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Abstract 
 
This paper investigates whether a “Golden Rule” of regulation of an infectious disease may be 
elicited that balances the economic control and disease costs when the arrival of a future vaccine 
or a cure is uncertain. Formulating an optimal control problem applied to standard compartment 
models of infection, an optimality rule is derived. This rule is more complex than other similar 
Golden Rules related to optimal economic growth or extraction of natural resources. The paper 
contains interpretation of the derived rule and numeric examples of how the rule functions under 
the compartment models (i.e., the SI, the SIS, and the SIR models). 
JEL-Codes: H510, I180. 
Keywords: infectious disease, economic regulation, Golden Rule, compartment models. 
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1. Introduction 

While waiting for the arrival of an efficient vaccine or an efficient cure of a serious infectious 

disease such as Covid-19, a challenge is to manage the level of the disease so as to balance the 

cost of controlling the disease against the cost of the disease itself. In this paper we investigate 

how control costs should develop over time until a vaccine or a cure arrives with a view to 

minimizing the sum of control and disease costs. As an epidemic without a vaccine may extend 

over several years, a dynamic analysis, involving some degree of discounting, is called for. 

Furthermore, the uncertainty related to how long the epidemic will last before a vaccine or a 

cure is made available on a large scale, should also be reflected in the management of the 

disease. Ignoring the major complexities of the disease (e.g., seasonal features, recurring waves 

of aggressive contamination, age related features, new variants of the viruses) we seek to elicit 

what economic theory has to say about the basic economic principles that should govern the 

time profile of resources spent on infection control measures. As a base for the analysis, we 

apply simple standard compartment models (Kermack and McKendrick, 1927; Hechcote, 2000; 

Weiss, 2013), and add economic elements.  

 

The cost of the disease includes costs such as hospitalization costs (including intensive care), 

imputed cost of suffering of the infected individuals, value of lost statistical lives, and social 

costs faced by mourning relatives left behind. Infection control measures are many and varied 

and encompass activities such as frequent hand washing, use of face masks, quarantine and 

other kinds of social distancing (e.g., home office arrangements, regulation of travel and leisure 

activities, temporarily closing down educational institutions, bars and restaurants, closing 

borders with temporary complete lock down with strict curfew rules). Consequently, much of 

this will end up as reduced economic activity.  

 

In general, the literature on infectious diseases is abundant covering mathematical and 

biological analyses in the tradition of Kermack and McKendrick (2027), (e.g., Hechcote, 2000; 

Miller, 2012 and 2017; Berger et al. 2020). Also, economic analyses have increased in number 

in recent years, especially since the outbreak of Covid-19. Surveys of economic epidemiology 

include Philipson (2000), Gersovitz and Hammer (2004), Klein et al. (2007), Manfredi and 

d´Onofrio (2013). Many of the economic analyses deal with matching mechanisms regarding 

how the disease is transmitted and how measures such as prevention and/or treatment optimally 

may affect transmission rates and development of infected individuals. (e.g., Rowthorn and 



Toxvaerd, 2020; Eichenbaum, et al. 2020; Alvarez et al., 2020; Jones et al., 2020, Farboodi et 

al., 2020; Garriga et al., 2020; Garibaldi et al.2020 and Pissarides, 2020). Some of the economic 

literature also deal with macro-oriented empirical analyses (e.g., Weiss, 2013; Atkeson, 2020; 

Eichenbaum et al., 2020; Toda 2020). Contrary to these, this paper seeks answer to a basic 

economic question: which principle should govern the control measures taken in basic models 

of infectious deceases. Once detected, additional more realistic assumptions may be included. 

In particular, we set out to investigate whether some general “golden rule” of regulation exists 

for the simpler compartment models (SI, SIS and SIR) that is comparable to the Hotelling rules 

(Hotelling, 1931) for extraction of a non-renewable resource (e.g., oil) or a renewable natural 

resource (e.g., biomass) or similarly for optimal growth investments in an economy (Solow 

(1956) and Phelps (1961). To my knowledge none has taken this particular view earlier.  Hence, 

to fill in this void, I proceed with the following model. 

