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Infinite Population Utilitarian Criteria 
 
 

Abstract 
 
We examine utilitarian criteria for evaluating profiles of wellbeing among infinitely many 
individuals. Motivated by the non-existence of a natural 1-to-1 correspondence between people 
when alternatives have different population structures, with a different number of people in each 
generation, we impose equal treatment in the form of Strong Anonymity. We show how a novel 
criterion, Strongly Anonymous Utilitarianism, can be characterized by combining Strong 
Anonymity with other regularity axioms (Monotonicity, Finite Completeness, and continuity 
axioms) as well as axioms of equity, sensitivity, separability, and population ethics. We relate it 
to other strongly anonymous utilitarian criteria and demonstrate its applicability by showing how 
it leads to an efficient and sustainable stream in the Ramsey model. 
JEL-Codes: D630, D710, Q010. 
Keywords: utilitarianism, intergenerational equity, population ethics. 
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1 Introduction

Since the seminal works by Ramsey (1928), Koopmans (1960), and Diamond (1965), social evalu-

ation criteria for distributions of wellbeing among infinitely many generations or infinitely many

individuals have been analyzed by using preorders for infinite wellbeing profiles, i.e., preorders

defined for countably infinite-dimensional real vectors.1 There has been a particular interest in

social evaluation criteria that are (generalized) utilitarian and anonymous, in the sense of being

based on the undiscounted or unweighted sum of transformed wellbeing,2 so that the gain of one

generation or individual might make up for the loss of another, and so that the generations or

individuals are treated equally. Prominent examples are the utilitarian criterion that combines

the finite-horizon application of utilitarianism with the Pareto dominance for the tails of profiles

(Basu and Mitra, 2007) and utilitarian overtaking or catching-up procedures with respect to time

(Atsumi, 1965; von Weizsäcker, 1965; Gale, 1967).

As noted by Fleurbaey and Michel (2003, p. 795), infinite wellbeing profiles can, however, be

interpreted in at least three different ways. A common interpretation is that there are represen-

tative individuals, one for each generation. That is, in wellbeing profiles x and y given by

x = (x1, . . . , xi, . . .) and y = (y1, . . . , yi, . . .) ,

the ith component is the wellbeing of the representative individual of ith generation, where it

is normally left unspecified whether the individual in each generation i is actually identical in

the two profiles (Jonsson, 2021). This interpretation is based on two underlying assumptions.

One is that there is a natural 1-to-1 correspondence between the individuals of the two streams

so that the bearer of wellbeing at the ith component of profile x can be associated with the

bearer of wellbeing at the ith component of profile y. The second assumption is that there is

a natural order of counting the individuals or generations, namely according to time. Both the

Basu-Mitra utilitarian criterion and the utilitarian overtaking or catching-up criteria are based

on the existence of a natural 1-to-1 correspondence between the components of compared profiles.

In particular, although such criteria are invariant to permutations that reorder a finite number of

the components of one stream (corresponding to the axiom of Finite Anonymity), they are not

invariant to all permutations (corresponding to the axiom of Strong Anonymity), implying that

the natural 1-to-1 correspondence plays an essential role. Moreover, the utilitarian overtaking or

catching-up criteria are sensitive for the order that the individuals are counted. In particular, by

the utilitarian catching-up criterion two profiles are equally good if and only if the sum of the

1Other than preorders—that is, reflexive and transitive binary relations— complete and quasi-transitive relations
have been also analyzed. See, for instance, Fleurbaey and Michel (2003) and Sakai (2010).

2Throughout this paper we will use the term utilitarian to refer to generalized utilitarian or prioritarian criteria,
based on the sum of transformed wellbeing. Our notion of wellbeing need not directly correspond to the notion of
utility as used by philosophers; if not, utility will equal a particular transformation of wellbeing. A strictly concave
transformation of utility yields prioritarianism. We will allow any transformations of wellbeing that are finitely
non-concave, as defined in Section 2.
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difference of transformed wellbeing converges conditionally to zero as time goes to infinity.3 Also,

normative significance can be assigned to temporal utilitarian averages, based on an expansionist

view of infinite aggregation (Vallentyne and Kagan, 1997; Van Liedekerke and Lauwers, 1997;

Khan and Stinchcombe, 2018; Wilkinson, 2020; Pivato, 2021).

The second interpretation is that there exist a fixed and exogenously determined number of

individuals in each generation while the number of individuals alive can vary between generations.

For instance, the wellbeing profiles x and y given by

x = ( x1, . . . , x3︸ ︷︷ ︸
1st generation

, x4, . . . , x10︸ ︷︷ ︸
2nd generation

, . . .) and y = ( y1, . . . , y3︸ ︷︷ ︸
1st generation

, y4, . . . , y10︸ ︷︷ ︸
2nd generation

, . . .)

represent a situation where there exist three individuals alive in the 1st generation, seven indi-

viduals alive in the 2nd generation, and so on. In this interpretation there is no natural order

for counting individuals; in particular, there is no natural order for counting individuals within

each generation. This lessens the appeal of the overtaking and catching-up criteria mentioned

above. On the other hand, at least if the identities of individuals alive are the same across pro-

files, then there exists a natural 1-to-1 correspondence between the components of two profiles.

The Basu-Mitra utilitarian criterion utilizing this 1-to-1 correspondence might thus still be ap-

pealing. Moreover, we can impose that social evaluation of profiles be invariant to the order in

which the individuals are counted when the same reordering is used for both streams. Such in-

variance, which is referred to as Isomorphism Invariance (Lauwers and Vallentyne, 2004), Strong

Relative Anonymity (Asheim, d’Aspremont, and Banerjee, 2010), and the Permutation Principle

(Askell, 2018), implies Finite Anonymity.4 However, it rules out evaluation based on temporal av-

erages. Furthermore, utilitarian criteria — like the Time-Invariant Overtaking criterion (Asheim,

d’Aspremont, and Banerjee, 2010) as well as the principles of Differential Betterness and Differ-

ential Indifference (Lauwers and Vallentyne, 2004) — that satisfy Isomorphism Invariance must

be based on unconditional convergence: the sum of differences of transformed wellbeing must

converge for each possible reordering of components.

Finally, the third interpretation, which this paper allows for, is that there exists a variable

number of individuals alive in each generation and that the identities of individuals alive are not

necessarily the same across distributions. For instance, wellbeing profiles x and y given by

x = ( x1, . . . , x3︸ ︷︷ ︸
1st generation

, x4, . . . , x9, x10︸ ︷︷ ︸
2nd generation

, . . .) and y = (y1, . . . , y3, y4︸ ︷︷ ︸
1st generation

, y5, . . . , y9︸ ︷︷ ︸
2nd generation

, . . .)

represent, respectively, a situation where there exist three individuals alive in the 1st generation,

seven individuals alive in the 2nd generation, and so on, and a situation where there exist four

3A series is conditionally convergent if it converges, but it need not converge for all possible reorderings.
4This implication holds under the axiom of Finite Completeness (completeness of a preorder for pairs of profiles

which differ only for a finite number of components), see Asheim, d’Aspremont, and Banerjee (2010, Lemma 1).
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individuals alive in the 1st generation, five individuals alive in the 2nd generation, and so on.

Such pairs of wellbeing profiles arise in economic growth models involving fertility choice. In this

case, not only is there no natural order for counting individuals, there is also no natural 1-to-1

correspondence between the components of the two profiles since we cannot easily assume that

the identities of individuals alive are the same. Even the Basu-Mitra utilitarian criterion might

not seem appealing for comparing such pairs of profiles. One possibility, which we consider in

this paper, is to impose that social evaluation of profiles be invariant to the order in which the

individuals are counted even if the reordering applies to one stream only. Indeed, we will impose

the axiom of Strong Anonymity by requiring that a wellbeing profile is deemed equally good as

any permutation of it, permitting also permutations that reorder infinitely many components.

The axiom of Strong Anonymity implies the axioms of Finite Anonymity and Isomorphism

Invariance, and it is compatible also with the third interpretation. However, this scope of applica-

bility is not by itself a sufficient argument for imposing such a strong impartiality axiom; rather,

it requires separate justification. One position, adopted by Zuber and Asheim (2012) and Asheim

and Zuber (2013), is to argue that Strong Anonymity is needed in order to properly capture equal

treatment.5 Another position is investigated in our companion paper (Asheim, Kamaga, and

Zuber, 2022), where we show how Strong Anonymity for future people follows if future identities

are unobservable. Combining such strong impartiality for future people with equal treatment of

existing and future people yields Strong Anonymity for all, as imposed in the present paper.

The purpose of this paper is to propose and axiomatize utilitarian criteria for ranking infinite

wellbeing profiles satisfying the axiom of Strong Anonymity, thus being neutral with respect to

the order in which we compute the utilitarian sum. This implies that the criteria are applicable

when considering the third interpretation where population size within each generation might

differ. We define a new criterion, the Strongly Anonymous (Generalized) Utilitarian social wel-

fare relation, and establish as our main result how Strongly Anonymous Utilitarianism can be

characterized by combining Strong Anonymity with other regularity axioms (Monotonicity, Finite

Completeness, and continuity axioms), an equity axiom, a sensitivity axiom, a separability axiom,

and a population ethics axiom. By imposing these axioms we restore a 1-to-1 correspondence be-

tween reordered streams derived from the profiles as follows: Their components are rank-ordered

starting with the worst-off and, if there is only a finite number of wellbeing components that can

be rank-ordered in this manner, completed with wellbeings equal to the smallest cluster point.

The smallest cluster point of the set of components in a wellbeing profile is the smallest point

such that, for every neighborhood, there are infinitely many components of the set within the

neighborhood. The smallest cluster point equals the limit inferior of the stream obtained from

the profile when its components are listed, independently of in which order this listing is made.

However, the axioms do not imply that the sequence of rank-order is a natural order of count-

ing the components of the streams that are derived in this manner. Indeed, Strongly Anonymous

5Lauwers (1997) discusses whether Finite Anonymity is strong enough to properly capture equal treatment.
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Utilitarianism satisfies the principles of Differential Betterness and Differential Indifference (Lauw-

ers and Vallentyne, 2004) applied to the derived streams. This means that two wellbeing profiles

are equally good according to Strongly Anonymous Utilitarianism if and only if the sum of the

difference of transformed wellbeing of the derived rank-ordered streams converges unconditionally

to zero. In particular, conditional convergence according to rank does not suffice.

In a setting with an infinite, but countable, number of wellbeing components, it is impossible to

combine Strong Anonymity with the strong Pareto principle, as shown by Van Liedekerke (1995)

and Van Liedekerke and Lauwers (1997, p. 163). For example, the stream (1, 0, 1, 0, . . . , 1, 0, . . . )

can be transformed to the stream (1, 1, 1, 0, . . . , 1, 0, . . . ) by reordering infinitely many components,

implying by Strong Anonymity that the two are equally good. However, by applying the strong

Pareto principle component-by-component, the latter is strictly better than the former. Strong

Anonymity is even incompatible with the weak Pareto principle (Fleurbaey and Michel, 2003).

