers match according to serial dictatorships, as opposed
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to our pairwise stability assumption. We find that a teacher serial dictatorship ordered by absolute
advantage (Appendix Figure A14) and experience (Appendix Figure A15) and a principal serial
dictatorship ordered by fraction of students that are economically disadvantaged (Appendix Figure
A16) each produce a much worse fit than our model.

7.3 Trade-offs and effects of idealized policies

Now that we have preference estimates and the estimates of student achievement for any teacher-
position combination, we can carry out the exercises outlined in Section 1.

7.3.1 Trade-offs

Figure 7 presents our main results. The figure’s production possibilities frontier (PPF) comes from
solving a set of first-best problems (equation (3)) where we place different relative weight on stu-
dents’ achievement and teachers’ utility. The top-left point reflects the allocation of teachers to
schools that maximizes student achievement. The bottom-right point reflects the allocation of teach-
ers to schools that maximizes teacher utility. There are two notable features of these points. First,
there is a large gap in student achievement between the teacher and school first-best: the difference
is 0.03 standard deviations of test scores. Second, there is a large gap in teacher utility between
these allocations: the difference is about 35 minutes of one-way commuting time a day. A sensible
valuation of an hour of commute time is about half of the hourly wage (Johnston, 2021). Hence, this
finding, plus a causal interpretation of the commute time coefficient, implies that the gap between
the teacher and school first-best is worth about one-sixteenth of a teachers’ annual earnings.

The third feature of the PPF is the very favorable trade-offs available between teacher utility
and student achievement implied by the PPF. Concretely, if we start from the teacher-preferred
allocation, then there are large gains in student achievement that barely affect teacher utility. For
example, starting from the teacher preferred allocation, we can achieve three-quarters of the gains
in student achievement (0.03 standard deviation units) from moving to the student achievement
maximizing output at about 8 percent of the cost in terms of teachers’ utility.

7.3.2 Effects of policies

Turning to the the set of stable allocations, we have several findings about the effects of various
policies, which we further summarize in Figure 8. First, we find essentially no role for equilibrium
selection. Relative to the status quo, changing from teacher-proposing to school-proposing DA has
essentially no effect on the allocation. Indeed, with combinations of preferences and choice sets
other than those in the status quo, we almost always find that the allocations from the teacher-
propose and school-propose DA are identical. Second, policies that complete choice sets achieve
about 15% of the total allocative gains.
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Third, we find that simply making principals only value output slightly reduces student achieve-
ment. This finding might appear counterintuitive as we are aligning principals’ preferences with
those of the planner and in Panel (e) of Figure 5 we showed that estimated preferences left consid-
erable room for alignment. Instead, the result reflects natural “theory of the second-best” reasoning
and thus highlights important interactions between teacher and principal preferences. We elaborate
on these reasons below, after discussing the remaining points.

Fourth, making teachers also only value output (for instance with large output bonuses—which
would be a large change in preferences compared to Panel (c) of Figure 5) has large effects on
student achievement. If teachers only value output, then we achieve 74% of the total allocative
gains available in this sample.

Finally, once we complete choice sets and make both teachers and principals only value out-
put, the remaining 26% gap in allocative gains is due exclusively to the absence of transferable
utility. Prices play two possible roles in improving allocations. First, prices let the district change
the agents’ value from a match to align with that of the planner. Second, a quarter of the potential
gains from reallocation are achievable only by making utility transferable; that is, principals who
only value output will rank teachers largely based on absolute advantage rather than comparative
advantage, and flexible prices (“transferable utility”) allows the district to take into account com-
parative advantage. In this context, this amounts to flexible, position-teacher specific prices, where
this specificity means that two teachers in the same position could potentially earn different wages
because of the combination of their different preferences and different productivity (at all positions,
not just the matched one).

Teacher utility in various allocations: Teacher utility increases as we move from the status quo
and first expand choice sets and then make principals only value output. Each of these steps in-
creases teacher utility on average by about 5 minutes of one way commute time. In contrast, if we
make teachers only value output, but still evaluate the utility of the assignment using our estimated
preferences, then we find that this change reduces teacher utility by about 20 minutes of one way
commute time relative to the status quo.

Teacher ability to choose: Making principals only value output does not achieve better student
outcomes because of second-best reasoning: when principals only value output, stronger teachers
achieve more preferred assignments, and—as we saw in Panels (c) and (d) of Figure 5—the prefer-
ences of (stronger) teachers are not solely about maximizing output. Figure 9 illustrates this result.
We sort teachers by their absolute advantage and plot the rank in the teacher’s own preferences of
the position to which she is assigned. The top panel shows the results with principals having their
estimated preferences, and the bottom panel shows results with principals instead only valuing out-
put. The key similarity between these figures is the upward slope: under both sets of preferences,
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principals value output, and so teachers who on average produce more output are assigned to schools
that the teachers prefer more.

The key difference between these figures is the steepness of the slopes: the slope is much steeper
when principals only value output. Intuitively, more weight on output means that higher-ability
teachers get more choice because (a) all principals agree on the value of this characteristic and (b)
the dispersion in absolute advantage is high enough that teachers who are effective at one school are
likely effective at another. These strong teachers then go to their preferred schools, which are likely
to have more economically advantaged students (Figure 5, Panel (b)), even though stronger teachers
tend to have comparative advantage with economically disadvantaged students (Figure 2). Hence,
the strong teachers are not likely to choose the assignments that maximize student achievement.

This emphasizes the importance of second-best reasoning: in the presence of teacher prefer-
ences that are not aligned with the achievement-maximizing planner’s objectives, aligning only
principals’ preferences may lead to allocations that are further from the planner’s objectives.18 In-
deed, Bates (2020) studies policies in the same state that increased principals’ information about
teacher effectiveness and finds changes in teacher sorting consistent with this reasoning.

Distributional considerations: The bottom panel of Figure 7 shows the mean achievement of
economically advantaged and disadvantaged students in the allocations depicted in the top panel.
There are a few notable features. First, in the status quo allocation, we find that disadvantaged
students have better teachers (the gap is slightly larger than 0.01 standard deviations). Second, in
the student achievement maximizing allocation there is no gap in value-added between advantaged
and disadvantaged students. Like in the full sample, in the transfer sample class size is negatively
correlated with the fraction of economically disadvantaged students and teachers with absolute ad-
vantage tend to have comparative advantage with economically disadvantaged students (Appendix
Figure A17). But in the transfer sample, these factors balance out such that the first-best allocation
splits the strongest teachers (Appendix Figure A18) and produces equal value-added across student
types.

Third, and most strikingly, when we give principals output maximizing preferences the distri-
butional implications reverse: now, advantaged students receive (quite dramatically) higher value-
added than disadvantaged students. The reversal reflects the same consequences, discussed above,
from giving the strongest teachers more choice.

18To see a simple example of this phenomenon, let us continue with the example in Footnote 4. We maintain the
output structure: teacher 1 has output {10,9} and 2 has output {8,0} at schools 1 and 2, respectively. We now assume
that teachers have identical preferences 1 � 2. If principals maximize output, then they both rank teacher 1 above 2, and
we end up with teacher 1 at school 1 and teacher 2 at school 2. Suppose principals place weight on other characteristics
and instead both rank teacher 2 above 1. Then the decentralized equilibrium corresponds to the first-best and teacher 2
ends up at school 1 and teacher 1 at school 2.
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7.4 Robustness

In Table 7, we present a wide variety of robustness checks to our main analysis. First, we show that
are results are quantitatively very similar when we use the other years in our data. Second, we show
that our main results are quantitatively similar when we instead split students by race (white and
non-white) and on lagged achievement (at the median), rather than on economic advantage.

We consider two alternative definitions of teachers’ choice sets. First, we add a seven day buffer
on the end, and assume that a teacher also considered the vacancies that were active seven days
after her last application. Second, we narrow the choice set to focus only on vacancies that were
available on the first day the teacher applied. In both cases, we find that our results are quantitatively
unchanged.

A non-trivial share of teachers in our analysis sample only submit one application. There are a
variety of reasons why these teachers might be different, or their applications might reflect different
considerations. The table shows that dropping such single-application teachers leaves our results
quantitatively unchanged.

We also consider a wide variety of alternative preference models. First, we explore various
combinations of teacher and school fixed and random effects. Second, we allow for correlation
in random coefficients on a constant, value-added, and fraction of students that are economically
disadvantaged. Our results are quantitatively unchanged across these alternatives.

Turning to principal preferences, we consider two alternative definitions of principal choice
sets. First, we restrict to applications that were submitted within plus or minus two weeks of the
application that was hired. Second, we look at the window in which teachers were submitting
applications to the vacancy. We split the window into halves, and estimate principal preferences on
each half separately. The table shows that our results are quantitatively unchanged.

We also consider alternative ways of using the information in the data. First, we estimate a rank
order logit model where we allow, e.g., a “hire” outcome to be better than a “positive assessment”
outcome. Second, we retain the rank order logit specification, but use only the applications where
the principal actively supplied information; that is, we drop the applications that are not rated.
Finally, we use a binary logit but use as the only positive outcome an indicator for whether the
individual was hired. The table shows that our results are quantitatively unchanged across these
three alternatives.

Finally, we explore two alternative set-ups. First, we redo all our analysis using constant class
size. As with the full sample, we find smaller gains from reallocation with constant class size in
the transfer sample. Here, though, the attenuation is stronger. Qualitatively, the conclusions about
the types of policies that would be effective remain unchanged. Second, we show the subset of
outcomes that we can compute on the full sample. A larger share of the gains from reallocation can
be achieved with output bonuses in the full sample than in the transfer sample (see Appendix E for
further discussion of selection into the transfer sample).
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8 Teacher bonus counterfactuals

In the last section, we showed the effects of idealized policies on output. The most effective such
policy—and the only one that attained more than 15% of the potential achievement gains—was
aligning teacher preferences over schools with the output they would produce. Complete alignment
may be difficult to implement. Therefore, we now consider the effect of more realistic teacher bonus
policies, similar to those that some districts have piloted. The upper bound on the effects of policies
that subsidize output is to reach the point where teachers and principals only value output.

8.1 Implementation details

The district offers a two-part bonus on the basis of a teacher-position characteristic, z jpt , where each
teacher receives b0, a lump-sum amount, and b1z jpt , a bonus b1 per unit of z jpt . Teacher j’s utility
for teaching at position p in year t thus becomes:

u jpt = ũ jpt + g(b0 +b1z jpt), (16)

where we multiply by the commute time coefficient (g) to express bonus spending in minutes of
commute time. We consider a range of b1 for each z jpt , which allows us to trace out the effects of
different bonus sizes. For each b1, we solve for the teacher-optimal stable equilibrium assignments,
where p

⇤( j) is j’s assigned position, given the bonus size and the object that generates the bonus.
To focus on policies that are likely to receive teachers’ support, we hold teachers harmless by

making each teacher weakly better off than in the status quo equilibrium. Let Du
b1
jpt

= (ũ jp⇤( j)t �
ũ jpt) + gb1z jp⇤( j)t be the change in teacher j’s utility (excluding the transfer) between the zero-
bonus and the b1 bonus equilibria. We set the transfer such that the teacher with the worst change is
indifferent:

b0 =�min
j

Du
b1
jpt
. (17)

This lump-sum transfer can be either positive or negative, and so the district can pay teachers to
enter this policy. Thus, the district’s total cost to the bonus scheme is b0 +b1z jp⇤( j)t , which depends
on both the choice of b1 and how it changes the allocation.