 

2. Model 

Without regulation, the typical development of an epidemic in the so-called SIR model with 

herd immunity, is that the number of new infected individuals at first increases, then reaches a 

maximum1 and, thereafter, fades off (See Fig. 1.). By controlling the number of infected 

individuals this typical development may be modified. 

 

The standard SIR model contains three state variables: S, I and R. Hence,  𝑆! is the number of 

individuals susceptible to be infected at date 𝑡, 𝐼! is the number of infected and infectious 

individuals at date 𝑡 while 𝑅! is the number of removed (recovered or dead) individuals at 

date 𝑡. The total population, 𝑁, is taken to be constant for the period considered. Hence, at all 

dates we have  𝑁 = 𝑆! + 𝐼! + 𝑅!. Furthermore, there are initial levels of the various states. 

These are denoted   𝑆" = 𝑁 − 𝜀, 𝐼" = 𝜀, 𝑅" = 0, where 𝜀 is a small number. The 

transmission rate from susceptible individuals to infectives and the transmission rate from 

infectives to removed individuals, are denoted 𝛼 and 𝛽, respectively.  

 

 
1 In the SIR model explained below, the maximum is given by 𝐼!"# = 𝐼$ + 𝑆$ −

%
&
(1 + ln *&

%
𝑆$+, provided that 

𝑆$ >
%
&
 . The fraction: &

%
 is called the Contact Ratio and the fraction: 𝑅$ =

&'!
%

 is called the Basic Reproduction 
Rate.  



The equation of motion for each of state variables are 

 

1) #$(
#!
= 𝑆!̇ = −𝛼𝑆!𝐼!  

2) #%(
#!
= 𝐼!̇ = 𝛼𝑆!𝐼! − 𝛽𝐼! 

3) #&(
#!
= 𝑅!̇ = 𝛽𝐼! 

 

As 𝑁, is a constant, we must have 𝑆!̇ + 𝐼!̇ + 𝑅!̇ = 0. Clearly, with herd immunity, the number 

of susceptible individuals will fall over time while the number of recovered individuals will 

increase. Hence, in this simple model the disease will disappear sooner or later. However, with 

an epidemic such as Covid-19, it is not yet clear to what extent the disease gives rise to total 

herd immunity. In the extreme case where it does not, the number of susceptible individuals 

will fall over time with a corresponding increase of the number of infected individuals, until 

the total population is infected (without any recovered individuals). This is reflected in the so-

called SI-model, where 𝑆!̇ = −𝛼𝑆!𝐼! and 𝐼!̇ = 𝛼𝑆!𝐼!.  In an intermediate case, immunity may 

last for a period until the recovered individuals again get susceptible.  For this so-called SIS-

model, we have 𝑆!̇ = −𝛼𝑆!𝐼! + 𝛽𝐼! and 𝐼!̇ = 𝛼𝑆!𝐼! − 𝛽𝐼! , where an infection eventually results 

in a steady state characterized by 𝐼 = G1 − '
(
I𝑁 .  

  

In the SIR-model, we assume that there is a social cost of infected individuals (e.g., imputed 

utility loss of being infected and value of lost statistical life) equal to 𝑐(𝐼) where #)
#%
= 𝑐´(𝐼) >

0
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Fig. 1 Development of Susceptibles (S), Infected 
(I) and Removed (R) in the standard SIR model
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0	 and #
))
#%)

= 𝑐´´(𝐼) ≥ 0.  Furthermore, we assume that the level of infected individuals can be 

controlled through the transmission rate, 𝛼(𝑧!), where the infection control measures, 𝑧!,  are 

taken to reduce the transmission rate from susceptible individuals to infected individuals, i.e. 

where #(
#*
= 𝛼´(𝑧) < 0 and #

)(
#*)

= 𝛼´´(𝑧) ≥ 0. The cost of these activities is assumed to show 

up as a reduction of the economy´s production and consumption of (non-epidemic) goods and 

services, 𝑥!. This relationship is captured by the function 𝑓(𝑥!) = 𝑓(	𝑦V − 𝑧!), where 𝑦V is the 

normal level of economic activity without the disease. For simplicity, we assume   #+
#,
=

𝑓´(𝑥!) > 0 and #
)+

#,)
= 𝑓´´(𝑥!) = 0. Otherwise, we denote the (constant) social discount rate by 

𝛿. Further, it should be noted that the imputed infection costs are not assumed do not show up 

as a reduction of the economy´s production capacity, as these costs are mainly in the form of 

utility loss of non-marketed goods.  