Asheim, Kamaga, and Zuber (2022) show that, when Strong Anonymity and Monotonicity are

combined with the continuity axioms and the equity axiom, there can be sensitivity for an increase

of the wellbeing at a particular component of an infinite wellbeing profile if and only if the

wellbeing at this component is below the limit inferior. Consequently, our sensitivity axiom is a

version of the strong Pareto principle restricted to wellbeing levels below the limit inferior. Thus,

it allows the full force of the strong Pareto principle for comparison of profiles where an earlier

component never has higher wellbeing than a later.

We study how Strongly Anonymous Utilitarianism relates to four other social welfare re-

lations. First, we define a Strongly Anonymous (Generalized) Utilitarian Dominance criterion,

which is a strongly anonymous variant of the Basu-Mitra utilitarian criterion. Second, we propose

a Strongly Anonymous (Generalized) Utilitarian Catching-Up criterion, which is a strongly anony-

mous variant of the utilitarian caching-up criterion in Gale (1967). Third, we take the limit of

Rank-Discounted Utilitarianism, as proposed by Zuber and Asheim (2012), when the discount fac-

tor approaches one, leading to the Limit of Rank-Discounted (Generalized) Utilitarianism. Last,

we consider a Strongly Anonymous (Generalized) Utilitarian Cesàro Summation criterion, which

is a modification of the comparison of Cesàro summation of transformed wellbeings so as to satisfy

the Strong Anonymity axiom.

In Section 2, we present the framework of our analysis. In Section 3, we introduce the Strongly

Anonymous Utilitarian social welfare relation, as well as the Strongly Anonymous Utilitarian

Dominance criterion. We present an axiomatic characterization of the former and relate it to the

later (which it extends). In Section 4, we relate the Strongly Anonymous Utilitarian social welfare

relation to the three other strongly anonymous utilitarian criteria by showing the links between

them in terms of the notions of subrelation and weak extension. In Section 5, we demonstrate

the applicability of Strongly Anonymous Utilitarianism in the Ramsey model while, in Section 6,

we offer some concluding discussion. Some proofs are relegated to an appendix.
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2 Framework and notation

Let N denote the set of natural numbers {1, . . . , i, . . . }. Let R denote the set of real numbers, R+

the set of nonnegative real numbers, and R++ the set of positive real numbers (and likewise, write

R− for the set of non-positive real numbers). Let x = (x1, . . . , xi, . . . ) denote an infinite stream

(or profile), where xi ∈ R+ is a one-dimensional indicator of the wellbeing of the individual at

component i ∈ N. Throughout, we refer to an infinite stream as a profile since we do not commit

a specific order of its components in light of what Strong Anonymity requires.

We assume that wellbeing is cardinally measurable and fully comparable. We restrict attention

to profiles with bounded wellbeing, and let

X =
{
x = (x1, . . . , xi, . . . ) ∈ RN : supi∈N |xi| < +∞

}
denote the set of possible profiles. For x, y ∈ X, write x ≥ y whenever xi ≥ yi for all i ∈ N; write
x > y if x ≥ y and x ̸= y; and write x ≫ y whenever xi > yi for all i ∈ N.

For any n ∈ N and any x, y ∈ X, let xny denote the profile z such that zi = xi for all

i ≤ n and zi = yi−n for all i > n, that is, xny = (x1, . . . , xn, y1, y2, . . .). For any z ∈ R, write
z1N = (z, z, . . .) ∈ X for a constant profile. For any z ∈ R and x ∈ X, let (z,x) denote the profile

(z, x1, x2, . . .) and write (z1N,x) = (z, x1, z, x2 . . .). For any n ∈ N and ℓ ∈ R+, write

Xℓ
n = {x ∈ X : xi ≤ ℓ for all i ≤ n and xj = ℓ for all j ≥ n+ 1} .

A permutation π of N is a bijection on N. Let Π denote the set of all permutations of N.
For any x ∈ X and any π ∈ Π, write xπ = (xπ(1), xπ(2), . . . ) ∈ X. Two subsets of X will be of

particular interest. First, we introduce the set X+ of non-decreasing streams in X. Formally,

X+ = {x ∈ X : xi ≤ xi+1 for all i ∈ N} .

The other subset of X playing a key role in the remainder of the paper is the set of profiles which

can be reordered into non-decreasing streams. This set is denoted X↑ and is defined by

X↑ = {x ∈ X : there exists π ∈ Π such that xπ ∈ X+} .

By way of illustration, note that x = (1, 0, . . . , 0, . . . ) is not non-decreasing and cannot be re-

ordered into a non-decreasing stream, while y = (1, 0, 1, . . . , 1, . . . ) is not non-decreasing but can

be reordered into the non-decreasing stream yπ = (0, 1, 1, . . . , 1, . . . ) by letting π permute the first

and second components. Hence, of these two profiles, only y is in X↑.

For any profile x ∈ X, write ℓ(x) := lim infi→+∞ xi for the limit inferior of x, implying that

ℓ(x) is the smallest cluster point of x. Define the set L(x) by L(x) := {i ∈ N : xi < ℓ(x)}.
We say that a transformation function u : R → R is finitely non-concave whenever6

6Gu is an index of non-concavity introduced by Chateauneuf, Cohen, and Meilijson (2005).
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Gu = sup
x1<x2≤x3<x4

[
u(x4)−u(x3)

x4−x3

/
u(x2)−u(x1)

x2−x1

]
< +∞.

Let U denote the set of continuous, increasing, and finitely non-concave transformation functions.

For fixed u ∈ U , define the sequence of functions vun : X → R, for n ∈ N, by, for all x ∈ X,

vun(x) =

n∑
i=1

u(xi) .

Hence, vun determines the sum of the transformed wellbeing of the first n components of x. For

fixed u ∈ U , define the sequence of functions wu
n : X → R, for n ∈ N, by, for all x ∈ X,

wu
n(x) = inf

π∈Π

n∑
i=1

u(xπ(i)) .

It is actually the case that wu
n is the sum of the transformed wellbeing of the n smallest components

of x if |L(x)| ≥ n, and the sum of the transformed wellbeing of the |L(x)| smallest components

of x plus (n− |L(x)|)u(ℓ(x)) otherwise.
For any profile x ∈ X, define the derived rank-ordered stream x[ ] = (x[1], . . . , x[r], . . . ) ∈ X+

as follows: Fix u ∈ U and set wu
0 (x) = 0. Let, for all r ∈ N,

x[r] = u−1
(
wu
r (x)− wu

r−1(x)
)

be the wellbeing level of the individual at rank r.7 Applied to x = (1, 0, . . . , 0, . . . ) and y =

(1, 0, 1, . . . , 1, . . . ), we obtain x[ ] = (0, 0, . . . , 0, . . . ) since L(x) is empty, while y[ ] = (0, 1, 1, . . . , 1,

. . . ). For any x ∈ X and any π ∈ Π, write x[π] = (x[π(1)], x[π(2)], . . . ) ∈ X↑; i.e., x[π] is the

reordering of x[ ] obtained by using the permutation π.

Component [r] of the derived stream x[ ] can be interpreted as individual with ‘rank’ r when

wellbeing is ordered from the lowest level to the highest (below the limit inferior). Hence, x[ ] is

a reordered stream of wellbeing, but where people above the limit inferior are discarded, as these

have ‘infinite’ rank (in the sense that there are infinitely many people with lower wellbeing). Note

that, for fixed u ∈ U and any x ∈ X, we have wu
n(x) = vun(x[ ]) =

∑n
r=1 u(x[r]) for all n ∈ N.

A social welfare relation (swr) on a set X is a preorder (a reflexive and transitive binary

relation) ≿ where, for any x, y ∈ X, x ≿ y entails x is deemed socially at least as good as y. The

symmetric and asymmetric parts of ≿ are denoted by ∼ and ≻, respectively. An swr ≿′ weakly

extends an swr ≿ if, for all x, y ∈ X, x ≿ y implies x ≿′ y. An swr ≿ is a subrelation to an

swr ≿′ if ≿′ weakly extends ≿ and, for all x, y ∈ X, x ≻ y implies x ≻′ y.

7Equivalently, we can derive x[ ] as the non-decreasing permuted infinite subsequence of the elements in L(x) if
L(x) is infinite, and the non-decreasing permuted finite subsequence of the elements in L(x), followed by x[r] = ℓ(x)
for r > |L(x)|, if L(x) is finite (Zuber and Asheim, 2012, p. 1576).
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3 Strongly Anonymous Utilitarianism

As mentioned in the introduction, there are settings with infinitely many people where there is

no natural 1-to-1 correspondence between the component of different wellbeing profiles. This is

true in particular if population structure depends on the choice of alternatives. Then there is no

natural way of computing a utilitarian sum, which is a problem for extending utilitarian criteria

to that context. We seek ways of computing the sum that are neutral with respect to how we

compute the sum, leading to the novel criterion of Strongly Anonymous Utilitarianism.

3.1 The Strongly Anonymous (Generalized) Utilitarian SWR

To motivate Strongly Anonymous Utilitarianism, consider first the class of (Generalized) Utilitar-

ian Catching-Up swrs (Gale, 1967) (where every u ∈ U corresponds to a different swr):8 There

exists u ∈ U such that, for any profiles x, y ∈ X, x is at least as good as y if and only if

lim inf
n→+∞

(
vun(x)− vun(y)

)
≥ 0 .

The utilitarian cathching-up criterion is not invariant to the order in which the individuals are

counted. For a version of the utilitarian catching-up criterion that satisfies Isomorphism Invari-

ance, consider the following definition of the class of Weak (Generalized) Utilitarian Catching-Up

swrs (Lauwers and Vallentyne, 2004, p. 322): There exists u ∈ U such that, for any profiles x,

y ∈ X, x is at least as good as y if and only if there exists ∆ ∈ R+ ∪ {+∞} such that,

for all π ∈ Π , lim
n→+∞

(
vun(xπ)− vun(yπ)

)
= ∆ .

Through its unconditional convergence, the Weak Utilitarian Catching-Up criterion satisfies the

principles of Differential Betterness and Differential Indifference (Lauwers and Vallentyne, 2004).

The Differential Betterness principle states that, when the sum of the positive differences of

transformed wellbeing
∑

i≤n:xi>yi

(
u(xi) − u(yi)

)
converges to some finite number ∆+ > 0 and

the sum of the negative differences of transformed wellbeing
∑

i≤n:yi>xi

(
u(xi)− u(yi)

)
converges

to some finite number ∆− < 0, then we should deem x better than y whenever ∆+ + ∆− > 0.

We should also deem x better than y when the sum of positive difference is infinite and the sum

of negative difference converges to some finite number. Similarly, the Differential Indifference

principle states that, when ∆+ and |∆−| are both finite and equal to each other, we should be

indifferent between x and y. The criterion satisfies these principles since, by Riemann’s series

theorem, unconditional and absolute convergence are equivalent.