We examine bonus schemes over three objects (z jpt). We start with bonuses for output (Âm nk(p)mµ̂ jm).
Then we look at bonuses based on the fraction of disadvantaged students the teacher has (pk(p)1t).
These bonuses mimic the hard-to-staff school bonuses that some districts have piloted. Finally,
we interact school and teacher characteristics by considering bonuses based on a teacher’s absolute
advantage times the fraction of disadvantaged students ((p0t µ̂ j0t +(1� p0t)µ̂ j1t)pk(p)1t).
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8.2 Results

The top panel of Figure 10 shows the effect of these three bonus schemes on overall achievement
relative to the status quo. For reference, the top dashed horizontal line shows the level of achieve-
ment in the the first-best allocation (in the transfer sample), the middle dashed line shows the “best
case” for bonuses when teachers and schools only value output, and the lower dashed line shows
the gains from an institutional policy of simply changing market timing. To allow for comparisons
across bonus schemes, the horizontal axis is the total realized spending (normalized to be in minutes
of commute time per teacher).

The first notable aspect of this figure is that we can see that bonuses are more costly than the
first-best policies depicted in Figure 7, where the difference in teacher utility between the non-
price stable allocation and the student achievement maximizing allocation was about 20 minutes
of commute time per teacher. Here, even at 100 minutes of (one way) commute time per teacher,
bonuses still do not achieve the maximal student achievement. This large difference in cost is
driven by the uniformity of the bonus scheme. Prices that implement the first best allocations take
into account preference variation in a way that keeps costs down. For example, if a school is trying
to convince a close-to-indifferent teacher to take a position, then the school only needs to increase
the wage offer slightly for the teacher to accept the offer. We demonstrate the savings from flexible
prices by allowing for separate lump sum payments to each teacher and plotting the gains in the
dashed black line. We find that at the spending level where the full potential gains are realized, the
uniform bonus schemes have barely increased achievement.

Second, paying directly for achievement is the most efficient bonus scheme. In the status quo,
disadvantaged students already have slightly better (matched) teachers and so paying teachers to be
at schools with more disadvantaged students hardly increases output.

Third, changing market timing to complete choice sets only achieves 15% of the overall gains
from achievement. Interpreting the commute coefficient causally, Figure 10 shows that such a policy
would be cheaper than bonuses if it cost less than about 40 minutes of one way commute time per
teacher to implement.

The bottom panel shows that there are important interactions between principal preferences and
the effectiveness of teacher bonuses. We conduct an identical exercise except that we pair the teacher
bonuses with a bonus to principals such that principals only value output. As we have seen, when we
pay principals for output, the distributional consequences change dramatically. Now, the fact that
teachers have strong preferences against teaching at schools with larger shares of disadvantaged
students means that there is a large range of spending where policies that target this issue directly
are the most cost effective. As we saw in Section 7, achievement is higher when there is some force
pushing back on teachers’ preferences toward advantaged schools. In the absence of principals’
heterogeneous valuations, bonuses targeted toward disadvantaged students serve this purpose.
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9 Discussion

This paper studies the allocation of teachers to schools and its implications for student outcomes. We
start by estimating the potential gains in student achievement from within-district teacher reassign-
ment and find that they are large (0.05s). In the achievement-maximizing allocation, the strongest
teachers are split between economically advantaged students (because they are in larger classes)
and the economically disadvantaged students (because stronger teachers tend to have comparative
advantage with them). We consider how to achieve these gains, recognizing that the allocation of
teachers across schools represents a labor market equilibrium.

To study equilibrium in the labor market, we estimate teacher and principal preferences over
matches. We find that teachers prefer positions described by homogeneous characteristics (e.g.,
fraction of advantaged students) and heterogeneous characteristics (e.g., commute time), with only
slight preference toward positions where they have higher value-added. Giving teachers the ability
to choose their position leads to excess supply at schools with advantaged students and sorting based
on non-output heterogeneity. Thus, if teachers have some degree of choice in their assignment, then
the district may want to counteract the sorting by changing how teachers value positions (e.g., with
bonuses).

On the principal side, we find preferences for teachers who produce more student achievement,
but that differences in output only explains some of the variation in preferences. Thus, the district
might consider changing how principals value teachers.

When we put teacher and principal preferences together in an equilibrium model, however, we
find more complicated policy implications. When teachers receive bonuses for output, they sort
toward positions closer to the first-best. When principals receive bonuses for output, they seek the
best teachers. But because absolute advantage dispersion is large, a second consequence of principal
bonuses is that it grants the strongest teachers more choice. More choice among the best teachers
does not necessarily lead toward higher achievement.

Our analysis concludes that in the absence of flexible prices, teacher bonuses are the primary
policy tool for realizing achievement gains because they align teachers’ preferences with the dis-
trict’s. But the optimal form of bonuses depends on how principals value teachers. Flexible prices,
however, would produce achievement gains at a much lower cost.

While we find that in our district teacher value-added is relatively balanced across student types,
our data and framework could be useful in designing policies that go beyond equalizing achievement
gains to try to close baseline gaps.

We have abstracted from various margins that are relevant to teacher allocation. By considering
the within-district assignment to schools, we have abstracted from selection at higher levels—the
extensive margin of which district to teach in (Biasi, Fu and Stromme, 2021) or whether to become
a teacher (Tincani, 2021)—and at lower levels–within-school assignments. We have also held fixed
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the assignment of students to schools (e.g., Abdulkadiroğlu, Agarwal and Pathak (2017)) and the
distribution of class sizes (e.g., Angrist and Lavy (1999); Hoxby (2000); Leuven, Oosterbeek and
Rønning (2008)). Finally, we have held teacher and principal non-wage utility fixed in counter-
factuals. But changes in malleable school characteristics, either under direct policy control (e.g.,
principal’s support of teachers (Dizon-Ross, 2020; Johnston, 2021)) or that change in equilibrium
(e.g., teacher peer effects (Jackson and Bruegmann, 2009)) may be a substitute or complement to
the policies we consider.
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Table 1: Forecast Unbiasedness Tests for Value-Added Predictions

Mean Res Mean Diff Mean Res Mean Res Mean Res Mean Res

VA (Heterog) 1.052 1.060
(0.00650) (0.00681)

VA Diff 0.879
(0.0243)

Post Transfer -0.00243 0.00576
(0.00367) (0.00280)

VA * Post Transfer -0.0885
(0.0212)

VA – below 10th (disadv) 0.990
(0.0223)

VA – 10th-90th (disadv) 1.058
(0.00698)

VA – above 90th (disadv) 1.066
(0.0228)

VA – below 10th (size) 1.011
(0.0224)

VA – 10th-90th (size) 1.066
(0.00713)

VA – above 90th (size) 0.961
(0.0188)

Constant 0.00810 0.0477 0.00779 0.00745 0.00810 0.00800
(0.000835) (0.00101) (0.00174) (0.000883) (0.000835) (0.000843)

Subject Math Math Math Math Math Math
Mean DV 0.00764 0.0527 0.00754 0.00764 0.00764 0.00764
Clusters 21514 21514 21834 21514 21514 21514
N 74552 74552 75459 74552 74552 74552

The table includes tests of whether a value-added estimate is forecast unbiased. In the first and third through sixth columns, the outcome
(“Mean Res”) is the mean student math test score, residualized by student demographics including lagged scores, school fixed effects,
and teacher experience measures. The mean is taken over all students for a given teacher-year. In the second column, the outcome
(“Mean Diff”) is the difference in the mean residualized math scores between a teacher’s economically disadvantaged and advantaged
students. The “VA” measures allow for match effects (“Heterog”). The measures predict mean student residuals using data from all
prior years a teacher taught. “VA Diff” is the difference in predicted value-added between a teacher’s economically disadvantaged and
advantaged students (i.e., the predicted comparative advantage). “Post Transfer” refers to years after a teacher switched schools. The
interaction with “VA” multiplies the post-transfer indicator with the heterogeneous value-added measure. Column (4) splits the year t

observations into bins as a function of the change in share of disadvantaged students relative to the data observed for the teacher before
year t. The split is based on percentiles of the change. Column (5) splits the year t observations into bins as a function of the change in
classroom size relative to the data observed for the teacher before year t. The split is based on percentiles of the change. For columns
(4) and (5) the p-value comes from F-test that the three coefficients are equal. Standard errors are clustered at the teacher level.
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Table 2: Potential Gains from Reassignment

Per-Student Gains (s) As a Fraction of (Best-Actual) Non-Disadvantaged Disadvantaged

Alternate Allocations
Best 0.054 0.095 0.018
Random -0.003 -0.05 0.019 -0.023
Worst -0.057 -1.06 -0.053 -0.062
Alternate Policies
Best w/i School 0.013 0.28 0.015 0.010
Replace Bottom 5% of Teachers 0.012 0.22 0.015 0.009
Targeting Student Types
Max Non-Disadvantaged VA 0.025 0.45 0.137 -0.077
Max Disadvantaged VA 0.016 0.30 -0.049 0.075
Constant Class Size
Best 0.021 0.38 0.018 0.023

The table shows the potential gains from reassignments of teachers to different schools. The sample is all teachers with non-missing value-added forecasts in 2016
(based on prior data), along with their corresponding 2016 assignments. Gains come from better matching of teachers to students, as teachers’ effectiveness may
differ across student types, and placing better teachers in schools with larger class sizes. The first column shows the per-student gains from various allocations
relative to the actual allocation. Gains are measured in student standard deviations (s). The second column shows the gain as a fraction of the full difference
between the best (output-maximizing) and actual allocations. The third and fourth columns show the per-student gains, relative to the actual allocation, for
non-disadvantaged and disadvantaged students. The best within school allocation only changes the teacher-classroom assignments within a school. “Replacing
Bottom 5% of Teachers” refers to replacing the bottom 5% of teachers according to realized per-student output with teachers with median value-added for each
student type. The allocations that target particular student types maximize per-student output for students of one type only. “Constant Class Size” imposes an
equal number of students (but possibly different composition) across all classes, in both the best and actual allocations. We assign classrooms the mean student
composition and class sizes in that school in 2016 in all allocations except the “Best w/i School” and “Constant Class Size” allocations.
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Table 3: Timing of posting, applying, and hiring

(a) Monthly shares by position

Posting Applying Hiring
Vacs Share Share TI Apps Share Share TI Apps Share Share TI

April 295 16.24 0.62 24799 7.13 0.50 393 13.23 0.69
May 392 21.57 0.52 70248 20.21 0.50 585 19.70 0.63
June 502 27.63 0.52 108776 31.29 0.51 827 27.85 0.60
July 451 24.82 0.42 94171 27.09 0.50 755 25.42 0.50
August 167 9.19 0.46 44673 12.85 0.51 358 12.05 0.57

Total 1807 100 342667 100 2918 2918

(b) Monthly shares by teacher value-added

Has VA Above median VA Top decile VA
Apps Share Share TI Apps Share Share TI Apps Share Share TI

April 3050 6.23 0.44 1552 7.16 0.42 373 9.15 0.41
May 9662 19.75 0.44 4218 19.46 0.44 918 22.53 0.45
June 16832 34.40 0.46 8035 37.08 0.45 1396 34.26 0.47
July 13673 27.95 0.47 5600 25.84 0.46 944 23.17 0.46
August 5522 11.29 0.48 2189 10.10 0.47 434 10.65 0.52

Total 48739 100 21594 100 4065 100

(c) Early vs. late posting times by school

Posts in July
Posts in April No Yes Total

No 8 15 23
Yes 10 88 98
Total 18 103 121

This table shows the timing of posting, applying, and hiring during a cycle. Panel (a) shows the distribution of vacancy postings,
applications, and hires by month, where hires correspond to the timing of the applicant who was hired to the position. For each type of
action, we show the share that corresponds to Title I positions. Some of the vacancies produce multiple hires. In Panel (b) we show the
distribution of applications by month, where we split the sample of applicants into those with a value-added forecast (i.e., had taught
in tested grades and subjects in North Carolina prior to applying), those with above median value-added, and those in the top decile.
Panel (c) shows the cross-tabulation of whether a school posts a vacancy in April and whether that school posts a vacancy in July (in
the same cycle).