 

In the formulation of the economic optimization problem to follow, we assume that the 

unknown date of the arrival of the vaccine, 𝜏,  follows a Poisson process. The essential 

assumption is that the conditional probability of the event to occur, provided that the event has 

not already happened, remains constant as time proceeds. Hence, the length of the time period 

before the vaccine arrives does not affect the probability that the vaccine will arrive at a given 

date. Under these assumptions, Barlow and Proschan (1975) show that the distribution function 

is given by 𝐹(𝑡) = Pr	(𝜌 ≤ 𝑡) =(1-𝑒-.!), while the probability density function is equal 

to𝑓(𝑡) = Pr(𝜏) = 𝜌𝑒-.!. Here 𝜌 represents the “failure rate,” which is the frequency of the 

event to occur within a given time horizon. Expected waiting time until the arrival of the event 

is equal to 1/𝜌. Hence, an increase of the failure rate leads to a shorter expected waiting time. 

Once the vaccine or cure has arrived at date 𝜏, the economy reverts to the same state as prior to 

the outbreak of the epidemic. The net present value of future normal economic activity 

evaluated at date 𝜏 , is denoted 𝐹(𝑦V).  

 

Under the assumptions of the model, we consider the following optimization problem2  

 

𝑀𝑎𝑥a 𝜌𝑒-/0 ba[𝑓(𝑦V −	𝑧!) − 𝑐(𝐼!)]𝑒-/!𝑑𝑡 + 𝐹(𝑦V)𝑒-/0
0

"

f 𝑑𝜏
1

"

 

 
2 Observe, that 𝐹(𝑦0) functions as a constant scrap value. 



Subject to3 

𝐼!̇ = 𝛼(𝑧!)𝑆!𝐼! − 𝛽𝐼! 

𝑆" = 𝑁 

𝐼" = 𝜀 

𝑅" = 0 

𝑧! ≥ 0 

 

Upon integrating by parts (see Amundsen and Bjørndal, 1999; Tsur and Zemel, 2004), the 

objective function may be reformulated as  

 

𝑀𝑎𝑥a[𝑓(𝑦V −	𝑧!) − 𝑐(𝐼!) + 𝜌𝐹(𝑦V)]𝑒-(/3.)!𝑑𝑡
1

"

 

Denoting the co-state variable by 𝜆!4 and assuming that 𝑧! > 0 at all dates, the corresponding 

Hamiltonian reads 

 

𝐻! = [𝑓(𝑥!) − 𝑐(𝐼!) + 𝜌𝐹(𝑦V)]𝑒-(/3.)! + 𝜆![𝛼(𝑧!)𝑆!𝐼! − 𝛽𝐼!] 

 

First order conditions of this problem are 

 

4) #5(
#*(

= −𝑓´(𝑥!)𝑒-(/3.)! + 𝜆!𝛼´(𝑧!)𝑆!𝐼! − 𝛾! = 0 

5) #5(
#%(

= −𝑐´(𝐼!)𝑒-(/3.)! + 𝜆!(𝛼(𝑧!)𝑆! − 𝛽) +		𝜆!𝛼(𝑧!)𝐼!
#$(
#%(

= −�̇�! 