To illustrate the effect of Isomorphism Invariance in this setting, consider x = (1, 0, 1, 0, . . . )

8Throughout we consider transformation functions u in the set U , implying that u is not only continuous
and increasing, but also finitely non-concave. Finite non-concaveness follows from our axiomatization of Strongly
Anonymous Utilitarianism, defined in Definition 2. However, we might also define the various utilitarian criteria
without insisting on u being finitely non-concave.
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and y = (0, 1, 0, 1, . . . ). Then lim infn→+∞
(
vun(x)−vun(y)

)
= 0 and lim infn→+∞

(
vun(y)−vun(x)

)
=

u(0)−u(1) < 0, implying that x better than y according to the Utilitarian Catching-Up criterion.

However, there exists π ∈ Π such that xπ = (1, 1, 0, 1, 1, 0, . . . ) and yπ = (0, 0, 1, 0, 0, 1, . . . ) so that

vun(xπ)− vun(yπ) → +∞ as t → +∞. Also, there exists π′ ∈ Π such that xπ′ = (0, 0, 1, 0, 0, 1, . . . )

and yπ′ = (1, 1, 0, 1, 1, 0, . . . ) so that vun(xπ′)−vun(yπ′) → −∞ as t → +∞. Hence, x and y are not

comparable according to the Weak Utilitarian Catching-Up criterion. The mathematical reason

for why Isomorphism Invariance matters is that the sum of difference between the transformed

wellbeing of x and y does not unconditionally converge (nor diverge to one of +∞ or −∞).

Conceptually, this means that the comparison of x and y made by the Utilitarian Catching-Up

criterion depends on the order in which the individuals are counted.

Not even Weak Utilitarian Catching-Up allows for the third way of interpreting profiles, where

there is no natural 1-to-1 correspondence between the components of different profiles. This

interpretation can be permitted by considering strongly anonymous criteria. Asheim, Kamaga,

and Zuber (2022) show that Strong Anonymity, when combined with rather weak auxiliary axioms,

leads us to disregard wellbeing levels above the limit inferior. This motivates criteria defined on

the derived rank-ordered profiles x[ ] and y[ ], as exemplified by the following class of swrs.

Definition 1. The Strongly Anonymous (Generalized) Utilitarian Catching-Up swr ≿C . There

exists u ∈ U such that, for any profiles x, y ∈ X, x ≿C y if and only if

lim inf
n→+∞

(
wu
n(x)− wu

n(y)
)
= lim inf

n→+∞

(
vun(x[ ])− vun(y[ ])

)
≥ 0 .

By the definition of the sequence of functions wu
n : X → R, for n ∈ N, ≿C satisfies the axiom of

Strong Anonymity as x[ ] is not only the rank-ordered profile derived from x but also the rank-

ordered profile derived from xπ for any π ∈ Π. If x = (1, 0, 1, 0, . . . ) and y = (0, 1, 0, 1, . . . ), which

are equally good by Strong Anonymity, then we obtain x ∼C y as x[ ] = y[ ] = (0, 0, 0, 0, . . . ).

However, our axiomatization will lead us to a criterion that is not only strongly anonymous,

but which does not even depend on the order of ranks. In particular, we should not give priority

to component [1] by always listing this component first, as ≿C does. In analogy to the difference

between Utilitarian Catching-Up and Weak Utilitarian Catching-Up, this leads us naturally to the

following class of swrs which add Isomorphism Invariance to the 1-to-1 correspondence between

the ranks of the derived streams x[ ] and y[ ].

Definition 2. The Strongly Anonymous (Generalized) Utilitarian swr ≿U . There exists u ∈ U

such that, for any profiles x, y ∈ X, x ≿U y if and only if there exists ∆ ∈ R+ ∪ {+∞} such that

for all π ∈ Π , lim
n→+∞

(
vun(x[π])− vun(y[π])

)
= ∆ .

If, for all π ∈ Π, limn→+∞
(
vun(x[π])− vun(y[π])

)
= ∆, then limn→+∞

(
vun(x[ ])− vun(y[ ])

)
= ∆.

Hence, the following result is an immediate consequence of Definitions 1 and 2.
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Observation 1. For any u ∈ U , the Strongly Anonymous (Generalized) Utilitarian swr ≿U

associated with u is a subrelation to the Strongly Anonymous (Generalized) Utilitarian Catching-

Up swr ≿C associated with u.

Let D =
{
(x,y) ∈ X×X : there exists δ ∈ R+ such that

∑
i:yi>xi

(yi−xi) = δ
}
. Then, as we

prove in Appendix A.2, we can characterize Strongly Anonymous Utilitarianism as follows.

Lemma 1. Let the Strongly Anonymous (Generalized) Utilitarian swr ≿U be associated with the

transformation function u ∈ U . For any x, y ∈ X, x ≿U y if and only if (x[ ],y[ ]) ∈ D and

lim
n→∞

(wu
n(x)− wu

n(y)) ≥ 0 .

Strongly Anonymous Utilitarianism can thus be viewed as an application of the principles of

Differential Betterness and Differential Indifference, but to the derived rank-ordered profiles x[ ]

and y[ ].

To illustrate why Strongly Anonymous Utilitarian Catching-Up needs to be modified so as

to satisfy Isomorphism Invariance—which we add when moving from this criterion to Strongly

Anonymous Utilitarianism—we use an example that is a bit more complicated. Consider the

swrs ≿C and ≿U defined for the identity transformation function u(z) = z and let the profiles x

and y be given by (see Example 1 of subsection 4.3 for a formal definition):

x = (z, 2
3 ,

2
3︸ ︷︷ ︸

2 components

, 2
3 , . . . ,

2
3︸ ︷︷ ︸

3 components

, 4
5 , . . . ,

4
5︸ ︷︷ ︸

4 components

, 4
5 , . . . ,

4
5︸ ︷︷ ︸

5 components

, . . .)

y = (12 ,
︷ ︸︸ ︷
1
2 ,

1
2 ,

︷ ︸︸ ︷
3
4 , . . . ,

3
4 ,

︷ ︸︸ ︷
3
4 , . . . ,

3
4 ,

︷ ︸︸ ︷
5
6 , . . . ,

5
6 , . . .) .

Note that

x− y = (z − 1
2 ,

1
6 ,

1
6︸ ︷︷ ︸

2 components

− 1
12 , . . . ,−

1
12︸ ︷︷ ︸

3 components

, 1
20 , . . . ,

1
20︸ ︷︷ ︸

4 components

, − 1
30 , . . . ,−

1
30︸ ︷︷ ︸

5 components

, . . .) .

Hence, the first component of x − y equals z − 1
2 , the two next 1

6 summing to 1
3 , the three next

− 1
12 summing to −1

4 , the four next 1
20 summing to 1

5 , and so on. Hence,

∞∑
i=1

(
xi − yi

)
= z − 1

2 + 1
3 − 1

4 + 1
5 − 1

6 + · · · = z − 1 + ln 2 ,

implying that x ≿C y if and only if z ≥ 1− ln 2 ≈ 0.30685, since both x and y are non-decreasing

so that x = x[ ] and y = y[ ]. However, such an alternating harmonic series is not absolute

convergent, as each of the series 1, 13 ,
1
5 , . . . and 1

2 ,
1
4 ,

1
6 , . . . diverges, and thus not unconditionally

convergent by the Riemann series theorem. Hence, ≿U deems x and y incomparable for any z.

Next, consider the following class of swrs, which combines a finite application of wu
n and

dominance for the tails of the derived rank-ordered profiles.
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Definition 3. The Strongly Anonymous (Generalized) Utilitarian Dominance swr ≿D. There

exists u ∈ U such that, for any profiles x, y ∈ X, x ≿D y if and only there exists n ∈ N such that

wu
n(x)− wu

n(y) ≥ 0 and x[r] ≥ y[r] for all r > n .

Strongly Anonymous Utilitarian Dominance is related to the Basu-Mitra utilitarian criterion for

infinite wellbeing profiles. Basu and Mitra (2007) define their criterion by combining a finite ap-

plication of classical utilitarianism and dominance for the tails of the profiles x and y.9 The main

difference between Strongly Anonymous Utilitarian Dominance and the Basu-Mitra utilitarian

criterion is that the former satisfies Strong Anonymity as a strong impartiality requirement.

Lemma 1 implies that when, for some n ∈ N, wu
n(x) ≥ wu

n(y) (wu
n(x) > wu

n(y) respectively)

and x[r] ≥ y[r] for all r > n, we have x ≿U y (x ≻U y respectively) for ≿U associated with u ∈ U .

We therefore obtain the following result.

Observation 2. For any u ∈ U , the Strongly Anonymous (Generalized) Utilitarian Dominance

swr ≿D associated with u is a subrelation to the Strongly Anonymous (Generalized) Utilitarian

swr ≿U associated with u.

However, Strongly Anonymous Utilitarian Dominance does not satisfy an intuitive minimal

equity condition. In particular, if x =
(
0, 0, 12 ,

3
4 ,

7
8 , . . .

)
and y =

(
z, 1, 12 ,

3
4 ,

7
8 , . . .

)
, with z < −1,

and with u being the identity function, we do not have x ≿D y even though z can be arbitrarily

low.10 This is so because x[ ] =
(
0, 0, 12 ,

3
4 ,

7
8 , . . .

)
and y[ ] =

(
z, 12 ,

3
4 ,

7
8 , . . .

)
, so that wu

n(x) > wu
n(y)

for all n ∈ N but y[r] > x[r] for all r > 1. This problem does not arise with Strongly Anonymous

Utilitarianism; indeed, with u being the identity function, x ≻U y since

for all π ∈ Π , lim
n→+∞

(
vun(x[π])− vun(y[π])

)
= 0− z −

∑∞

r=2

(
1
2

)r−1
= −z − 1 > 0 .

It is useful to remark that, independently of u, if ℓ(x) > ℓ(y), then x ≻D y and, therefore,

x ≻U y because ≿D is a subrelation to ≿U . Indeed, if ℓ(x) > ℓ(y), then there exists n ∈ N such

that, for all r ≥ n x[r] > ℓ(y) ≥ y[r] so that, for some m ≥ n wu
m(x) ≥ wu

m(y) and x[r] > y[r] for

all r ≥ m. We also have that x ≿U y implies ℓ(x) ≥ ℓ(y).

3.2 Axioms

In this section we provide an axiomatic characterization of the Strongly Anonymous (Generalized)

Utilitarian swr.

9See also the transfer-sensitive criteria proposed by Bossert, Sprumont, and Suzumura (2007) and a generalized
representation presented by d’Aspremont (2007).

10The worst-off component can thus face a very large loss when going from x to y while the second component
has a small gain, and everyone else is indifferent.
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3.2.1 Regularity axioms

The first axiom asserts that an swr must be complete for profiles that have the same tail.

Axiom (Finite Completeness). For any x, y, z ∈ X and any n ∈ N, either xnz ≿ ynz, or

ynz ≿ xnz, or both.

Next, to present a continuity axiom, we let d1 : X ×X → R+ be the distance function given

by, for all x, y ∈ X,

d1(x,y) = min
{
1,
∑∞

i=1
|xi − yi|

}
.