43



Table 4: Application evaluations, outcomes, and timing

Hired Hired but Hired but Declined Interview Positive Middle Negative Withdrew No comment
successfully taught elsewhere not in district offer

mean 0.00051 0.00003 0.00017 0.00006 0.00000 0.00064 0.00029 0.00037 0.00002 0.07367
count 2,291 122 750 292 7 2,887 1,300 1,655 74 333,780

(a) Outcomes at the application level

Hired Declined offer Interview Positive Middle Negative Withdrew No comment Any Non-Hire Action

mean 0.799 0.117 0.001 0.101 0.023 0.075 0.037 0.985 0.179
count 1,457 213 2 184 42 136 67 1,797 327

(b) Outcomes at the position level

Obs Mean 10th 25th 50th 75th 90th Std. dev.

All applications 343,161 -0.0 -15.6 -5.8 -0.8 4.6 16.4 14.74
No notes 333,780 0.1 -15.2 -5.6 -0.7 4.5 16.1 14.38
Evaluated with notes 9,381 -2.0 -32.1 -15.0 -4.1 7.9 31.7 24.26

(c) Timing relative to hired applicant

This table shows the frequency and timing of application outcomes. The data record a single outcome per application; as an example, “Interview” implies not
hired as otherwise the “Interview” outcome would be replaced by “Hired.” The data record “Hired,” which we split into “Hired successfully” for teachers who
taught in the position’s school the following year, “Hired but taught elsewhere” for teachers hired who taught in district but not at that position’s school, and
“Hired but not in district” for teachers hired who did not appear in the district the following year. “Positive,” “Middle,” and “Negative” reflect the authors’ coding
of different text categories. “No comment” includes applications without an updated status. Panel (a) shows frequencies at the application level and panel (b)
shows frequencies at the position level for at least one outcome across all applications to that position (i.e., “Hired” indicates at least one application led to a
hire). “Any Non-Hire Action” is a positive, middle, or negative assessment or an application withdrawal. In panel (c) we calculate the difference in timing (in
days) between when an application was made and when the application that led to a hire was made. A value of 1 would indicate an application made 1 day after
the one that led to a hire. In the last two rows, we split the sample into those with no notes (“No comment”) and those with an outcome.
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Table 5: Teacher preference estimates

Estimate Standard Error

Constant 2.032 4.453
Commute Time -0.073 0.001
Commute Time Missing -1.660 0.223
Value Added 0.081 0.008
St Dev Value Added RC 0.128 0.007
School Characteristics and Interactions
Fraction Disadvantaged -1.188 0.136
Fraction Black -0.452 0.132
Fraction Hispanic 0.441 0.144
Fraction Above Median Achievement 0.163 0.149
Abs Adv x Fraction Disadvantaged -0.797 1.029
Abs Adv x Fraction Black -1.635 1.025
Abs Adv x Fraction Hispanic 2.487 1.074
Abs Adv x Fraction Above Median Achievement -1.997 1.185
Black x Fraction Black 1.072 0.130
Hispanic x Fraction Hispanic 0.491 0.771
St Dev Fraction Disadvantaged RC 1.591 0.034
St Dev Fraction Black RC 1.296 0.054
St Dev Fraction Hispanic RC 0.637 0.065
St Dev Fraction Above Median Achievement RC 1.397 0.045
Teacher Characteristics
VA Non-Disadvantaged Students 0.746 0.307
VA Disadvantaged Students 0.937 0.331
In District -0.509 0.061
Black -0.095 1.043
Hispanic 6.017 3.762
Female 0.284 0.064
Experience 2-3 0.070 0.083
Experience 4-6 -0.268 0.082
Experience 7+ -0.141 0.074
St Dev Random Effect 1.687 0.030
Chamberlain-Mundlak Device
Fraction Disadvantaged Mean -1.903 3.182
Commute Time Mean 0.032 0.004
Commute Time Missing Mean 1.231 0.249
Value Added Mean -0.489 0.295
Fraction Black Mean -2.786 2.707
Fraction Hispanic Mean 0.041 2.457
Fraction Above Median Achievement Mean -0.986 4.718
Abs Adv x Fraction Disadvantaged Mean -37.628 19.086
Abs Adv x Fraction Black Mean 36.183 18.362
Abs Adv x Fraction Hispanic Mean 15.838 19.942
Abs Adv x Fraction Above Median Achievement Mean -16.346 6.488
Black x Fraction Black Mean -2.200 2.412
Hispanic x Fraction Hispanic Mean -20.462 14.686
Number of Students Mean 0.009 0.023

The table shows teacher preference coefficients, estimated using maximum sim-
ulated likelihood. We model the probability that a teacher applies to a position
where the alternate options are not teaching in the district or keeping the current
position. Random coefficients (“RC”) are independent and simulated from the
standard normal distribution. We model unobserved teacher-year heterogene-
ity using a Mundlak (1978) and Chamberlain (1982) device, taking the mean
of each covariate across an applicant’s choices. Commute time is measured in
minutes, value added is total predicted output. Experience below 2 years is the
omitted category.

45



Table 6: Principal preference estimates

Estimate Standard Error

Constant -4.363 0.127
St Dev Random Effect 1.531 0.022
Title I 0.521 0.156
Value-Added 0.092 0.026
Value-Added x Title I 0.038 0.034
Experience 2-3 0.351 0.128
Experience 2-3 x Title I -0.005 0.163
Experience 4-6 0.271 0.117
Experience 4-6 x Title I 0.035 0.160
Experience 7+ 0.097 0.089
Experience 7+ x Title I -0.344 0.120
Experience Missing -0.342 0.060
Experience Missing x Title I 0.371 0.086
Masters 0.188 0.098
Masters x Title I 0.124 0.125
Black -1.035 0.227
Black x Title I 1.722 0.453
Black x Fraction Black 0.396 0.267
Black x Fraction Black x Title I -0.253 0.511
Hispanic -0.690 0.454
Hispanic x Title I 0.450 0.561
Hispanic x Fraction Hispanic 2.259 2.219
Hispanic x Fraction Hispanic x Title I -1.833 2.345
Female 0.053 0.106
Female x Title I 0.031 0.129
Gender Missing -0.327 0.230
Gender Missing x Title I -0.197 0.277
Race Missing -0.530 0.210
Race Missing x Title I 0.374 0.247
VA Missing 0.490 0.089
VA Missing x Title I -0.230 0.124

The table shows principal preference coefficients, estimated using
maximum simulated likelihood. We model the probability that
a principal submits a positive outcome (hire, interview, positive
rating) for an application. Random effects are simulated from
the normal distribution. Experience below 2 years is the omitted
category. Value-added is total predicted output.
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Table 7: Robustness: output relative to status quo

All Options Principal Max VA Teach Max VA Both Max VA First Best
Baseline 0.0044 -0.0002 0.0216 0.0228 0.0309
1. Vary year: baseline is 2016

2012 0.0025 0.0031 0.0238 0.0228 0.0328
2013 0.0028 0.0017 0.0234 0.0225 0.0313
2014 0.0015 0.0031 0.0217 0.0225 0.0312
2015 0.0031 -0.0091 0.0228 0.0243 0.0342
2017 0.0058 -0.0053 0.0244 0.0276 0.0363
2. Vary student type split: baseline is economic disadvantage

Achievement 0.0052 -0.0003 0.0243 0.0277 0.0359
Race 0.0032 0.0002 0.0232 0.0275 0.0356
3. Vary choice set construction for teachers

7 day buffer 0.0046 -0.0021 0.0215 0.0227 0.0309
First day choice sets only 0.0064 0.0011 0.0251 0.0263 0.0345
Drop single app. teachers 0.0032 -0.0026 0.0205 0.0221 0.0303
4. Vary teacher preference specification to use binary logit

No REs or FEs 0.0034 -0.0011 0.0219 0.0232 0.0315
School FEs 0.0031 -0.0009 0.0231 0.0245 0.0328
School REs 0.0031 -0.0019 0.0215 0.0232 0.0312
Teacher FEs 0.0045 -0.0001 0.0213 0.0225 0.0307
Teacher REs 0.0037 -0.0004 0.0209 0.0225 0.0307
Teacher REs, School FEs 0.0019 -0.0091 0.0239 0.0256 0.0337
Teacher FEs, School FEs 0.0014 -0.0110 0.0248 0.0261 0.0344
5. Allow for correlated random coefficients in teacher preferences

Corr. R.C. 0.0038 -0.0018 0.0230 0.0243 0.0324
6. Vary window in which we estimate principal preferences: baseline is all applications

W/in 2 weeks of hire 0.0046 0.0001 0.0219 0.0231 0.0312
First half 0.0041 -0.0002 0.0215 0.0233 0.0314
Second half 0.0044 0.0001 0.0214 0.0236 0.0316
7. Estimate principal preferences using rank order logit: baseline is binary logit

All data 0.0041 0.0004 0.0210 0.0233 0.0315
Active choices 0.0027 -0.0003 0.0194 0.0231 0.0313
Hire outcome only 0.0048 0.0006 0.0220 0.0241 0.0322
8. Hold class sizes constant: baseline uses class size

Constant class size -0.0005 -0.0029 0.0047 0.0045 0.0064
9. Some outcomes on full sample: baseline uses transfer sample

Full sample 0.0473 0.0543
The table shows robustness checks for our main results. The columns correspond to the change in mean student achievement (in student
standard deviation units) between the considered counterfactual and the estimated status quo. “All Options” expands teachers’ choice
sets to all positions, “Max VA” corresponds to ranking positions (or teachers) by predicted value-added, and “First Best” is the output-
maximizing allocation. In the first section, we vary the year in which we implement our main exercise. In the second section, we
show results where teacher-school match effects depend on different student observable characteristics. In the third section we vary
the assumptions around teachers’ choice sets or drop teachers who make single applications. In the fourth section, we vary the level
of random or fixed effects in the teacher preference model, while in the fifth section we allow for correlated random coefficients on a
constant, total value-added, and fraction of students who are economically disadvantaged. In the sixth section we vary principals’ choice
sets while in the seventh we vary how we treat an application’s outcome in the principal preference model. In the eighth section we
show results where preference estimation and counterfactual analysis use constant class sizes across all positions in the district. In the
final section, we show outcomes for the full sample of teachers with value-added forecasts, not just the teachers who apply to transfer.
Because we lack preferences for these teachers, we only estimate a few equilibria.