 

We seek to eliminate 𝜆!and 𝜆!̇ from these conditions. Hence, using 4) to solve for 𝜆!, taking the 

total time differential of this to obtain an expression of  𝜆!̇, inserting this into 2), and further 

recognizing that  %(̇
%(
= 	𝛼(𝑧!)𝑆! − 𝛽, and that 7+(,()

7*(
≡ 𝑓´(𝑧!) = −𝑓´(𝑥!),  the following 

optimality condition emerges  

 

 
3 We assume free terminal states and time. 
4 As noted, there are three state variables 𝑆, 𝐼 and 𝑅. However, as there is only one control variable, 𝑧, this 
governs all states according to the endogenous element of the transmission rate, 𝛼(𝑧) from infectives to infected 
and the exogenous element of transmission, 𝛽, from infected individuals to removed.  



6)
𝑐´(𝐼!)𝛼´(𝑧!)𝑆!𝐼!

𝑓´(𝑧!)
+ 𝛼(𝑧!)𝐼! l

𝑑𝑆!
𝑑𝐼!

+ 1m −
𝛼´´(𝑧!)𝑧!̇
𝛼´(𝑧!)

= (𝛿 + 𝜌) 

 

This equation expresses an optimal path of the infection control measures, 𝑧!, that maximizes 

the social surplus and, thus, implies an efficient balancing of social costs.  The condition is the 

same whether there is herd immunity ( 𝛽 > 0) or not (𝛽 = 0). However, for the SI and the SIS  

models, we have, respectively, that 

 

𝑑𝑆!
𝑑𝐼!

=
𝑑𝑆!
𝑑𝑡
𝑑𝐼!
𝑑𝑡

=
−𝛼(𝑧!)𝑆!𝐼!
𝛼(𝑧!)𝑆!𝐼!

= −1 

and 

𝑑𝑆!
𝑑𝐼!

=
𝑑𝑆!
𝑑𝑡
𝑑𝐼!
𝑑𝑡

=
−𝛼(𝑧!)𝑆!𝐼! + 𝛽𝐼!
𝛼(𝑧!)𝑆!𝐼! − 𝛽𝐼!

= −1 

 

Consequently, the middle term of 6) disappears for the SI and SIS models5.  

 

As for the SIR model, we have 

	
𝑑𝑆!
𝑑𝐼!

=
𝑑𝑆!
𝑑𝑡
𝑑𝐼!
𝑑𝑡

= −
𝛼(𝑧!)𝑆!𝐼!

𝛼(𝑧!)𝑆!𝐼! − 𝛽𝐼!
= −

𝛼(𝑧!)𝑆!
𝛼(𝑧!)𝑆! − 𝛽

 

Inserting into 6) we get 

 

	7)	
𝑐´(𝐼!)𝛼´(𝑧!)𝑆!𝐼!

𝑓´(𝑧!)
− 𝛼(𝑧!)𝐼! l

𝛽
𝛼(𝑧!)𝑆! − 𝛽

m −
𝛼´´(𝑧!)𝑧!̇
𝛼´(𝑧!)

= (𝛿 + 𝜌) 

 

3. Analysis and discussion 

It is well known that there does not exist a pure analytical solution to the system of differential 

equations of the SIR model, even though some solutions are often referred to as analytical 

solutions (see Harko, 2014 and Miller, 2015). However, even these solutions involve an integral 

that needs to be calculated numerically. Also, the present model is more complicated than the 

standard SIR model (and the corresponding SI and SIS models), since the transmission rate, 

 
5 See Appendix A. for an alternative derivation for the SI and the SIS models 



𝛼(𝑧!),	is endogenously determined as opposed to the constant transmission rate of the standard 

compartment models6. For this reason, the following analysis will draw upon numerical 

simulations and illustrations (see Appendix B).  

 

The optimality condition 7), relates to capital theory. In general, the condition expresses that 

the internal rate of return of the marginal regulation cost (the left -hand side) should be equal 

to the marginal discount rate (the right - hand side)7. In this case the failure rate,	𝜌  functions as 

an increment to the discount rate,	𝛿. The marginal cost of regulation, 𝑓´(𝑧!),  can be viewed as 

an investment that gives rise to three elements of return. Condition 7), thus, represents a 

Hotelling rule or a golden rule of optimal management of an epidemic. To better explain the 

various elements of condition 7), it may be reformulated as 

 

8)	
𝑐´(𝐼!)𝛼´(𝑧!)𝑆!𝐼!