Using the distance function d1, we define weak continuity as follows; see Svensson (1980).

Axiom (Weak Continuity). For any x ∈ X, the sets {y ∈ X : y ≿ x} and {y ∈ X : x ≿ y}
are closed in (X, d1).

An additional weak continuity axiom applies when combining two profiles with a constant

profile. It requires that indifference between two such profiles when combined with constant

profiles in the neighborhood of this particular constant profile should be preserved in the limit.

Axiom (Restricted Continuity). For any x, y ∈ X, any ℓ ∈ R, and any ℓ < ℓ̄ such that

ℓ ≤ ℓ ≤ ℓ̄, if (ℓ′1N,x) ∼ (ℓ′1N,y) for all ℓ
′ ∈ (ℓ , ℓ̄) \ {ℓ}, then (ℓ1N,x) ∼ (ℓ1N,y).

Lastly, we impose that an swr satisfy the conjunction of the following two axioms when there

is no natural 1-to-1 correspondence between the components of different wellbeing profiles.

Axiom (Monotonicity). For any x, y ∈ X, if x > y, then x ≿ y.

Axiom (Strong Anonymity). For any π ∈ Π and x ∈ X, x ∼ xπ.

Jointly, they imply that a profile is at least as good as another if some reordering of the one profile

makes its wellbeings as high as the other when the comparison is made component-by-component.

These first five axioms are our basic regularity conditions.

Definition 4. An swr ≿ is regular whenever it satisfies Finite Completeness, Weak Continuity,

Restricted Continuity, Monotonicity and Strong Anonymity.

3.2.2 An equity axiom

For an swr ≿, let the set E be defined as

E = {ε ∈ R++ : for all x, y ∈ X with yi < xi ≤ xj < yj for some i, j ∈ N, and

xk = yk for all k ∈ N \ {i, j}, x ≿ y whenever xj − yj = ε (yi − xi)} ,

The set E considers conditions under which a transfer from rich to poor people is acceptable.

Hammond equity (Hammond, 1976) claims that any loss for the rich is acceptable, so that E =
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R++. On the other hand, an swr ≿ satisfies the Pigou-Dalton Transfer principle (in its weak

version) only if 1 ∈ E . Indeed, non-leaky transfers are always welfare improving according to the

Pigou-Dalton Transfer principle. Last, utilitarian swrs (with u being the identity function) are

such that (0, 1] ∈ E . Hence, in all these cases, E is nonempty. Here we suggest a much weaker

axiom than both Hammond equity and Pigou-Dalton, and which generalized utilitarianism (in the

case of finite profiles) satisfies for any transformation function u ∈ U : We require that transfers

from rich to poor people are acceptable if the wellbeing loss for the rich is sufficiently small.

Axiom (Limited Inequity). E ̸= ∅.

As discussed at the end of subsection 3.1, the Strongly Anonymous Utilitarian Dominance swr

does not satisfy this minimal equity condition. It is thus excluded from our discussion although

it is a subrelation to the other criteria that we will study.

3.2.3 A sensitivity axiom

If increased wellbeing for some is deemed better provided that no-one’s wellbeing is decreased,

then we adopt the Pareto principle. However, for choices that affect who will exist or not, so that

different people exist in different wellbeing profiles, we cannot apply the Pareto principle stricto-

sensu. We need to resort to sensitivity principles where the bearer of wellbeing at one component

in one profile is different from the bearer of wellbeing at the same component in another profile.

Asheim, Kamaga, and Zuber (2022, Proposition 5) show that, if we impose the regularity and

equity axioms mentioned above, sensitivity is necessarily limited. Actually, the maximal extent

of sensitivity when increasing one component of the profile is given by the following axiom.

Axiom (Liminf-Restricted Dominance). For any x, y ∈ X with xi > yi for some i ∈ N and

xj = yj for all j ∈ N \ {i}, x ≻ y whenever ℓ(x) > yi.

Liminf-Restricted Dominance requires that the strong Pareto principle be satisfied when increasing

the wellbeing of people below the limit inferior.

When an swr satisfies Monotonicity, Strong Anonymity, and Liminf-Restricted Dominance,

it clearly satisfies a strong Pareto principle on the domain X↑ of all profiles that can be permuted

into non-decreasing streams. This is the principle that Zuber and Asheim (2012) named Restricted

Strong Pareto.

3.2.4 A separability axiom

Separability principles guarantee that only affected people matter when comparing two profiles,

implying that we can ignore the wellbeing of people not affected by a choice. This is particularly

convenient in an intertemporal context where the available alternatives never affect the wellbeing

of past people. The following separability axiom asserts that evaluation must be independent of
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unconcerned people, provided the wellbeing of affected people is below the limit inferior; in order

words, when people that matter for the choice are at finite rank.

Axiom (Liminf-Restricted Finite Separability). For any x, y, x̃, ỹ ∈ X, if there exists a

finite subset N ⊂ N such that:

(i) xi = x̃i < min{ℓ(x), ℓ(x̃)} for all i ∈ N ,

(ii) yi = ỹi < min{ℓ(y), ℓ(ỹ)} for all i ∈ N ,

(iii) xj = yj and x̃j = ỹj for all j ∈ N \N ,

then x ≿ y if and only if x̃ ≿ ỹ.

3.2.5 A population ethics axiom

Our last axiom relates to the effect of adding one person (or infinitely many people) to a popu-

lation. This kind of question has been addressed in the literature on population ethics stemming

from Parfit (1984) and discussed at length in Blackorby, Bossert, and Donaldson (2005). In par-

ticular, Blackorby and Donaldson (1984) and Blackorby, Bossert, and Donaldson (1995) argue in

favor of the existence of a critical level, such that a person’s life contributes positively to the value

of a population if and only if the wellbeing of the additional person is above this critical level. In

general, the critical level may depend on how wellbeing is distributed.

The following axiom imposes some regularity in the level of the critical level for infinite pop-

ulations. The axioms asserts that, if it is acceptable to add one person at some level of wellbeing

to a population, then it is also acceptable to add infinitely many people at this level.

Axiom (Critical-Level Consistency). For any x ∈ X, and any z ∈ R, x ≿ (z,x) (resp. x ≾

(z,x)) if and only if x ≿ (z1N,x) (resp. x ≾ (z1N,x)).

3.3 The characterization result

It is our main result that the four axioms of subsections 3.2.2–3.2.5, combined with the regularity

axioms of subsection 3.2.1, are sufficient to characterize Strongly Anonymous Utilitarianism.

Theorem 1. The Strongly Anonymous (Generalized) Utilitarian swr ≿U is regular. Consider any

regular swr ≿. There exists u ∈ U such that the Strongly Anonymous (Generalized) Utilitarian

swr ≿U associated with u is a subrelation to ≿ if and only if ≿ satisfies Limited Inequity, Liminf-

Restricted Dominance, Liminf-Restricted Finite Separability, and Critical-Level Consistency.

We establish in Appendix A.3 the result that ≿U is regular as well as the only-if statement of

the theorem. Hence, it remains to be shown that there exists u ∈ U such that ≿U associated with

u is a subrelation to any regular swr satisfying our axioms. To do so, we need three lemmas. We

begin with a lemma which shows that any regular swr satisfying our axioms applies (generalized)

utilitarianism to the heads of profiles if the profiles have the same constant tail.
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Lemma 2. If a regular swr ≿ satisfies Limited Inequity, Liminf-Restricted Dominance, and

Liminf-Restricted Finite Separability, then there exists u ∈ U such that for all ℓ ∈ R and all

n ∈ N, and all x, y ∈ Xℓ
n,

x ≿ y if and only if
n∑

i=1

u(xi) ≥
n∑

i=1

u(yi) . (1)

Proof. See Appendix A.3 for the proof, which is based on the application of the additive repre-

sentation theorem of Debreu (1960) on Xℓ
n.

By the next lemma, some of our axioms imply that any profile x is equally good as the derived

reordered profile x[ ], where components that are rank-ordered, starting with the worst-off.

Lemma 3. If a regular swr ≿ satisfies Limited Inequity and Critical-Level Consistency, then,

for all x ∈ X, x ∼ x[ ].

Proof. Assume that ≿ is a regular swr which satisfies Limited Inequity and Critical-Level Con-

sistency. If x ∈ X↑, then the result follows from Strong Anonymity, because ≿ is regular.

Let x /∈ X↑, and consider x̃ defined as follows: x̃i = xi if i ∈ L(x) and x̃i = ℓ(x) if i ∈ N\L(x).
Since ≿ is regular (and therefore satisfies Weak Continuity, Restricted Continuity, Monotonicity,

and Strong Anonymity), and satisfies Limited Inequity and Critical-Level Consistency, Asheim,

Kamaga, and Zuber (2022, Proposition 6) implies that, for all y, ỹ ∈ X such that y ≥ ỹ, if

ℓ(y) = ℓ(ỹ) = ℓ and ỹi ≥ ℓ for all i ∈ N such that yi > ỹi, then y ∼ ỹ. Thus, we obtain that

x ∼ x̃. By transitivity of ≿, it remains to be shown that x̃ ∼ x[ ]. There are three cases.

Case 1: |L(x)| = K < +∞. By Strong Anonymity, x̃ ∼ x[ ] since x[ ] is a permutation of x̃.

Case 2: |L(x)| = +∞ and |N\L(x)| = +∞. The profile (ℓ1N,x[ ]) is a permutation of x̃, so that

(ℓ1N,x[ ]) ∼ x̃ by Strong Anonymity. Since ≿ satisfies Weak continuity and Strong anonymity,

Asheim, Kamaga, and Zuber (2022, Lemma 5) implies that, for all y ∈ X, y ∼ (ℓ,y) ∼ (ℓ1N,y),

where ℓ = ℓ(y). Thus, (ℓ1N,x[ ]) ∼ x[ ] and, by transitivity of ≿, x̃ ∼ x[ ].

Case 3: |L(x)| = +∞ and |N \L(x)| = K < +∞. The following profile is a permutation of x̃:

y such that yi = ℓ for i = 1, · · · ,K and yi = x[i−K] for i ≥ K+1. Therefore, by Strong Anonymity,

y ∼ x̃. Repeated application of Asheim, Kamaga, and Zuber (2022, Lemma 5) implies y ∼ x[ ]

and, by transitivity of ≿, x̃ ∼ x[ ].

The next lemma shows that the Strongly Anonymous Utilitarian Dominance swr is a subre-

lation to any swr satisfying all our axioms.

Lemma 4. Consider any regular swr ≿. There exists u ∈ U such that the Strongly Anonymous

(Generalized) Utilitarian Dominance swr ≿D associated with u is a subrelation to ≿ if ≿ sat-

isfies Limited Inequity, Liminf-Restricted Dominance, Liminf-Restricted Finite Separability, and

Critical-Level Consistency.
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Proof. Assume that ≿ is a regular swr which satisfies Limited Inequity, Liminf-Restricted Dom-

inance, and Liminf-Restricted Finite Separability. By Lemma 2, there exists u ∈ U such that for

all ℓ ∈ R and all n ∈ N and for all x, y ∈ Xℓ
n, x ≿ y if and only if

∑n
i=1 u(xi) ≥

∑n
i=1 u(yi). Let

≿D be the Strongly Anonymous (Generalized) Utilitarian Dominance swr associated with u.