Figure 1: Math Value-Added Forecast Unbiasedness

The figure is a binscatter, where an observation is a teacher-year and math value-added estimates are predictions using data from
prior years. Units are student standard deviations. The y-axis is the mean student math test score, residualized by student demo-
graphics including lagged scores, school fixed effects, and teacher experience measures. The mean is taken over all students for a
given teacher-year.
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Figure 2: Features of classes and teachers

(a) Class size and fraction disadvantaged

(b) Comparative advantage for disadvantaged students, and absolute advantage

The figures show binscatters related to classroom characteristics and teacher characteristics. The top panel
shows the relationship between a school’s (mean) disadvantaged share of students and a school’s (mean)
number of students per teacher. The right-most point of the binscatter, with 100% of a school’s students
economically disdavantaged, accounts for 36% of the sample. The bottom panel shows the relation-
ship between a teacher’s absolute advantage (x-axis) and comparative advantage in teaching economically
disadvantaged students (y-axis). For this figure, absolute advantage is the average value-added across
students types (rather than the value-added at a representative school) to avoid mechanical correlations
between absolute and comparative advantage.
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Figure 3: Wait time to apply to vacancies

(a) Stock of vacancies

(b) Flow of vacancies

The figures show the wait time for applicants to apply to vacancies. In Panel A, we look at vacancies that were “in stock” (already
posted) on the day the teacher first applied on the platform. We plot the “leave one out” wait time, where we omit one job the
teacher applied to on the first day. In Panel B we look at the wait time to apply to vacancies that were posted after the teacher
first applied on the platform. We measure wait time as the time from when the teacher first applied to another job (once the focal
position is posted) until they apply to the posted job. We place vertical dashed lines at the median wait time.
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Figure 4: Choice and application set sizes

(a) Choice sets

(b) Application sets

The figures are histograms of the number of positions a teacher has in her choice set (Panel A) and the number of positions a teacher
applies to (Panel B). An observation is an applicant-year. Choice sets comprise the set of vacancies that are active while at some
point between the teacher’s first and last application in a given cycle.
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Figure 5: Bivariate preference relationships

(a) Teachers: commute time (b) Teachers: fraction disadvantaged

(c) Teachers: output (d) Teachers: rank of first best in preferences

(e) Principals: output (f) Principals: rank of first best in preferences

This figure shows binscatters of bivariate relationships between characteristics and preferences. In Panels (a)-(d), we estimate each
teacher’s ranking over positions and order positions from a teacher’s most preferred (100) to least preferred (0). In Panels (e)-(f),
we estimate each principal’s ranking over teachers and order teachers from a principal’s most preferred (100) to least preferred
(0). Panels (a)-(c) show of bivariate relationships between characteristics in our teacher preference model and the position’s mean
preference percentile from our teacher preference mode. Panel (e) shows the bivariate relationship between the teacher’s total
value-added in the position and the mean preference percentile of the principal for the teacher in the principal preference model.
For these bivariate relationships, we do not hold fixed other characteristics; for example, commute time may covary with other
characteristics. For panels (d) and (f) we estimate the output-maximizing allocation of teachers to positions and then calculate the
preference percentile for each assignment in this allocation.



Figure 6: Model fit

(a) Teacher absolute advantage (b) Teacher comparative advantage

(c) Teachers with 7+ years of experience (d) Teachers that are Black

This figure compares the allocations implied by the model to the allocations we observe in the data. The data refers to all teachers
in the district. The model refers to the teachers who apply in the transfer system for whom we have value-added scores. Positions
are sorted on the x-axis by share of disadvantaged students.
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Figure 7: Production possibilities frontier

(a) Production possibilities frontier

status quo w/school propose

1. status quo

2. 1 + all options

3. 2 + principals max VA

4. 3 + teachers max VA

PPF

Teacher optimal

Student optimal

(b) Distributional consequences

Student optimalTeacher optimal

1. status quo 2. 1 + all options

3. 2 + principals max VA

4. 3 + teachers max VA

This figure simulates the trade-off between teacher preferences and student achievement (Panel A) and between student achieve-
ment for economically advantaged and disadvantaged students (Panel B). The “PPF” represents the solution to the social planner’s
problem from placing different relative weights on teacher preferences and student achievement. The student-optimal point maxi-
mizes student achievement and is when the planner only weights students. The teacher-optimal point maximizes teacher preferences
and is when the planner only weights teachers. The status quo (point 1) uses teacher and principal estimated preferences, restricted
choice sets, and solves for the teacher proposing stable allocation. The status quo with school proposing allocation is the same as
the status quo except it is the school-proposing solution. Point 2 takes the status quo and gives teachers and principals all options.
Point 3 takes point 2 and gives principals preferences to maximize value-added. Point 4 takes point 3 and also gives teachers
preferences to maximize value-added. The Figure plots averages over 200 simulations.



Figure 8: Summary of changes in output relative to status quo

status quo

0

all options

0.0044

principals max VA

-0.0002

principals and teachers max VA

0.0231

max VA

0.0310
This figure summarizes the mean student achievement from allocations presented in Figure 7. The status quo output has been
normalized to 0. The status quo corresponds to point 1, all options to point 2, principals maximize VA to point 3, and principals
and teachers maximize VA corresponds to point 4. The “max VA” point corresponds to the “student-optimal” point in Figure 7.
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Figure 9: Teacher choice rankings

(a) Estimated principal preferences

(b) Principals maximize value-added

This figure presents the preference percentile of the position to which the teacher is assigned in two equilibria. We estimate a
teacher’s ranking of all positions and express it in percentiles, where 100 is the teacher’s most preferred position. The top panel
shows the status quo (point 1 in Figure 7). The bottom panel shows the same outcomes in point 3 in Figure 7: the status quo
with the complete choice set, and principals maximize value-added. Teachers are ordered on the x-axis by their absolute advantage
(predicted value-added at the district’s representative school).
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Figure 10: Bonus schemes

(a) Relative to the status quo

(b) Relative to a status quo with principal bonuses

This figure shows the effect of bonus schemes on achievement per student. In both panels, the x-axis shows the cost of the policy
per teacher, which we express in minutes of commute time per teacher. The y-axis shows the benefits in terms of achievement per
student. We consider three policies: subsidizing achievement directly, subsidizing the position based on the fraction of disadvan-
taged students in the position, and subsidizing the position based on fraction disadvantaged interacted with the teacher’s absolute
advantage. In the top panel, we take as the baseline allocation the status quo, and the constant part of the bonus is chosen to
make teachers weakly better off relative to this allocation. In the bottom panel we replace estimated principal preferences with
preferences that maximize output. The dashed line in the top panel is the cost of the first-best policy and represents movements
along the PPF. The three horizontal dashed lines correspond to the output in the first-best (top), the output in the allocation where
teachers and principals each maximize value-added and choice sets are complete (point 4 in Figure 7) (middle), and the output in
the allocation where teachers and principals each maximize estimated preferences and choice sets are complete (point 2 in Figure 7
(bottom)).



A Data Appendix

A.1 Student-level data

We use student records from the NCERDC over the years of 2006-2007 through 2017-2018 to
measure multi-dimensional teacher productivity in raising math test scores. This provides 8,177,312
student-year observations. We focus on math teachers in grades 4 through 8 to capture the majority
of teachers with prior performance data who enter the applicant pool. We use third to seventh grade
math and reading scores as lagged achievement. Test score data as well as student demographics
such as ethnicity, gender, gifted designation, disability designation, whether the student is a migrant,
whether the student is learning English, whether the student is economically disadvantaged, test
accommodations, age, and grade come from the NCERDC master-build files. We use only data
from standard end-of-grade exams. This leaves us with 5,322,896 student-year observations.

Beginning in the 2006-2007 school year, the state began recording course membership files
linking students directly to courses and instructors. Prior to this change, teachers were linked to
students through data on the proctors of the end-of-course exams. The new course membership files
provide stronger teacher–subject-student links than the previous system, in which teachers were
more frequently linked to the wrong subject (Harris and Sass, 2011).

With the course membership files, we still must determine which teacher is most responsible for
teaching math. We use a tiered system. We use course codes (starting with “20”) and course names
(including text “math,” “alg,” “geom,” and “calc”) to do so. We also want to prioritize standard
classes as opposed to temporary or supplemental instruction (course names including text such as
“study,” “special,” “resource,” “pullout,” “remed,” “enrich,” “indiv,” and “except”). We assign stu-
dents to the teacher most likely to be the math teacher according to the following rules: (1) Students
are assigned first to a high-certainty math teacher (the course code and title indicate a standard math
class without mention of supplemental instruction). (2) Students with self-contained teachers are
assigned to that teacher if there is no high-certainty math teacher present. (3) Students with course
codes and course titles indicating math teachers but no self-contained teachers or high-certainty
math teachers are assigned to those middle-certainty math teachers. (4) Students with a teacher of a
course that either has a math code or a math course title but no other math course or self-contained
teacher are assigned to those low-certainty math teachers. (5) Students with a science course code
but no math course or self-contained courses are assigned to their science teachers to accommodate
recent trends of math and science block scheduling. We exclude classes in which more than half
the class requires special accommodations. Ultimately, our sample for constructing teacher value-
added measures is composed of 5,159,337 student-year observations providing measures for 38,566
teachers.
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A.2 Application and vacancy data

Our application and vacancy data cover the 2010-2019 cycles. We restrict our sample to applications
and vacancies for on-cycle, standard elementary school positions. We show how these restrictions
change the sample in Appendix Table A1.

We define on-cycle as positions that receive their first applications of a cycle between April 1
and August 15.

We select standard elementary school positions by filtering on the vacancy type (”instructional”)
and the vacancy title. Seventy percent of posted vacancies are for instructional positions. We require
that the position indicate elementary school grades by having at least one of the following text strings
in the title: “k-”, “3rd”, “4th”, “5th”, “-5”, “-6”, “4-6”, or ”elem”. 39% of vacancies include at least
one of these strings in the title.

We then exclude positions with specific subjects mentioned in the title or indications that the
position is non-standard (“specialized”, “end of year”, “interim”, “assistant”, “virtual”, “resource”,
“itinerant”, “exchange”, “extensions”, “immersion”, “academic support”, “temporary”, “continu-
ous”, “early end”, “interventionist”, or “substitute”). With all of the restrictions above, our final
sample consists of 20% of the full set of applications, 25% of the full set of applicants, and 7% of
the full set of vacancies.

We code the application’s outcome into whether the candidate is hired (“Accepted-Pending Li-
censure”, “Hired”, “Hiring Request in Process”, “Offer Accepted”), declines an offer (“Offer De-
clined”), offered an interview (“Completed BEI Interview”, “Contact for Interview”, “Interview
Scheduled”, “Invited to Complete Virtual Interview”, “Invited to Interview”, “Recommended for
Interview (By Request)”), or given a positive rating (“1st Choice”, “2nd Choice”, “Highly Recom-
mend for Interview”, “Recommend”, “Recommend for Interview”, “Recommendation Accepted”,
“Strong Candidate”). These categories are encodings of a single variable, so they are mutually
exclusive (i.e., if a candidate is hired, the prior outcome may be overwritten). For robustness analy-
sis, we also split up the remaining applications into middle ratings (“Attended Info Session/Class”,
“Hold for Later Consideration”, “Invited to Info Session/Class”, “Possible recommend for inter-
view”, “Recommend with Hesitation”), negative ratings (“Failed Job Questionnaire”, “Incomplete
Application”, “Ineligible Selection”, “Not Good Fit”, “Not Qualified”, “Pool - Ineligible”, “SS -
INELIGIBLE”, “Screened - Not Selected”), withdrawals (“Candidate Withdrew Interest”), or no
evaluation (“Eligible Selection”, “New”, “Pool - Eligible”, “Pool Candidate”).