𝑓´(𝑧!)
+
�̇�!
𝑆!
𝑑𝑅!
𝑑𝐼!

−
𝑎´(𝑧!)̇
𝛼´(𝑧!)

= (𝛿 + 𝜌) 

 

The first expression on the left - hand side is the percentage increase in terms of saved disease 

costs and the second expression is the percentage change of susceptible individuals induced by 

the marginal regulation cost weighted by the marginal effect on recovery (𝑑𝑅! 𝑑𝐼!⁄ ) =
'

((*()$(-'
. The third expression is the percentage change of the marginal transmission rate of 

susceptible individuals. The first element is positive, and the second and third are in general 

indeterminate.   

 

To get an expression for the time path of the regulation activity, rearrange 7) to obtain 

 

					9)	𝑧!̇ =
𝛼´(𝑧!)
𝛼´´(𝑧!)

r
𝑐´(𝐼!)𝛼´(𝑧!)𝑆!𝐼!

𝑓´(𝑧!)
− 𝛼(𝑧!)𝐼! l

𝛽
𝛼(𝑧!)𝑆! − 𝛽

m − (𝛿 + 𝜌)s 

 

Inspection of signs shows that the time path of the regulation activity is indeterminate.  

 
6 For the SIS model, Rowthorn	and	Toxvaerd	(2020)	characterizes	the	optimal	control	solutions	in	a	
thorough	analysis	of	a	regulation	problem	that	includes	both	prevention	and	treatment	of	infected	
individuals.	They	find	that	several	steady	state	solutions	are	possible.	 
7 A more general model assuming that *

"+
*#"

> 0, and *
"&
*,"

> 0, gives rise to the following optimality condition: 

-´(0#)&´(,#)'#0#
+´(,#)

− +´(,#)̇

+´(,#)
+ 𝛼(𝑧3)𝐼3 *

*'#
*0#
+ 1+ − &´(,#)̇

&´(,#)
= 𝛿 + 𝜌. 

 



 

Considering first the SI and the SIS models, 9) reduces to  

 

	10)	𝑧!̇ =
𝛼´(𝑧!)
𝛼´´(𝑧!)

r
𝑐´(𝐼!)𝛼´(𝑧!)𝑆!𝐼!

𝑓´(𝑧!)
− (𝛿 + 𝜌)s 

 

The expression is still indeterminate, but for the special case of no discounting (i.e., (𝛿 + 𝜌) =

0) or a low degree of discounting, the time path of the regulation activity should diminish over 

time. To see that this is the case (i.e., that 𝑧!̇ < 0), recall that 𝛼´(𝑧!) < 0, 𝛼´´(𝑧!) > 0, 𝑐´(𝐼!) >

0,		and that	𝑓´(𝑧!) < 0. The intuition for this result is the following: In the case of the SI model, 

we know that the total population will be infected sooner or later and stay infected. Hence, the 

costs of infection cannot be avoided. Spending resources on regulation will reduce the 

transmission rate from susceptible individuals to infectives and thereby reduce the speed at 

which people is getting infected, but without discounting and no hope of a future vaccine or 

cure (𝛿 + 𝜌 = 0),  it does not matter at which dates the costs are incurred. The total net present 

value of costs will be the same irrespective of the time path of infected individuals. For this 

reason, it does not make any sense to use resources on affecting the transmission rate from 

susceptible individuals to infectives. Hence, if there are regulation costs at the outset, these 

should be brought down to zero. On the other hand, if resources spent on regulation could bring 

the transmission rate all the way to zero, then resources spent may still make sense, since the 

increase of the number of infected individuals could be stopped such that the number of infected 

individuals would be held constant at some level below the total number of susceptible 

individuals and thus be saving costs of infection. Whether this will be socially optimal or not 

depends on the costs of regulation as compared with the costs of the infection saved.  