Step 1: Assume that x ≻D y. Then there exists n ∈ N such that
∑n

r=1 u(x[r]) >
∑n

r=1 u(y[r])

and x[r] ≥ y[r] for all r > N . Define x̂, ŷ, and ỹ ∈ X by

x̂ =(x[1], . . . , x[n], x[n+1], x[n+1], . . .) ,

ŷ =(y[1], . . . , y[n], x[n+1], x[n+1], . . .) ,

ỹ =(y[1], . . . , y[n], x[n+1], x[n+2], . . .) .

We obtain that x̂, ŷ ∈ Xℓ
n, where ℓ = x[n+1] and

∑n
i=1 u(x̂i) >

∑n
i=1 u(ŷi) so that x̂ ≻ ŷ by

Lemma 2. Since ≿ satisfies Liminf-Restricted Finite Separability, this is equivalent to x[ ] ≻
ỹ. Furthermore, by Monotonicity, ỹ ≿ y[ ] and, by transitivity, x[ ] ≻ y[ ]. By Lemma 3 and

transitivity of ≿, this implies that x ≻ y.

Step 2: Assume that x ∼D y. Then there exists n ∈ N such that
∑n

r=1 u(x[r]) =
∑n

r=1 u(y[r])

and x[r] = y[r] for all r > n. We can define x̂, and ŷ ∈ X like in Step 1, so that x̂, ŷ ∈ Xℓ
n, where

ℓ = x[n+1],
∑n

i=1 u(x̂i) =
∑n

i=1 u(ŷi), and x̂ ∼ ŷ by Lemma 2. Since ≿ satisfies Liminf-Restricted

Finite Separability, this is equivalent to x[ ] ∼ y[ ]. By Lemma 3 and transitivity of ≿, this implies

that x ∼ y.

Lemma 4 shows that all regular swrs satisfying our axiom must agree with the Strongly

Anonymous Utilitarian Dominance swr ≿D. As discussed in subsection 3.1, ≿D does not satisfies

Limited Inequity. However, by Lemmas 2–4 and the results of Appendix A.3, we can characterize

the Strongly Anonymous Utilitarian swr ≿U as the minimal regular swr satisfying our axioms.

Proof of the if-statement of Theorem 1. Assume that ≿ is a regular swr which satisfies Limited

Inequity, Liminf-Restricted Dominance, Liminf-Restricted Finite Separability, and Critical-level

consistency. By Lemma 4, there exists u ∈ U such that the Strongly Anonymous (Generalized)

Utilitarian Dominance swr ≿D associated with u is a subrelation to ≿. Let ≿U be the Strongly

Anonymous (Generalized) Utilitarian swr associated with u. It suffices to show that ≿U is a

subrelation to ≿.

Part 1: For any x, y ∈ X, x ≿U y implies x ≿ y. Let x, y ∈ X be such that x ≿U y.

By Lemma 3, y[ ] ∼ y. Hence, by transitivity, it suffices to show that x ≿ y[ ]. Our strategy of

proof is to construct a sequence {yn}n∈N such that {yn}n∈N converges to y[ ] in d1 and such that

x ≿ yn for each n ∈ N. Since ≿ satisfies Weak Continuity, we thus obtain x ≿ y[ ].

Construction of the sequence {yn}n∈N. Since x ≿U y, it follows from Lemma 1 that (x[ ],y[ ]) ∈
D. Hence, there exists δ ∈ R+ such that

∑∞
r=1

[
y[r]−min{x[r], y[r]}

]
=

∑
r:y[r]>x[r]

(y[r]−x[r]) = δ.
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Let {yn}n∈N be the sequence defined by, for each n ∈ N,

yn1 = u−1
(
u(y[1]) + min

{
0, infk≥n

(
vuk (x[ ])− vuk (y[ ])

)})
,

ynr = y[r] for r ∈ {2, 3, . . . , n− 1, n} ,

ynr = min{x[r], y[r]} for r ∈ {n+ 1, n+ 2, . . . } .

Note that yn is well-defined since u ∈ U is finitely non-concave and therefore unbounbed below.

The sequence {yn}n∈N converges to y[ ] in d1. By the construction of {yn}n∈N, we have that

d1(y[ ],y
n) ≤ y[1] − yn1 +

∑∞

r=n+1

[
y[r] −min{x[r], y[r]}

]
= y[1] − yn1 + δ −

∑n

r=1

[
y[r] −min{x[r], y[r]}

]
.

Moreover, infk≥n

(
vuk (x[ ])− vuk (y[ ])

)
≤ vun(x[ ])− vun(y[ ]) and, since x ≿U y,

lim
n→∞

(
inf
k≥n

(
vuk (x[ ])− vuk (y[ ])

))
= lim

n→∞

(
vun(x[ ])− vun(y[ ])

)
≥ 0 .

Hence, limn→∞ yn1 = y[1]. By the definition of δ we obtain that {yn}n∈N converges to y[ ] in d1.

x ≿ yn for each n ∈ N. Consider any n ∈ N. Note first that

vun(x[ ])− vun(y
n) = vun(x[ ])− u(yn1 )−

∑n

r=2
u(y[r])

≥ vun(x[ ])− vun(y[ ])− inf
k≥n

(
vuk (x[ ])− vuk (y[ ])

)
≥ 0.

Also remark that, by definition, ynr = min{x[r], y[r]} ≤ x[r] for all r > n. Hence, x ≿D yn. By

Lemma 4, this implies x ≿ yn.

Part 2: For any x, y ∈ X, x ≻U y implies x ≻ y. If x ≻U y, then there exists ∆ ∈ R++∪{∞}
such that limn→∞

(
vun(x[ ]) − vun(y[ ])

)
= ∆. Hence, we can find ∆̃ ∈ R++ with ∆̃ < ∆. Define

x̃ ∈ R by x̃ = u−1
(
u(x[1]) − (∆ − ∆̃)

)
if ∆ ∈ R++ and x̃ = u−1

(
u(x[1]) − ∆̃

)
if ∆ = ∞ so

that, in any case, x̃ < x[1]. If mini∈N xi is well-defined and j ∈ N is such that xj = mini∈N xi,

define x̃ ∈ X by x̃j = x̃ and x̃i = xi for all i ̸= j. Alternatively, if mini∈N xi is not well-defined,

define x̃ ∈ X by x̃1 = x̃ and x̃i = xi for all i ≥ 2. In both cases, x ≻ x̃ since ≿ satisfies

Liminf-Restricted Dominance. Hence, by transitivity of ≿ and part 1 of this proof, to establish

x ≻ y it suffices to show that x̃ ≿U y. This follows since, by construction, either, for all π ∈ Π,

limn→∞
(
vun(x̃[π])− vun(y[π])

)
= ∆̃ or, for all π ∈ Π, limn→∞

(
vun(x̃[π])− vun(y[π])

)
= ∞.
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4 Extensions of Strongly Anonymous Utilitarianism

The Strongly Anonymous Utilitarian swr is related to strongly anonymous versions of utilitarian

criteria proposed in the literature. In this section, we show that it is a subrelation to the Strongly

Anonymous Utilitarian Catching-Up swr, as given in Definition 1 of subsection 3.1, as well as

the Limit of Rank-Discounted Utilitarian swr and the Strongly Anonymous Cesàro Summation

swr to be defined in subsection 4.2. We also establish the links between the three latter swr.

4.1 Characterizing Strongly Anonymous Catching-Up

Note that, for any u ∈ U , the asymmetric and symmetric parts of the Strongly Anonymous

(Generalized) Utilitarian swr ≿C associated with u are given as follows: For any x, y ∈ X,

x ≻C y if and only if lim sup
n→+∞

(
wu
n(x)− wu

n(y)
)
> 0 and lim inf

n→+∞

(
wu
n(x)− wu

n(y)
)
≥ 0,

x ∼C y if and only if lim
n→+∞

(
wu
n(x)− wu

n(y)
)
= 0.

We characterize ≿C by applying an additional axiom.

Axiom (Restricted Tail Continuity). For any x, y ∈ X+, if there exists m > 0 such that, for

all k ≥ m, xk(zk1N) ≿ yk(zk1N), where zk = max{xk, yk}, then x ≿ y.

This allows us to obtain the following characterization result.

Proposition 1. The Strongly Anonymous (Generalized) Utilitarian Cathching-Up swr ≿C is

regular and satisfies Limited Inequity, Liminf-Restricted Dominance, Liminf-Restricted Finite

Separability, Critical-Level Consistency, and Restricted Tail Continuity. If ≿ is a regular swr

satisfying Limited Inequity, Liminf-Restricted Dominance, Liminf-Restricted Finite Separability,

Critical-Level Consistency, and Restricted Tail Continuity, then there exists u ∈ U such that ≿

weakly extends the Strongly Anonymous (Generalized) Utilitarian Cathching-Up swr ≿C associ-

ated with u.

Proof. Part 1: ≿C is regular and satisfies the axioms. By Observations 1 and 2, ≿C is a subre-

lation to ≿U and ≿D. Therefore, the proof of regularity of ≿C is very similar to the the proof

of regularity of ≿U in Proposition 5 of Appendix A.3. Also, by Theorem 1, ≿C satisfies Limited

Inequity, Liminf-Restricted Dominance, Liminf-Restricted Finite Separability, and Critical-Level

Consistency.

It remains to be shown that, for any u ∈ U , ≿C associated with u satisfies Restricted Tail

Continuity. Consider any x, y ∈ X+ for which there exists m > 0 such that, for all k ≥ m,

xk(zk1N) ≿C yk(zk1N), where zk = max{xk, yk}. By definition, xk(zk1N) ≿C yk(zk1N) means

that lim infn→+∞
(
wu
n(xk(zk1N))−wu

n(yk(zk1N))
)
= vuk (x[ ])− vuk (y[ ]) ≥ 0. So there exists m > 0
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such that, for all k ≥ m, vuk (x[ ])− vuk (y[ ]) = wu
k (x)− wu

k (y) ≥ 0. Therefore, it is necessarily the

case that lim infn→+∞
(
wu
n(x)− wu

n(y)
)
≥ 0 and, thus, x ≿C y.

Part 2: A regular ≿ satisfying the axioms weakly extends ≿C . Assume that ≿ is a regular swr

satisfying Limited Inequity, Liminf-Restricted Dominance, Liminf-Restricted Finite Separability,

Critical-Level Consistency, and Restricted Tail Continuity. By Lemma 4, there exists u ∈ U such

that the Strongly Anonymous (Generalized) Utilitarian Dominance swr ≿D associated with u is

a subrelation to ≿. Let ≿C be the Strongly Anonymous (Generalized) Utilitarian Catching-Up

swr associated with u, and let x, y ∈ X be such that x ≿C y. We want to prove that x ≿ y. By

Lemma 3, x[ ] ∼ x and y[ ] ∼ y. By transitivity, it suffices to show that x[ ] ≿ y[ ]. Our strategy

of proof is to construct a sequence {yn}n∈N such that {yn}n∈N converges to y[ ] in d1 and such

that x[ ] ≿ yn for each n ∈ N. Since ≿ satisfies Weak Continuity, we thus obtain x[ ] ≿ y[ ].