A.3 Matching across datasets

For this project the North Carolina Education Research Data Center (NCERDC) combined records
held there on teacher work histories, school characteristics, and student achievement with data pro-
vided by a large urban school district containing further personnel files, open positions within the
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school district, and applications for those positions. They performed an interactive fuzzy match
using names and birth year. For teachers who had a sufficiently good match (that is, a unique name-
birth-year combination), we have a de-identified ID that allows us to connect their platform data to
their staffing records and students’ achievement.

The NCERDC reports that of the 74,395 applicants to positions, 29,008 are matched to NCERDC
records. Many of these applicants never teach in the state and thus would not be expected to match.
Of the 26,983 employees listed within the district, 20,966 are matched to NCERDC records. How-
ever, the match rate is much better among personnel who teach tested subjects. Of the 13,982
teachers with EVAAS scores in the district, 13,865 are matched to the NCERDC data.

A.4 Sample characteristics

Returning to Appendix Table A1, we see how the sample’s characteristics varies with sample re-
strictions. The “Elementary Sample” restricts to on-cycle elementary school instructional positions
without specialization, the “Value-Added Sample” further restricts to teachers with value-added
forecasts based on prior years, and the “2015 Sample” further restricts to the 2015 application cycle.
We use the “Elementary Sample” for estimating principal preferences, the “Value-Added Sample”
for estimating teacher preferences, and the “2015 Sample” for estimating counterfactual allocations.

We see a few expected patterns based on the sample restrictions. For the last two columns,
we require teachers to have value-added forecasts based on data from prior years. This restrictions
leads us to a more experienced sample of teachers. These teachers are more likely both to already
be in the district and to transfer to a new school (from a prior school or from out of district). We
also see these teachers have lower application rates, perhaps because many already have in-district
placements. We see little change in the teacher sample’s mean value-added (by student type or at
a representative school) or choice set size. The mean characteristics in the positions sample also
change minimally with the sample restrictions.

B Omitted details on value-added model: assumptions, results, and
validation

B.1 Formal statement of assumptions for value-added model

Here we formally state the assumptions that were informally discussed in Section 3.

Assumption 1 (Exogeneity and stationarity of classroom and student-level shocks). Classroom-

student-type shocks (qcmt) are independent across classrooms and independent from teachers and

schools. Classroom-student-type shocks follow a stationary process:

E [qc0t |t] = E [qc1t |t] = 0 (A1)
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Var (qc0t) = s2
q0
, Var (qc1t) = s2

q1
, Cov(qc0t ,qc1t) = sq0q1 (A2)

for all t.

Student-level idiosyncratic variation is independent across students and independent from teach-

ers and schools. Student-level shocks follow a stationary process depending on the student’s type:

E [ẽit |t] = 0 (A3)

Var (ẽit) = s2
em

for m = 0,1 (A4)

for all t.

Assumption 2 (Joint stationarity of teacher effects). The non-experience part of teacher value-

added for each student type follows a stationary process that does not depend on the teacher’s

school. The covariances between the teacher’s value-added across student types depend only on the

number of years elapsed:

E [µ j0t |t] = E [µ j1s|t] = 0 (A5)

Var (µ j0t) = s2
µ0
, Var (µ j1t) = s2

µ1
, Cov(µ j0t ,µ j1t) = sµ0µ1 (A6)

Cov(µ j0t ,µ j0,t+s) = sµ0s, Cov(µ j1t ,µ j1,t+s) = sµ1s (A7)

Cov(µ j0t ,µ j1,t+s) = sµ0µ1s (A8)

for all t.

Assumption 3 (Independence of drift and school effects). Let µ̄ jm be teacher j’s mean value-added

for student type m. Let k be j’s assigned school in year t. Then:

(µ jmt � µ̄ jm)? µk for m = 0,1. (A9)

B.2 Additional details on estimation

In the first step, we estimate bl by regressing test scores (standardized to have mean 0 and standard
deviation 1 in each grade-year) on a set of student characteristics (Xit) and classroom-student-type
fixed effects:

A
⇤
it
= bsXit +lcmt +uit . (A10)

For characteristics, we include ethnicity, gender, gifted designation, disability designation, whether
the student is a migrant, whether the student is learning English, whether the student is economically
disadvantaged, test accommodations, age, and grade-specific cubic polynomials in lagged math and
lagged reading scores. We subtract the estimated effects of the student characteristics to form the
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first set of residuals, n̂it :19

n̂it = A
⇤
it
� b̂sXit . (A11)

These student-level residuals include teacher, school, and classroom components, as well as id-
iosyncratic student-level variation.

In the second step, we project the residuals onto teacher fixed effects, school fixed effects, and
the teacher experience return function. Following the literature, we specify the experience return
function as separate returns for every level of experience up to 6 years, and then a single category
of experience of at least 7 years:

n̂it =
6

Â
e=1

ae {Z jt = e}+a7 {Z jt � 7}+µ jm +µk +µt + eit , (A12)

where eit = (µ jmt � µ jm)+qcmt + ẽit . We then form a second set of student-level residuals by sub-
tracting off the estimated school and experience effects:

Ait = n̂it �
 

6

Â
e=1

âe {Z jt = e}+ â7 {Z jt � 7}+ µ̂k + µ̂t

!
. (A13)

We aggregate these student-level residuals into teacher-year mean residuals for each student type:
Ā jmt . Let A�t

j
be a vector of mean residuals for each student type-year that j teaches in the data,

prior to year t.
In the final step, we form our estimate of teacher j’s value-added (net of experience effects) in

year t for type m as the best linear predictor based on the prior data in our sample:

µ̂ jmt ⌘ E⇤
h
µ jmt |A�t

j

i
= y0

m
A�t

j
, (A14)

where ym is a vector of reliability weights. We estimate ym following Delgado (2021). Our estimate
of teacher j’s composite value-added at school k in year t is:

cVA jkt = pk0t µ̂ j0t + pk1t µ̂ j1t + f (Z jt ; â). (A15)

Variation in the data: We now discuss the variation in the data that pins down key parameters.
The coefficient on student characteristics uses how test scores vary with within-classroom-student
type variation in student characteristics.20 The school effects use the change in (student) output

19Here we deviate from the standard notation, by introducing n̂it . Our procedure has two residualization steps because
we include classroom-student type fixed effects in the first step, which would subsume the teacher and school fixed effects.
We thus decompose student residuals into teacher and school components in a second step.

20Because we include classroom-student-type fixed effects, our model allows for an arbitrary correlation between
students’ characteristics and the quality of their assigned teachers. Allowing such correlation is important in a context
where teachers have some control over where they work.
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when teachers switch schools, beyond what would be predicted by drift and by the change in student
type composition. Heuristically, if teachers’ output regularly increases when teachers transfer to a
certain school, then we would estimate a high school effect. The teacher mean effects for each
student type are pinned down by relative increases in students’ (residualized) test scores across
different teachers. We are able to rank teachers both within and across schools, provided teachers
and schools are in a set connected by transfers so that we can identify the school effects.

Finally, we identify the parameters of the teacher value-added distribution and the drift process
based on the stationarity assumptions and the observations of teachers across years, classrooms, and
student types. As an example, the variance of the teacher effects for student type m is identified by
the covariance between a teacher’s mean student residuals for student type m in two different class-
rooms in the same year.21 With our assumptions that classroom and student shocks are uncorrelated
across classrooms, the only reason a teacher’s students would have similar (residualized) outcomes
is the teacher’s value-added.

B.3 Testing for comparative advantage

Our measures forecast teachers’ future value-added without bias. Our high estimated correlation
between a teacher’s effectiveness with the two student types raises the question of whether our
estimates of comparative advantage simply reflect statistical noise. We perform three exercises to
test our multi-dimensional value-added model versus a single-dimensional model.

First, we estimate standard errors and confidence intervals for the structural parameters in our
production model. The estimated correlation in teacher value-added across student types is 0.86.
We can, however, decisively reject a correlation of 1 as the bootstrap standard error is 0.035, with a
95% confidence interval of (0.73,0.87) (Appendix Table A2).

Second, we perform a likelihood-ratio test comparing our model with a model with one-dimensional
teacher value-added. We take the mean residuals at the level of the teacher-classroom-student type,
Ā jcmt , and collect a teacher’s mean residuals across classrooms and student types, which come from
a normal distribution:

 
Ā jc1t

Ā
jc
02t

!
⇠ N

0

@
 

0
0

!
,

0

@s2
µ1
+s2

q1
+

s2
e1

Njc0t

sµ1µ2

sµ1µ2 s2
µ2
+s2

q2
+

s2
e2

Njc2t

1

A

1

A . (A16)

We compare the likelihoods across our baseline model and an alternate model of homogeneous
value-added where s2

µ1
= s2

µ2
, s2

q1
= s2

q2
, s2

e1
= s2

e2
, and sµ1µ2 = 0. Our likelihood-ratio test has 4

degrees of freedom, and we reject the homogeneous value-added model in favor of the heteroge-
neous model, with a test statistic of 610, so the p-value is arbitrarily small (p < 0.0001).22

21In our setting many elementary school teachers have students from multiple classes. The prevalence of multiple
classrooms is increasing over time (Appendix Table A9).

22We restrict the sample to one randomly-chosen vector of mean residuals per teacher so that the observations in our
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Third, we fix a teacher’s type according to whether she is above or below the median in com-
parative advantage in teaching economically disadvantaged students in pre-transfer schools. We
then test whether changes in the share of economically disadvantaged students differentially predict
changes in student test score residuals (n̂it from equation A13) in post-transfer schools by teacher-
type. The logic of the test is as follows. Under a homogeneous value-added model, changes in the
share of economically disadvantaged students should have no bearing on changes in teacher pro-
ductivity across schools. If our estimated comparative advantage is meaningful, however, then as
the share of disadvantaged students rises, teachers with a comparative advantage in teaching disad-
vantaged students should see gains in average productivity relative to teachers with a comparative
advantage in teaching economically advantaged students. Accordingly, we regress across-transfer
changes in teacher-by-school average student residuals on across-transfer changes in the share of
disadvantaged students interacted with teachers’ type. The results appear in Appendix Table A10.
For teachers with a comparative advantage in teaching advantaged students in pre-transfer schools,
productivity falls as the share of disadvantaged students rises (p-value=0.043). In contrast, for
teachers with a comparative advantage in teaching disadvantaged students, productivity rises as the
share of disadvantaged students rises (p-value=0.014). These findings indicates that comparative
advantage is persistent across settings and predictive of match-specific productivity.

C Within-school assignments

Our analysis focuses on the allocation of teachers across schools in a district. Another margin
of allocation could be within-school assignment of teachers based on class size or composition.
Ignoring this margin could affect our results in two ways. First, we could understate the potential
allocation gains (or even focus on the less important margin). In Table 2 we show that the gains to
within-school reallocation are much smaller than the gains from reallocation across schools.

Second, if within-school position characteristics are endogenous, our preference model might
be misspecified. For example, suppose that an experienced teacher can negotiate for the Honors
class at a school but the inexperienced teacher cannot. We assess this possibility in two ways.

C.1 Persistence of classroom characteristics

If within-school assignment characteristics were endogenous and a function of the teacher’s type, we
would expect persistence in these characteristics over time. In Appendix Tables A11 and A12, we
show the autocorrelations in number of students taught by a teacher and the fraction of students that
are economically disadvantaged. In each table’s top panel, we show the school-level autocorrelation.
We find that differences across schools – which we leverage in our analysis – are fairly persistent.

likelihood are independent. We also find a similar test statistic when we use mean residuals, Ā jcmt , from a model where
the fixed effects in the residualizing steps are not separated by student type.
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In each table’s bottom panel, we show the teacher-level autocorrelation where we residualize by
school-year fixed effects to isolate the within-school deviation. These within-school differences
across teachers – which we do not leverage in our analysis – are not persistent at all.