  

Still considering the SI model, if the sum of the discount rate and the failure rate is strictly 

positive i.e., (𝛿 + 𝜌) > 0	, then it makes perfectly good economic sense to spend resources on 

reducing the transmission rate. By increasing the regulation costs, and thereby lowering the 

transmission rate, the path of infected individuals is stretched out in time and the present value 

of the infection costs is lowered. As noted, the failure rate appears on the same footing as the 

discount rate. Hence, a higher failure rate (i.e., a higher probability of earlier arrival of a vaccine 

or a cure), will lead to more resources spent on lowering the transmission rate of susceptible 

individuals into infectives. An illustration of these cases is presented in Fig. 2.  



 
 

In interpreting Fig. 2., one should recognize that regulation expenses stop when infection is 

close to 100 percent in the SI model. Furthermore, all models have that in common, that the 

vaccine or the cure may be introduced at any date before the infection has reached its final state, 

wherefore also the regulation expenses drop to zero. Hence, the illustrated paths of infectives 

are not necessarily valid for all the period illustrated.  

 

The result of the declining regulation path carries over to the SIS model when 𝛿 + 𝜌 = 0.  

However, one may observe that the SIS model deviates from the SI model in that the maximum 

number of infected individuals is not necessarily equal to the total number of susceptible 

individuals that exists at the outbreak of the epidemics. Hence, a steady state condition may be 

reached where 𝑆!̇ = −𝛼(𝑧!)𝑆!𝐼! + 𝛽𝐼! = 	0	 and 𝐼!̇ 	= 𝛼(𝑧!)𝑆!𝐼! − 𝛽𝐼! = 0, and the level of 

this will be influenced by regulation. As the infection cost function may be strictly convex, cost 

per infected individual will be saved by lowering the maximum level of infected individuals.  

Otherwise, one can observe that the maximum number of infected individuals declines as the 

discount rate or the failure rate increases. An example of this is illustrated in Fig. 3. 
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Fig. 2. Optimal paths of infectives under the SI 
model as a function of 𝛿 and 𝜌
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Turning to the SIR model, a similar conclusion of a declining regulation path is valid for the 

case of no discounting (i.e., (𝛿 + 𝜌) = 0)  even for this model, provided that infection is in the 

declining phase (i.e., 𝐼!̇ = (𝛼(𝑧!)𝑆! − 𝛽)𝐼! < 0). For an illustration of the SIR model in the 

more general case, where (𝛿 + 𝜌) > 0,  see Fig. 4.  

 

 

 
 

As can be seen from Fig. 4, the path of infected individuals follows in this case a typical path 

of an increasing number of infected individuals, then reaching a maximum number, and 

thereafter a diminishing number. Also, for the SIR model, one can observe that the maximum 
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Fig. 3. Optimal  paths of infectives under the 
SIS model  as a function of 𝛿 and 𝜌
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Fig. 4. Optimal  paths of infectives under the 
SIR model  as a function of discount rate (𝛿) 

and failure rate (𝜌)

δ=0, ρ=0 

δ>0, ρ=0 
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number of infected individuals declines as the discount rate or the failure rate increases. An 

example of this is illustrated in Fig. 4. 

 

4. Conclusion 

In this paper we set out to investigate whether some general “Golden Rule” of regulation exists 

for the simpler compartment models (SI, SIS and SIR) that is comparable to the Hotelling-rules 

for natural resource extraction or similarly for optimal growth investments in an economy. Even 

though, principles from capital theory are detected, i.e., that the marginal rate of return from 

regulation costs should be equal to the sum of discount rate and failure rate of the arrival of a 

vaccine or cure, no neat and easily explicable rule emerges. Still, one element of the marginal 

rate of return from regulation is recognizable from the golden rule literature i.e., the percentage 

increase of saved disease costs following from the marginal regulation (or investment) costs. 

However, in addition to this element, the marginal rate of return includes the percentage change 

of susceptible individuals induced by the marginal regulation cost weighted by the marginal 

effect on recovery, and the percentage change of the marginal transmission rate of susceptible 

individuals. 