Construction of the sequence {yn}n∈N. Let {yn}n∈N be defined by, for each n ∈ N,

yn1 = u−1
(
u(y[1]) + min

{
0, infk≥n

(
vuk (x[ ])− vuk (y[ ])

)})
,

ynr = y[r] for all r > 1 .

Note that yn is well-defined since u ∈ U is finitely non-concave and therefore unbounbed below.

The sequence {yn}n∈N converges to y[ ] in d1. By the construction of {yn}n∈N, d1(y[ ],y
n) ≤

y[1]−yn1 . Moreover, infk≥n

(
vuk (x[ ])−vuk (y[ ])

)
≤ vuk (x[ ])−vuk (y[ ]) for all k ≥ n and, since x ≿C y,

lim
n→∞

(
inf
k≥n

(
vuk (x[ ])− vuk (y[ ])

))
= lim inf

n→∞

(
vun(x[ ])− vun(y[ ])

)
≥ 0 .

Hence, limn→∞ yn1 = y[1], and we obtain that {yn}n∈N converges to y[ ] in d1.

x[ ] ≿ yn for each n ∈ N. Consider any n ∈ N. Note first that, for each k ≥ n,

vuk (x[ ])− vuk (y
n) = vuk (x[ ])− u(yn1 )−

∑k

r=2
u(y[r])

≥ vuk (x[ ])− vuk (y[ ])− inf
k≥n

(
vuk (x[ ])− vuk (y[ ])

)
≥ 0.

For each k ≥ n, write zk = max{x[k], ynk}, x̃k = (x[ ])k(zk1N), and ỹn,k = (yn)k(zk1N). Then

vuk (x̃
k)− vuk (ỹ

n,k) = vuk (x[ ])− vuk (y
n) ≥ 0

and x̃k[r] = ỹn,k[r] for all r > n. Hence, x̃k ≿D ỹn,k. By Lemma 4, this implies x̃k ≿ ỹn,k. Since

x[ ], y
n ∈ X+ and, for each k ≥ n, (x[ ])k(zk1N) ≿ (yn)k(zk1N), it follows from Restricted Tail

Continuity that x[ ] ≿ yn.

18



4.2 Two other extensions of strongly anonymous utilitarianism

The class of Rank-Discounted Utilitarian swrs introduced by Zuber and Asheim (2012) is designed

to satisfy the axiom of Strong Anonymity while retaining the usual discounted utilitarian form. For

any transformation function u ∈ U and any rank-discount factor β ∈ (0, 1), the Rank-Discounted

(Generalized) Utilitarian swr associated with u is characterized by the social welfare function

ρuβ : X → R defined by, for all x ∈ X,11

ρuβ(x) = inf
π∈Π

∞∑
i=1

βi−1u(xπ(i)) =

∞∑
r=1

βr−1u(x[r]) .

By letting the discount factor β approach 1, Rank-Discounted Utilitarianism can be used to define

the following class of strongly anonymous (generalized) utilitarian swrs.

Definition 5. The Limit of Rank-Discounted (Generalized) Utilitarian swr ≿R. There exists

u ∈ U such that, for any profiles x, y ∈ X, x ≿R y if and only if

lim inf
β→1−

(
ρuβ(x)− ρuβ(y)

)
≥ 0 .

This swr is related to other existing criteria. Asheim and Zuber (2013) consider the limit of

rank-discounting when β approaches 0, while Jonsson and Voorneveld (2018) consider the limit

of time-discounting when β approaches 1.

For any u ∈ U , the asymmetric and symmetric parts of ≿R associated with u are given as

follows: For any x, y ∈ X,

x ≻R y if and only if lim inf
β→1−

(
ρuβ(x)− ρuβ(y)

)
≥ 0 and lim sup

β→1−

(
ρuβ(x)− ρuβ(y)

)
> 0,

x ∼R y if and only if lim
β→1−

(
ρuβ(x)− ρuβ(y)

)
= 0.

We next introduce a class of strongly anonymous (generalized) utilitarian swrs based on

the notion of Cesàro summation. For any u ∈ U and any n ∈ N, define strongly anonymous

(generalized) utilitarian partial Cesàro summation σu
n : X → R by, for all x ∈ X,

σu
n(x) = inf

π∈Π

1

n

n∑
k=1

k∑
i=1

u(xπ(i)) =
1

n

n∑
k=1

k∑
r=1

u(x[r]) =

n∑
r=1

n− r + 1

n
u(x[r]) .

Definition 6. The Strongly Anonymous (Generalized) Utilitarian Cesàro Summation swr ≿S.

There exists u ∈ U such that, for any profiles x, y ∈ X, x ≿S y if and only if

lim inf
n→+∞

(
σu
n(x)− σu

n(y)
)
≥ 0 .

11Zuber and Asheim (2012) do not require u to be finitely non-concave. However, they show in their Proposition
6 that u has to be finitely non-concave to satisfy the Pigou-Dalton transfer principle.
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In the context of discrete dynamic progamming, Veinott (1966, p. 1293) proposes a similar cri-

terion, which is used by Jonsson and Voorneveld (2018) for comparisons with their Limit of

Time-Discounted Utilitarianism.

For any u ∈ U , the asymmetric and symmetric parts of ≿S associated with u are given as

follows: For any x, y ∈ X,

x ≻S y if and only if lim sup
n→+∞

(σu
n(x)− σu

n(y)) > 0 and lim inf
n→+∞

(σu
u(x)− σu

n(y)) ≥ 0,

x ∼S y if and only if lim
n→+∞

(σu
n(x)− σu

n(y)) = 0.

Note that when, for some n ∈ N, wu
n(x) ≥ wu

n(y) (wu
n(x) > wu

n(y) respectively) and x[r] ≥
y[r] for all r > n, we have limβ→1−

(
ρuβ(x) − ρuβ(y)

)
≥ 0 and limn→+∞

(
σu
n(x) − σu

n(y)
)
≥ 0

(limβ→1−
(
ρuβ(x) − ρuβ(y)

)
> 0 and limn→+∞

(
σu
n(x) − σu

n(y)
)
> 0 respectively), implying that

x ≿R y and x ≿S y (x ≻R y and x ≻S y respectively) for ≿R and ≿S associated with u ∈ U .

We therefore obtain the following result.

Observation 3. For any u ∈ U , the Strongly Anonymous (Generalized) Utilitarian Dominance

swr ≿D associated with u is a subrelation to the Limit of Rank-Discounted (Generalized) Utili-

tarian swr ≿R associated with u and the Strongly Anonymous (Generalized) Utilitarian Cesàro

Summation swr ≿S associated with u.

4.3 Links between the SWRs

The following proposition relates the three swrs that we have introduced in this section to each

other and to our Strongly Anonymous Utilitarian swr ≿U . We do so by showing that they satisfy

all our axioms. The proof is relegated to the appendix.

Proposition 2. (i) Both the Limit of Rank-Discounted (Generalized) Utilitarian swr ≿R and

the Strongly Anonymous (Generalized) Utilitarian Cesàro Summation swr ≿S are regular.

(ii) The Strongly Anonymous (Generalized) Utilitarian Catching-Up swr ≿C is weakly extended

by ≿S, which in turn is weakly extended by ≿R.

(iii) The Strongly Anonymous (Generalized) Utilitarian swr ≿U is a subrelation to ≿C , ≿R,

and ≿S.

Proposition 2 shows that there are strong links between the swrs that we have introduced.

It is also important to show that they are distinct. In the following example already discussed in

subsection 3.1, we present a pair of well-beging profiles that are indifferent according to ≿C , ≿R,

and ≿S but non-comparable by ≿U .

Example 1. Assume that ≿U , ≿C , ≿S , and ≿R are associated with the identity transformation

function u(z) = z. For all n ∈ N, let S(n) =
∑n

i=1(i− 1) + 1. Using S(n), we define the set G(n)

20



of individuals by G(n) = {S(n), . . . , S(n + 1) − 1} for each n ∈ N. Therefore, |G(n)| = n for all

n ∈ N. Letting z = 1− ln 2 ≈ 0.30685, consider the following distributions x, y ∈ X+:

x = (z, 2
3 ,

2
3︸ ︷︷ ︸

|G(2)|=2

, 2
3 , . . . ,

2
3︸ ︷︷ ︸

|G(3)|=3

, 4
5 , . . . ,

4
5︸ ︷︷ ︸

|G(4)|=4

, 4
5 , . . . ,

4
5︸ ︷︷ ︸

|G(5)|=5

, . . .)

y = (12 ,
︷ ︸︸ ︷
1
2 ,

1
2 ,

︷ ︸︸ ︷
3
4 , . . . ,

3
4 ,

︷ ︸︸ ︷
3
4 , . . . ,

3
4 ,

︷ ︸︸ ︷
5
6 , . . . ,

5
6 , . . .).

Formally, x is defined by x1 = z and, for each odd n ∈ N with n ≥ 3 and for all i ∈ G(n−1)∪G(n),

xi = 1− 1

n
,

and y is defined by, for each even n ∈ N and for all i ∈ G(n− 1) ∪G(n),

yi = 1− 1

n
.

Note that

x− y = (z − 1
2 ,

1
6 ,

1
6︸ ︷︷ ︸

|G(2)|=2

− 1
12 , . . . ,−

1
12︸ ︷︷ ︸

|G(3)|=3

, 1
20 , . . . ,

1
20︸ ︷︷ ︸

|G(4)|=4

, − 1
30 , . . . ,−

1
30︸ ︷︷ ︸

|G(5)|=5

, . . .).

More precisely, for each n > 1 and for all i ∈ G(n),

xi − yi = (−1)n
1

n(n+ 1)
.

Thus, for each n > 1, ∑
i∈G(n)

(xi − yi) = (−1)n
n

n(n+ 1)
= (−1)n

1

n+ 1
.

The alternating harmonic series converges to ln 2. Hence:

∞∑
i=1

(xi − yi) = 1− ln 2− 1

2
+

∞∑
n=2

(−1)n
1

n+ 1
= − ln 2 +

∞∑
n=0

(−1)n
1

n+ 1
= 0 .

Since x[ ] = x and y[ ] = y, we obtain x ∼C y and, from Proposition 2, x ∼S y and x ∼R y.

However, for all odd n ∈ N:∑
i<S(n+1):yi>xi

(
yi − xi

)
=

(n+1)/2∑
k=1

∑
i∈G(2k−1)

(yi − xi) = −1 + ln 2 +
1

2

(n+1)/2∑
k=1

1

k

 .