C.2 Do teachers bargain over student assignment on the job market?

Second, we examine how students are assigned to teachers within and across schools. This question
is of particular interest since we would like to know whether teachers bargain with principals over
their student assignments. Are sought-after teachers assigned “preferable” class compositions? The
primary teacher characteristic we use is experience, which principals value and is reliably measured
in our data. We first explore the relationship visually. Student attributes have a linear relationship
with log(experience), so we estimate models in which the outcome variables are student attributes
and the primary explanatory variable is a teacher’s log(experience). In regressions, standard errors
are clustered by teacher and by year.

Without controlling for school setting, there is a strong relationship between experience and
student attributes (see Appendix Table A13). More experienced teachers are assigned higher-scoring
students, fewer economically disdavantaged students, more students designated as gifted, and fewer
Black students.

Much sorting takes place across schools—as teachers gain experience, they sort to more subur-
ban schools where students are less economically disadvantaged and higher achieving. In the basic
cross section, we find that a 100 percent increase in experience reduces poverty shares by 0.037
percentage points (significant at the 0.001 level). When we control for year and school fixed effects,
the coefficient on (log) experience falls by over 80 percent to 0.006 (significant at the 0.001 level).
We examine the gradient among newly hired teachers. This group is of particular relevance because
applicants (as opposed to teachers not applying to new jobs) are the teachers we consider in our
counterfactual exercises. When looking at this group, we find no significant relationship between
experience and disadvantaged-student assignment, conditional on school-year fixed effects. This
suggests that principals do not sort students to teachers based on experience within a school, and
indicates that bargaining over student characteristics is unlikely.

The pattern of sorting Black students to teachers is quite similar. We find that doubling teacher
experience reduces the Black share of a teacher’s class by 0.033 percentage points (significant at
the 0.001 level). When looking within a school, the experience gradient falls by 97 percent—the
sorting of Black students to teachers is almost exclusively across schools. When we examine the
relationship among new hires, the relationship is even smaller and statistically insignificant. The
gradient between student test scores and teacher experience attenuates by 90 percent when account-
ing for school-year fixed effects. There still is a small, systematic difference in test scores which
appears to arise from hiring more experienced teachers to serve in gifted-and-talented classrooms.
We see very experienced teachers assigned somewhat less desirable class assignments than would
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be predicted by the rest of the support. It may be that schools encourage older teachers to leave by
giving them more difficult class compositions.

In summary, among new teachers, experience does not significantly predict assignment to disad-
vantaged students or Black students within schools. There is a small experience gradient for higher
achieving students among new teachers. It seems teachers of gifted-and-talented classrooms tend to
be senior.

D Heterogeneity in application rate gap between Title I and non-Title
schools

To showcase unobservable preference heterogeneity, we focus on teacher preferences over a binary
characteristic: whether the school has Title I designation. Appendix Table A16 shows that on
average teachers are less likely to apply to Title I schools. The application rate to non-Title I
schools is almost 16% and to Title I schools is about 14%, and leaving an application gap of close
to 2 percentage points (or 10%).

The second and third columns of Appendix Table A16 show why we are able to estimate hetero-
geneity precisely: the median number of applications choices that each teacher makes is over 65 for
both Title I positions and non-Title I positions. Thus, teachers’ application sets have the potential to
include many or few Title I positions.

Appendix Figure A20 shows that the mean gap in application rates across school types masks
substantial heterogeneity. For each teacher, we calculate the gap in application rates (for positions
in the teacher’s choice set) between Title I and non-Title I schools, and then we plot the distribution
of the gap. Visually, the distribution almost appears centered on zero (the median is 0.003). But
there is substantial dispersion: the standard deviation of the raw gaps is 0.134.

Naturally, the standard deviation of the raw gap overstates the extent of dispersion because it
incorporates noise. We now describe and implement a simple minimum distance estimator for the
true standard deviation of the applicant gap. For each teacher j we observe a j1 applications sent to
a Title I school and c j1 is the number of Title I vacancies in the teacher’s choice set. We can then
estimate

p̂ j1 =
a j1

c j1

or teacher j’s application probability to a Title I school.
Using the natural notation for a “not-Title I” school, we also have:

p̂ j0 =
a j0

c j0
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We can then compute the “gap”, or Title I penalty, as

ĝ j = p̂ j1 � p̂ j0.

We are then interested in the distribution of these gaps – e.g., the standard deviation (sd) of g j.
Naturally, taking sd(ĝ j) will result in an over-estimate of the amount of dispersion.

We fit the following model.
p j0 = ˆ̄p0

p j1 = N( ˆ̄p1,s)

where ˆ̄p. are the population average application probabilities and s is a parameter to estimate. We
estimate s by simulated method of moments where the moment to match is sd(ĝ j) and we simulate
data from the model embedded in the previous two equation using the observed {c j0,c j1}.

We find that the estimated standard deviation is 0.114, so the visual depiction of noise is in line
with the underlying truth. If we take the minimum distance estimate at face value, while on average
teachers have higher application probabilities to non-Title I schools, about 44% of teachers have
higher application probabilities to Title I instead. Hence, this suggests that even though on average
teachers prefer non-Title I schools, there is a substantial amount of heterogeneity in the applicant
pool. Depending on how such preference heterogeneity maps into the existing allocation of teachers
to schools, policies that make Title I schools more attractive could have small or large effects on
teachers’ application rates.

E Selection into the transfer market

What explains the differences in student gains between Table 2 and the results depicted in Figure 7b?
Here, we compare the teacher transfer market to the broader sample of teachers and positions. We
first consider the representation of schools in the transfer market. Unsurprisingly, we see significant
over-representation for positions in schools with high proportions of economically disadvantaged
students. Appendix Table A14 shows that a 10 percentage point increase in the share of economi-
cally disadvantaged students is associated with 0.15 more positions posted. Because the overrepre-
sented type of school is already the more common one (more than half of the students in our district
are economically disadvantaged) this means that gains from sorting on comparative advantage are
going to be understated in our transfer sample.

The pattern is less pronounced for the number of students a teacher instructs. Though the point
estimate implies that an additional 10 students per teacher lowers the number of positions a school
posts by 0.2, this relationship is largely driven by outliers, as shown in Appendix Figure A19.

To examine the selection of teachers into the transfer market, we first look at four cohorts, 2010-
2013, such that we can follow them for five years. We further restrict attention to those for whom
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we can measure productivity, leaving us with 553 teachers who entered the state’s data during those
years. Of those, 207 applied to transfer at some point during the first five years. Only 124 remain
in their original school and have not applied to transfer within five years of entering the district.
The remaining 287 leave the district. Appendix Table A15 shows that there is very little difference
in comparative advantage between teachers who applied to transfer and the teachers who did not.
Teachers who apply for transfer have lower and less variable absolute advantage.

Accordingly, it is unlikely that the difference in per-student potential gains is due to teacher
selection into transferring, particularly with regard to comparative disadvantage (with disadvan-
taged students). It is possible that the small differences in absolute disadvantage interacted with the
under-representation of large classes accounts for some of the gap. The clearest selection into the
transferring market, however, comes from the over-representation of schools with a high concentra-
tion of disadvantaged students. With a limited distribution of schools, there is less room to realize
the gains from teachers’ comparative advantages.

F Principal preferences estimation

We estimate principal preferences via maximum simulated likelihood, where we simulate from
the normal distributions of the random effect at the level of the position-year. Let n index each
simulation iteration and let B jptn(q) be the model-predicted probability that p rates j positively in
year t in simulation iteration n at parameter vector q. For each position p in year t, we construct the
simulated likelihood as:

Lpt =
1

100

100

Â
n=1

’
j2Jpt

(b jptB jptn(q)+(1�b jpt)(1�B jptn(q))), (A17)

where Jpt is the set of teachers who applied to a position p in year t and b jpt is an indicator for
whether p rated j positively in the data. Our full simulated log likelihood function is:

l =
1
P

Â
p

logLpt . (A18)
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Table A1: Sample and summary statistics

Full Sample Elementary Sample Value-Added Sample 2015 Sample

Applications
N 2,163,711 337,754 13,819 2,702
On-Cycle 0.68 1.00 1.00 1.00
Instructional 0.70 1.00 1.00 1.00
Elementary 0.39 1.00 1.00 1.00
Applicants
N 104,795 14,864 867 178
Female 0.92 0.87 0.89
Black 0.24 0.30 0.25
Hispanic 0.03 0.01 0.03
In-District 0.12 0.43 0.44
Choice Set Size 159.10 151.14 151.35
Application Rate 0.18 0.11 0.10
Transferred 0.23 0.43 0.51
Mean Commute Time 17.78 22.57 22.50
Experience 5.81 9.22 9.89
VA Econ Adv -0.03 -0.03 -0.04
VA Econ Disadv -0.02 -0.02 -0.03
Abs Adv -0.03 -0.03 -0.03
Comp Adv in Econ Disadv 0.01 0.01 0.01
Positions
N 38,921 1,824 1,784 296
Choice Set Size 1,293.54 71.89 88.63
Application Rate 0.14 0.11 0.10
Mean Class Size 26.40 26.40 25.69
Frac Econ Disadv 0.65 0.65 0.68
Frac Black 0.43 0.43 0.45
Frac Hispanic 0.24 0.24 0.25

The table shows count or mean statistics across different samples. The “Full Sample” includes all of the raw data, the “Elementary
Sample” restricts to on-cycle elementary school instructional positions without specialization, the “Value-Added Sample” further re-
stricts to teachers with value-added forecasts based on prior years, and the “2015 Sample” further restricts to the 2015 application
cycle (for positions in the 2016 school year). We use the “Elementary Sample” for estimating principal preferences, the “Value-Added
Sample” for estimating teacher preferences, and the “2015 Sample” for estimating counterfactual allocations. We do not include mean
statistics for applicants and positions for the complete sample because we built the data on the subsample. Commute time is measured
in minutes, absolute advantage is value-added at the representative school in the district, and choice set size is the number of positions
in a teacher’s choice set (Applicants panel) or the number of teachers with the position in their choice set (Positions panel).
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Table A2: Teacher Value-Added Structural Parameters

Estimates Standard Errors 95% CI Lower Bound 95% CI Upper Bound

se1 0.450 0.000 0.456 0.457
se2 0.470 0.000 0.477 0.479
sq1 0.110 0.007 0.108 0.137
sq2 0.088 0.015 0.089 0.143
correlation(qc0t ,qc1t) 0.657 0.162 0.126 0.844
sµ1 0.249 0.007 0.262 0.284
sµ2 0.243 0.015 0.254 0.316
correlation(µ j0t ,µ j1t) 0.859 0.035 0.729 0.872

The table shows the estimates of a subset of the structural parameters of the production model – specifically the parameters
corresponding to contemporaneous output. Non-disadvantaged students have index 1 while disadvantaged students have index
2. e is the student-year idiosyncratic component, q captures classroom effects, and µ describes a teacher’s value-added. The
remaining structural parameters describe the drift process of teacher value-added over time. Standard errors and confidence
intervals are estimated with 100 bootstrap iterations.
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Table A3: Estimated Experience Returns to Teacher Value-Added

1 2 3 4 5 6 7+

Estimate 0.056 0.077 0.083 0.088 0.088 0.091 0.070
Standard Error 0.004 0.004 0.005 0.005 0.005 0.005 0.005