 

In general, the numerical examples of the models included in the paper, show that the higher 

the sum of the discount rate and expected rate of the arrival of the vaccine or cure, the higher 

are the resources spent on reducing the transmission rate from susceptible individuals to 

infectives. In this way the path of infectives is delayed and the present value of disease costs is 

reduced through more heavy discounting. 

 

Otherwise, the analysis shows that there is no easy guide for how the path of regulation should 

develop over time. An exception to this is the special (and unrealistic) case, where there is no 

hope for a vaccine or a cure combined with a discount rate equal to zero in the SI model. In that 

case, there should be no regulation (or alternatively, that regulation costs should be brought 

down to zero if there are regulation activities at the outset).  

 

 

 

 

 

 



 

 

Appendix A  

Derivation of optimality conditions for the SI model (𝛽 = 0)	and SIS model (𝛽 > 0) 

 

The problem reads  

𝑀𝑎𝑥a 𝜌𝑒-/0 ba[𝑓(𝑦V −	𝑧!) − 𝑐(𝐼!)]𝑒-/!𝑑𝑡 + 𝐹(𝑦V)𝑒-/0
0

"

f 𝑑𝜏
1

"

 

Subject to8 

𝐼!̇ = 𝛼(𝑧!)𝑆!𝐼! − 𝛽𝐼! 

𝑆!̇ = −𝛼(𝑧!)𝑆!𝐼! + 𝛽𝐼! 

𝑆" = 𝑁 

𝐼" = 𝜀 

𝑅" = 0 

𝑧! ≥ 0 

 

Upon integrating by parts (see Amundsen and Bjørndal, 1999; Tsur and Zemel, 2004), the 

objective function may be reformulated as  

 

𝑀𝑎𝑥a[𝑓(𝑦V −	𝑧!) − 𝑐(𝐼!) + 𝜌𝐹(𝑦V)]𝑒-(/3.)!𝑑𝑡
1

"

 

Denoting the co-state variable by 𝜆! for the state of infection, the co-state variable by 𝜇! for the 

state of infectives and the shadow price of 𝑧! by 𝛾!, the corresponding Hamiltonian reads 

 

𝐻! = [𝑓(𝑥!) − 𝑐(𝐼!) + 𝜌𝐹(𝑦V)]𝑒-(/3.)! + 𝜆![𝛼(𝑧!)𝑆!𝐼! − 𝛽𝐼!] − 𝜇![𝛼(𝑧!)𝑆!𝐼! − 𝛽𝐼!] − 𝛾!𝑧! 

 

First order conditions of this problem are 

 

1) #5(
#*(

= −𝑓´(𝑥!)𝑒-(/3.)! + (𝜆! − 𝜇!)𝛼´(𝑧!)𝑆!𝐼! − 𝛾! = 0 

2) #5(
#%(

= −𝑐´(𝐼!)𝑒-(/3.)! + (𝜆! − 𝜇!)(𝛼(𝑧!)𝑆! − 𝛽) = −�̇�! 

 
8 We assume free terminal states and time. 



3) #5(
#$(

= (𝜆! − 𝜇!)𝛼(𝑧!)𝐼! = −�̇�! 

 

Upon taking the total time differential of 1), while considering the case where 𝑧! > 0 (i.e. 𝛾! =

0), arrive at 

 

1)´				(𝛿 + 𝜌)𝑓´(𝑥!)𝑒-(/3.)! + (𝜆!̇ − 𝜇!̇)𝛼´(𝑧!)𝑆!𝐼! +	(𝜆! − 𝜇!)(𝛼´´(𝑧!)𝑧!̇𝑆!𝐼! + 𝛼´(𝑧!)𝑆!̇𝐼!
+ 𝛼´(𝑧!)𝑆!𝐼! )̇ = 0 

 

Next, combine 2) and 3) to obtain 

 

𝑐´(𝐼!)𝑒-(/3.)! − (𝜆! − 𝜇!)(𝛼(𝑧!)𝑆! − 𝛽 + 𝛼(𝑧!)𝐼!) = �̇�! − �̇�! 

 

Then, observe from 1) that   

𝜆! − 𝜇! =
𝑓´(𝑥!)𝑒-(/3.)!