Therefore, limn→∞
∑

i≤n:yi>xi

(
yi − xi

)
= ∞ and (x,y) /∈ D. Likewise, by considering all even

u ∈ N, we obtain that limn→∞
∑

i≤n:xi>yi

(
xi − yi

)
= ∞ and (y,x) /∈ D. Since x[ ] = x and

y[ ] = y, it follow from Lemma 1 that ≿U cannot compare x and y.

The next example presents a pair of well-begin distributions that are indifferent according to

≿S and ≿R but non-comparable by ≿C .
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Example 2. Assume that ≿C , ≿S , and ≿R are associated with the identity transformation

function u(z) = z. For all n ∈ N, let P (n) =
∑n

i=1 2
i − 1. Using P (n), we define the set G(n) of

individuals by G(1) = {1} and G(n) = {P (n− 1) + 1, . . . , P (n)} for all n ≥ 2. Thus, |G(n)| = 2n

for each n ≥ 2. Consider the following distributions x, y ∈ X+:

x = (0, 0, . . . , 0︸ ︷︷ ︸
|G(2)|=4

, 3
4 , . . . ,

3
4︸ ︷︷ ︸

|G(3)|=8

, 3
4 , . . . ,

3
4︸ ︷︷ ︸

|G(4)|=16

, 15
16 , . . . ,

15
15︸ ︷︷ ︸

|G(5)|=32

, 15
16 , . . . ,

15
16︸ ︷︷ ︸

|G(6)|=64

, . . .)

y = (−1,
︷ ︸︸ ︷
1
2 , . . . ,

1
2 ,

︷ ︸︸ ︷
1
2 , . . . ,

1
2 ,

︷ ︸︸ ︷
7
8 , . . . ,

7
8 ,

︷ ︸︸ ︷
7
8 , . . . ,

7
8 ,

︷ ︸︸ ︷
31
32 , . . . ,

31
32 , . . .).

Formally, x is defined by (x1, . . . , x5) = (0, . . . , 0) and for each even n ∈ N and for all i ∈
G(n+ 1) ∪G(n+ 2),

xi =

n∑
k=1

1

2k
,

and y is defined by y1 = −1 and for each odd n ∈ N and for all i ∈ G(n+ 1) ∪G(n+ 2),

yi =
n∑

k=1

1

2k
.

Note that

x− y = (1, −1
2 , . . . ,−

1
2︸ ︷︷ ︸

|G(2)|=4

, 1
4 , . . . ,

1
4︸ ︷︷ ︸

|G(3)|=8

, −1
8 , . . . ,−

1
8︸ ︷︷ ︸

|G(4)|=16

, 1
16 , . . . ,

1
16︸ ︷︷ ︸

|G(5)|=32

, . . .).

More precisely, for each n ∈ N and for all i ∈ G(n+ 1),

xi − yi = (−1)n
1

2n
.

Note that x[ ] = x and y[ ] = y. We show that ≿C cannot compare x and y, while ≿R and ≿S

conclude these distributions are indifferent. To this end, we define s ∈ RN by sn =
∑n

i=1(xi − yi)

for all n ∈ N. Thus, s is given by

s = (1, 12 , 0,−
1
2 ,−1︸ ︷︷ ︸

|G(2)|+1

, −3
4 ,−

2
4 ,−

1
4 , 0,

1
4 ,

2
4 ,

3
4︸ ︷︷ ︸

|G(3)|−1

, 1, 78 , . . .
1
8 , 0,−

1
8 , . . . ,−

7
8 ,−1︸ ︷︷ ︸

|G(4)|+1=17

, . . .).

Note that, for each odd n ∈ N, si = 1 if i = P (n) and si = −1 if i = P (n + 1). Thus, x and y

are non-comparable by ≿C . On the other hand, for each even n ∈ N and each odd m ∈ N with

m > 1,
1

P (n)

P (n)∑
k=1

sk = 0 and
1

P (m)− 1

P (m)−1∑
k=1

sk = 0 .

Also, it can be checked that

lim
n→+∞

1

n

n∑
k=1

sk = 0 .

Thus, we obtain x ∼S y. By Proposition 2, x ∼R y follows as well.
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5 Application to the Ramsey model

We show that the Strongly Anonymous Utilitarianism gives rise to a nonempty set of optimal

streams in the Ramsey model of economic growth. Furthermore, if the initial stock of reproducible

capital does not exceed the one corresponding to the Golden Rule, then any optimal stream

satisfies that wellbeing cannot be increased at some time i without being decreased at some other

time i′. Hence, an optimal stream is in this sense efficient, even though the Strongly Anonymous

Utilitarian swr does not satisfy the Pareto principle.

In the Ramsey model, the law of motion governing the stock of reproducible capital, k, is

given by a standard increasing, concave gross production function, f . Following Basu and Mitra

(2007, Section 5), the function f : R+ → R+ is assumed to satisfy:

(i) f(0) = 0 ,

(ii) f is continuous, increasing and strictly concave on R+ ,

(iii) limk→0
f(k)
k > 1 and limk→∞

f(k)
k < 1 .

Then there exists a unique number k̄ > 0 such that f(k̄) = k̄ and f(k) > k for k ∈ (0, k̄).

A feasible stream from k ∈ [0, k̄] is a sequence of capital stocks k = (k1, . . . , ki, . . . ) satisfying:

k1 = k , 0 ≤ ki+1 ≤ f(ki) for i ∈ N .

It follows from the definition of k̄ that k ∈ [0, k̄]|N|. Hence, k̄ is the maximal attainable capital

stock if one starts from an initial stock in [0, k̄]. Associated with a feasible stream k from k ∈ [0, k̄]

is a feasible wellbeing stream x = (x1, . . . , xi, . . . ) from k, defined by

xi = f(ki)− ki+1 for i ∈ N .

For any k ∈ [0, k̄], the set of wellbeing streams associated with feasible capital streams from k is

contained in [0, k̄]|N|, keeping in mind that f(k̄) = k̄. We say that a feasible wellbeing stream x̂

from k is optimal if, for all feasible wellbeing streams x from k, it is the case that x̂ ≿U x.

It follows from the continuity and strict concavity of f that there exists a unique number

k∗ ∈ [0, k̄] such f(k)−k is increasing on [0, k∗] and decreasing on [k∗, k̄], implying that f(k∗)−k∗ ≥
f(k) − k for all k ∈ [0, k̄]. Since, for any k ∈ (0, k̄), f(k) − k > 0 = f(0) − 0 = f(k̄) − k̄, we

have that 0 < k∗ < k̄. We write x∗ = f(k∗)− k∗. By keeping the capital stock constant at k∗, a

maximum sustainable wellbeing equal to x∗ is attained; this corresponds to the Golden Rule.

For any x ∈ [0, k̄]|N|, let ℓ(x) denote the limit infimum of x. Let ξ : [0, k̄] → [0, k̄] be a

stationary wellbeing strategy that for any i ∈ N and any ki ∈ [0, k̄] determines xi = ξ(ki), where

ξ(k) = 0 if k < k∗ and ξ(k) = x∗ if k ≥ k∗. Let xξ(k) be the feasible wellbeing stream from k

determined by the strategy ξ. If k ≥ k∗, then xξ(k) = x∗1N. If 0 < k < k∗, then there exists

n ∈ N such that xξi (k) = 0 for i = 1, . . . , n, and xξi (k) = x∗ for i > n. If k = 0, then xξ(k) = 01N.

Note that, ℓ(xξ(k)) = x∗ for k ∈ (0, k̄], while ℓ(xξ(0)) = 0.
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Lemma 5. For any k ∈ (0, k̄], if x is a feasible wellbeing stream from k, then ℓ(x) ≤ x∗.

Proof. Fix k ∈ (0, k̄]. It is sufficient to show that there is no feasible x from k with ℓ(x) > x∗.

By way of contradiction, suppose that there exist some feasible x′ from k with ℓ(x′) > x∗. Write

ε =
(
ℓ(x′) − x∗

)
/2. Then there exist n ∈ N such that, for all i > n, x′i − x∗ ≥ ε > 0. Since

f(k∗)− k∗ ≥ f(k)− k for all k ∈ [0, k̄], this implies:

0 < ε ≤ x′i − x∗ = f(k′i)− k′i+1 − f(k∗) + k∗ ≤ f(k′i)− k′i+1 − f(k′i) + k′i = k′i − k′i+1 .

Hence, the capital stock will be depleted in a finite time, contradicting the feasibility of x′.

In his seminal work on optimal growth, Ramsey (1928) introduced an undiscounted utilitarian

criterion which computes the total amount by which utility falls short of the maximum possible

utility level, referred to as “bliss.” We introduce a modified Ramsey criterion where we instead

associate bliss with the maximum possible sustainable level of utility u(x∗), given the produc-

tion function f and the transformation function u ∈ U . Hence, consider the complete preorder

represented by vū : X → R− ∪ {−∞} where, for all x ∈ X,

vū(x) = lim
n→∞

vūn(x) = lim
n→∞

n∑
i=0

ū(xi) ,

with ū : R → R− being defined by ū(x) = u(x)− u(x∗) for all x < x∗ and ū(x) = 0 for all x ≥ x∗.

Remark that vū is well-defined (it may be −∞) and always takes a non-positive value; indeed it

is an infinite sum of non-positive real numbers.

Our strategy of proof is to show that there is a feasible wellbeing stream x̂ which satisfies that

vū(x̂) is finite and vū(x̂) ≥ vū(x) for all feasible wellbeing streams x, followed by a demonstration

that x̂ is optimal under Strongly Anonymous Utilitarianism. For any k ∈ (0, k̄], let X∗(k) denote

the set of feasible wellbeing streams x from k which satisfy that xi ∈ [0, x∗] for all i ∈ N and

ℓ(x) = x∗. The following existence result is proven in Appendix A.6.

Lemma 6. For any k ∈ (0, k∗], there exists a feasible wellbeing stream x̂ from k such that vū(x̂) >

−∞ and vū(x̂) ≥ vū(x) for all feasible wellbeing streams x from k. Furthermore, x̂ ∈ X∗(x), it is

non-decreasing, and there is no feasible wellbeing stream x′ from k such that x′ ≥ x̂.

By Lemma 5, we know that, for any k ∈ (0, k̄] and any feasible stream x from k, we have

ℓ(x) ≤ x∗. This implies that x[ ] ≤ x∗1N. Furthermore, for any two feasible streams from k, x

and x′, we have that vū(x[ ]) ≥ vū(x′
[ ]) > −∞ implies x ≿U x′.12 Likewise, vū(x[ ]) > vū(x′

[ ])

implies x ≻U x′.

12Recall that ū(x) = u(x)−u(x∗) for all x ∈ (−∞, x∗] and that x[ ] ∈ (−∞, x∗]N. The series
∑n

r=1

(
u(x[r])−u(x∗)

)
is absolutely convergent when it is finite, because

(
u(x[r])−u(x∗)

)
= −|u(x[r])−u(x∗)| for any r. Since the difference

of two absolutely convergent series is also absolutely convergent (and thus unconditionally convergent), this implies
that, for all π ∈ Π, limn→+∞

(
vun(x[π])− vun(x

′
[π])

)
= vū(x[ ])− vū(x′

[ ]), when vū(x[ ]) and vū(x′
[ ]) are finite.
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The main result of this section is that there exists an optimal Strongly Anonymous Utilitarian

wellbeing stream in the Ramsey model.13

Proposition 3. Fix u ∈ U and consider the Strongly Anonymous (Generalized) Utilitarian swr

≿U associated with u.