The table shows the estimated experience returns for math test scores, where the scores have
been normalized to have mean 0 and standard deviation 1 for students in a given grade-year.
Columns designate the number of prior years of experience. The omitted category is teachers
with no prior experience.
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Table A4: Potential Gains from Reassignment – Test Score Percentiles

Per-Student Gains (s) As a Fraction of (Best-Actual) Non-Disadvantaged Disadvantaged

Alternate Allocations
Best 0.050 0.089 0.016
Random -0.003 -0.19 0.017 -0.021
Worst -0.053 -3.63 -0.052 -0.054
Alternate Policies
Best w/i School 0.012 0.98 0.015 0.010
Replace Bottom 5% of Teachers 0.011 0.74 0.012 0.010
Targeting Student Types
Max Non-Disadvantaged VA 0.024 1.66 0.130 -0.072
Max Disadvantaged VA 0.016 1.12 -0.047 0.074

The table shows the potential gains from reassignments of teachers to different schools. Test scores are constructed as the raw score percentile (from 0 to 1), where
percentiles are calculated for each grade-year in the state. We then normalize the test scores to be in standard deviation units based on the standard deviation of the
uniform distribution. The sample is all teachers with non-missing value-added measures in 2016, along with their corresponding 2016 assignments. Gains come
from better matching of teachers to students, as teachers’ effectiveness may differ across student types. The first column shows the per-student gains from various
allocations relative to the actual allocation. The second column shows the gain as a fraction of the full difference between the best (output-maximizing) and actual
allocations. The third and fourth columns show the per-student gains, relative to the actual allocation, for non-disadvantaged and disadvantaged students. The
best within school allocation only changes the teacher-classroom assignments within a school. “Replacing Bottom 5% of Teachers” refers to replacing the bottom
5% of teachers according to realized per-student output with teachers with median value-added for each student type. The targeting student types allocations are
the ones that maximize per-student output for students of one type only. We assign classrooms the mean student composition and class sizes in that school in
2016 in all allocations except the “Best w/i School” and “Constant Class Size” allocations.

72



Table A5: Potential Gains from Reassignment – Constant Class Size

Per-Student Gains (s) As a Fraction of (Best-Actual) non-Disadvantaged Disadvantaged

Alternate Allocations
Best 0.021 0.018 0.023
Random 0.000 0.02 0.002 -0.001
Worst -0.020 -0.94 -0.015 -0.023
Alternate Policies
Best w/i School 0.003 0.16 0.007 0.000
Replace Bottom 5% of Teachers 0.017 0.82 0.023 0.012
Targeting Student Types
Max Non-Disadvantaged VA 0.003 0.17 0.123 -0.090
Max Disadvantaged VA 0.005 0.22 -0.111 0.096

The table shows the potential gains from reassignments of teachers to different schools where each school has the same number (but possibly different composi-
tion) of students per class. The sample is all teachers with non-missing value-added measures in 2016, along with their corresponding 2016 assignments. Gains
come from better matching of teachers to students, as teachers’ effectiveness may differ across student types. The first column shows the per-student gains from
various allocations relative to the actual allocation. Gains are measured in student standard deviations (s). The second column shows the gain as a fraction of
the full difference between the best (output-maximizing) and actual allocations. The third and fourth columns show the per-student gains, relative to the actual
allocation, for non-disadvantaged and disadvantaged students. The best within school allocation only changes the teacher-classroom assignments within a school.
“Replacing Bottom 5% of Teachers” refers to replacing the bottom 5% of teachers according to realized per-student output with teachers with median value-added
for each student type. The targeting student types allocations are the ones that maximize per-student output for students of one type only. We assign classrooms
the mean student composition and class sizes in that school in 2016 in all allocations except the “Best w/i School” and “Constant Class Size” allocations.
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Table A6: Same-Race and Same-Gender Effects on Test Scores

Student Res

Black Teacher - Black Student 0.00225
(0.00164)

Hispanic Teacher - Hispanic Student -0.00556
(0.00549)

Female Teacher - Female Student 0.00478
(0.000550)

Fixed Effects Teacher, School
Mean DV 0.0000115
Clusters 37940
N 5158740

An observation is a student-year and the outcome is the student’s math
score residualized by student demographics including lagged scores,
school fixed effects, and teacher experience measures. The regressors
include measures of demographic match between student and teacher.
The regression includes school fixed effects and teacher fixed effects.
Standard errors are clustered at the teacher level.

74



Table A7: Teacher Value-Added Structural Parameters with Alternate Forms of Heterogeneity

Race Achievement

se1 0.465 0.481
se2 0.457 0.439
sq1 0.091 0.099
sq2 0.110 0.102
correlation(qc0t ,qc1t) 0.637 0.628
sµ1 0.233 0.240
sµ2 0.261 0.282
correlation(µ j0t ,µ j1t) 0.900 0.844

The table shows the estimates of a subset of the structural param-
eters of production models with alternate forms of heterogeneous
teacher effects – specifically by race and prior achievement. In
the first column, non-white students have index 1 while White
students have index 2. In the second column, students with be-
low median prior math achievement have index 1 while students
with above median prior math achievement have index 2. e is
the student-year idiosyncratic component, q captures classroom
effects, and µ describes a teacher’s value-added. The remaining
structural parameters describe the drift process of teacher value-
added over time.
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Table A8: Application timing

Obs Mean days Median days Share 0 days

Stock 196,779 3.6 0 0.72
Flow 146,382 2.1 0 0.75

(a) Wait times until applying

Obs Mean fraction of days Mean fraction of applications Mean days since posting

First day 14,864 0.61 0.65 23.47
Subsequent days 40,850 0.14 0.13 11.55

(b) First day versus subsequent days

Obs April or before May June July August

First day (all teachers) 14,864 0.20 0.25 0.22 0.18 0.15
Last day (all teachers) 14,864 0.09 0.15 0.21 0.26 0.29
First day (transfers) 2,547 0.27 0.30 0.24 0.14 0.05
Last day (transfers) 2,547 0.10 0.17 0.25 0.29 0.19

(c) Timing of first and last days

The tables show statistics related to application timing. Panel (a) shows how long it took an applicant to apply to positions
that were in “stock” (already posted) on the day the teacher first applied on the platform or in “flow” (posted after the
day the teacher first applied on the platform). Panel (b) shows application statistics for the first day a teacher applied on
the platform in a cycle versus subsequent days. “Mean days since posting” is the mean number of days a vacancy had
been posted at the time the teacher applied. Panel (c) shows the (monthly) timing of when an applicant’s first and last
application days of the cycle occurred. “All teachers” includes all applicants while “transfers” includes just teachers who
ended up in new schools.
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Table A9: Multi-classroom teacher prevalence

Year All Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

2012 0.264 0.109 0.187 0.618 0.621 0.631
2013 0.287 0.124 0.210 0.636 0.631 0.649
2014 0.300 0.152 0.227 0.633 0.625 0.644
2015 0.363 0.256 0.345 0.615 0.598 0.602
2016 0.391 0.305 0.392 0.595 0.591 0.595
2017 0.385 0.291 0.399 0.612 0.569 0.596
2018 0.393 0.307 0.425 0.596 0.586 0.578
Estimation sample 0.417

The table shows the prevalence of teachers having multiple classrooms, separately by teacher’s grade
and year. The sample includes teachers for whom we can calculate math value-added. Our estimation
sample consists of teachers, with value-added forecasts, who applied to elementary school positions.
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Table A10: Predicting Student Residuals by Teacher Type

Student res Student res

Share disadvantaged -0.0549 -0.0409
(0.0251) (0.0202)

Share disadvantaged x CA in disadvantaged 0.0820 0.0697
(0.0356) (0.0283)

Num teachers 3214 3214
Num students 157671 157671
Mean CA -0.00805 -0.00805
SD CA 0.0624 0.0624
Controls No Yes

The table assesses whether changes in the share of economically disadvantaged students
predict changes in student test score residuals differently by teacher type across transfers.
Teacher type is defined by comparative advantage in pre-transfer schools, with “CA in dis-
advantaged” an indicator for whether the teacher is above median in comparative advantage
in teaching disadvantaged students. The outcome is changes in average teacher-by-school
student residuals across transfers. “Share disadvantaged” is the change in the average share
of economically disadvantaged students teacher j taught when moving from one school to
another. Controls include a cubic in average experience in the school, an indicator for expe-
rience missingness, and transfer year indicators. Standard errors are clustered at the teacher
level.
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Table A11: Autocorrelations in class size

Class size, school level

Variables Class Size t Class Size t-1 Class Size t-2 Class Size t-3 Class Size t-4
Class Size t 1.0000

Class Size t-1 0.7329 1.0000
(0.0000)

Class Size t-2 0.6248 0.6966 1.0000
(0.0000) (0.0000)

Class Size t-3 0.4093 0.5261 0.6598 1.0000
(0.0000) (0.0000) (0.0000)

Class Size t-4 0.3722 0.3746 0.4365 0.5796 1.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Nb. obs. : 247

Class size, teacher level

Variables (Res.) Size t (Res.) Size t-1 (Res.) Size t-2 (Res.) Size t-3 (Res.) Size t-4
(Res.) Size t 1.0000

(Res.) Size t-1 0.3668 1.0000
(0.0000)

(Res.) Size t-2 0.2688 0.3717 1.0000
(0.0000) (0.0000)

(Res.) Size t-3 0.2900 0.1272 0.2699 1.0000
(0.0000) (0.0186) (0.0000)

(Res.) Size t-4 0.1173 0.1438 0.0698 0.3098 1.0000
(0.0301) (0.0077) (0.1978) (0.0000)

Nb. obs. : 342
The table shows correlations (within unit) between class size in one year and class size in a prior year. In the top panel, a unit
of analysis is a school and class size is the mean across all of the school’s classrooms (that generate math test scores). In the
bottom panel, a unit of analysis is a teacher and class size is residualized by school-year fixed effects such that residual class
size compares how a teacher’s class size deviates from the school-year mean.
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Table A12: Autocorrelations in class composition

Class composition, school level

Variables Frac Disadv t Frac Disadv t-1 Frac Disadv t-2 Frac Disadv t-3 Frac Disadv t-4
Frac Disadv t 1.0000

Frac Disadv t-1 0.9602 1.0000
(0.0000)

Frac Disadv t-2 0.9430 0.9555 1.0000
(0.0000) (0.0000)

Frac Disadv t-3 0.9363 0.9370 0.9496 1.0000
(0.0000) (0.0000) (0.0000)

Frac Disadv t-4 0.9435 0.9467 0.9554 0.9775 1.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Nb. obs. : 247

Class composition, teacher level

Variables (Res.) Dis t (Res.) Dis t-1 (Res.) Dis t-2 (Res.) Dis t-3 (Res.) Dis t-4
(Res.) Dis t 1.0000

(Res.) Dis t-1 0.3170 1.0000
(0.0000)

(Res.) Dis t-2 0.2898 0.3200 1.0000
(0.0000) (0.0000)

(Res.) Dis t-3 0.1524 0.2076 0.3723 1.0000
(0.0047) (0.0001) (0.0000)

(Res.) Dis t-4 0.0921 0.0512 0.2203 0.3925 1.0000
(0.0889) (0.3450) (0.0000) (0.0000)

Nb. obs. : 342
The table shows correlations (within unit) between class composition (fraction of students that are economically disadvantaged)
in one year and class composition in a prior year. In the top panel, a unit of analysis is a school and class composition is the
(weighted) mean across all of the school’s classrooms (that generate math test scores). In the bottom panel, a unit of analysis is
a teacher and class composition is residualized by school-year fixed effects such that residual class composition compares how
a teacher’s class composition deviates from the school-year mean.
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Table A13: Teacher experience and student assignment

(1) (2) (3) (4) (5)
Outcome Outcome Outcome Outcome Outcome

Outcome: Share economically disadvantaged students assigned

log(experience) -0.0369 -0.0311 -0.0063 -0.0029 -0.0021
(0.0013) (0.0028) (0.0005) (0.0011) (0.0011)

Outcome: Share Black students assigned

log(experience) -0.0331 -0.0195 -0.0010 -0.0008 -0.0005
(0.0010) (0.0023) (0.0004) (0.0008) (0.0010)

Outcome: Average student lagged math score

log(experience) 0.0887 0.0474 0.0461 0.0173 0.0115
(0.0023) (0.0049) (0.0016) (0.0033) (0.0041)

Outcome: Share gifted status

log(experience) 0.0231 0.0106 0.0161 0.0053 0.0074
(0.0007) (0.0014) (0.0006) (0.0012) (0.0016)

New only X X X
Year FE X X
School FE X X
School-year FE X

N 1,879,666 258,723 1,879,666 258,723 258,723
Standard errors in parentheses.