𝛼´(𝑧!)𝑆!𝐼!
 

 

Inserting the two last expressions into 1)´, arrive at 

 

(𝛿 + 𝜌) +
𝑐´(𝐼!)𝛼´(𝑧!)𝑆!𝐼!

𝑓´(𝑥!)
+ 𝛼(𝑧!)𝐼! − 	𝛼(𝑧!)𝑆! + 𝛽 +

𝛼´´(𝑧!)𝑧!̇
𝛼´(𝑧!)

+
𝑆!̇
𝑆!
+
𝐼!̇
𝐼!
= 0 

 

Recognizing that $(̇
$(
= −𝛼(𝑧!)𝐼!	and that %(̇

%(
= 𝛼(𝑧!)𝑆! − 𝛽, the above expression reduces to 

 

(𝛿 + 𝜌) +
𝑐´(𝐼!)𝛼´(𝑧!)𝑆!𝐼!

𝑓´(𝑥!)
+
𝛼´´(𝑧!)𝑧!̇
𝛼´(𝑧!)

= 0 

 

Rearranging terms and defining 7+(,()
7*(

≡ 𝑓´(𝑧!) = −𝑓´(𝑥!), arrive at  

 

4)	
𝑐´(𝐼!)𝛼´(𝑧!)𝑆!𝐼!

𝑓´(𝑧!)
−
𝛼´´(𝑧!)𝑧!̇
𝛼´(𝑧!)

= (𝛿 + 𝜌) 

 

For periods where 𝑧! = 0, we have that 𝛾! > 0. 

 



 

Appendix B 

Functional forms and optimality conditions of the numerical model 

Cost of infected individuals: 𝑐 = 𝑐�̅�, where 𝑐̅ is a positive constant 

Cost of control: 𝑓�̅�, derived from the gross production function: 𝑓 = 𝑓(̅𝑦V − 𝑧). The marginal 

cost 𝑓 ̅is a positive constant. 

Transmission rate function from susceptible individuals to infective individuals: 𝛼(𝑧) =

𝑒-(839*), where 𝑔 and ℎ are positive scalars 

Transmission rate from susceptible individuals to removed individuals: 𝛽 ≥ 0 

 

The SI model:  

 

Optimality conditions 

𝑐̅ℎ𝑒-(839*()𝑆!𝐼!
𝑓̅

− ℎ𝑧!̇ = (𝛿 + 𝜌) 

Equations of motion 

𝐼!̇ = 𝑒-(839*()𝑆!𝐼! 

𝑆!̇ = −𝑒-(839*()𝑆!𝐼! 

 

The SIS model:  

 

Optimality conditions 

𝑐̅ℎ𝑒-(839*()𝑆!𝐼!
𝑓̅

− ℎ𝑧!̇ = (𝛿 + 𝜌) 

Equations of motion 

𝐼!̇ = 𝑒-(839*()𝑆!𝐼! − 𝛽𝐼! 

𝑆!̇ = −𝑒-(839*()𝑆!𝐼! + 𝛽𝐼! 

 

The SIR model:  

 

𝑐̅ℎ𝑒-(839*()𝑆!𝐼!
𝑓̅

+
𝐼!𝑒-(839*()𝛽

𝑆!𝑒-(839*() − 𝛽
− ℎ𝑧!̇ = (𝛿 + 𝜌) 

 



Equations of motion 

 

𝐼!̇ = 𝑒-(839*()𝑆!𝐼! − 𝛽𝐼! 

𝑆!̇ = −𝑒-(839*()𝑆!𝐼! 

𝑅!̇ = 𝛽𝐼! 

 

Parameter values applied for calculations in the numerical examples as presented in Fig. 2, Fig 

3. and Fig. 4: 𝑆" = 95, 𝐼" = 5, 𝑅" = 0, 𝑐̅ = 1, 𝑓̅ = 2000	, 𝛽 = 0.007, 𝑔 = 7.8, ℎ =1.3, (𝛿 + 𝜌) 

take on different values. 
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