The table shows separate regression results for different outcomes on the log of a teacher’s prior
experience. Outcomes are mean characteristics of the students in a teacher’s classroom. “New
only” indicates that the sample only includes teachers new to the school; thus, the regression
compares outcomes across teachers new to the school depending on the teacher’s experience.
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Table A14: Predicting posted positions

(1) (2)
Positions Positions

Class size -0.0199
(0.0125)

Fraction disadvantaged 1.503
(0.544)

N 116 116
An observation is a school-year. The outcome is the number
of positions posted in an application cycle and the regressors
are characteristics of the school’s mean class. Robust standard
errors are in parentheses.

Table A15: Transferring and non-transferring teachers’ value added

(1) (2)
Did not apply Applied to transfer

mean sd count mean sd count
Comparative advantage 0.0001 0.0351 528 -0.0002 0.0367 506
Absolute advantage 0.0034 0.1210 528 0.0219 0.1508 506
The table shows the means and standard deviations of absolute and comparative advantage for
teaching economically advantaged students by whether the teacher ever submits an application to
transfer. An observation is a teacher with a value-added forecast. These are pooled over years
2010 through 2018.

82



Table A16: Applications to Title I and non-Title schools

Obs Mean choice set Median Mean prob. 25th 50th 75th Std. dev. Overall mean prob.

Title I 14,747 85.3 68 0.176 0.010 0.056 0.264 0.237 0.137
non-Title I 14,747 74.0 66 0.176 0.013 0.084 0.270 0.217 0.155
Gap 14,747 -0.001 -0.049 0.003 0.041 0.134 -0.018

The table shows application statistics to positions at Title I and non-Title I schools. Columns (2) and (3) show the mean and median choice set sizes for
an applicant. “Gap” shows the difference in statistics across the two school types.
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Figure A1: Value-Added Drift Parameters

The figure shows the estimated correlations between teacher value-added in different years. The x-axis
captures the year difference between the teacher’s value-added measures. The three lines reflect correla-
tions in teacher value-added within student type (1 for non-disadvantaged students, 2 for disadvantaged
students) or across student type.
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Figure A2: Math Comparative Advantage Forecast Unbiasedness

The figure is a binscatter, where an observation is a teacher-year and “Difference in VA” is the difference
in a teacher’s math value-added between economically disadvantaged and advantaged students. Value-added
estimates are predictions using data from prior years. Units are student standard deviations. The y-axis is
the difference in mean student math test score, residualized by student demographics including lagged scores,
school fixed effects, and teacher experience measures. The mean is taken over all students (of a given type)
for a given teacher-year and the difference is between a teacher’s economically disadvantaged and advantaged
students.
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Figure A3: Transfer event study

The figure shows event study coefficient estimates and 95% confidence intervals. The outcome is residual-
ized math test score (residualized by student observables including lagged scores, school fixed effects, and
an experience function), in student standard deviation units. The event is the teacher’s first transfer from
one school to another school in the state, where non-transfers do not have an event. We include teacher
and year fixed effects and follow Sun and Abraham (2021) in constructing the estimates.

86



Figure A4: Forecast Unbiasedness for Large Changes in Class Size

(a) Large decreases in class size

(b) Large increases in class size

The figure shows a binscatter of student residual test scores by value-added prediction where an obser-
vation is a teacher-year. For decreases, the sample consists of all teachers where the class size used for
prediction exceeds the class size in the target by more than 10 students. For increases, the sample consists
of all teachers where the class size used for prediction is less than the class size in the target by more than
10 students.



Figure A5: Value-Added Distribution

The figures show kernel density plots of our forecast of a teacher’s value-added in a given year at the school
they actually teach at (panel A), for economically advantaged students (panel B), and for economically
disadvantaged students (panel C). The forecast uses only data from prior years. The units are student
standard deviations.



Figure A6: Gains from teacher replacement

With class size variation

Constant class size

This Figure shows the results from policies that replace the X% of low-performing teachers with median value-added teachers,
where the x-axis shows different values of X. The sample is the 2016 teachers with value-added forecasts. We assess performance
based on realized value-added in the data (i.e., at the schools and classrooms a teacher is actually at in the data), and the median
value-added teacher has median values for both dimensions of value-added. The y-axis is per-student gains in achievement. The
top panel uses class size variation while the bottom panel imposes constant class sizes (at the district mean). The horizontal dashed
lines are the gains from the output-maximizing allocation of existing teachers across schools in the district.



Figure A7: Student Gains by Fraction of Teachers Reassigned

The figure plots the potential per-student math test score gains (in student standard deviation units) as a function
of the fraction of teachers that are assigned to a school different than their actual school. The sample consists
of the 2016 teachers with math value-added scores.
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Figure A8: Changes in a teacher’s classroom composition and size between the output-maximizing
and actual allocations

The figures show scatterplots and lines of best fit for the 2016 sample of teachers with value-added scores. In the top row,
the variable of interest is the difference in the number of students a teacher teaches between the output-maximizing and actual
allocations. Positive numbers are teachers who have more students in the output-maximizing allocation than in the actual. In
the bottom row, the variable of interest is the difference in the fraction of disadvantaged students a teacher teaches between
the output-maximizing and actual allocations. In the left column, teachers are ordered on the x-axis by absolute advantage
(value-added at a representative school). In the right column, the teachers are sorted by comparative advantage in teaching
economically disadvantaged students.
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Figure A9: Optimal teacher placement relative to placement that generated value-added

The figures show histograms for the 2016 sample of teachers with value-added scores. In the top panel, the variable of interest is the
difference in the number of students a teacher teaches between the output-maximizing allocation and the classrooms that generated the
teacher’s value-added forecast. Positive numbers are teachers who have more students in the output-maximizing allocation than in the
estimation data. In the bottom row, the variable of interest is the difference in the fraction of disadvantaged students a teacher teaches
between the output-maximizing allocation and the classrooms that generated the teacher’s value-added forecast. The vertical dashed
lines represent the 1st, 10th, 90th, and 99th percentiles of the distribution we use for validation of our value-added measures in Table 1.
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Figure A10: Simulations of two forms of misspecification

Unmodelled match effects

Attenuation in coefficient on output in teacher preferences

The figures show results from simulation exercises where we vary parameters related to match effects. In each figure the y-axis is
the mean student achievement relative to the status quo. The dashed red line is the achievement in the output-maximizing allocation
while the solid black line is the achievement in the equilibrium where principals and teachers each have preferences in order of
value-added produced. The top panel adds an iid unobserved component to match effects, where the x-axis is the standard deviation
of this component. The bottom panel varies the coefficient in teacher preferences on value-added. If our model misses match effects
that teachers are aware of, then the preference coefficient might be attenuated. The x-axis in the bottom panel shows by how much
we multiply our estimated coefficient on value-added.
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Figure A11: Market timing

The figure shows CDFs for postings, applications, and hires (the application date of the application that led to a hire).
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Figure A12: Application probabilities against commute time

This Figure plots the probability of applying against commute time (measured in one-way minutes). The Figure residualizes for
applicant fixed effects.
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Figure A13: Number of teachers by fraction economically disadvantaged

This Figure plots histograms of the number of teachers, by the fraction of students who are economically disadvantaged. The
histograms are for the actual positions in the data (in white) and the positions teachers would have if they could all have their top
choice (in red).
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Figure A14: Model fit: teacher serial dictatorship based on absolute advantage (descending)

(a) Teacher absolute advantage (b) Teacher comparative advantage

(c) Teachers with 7+ years of experience (d) Teachers that are Black

This Figure compares the allocations implied by a model in which the allocation is determined by a serial dictatorship where
teachers go in descending order of their absolute advantage to the allocations we observe in the data. The data refers to all teachers
in the district. The model refers to the teachers who apply in the transfer system for whom we have value-added scores.
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Figure A15: Model fit: teacher serial dictatorship based on experience (descending)

(a) Teacher absolute advantage (b) Teacher comparative advantage

(c) Teachers with 7+ years of experience (d) Teachers that are Black

This Figure compares the allocations implied by a model in which the allocation is determined by a serial dictatorship where
teachers go in descending order of their experience to the allocations we observe in the data. The data refers to all teachers in the
district. The model refers to the teachers who apply in the transfer system for whom we have value-added scores.
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Figure A16: Model fit: school serial dictatorship based on fraction disadvantaged (descending)

(a) Teacher absolute advantage (b) Teacher comparative advantage

(c) Teachers with 7+ years of experience (d) Teachers that are Black

This Figure compares the allocations implied by a model in which the allocation is determined by a serial dictatorship where schools
go in descending order of their fraction of disadvantaged students to the allocations we observe in the data. The data refers to all
teachers in the district. The model refers to the teachers who apply in the transfer system for whom we have value-added scores.
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Figure A17: Features of classes and teachers – transfer sample

(a) Class size and fraction disadvantaged

(b) Comparative advantage for disadvantaged students, and absolute advantage

The figures show binscatters related to classroom characteristics and teacher characteristics in the trans-
fer sample used for counterfactual analysis. The top panel shows the relationship between a school’s
(mean) disadvantaged share of students and a school’s (mean) number of students per teacher. The bottom
panel shows the relationship between a teacher’s absolute advantage (x-axis) and comparative advantage
in teaching economically disadvantaged students (y-axis). For this figure, absolute advantage is the av-
erage value-added across students types (rather than the value-added at a representative school) to avoid
mechanical correlations between absolute and comparative advantage.
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Figure A18: First-best allocation’s placement of teachers, by absolute advantage

This Figure plots the first-best allocation in our transfer sample, where we divide teachers by absolute advantage and positions by
fraction of students that are economically advantaged. Each point is an assignment of a teacher to a position.
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Figure A19: Postings selection in the transfer market

(a) Positions and fraction of disadvantaged students

(b) Positions and class size

This figure shows the relationship between number of positions posted and (a) a school’s fraction of students that are economically
disadvantaged and (b) a school’s class size. An observation is a school.
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Figure A20: Title I Application Gap

This Figure plots the distribution of the individual-level Title I application rate minus the individual-level non-Title application
rate. Thus, the positive entries indicate that a teacher applies to a greater share of the Title I schools in their choice set than to the
non-Title I schools.
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