1. For any k ∈ (k∗, k̄], any feasible wellbeing stream x̂ from k with x̂ ≥ x∗1N satisfies that

x̂ ≿U x for all feasible wellbeing streams x from k. The stream xξ(k) is one of these.

2. For any k ∈ (0, k∗], there exists a feasible wellbeing stream x̂ from k which satisfies that

x̂ ≿U x for all feasible wellbeing streams x from k. Furthermore, any such optimal stream

is non-decreasing, and there is no feasible wellbeing stream x′ from k such that x′ > x̂.

Proof. Part 1. Assume that k ∈ (k∗, k̄]. Let x̂ be feasible from k with x̂ ≥ x∗1N. Then x̂[ ] = x∗1N.

By Lemma 5, we know that, for any feasible x from k, ℓ(x) ≤ x∗. Hence, for any feasible x from

k, x[ ] ≤ x∗1N, so that x[ ] ≤ x̂[ ] and x̂ ≿U x. There exist feasible x̂ from k with x̂ ≥ x∗1N since

xξ(k) = x∗1N is feasible from k. Indeed, xξ(k) ≿U x for all feasible x from k.

Part 2. Assume that k ∈ (0, k∗]. Statement 2 is proven through three steps.

Step 1: If x /∈ X∗(k) is a feasible wellbeing stream from k, then there exists a wellbeing stream

x′ ∈ X∗(k) such that x′ ≻U x. By Lemma 5, we know that, for any feasible x from k, ℓ(x) ≤ x∗.

If ℓ(x) < x∗, then xξ(k) ≻U x because ℓ(xξ(k)) = x∗ > ℓ(x). If ℓ(x) = x∗ and x /∈ X∗(k), then

xi > x∗ for some i ∈ N. Since no stream x > x∗1N is feasible from k ≤ k∗, there exists i′ such

that xi′ < x∗. Furthermore, because f is increasing, there exists ε such that x′ defined as follows

is feasible from k: x′i = x∗ for all i ∈ N such that xi ≥ x∗, x′i′ = xi′ + ε ≤ x∗, and x′j = xj for all

other j. By construction, x′ ∈ X∗(k). But x′
[ ] > x[ ], implying that x′

[ ] ≻
U x[ ].

Step 2: There exists an optimal wellbeing stream in X∗(k). Note that, for any x ∈ X∗(k), we

have vū(x[ ]) = vū(x). By Lemma 6, we know that there exists x̂ ∈ X∗(k) such that vū(x̂) > −∞
and vū(x̂) ≥ vū(x) for all feasible x from k. This implies vū(x̂[ ]) ≥ vū(x[ ]) and thus x̂ ≿U x for

all x ∈ X∗(k). Combined with Step 1 and using the transitivity of ≿U , this implies that x̂ ≿U x

for all feasible x from k.

Step 3: Properties of an optimal wellbeing stream. Assume that x̂ feasible from k satisfies

that x̂ ≿U x for all feasible x from k. Since, for any x ∈ X∗(k), we have vū(x[ ]) = vū(x), it

follows that vū(x̂) ≥ vū(x) for all x ∈ X∗(k). If x /∈ X∗(k) is feasible from k, then it follows from

Step 3 of the proof of Lemma 6 that there exists x′ ∈ X∗(k) such that vū(x′) > vū(x). Hence, an

optimal wellbeing stream from k satisfies the properties of x̂ of Lemma 6: An optimal x̂ from k

is non-decreasing, and there is no feasible x′ from k such that x′ ≥ x̂.

A first implication of Proposition 3 is that, although the Strongly Anonymous Utilitarian swr

≿U cannot compare all wellbeing streams, it has sufficient comparability to find an optimal stream

13We consider only streams for an initial stock k ∈ (0, k̄]. If k = 0, then the only feasible stream is xξ(0) = 01N,
which is trivially optimal.
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that is at least as good as any feasible wellbeing stream in the Ramsey model. Furthermore, since,

by Proposition 2, the Strongly Anonymous Utilitarian swr is a subrelation to ≿C , ≿R, and ≿S ,

the results of Proposition 3 hold also for these swrs.

Proposition 3 makes a distinction between two cases. In the first case, with k ∈ (k∗, k̄], we have

that any feasible stream with wellbeing that is at least as high as the highest sustainable wellbeing

level, x∗, is optimal. The constant wellbeing stream at the highest sustainable wellbeing level,

x∗, is feasible. But although it is optimal, the stream x∗1N is not efficient for k > k∗. Indeed,

the wellbeing stream x′ such that x′1 = f(k) − k∗ and x′i = x∗ for all i ≥ 2 is feasible. And

x′1 = f(k)− k∗ > f(k∗)− k∗ = x∗, so that x′ > x∗1N. Note that x′ is also optimal. In contrast,

the second case, with k ∈ (0, k∗], any optimal stream is both efficient and non-decreasing.

6 Discussion

We have proposed and characterized swrs over infinite wellbeing profiles which are generalized

utilitarian and which treat people equally in the strong form of Strong Anonymity. They are

generalized utilitarian in the sense that they depend on the function u that maps wellbeing into

the transformed wellbeing, which is additive and thereby enables us to compare the gain of one

to the loss of another. Indeed, the Strongly Anonymous Utilitarian swr ≿U characterized in

Theorem 1 is a different criterion for each u in the set U of continuous, strictly increasing, and

finitely non-concave transformation functions. If wellbeing corresponds to utility and u is strictly

concave, then the Strongly Anonymous Utilitarian swr ≿U is prioritarian, having the property

of assigning more weight to increases in utility for poor than to increases in utility for rich.14

All of these swrs deem one profile as better than another if the limit inferior of the former

strictly exceeds that of the latter. Also, even for profiles with same limit inferior, differences in

wellbeing above the common limit inferior do not influence the evaluation. Hence, the distinction

between the various swrs concerns how they compare profiles with the same limit inferior on the

basis of the components of wellbeing that do not exceed this common smallest cluster point.

One might argue that these features severely limit the ablicability of the swrs that we have

analyzed. We beg to differ. The common limit inferior might be associated with bliss, as originally

suggested by Ramsey (1928), in which case wellbeing above this level is not even feasible, or with

the Golden Rule, as we have illustrated in Section 5. Moreover, if the technology has positive

net productivity and people are treated equally, then the time profile of wellbeing will be non-

decreasing and tend to bliss or the Golden Rule as time goes to infinity (Asheim, Buchholz, and

Tungodden, 2001). Thus, the proposed swrs are applicable and provide evaluation in line already

existing utilitarian criteria in the context of such technologies.

14Note that much of the literature on infinite population utilitarian criteria combine anonymity with translation
scale invariance to obtain utilitarianism in terms of untransformed wellbeing; Basu and Mitra (2007) is an example.
Here we obtain generalized utilitarianism by imposing a separability axiom instead of translation scale invariance.
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Our swrs can also be used if the rate of population growth is endogenous. Since, by assump-

tion, total population is always infinite, there cannot be a trade-off between the size of the total

population and the level of wellbeing. This implies that there cannot be a Repugnant Conclusion

(Parfit, 1984), whereby a large population with acceptable but poor lives is preferred to a smaller

population with excellent lives, in terms of the total number of people that will ever live. The

wellbeing of people might be affected by the spatiotemporal structure of the total population,

in the sense that the existence of other people in the proximity might yield benefits or costs.

However, having a large population simultaneously at a given point in time does not by itself

have value, as evaluated by our swrs.15 Hence, if a lower rate of population growth can provide

room for higher current wellbeing and faster growth of wellbeing towards bliss, then the lower

population growth is preferable. In this sense, our swrs escape the Repugnant Conclusion when

interpreted in terms of the number of people living at a given point in time.

A Appendix: Proofs

A.1 Preliminary results

We first prove some preliminary results that we need to prove our main results.

Proposition 4. Consider any swr ≿. If there exists u ∈ U such that the Strongly Anonymous

(Generalized) Utilitarian Dominance swr ≿D associated with u is a subrelation to ≿, then ≿

satisfies Finite Completeness, Restricted Continuity, Monotonicity, Strong Anonymity, Liminf-

Restricted Dominance, Liminf-Restricted Finite Separability, and Critical-Level Consistency.

Proof. Let the swr≿ have the property that there exists u ∈ U such that the Strongly Anonymous

(Generalized) Utilitarian Dominance swr ≿D associated with u is a subrelation to ≿.

≿ satisfies Finite Completeness. For any x, y, z ∈ X and for any N ∈ N, let z̃ = xnz and

ẑ = ynz. Profiles z̃ and ẑ differ by a finite number of components, so there exists k ∈ N such that

z̃[r] = ẑ[r] for all r ≥ k. And, for any u ∈ U , we necessarily have that either vuk (z̃[ ])− vuk (ẑ[ ]) ≥ 0

or vuk (z̃[ ])−vuk (ẑ[ ]) ≤ 0 (or both). This implies that either xnz ≿D ynz or ynz ≿D xnz (or both).

Because ≿D is a subrelation to ≿, either xnz ≿ ynz or ynz ≿ xnz (or both).

≿ satisfies Restricted Continuity. Consider any x, y ∈ X and any ℓ ∈ R. Assume that there

exist ℓ < ℓ̄ such that ℓ ≤ ℓ ≤ ℓ̄ and (ℓ′1N,x) ∼ (ℓ′1N,y) for all ℓ
′ ∈ (ℓ , ℓ̄) \ {ℓ}. It suffices to show

the conclusion (ℓ1N,x) ∼ (ℓ1N,y) when ℓ = ℓ and ℓ = ℓ̄. Note that ≿D is complete on{
(x,y) ∈ X×X|∃ℓ ∈ R and n ∈ N such that x[ ],y[ ] ∈ Xℓ

n

}
.

Hence, since ≿D is a subrelation to ≿, we obtain that, for each ℓ ∈ R and n ∈ N, for all x, y ∈ X

such that x[ ], y[ ] ∈ Xℓ
n, x ≿ y is equivalent to x ≿D y. There are three cases.

15Indeed, adding a person at some time without influencing the wellbeing of other people cannot improve the
profile, as it does not influence the evaluation if the added person’s wellbeing is as large as the limit inferior and,
otherwise, it reduces the wellbeing of finitely ranked people with wellbeing exceeding that of the added person.
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Case 1: ℓ > max{ℓ(x), ℓ(y)}. There exists ℓ′ ∈ (ℓ, ℓ̄) such that ℓ′ ≥ max{ℓ(x), ℓ(y)}. Write

x′ = (ℓ′1N,x) and y′ = (ℓ′1N,y). Then x′
[ ] = x[ ] and y′

[ ] = y[ ]. By definition, (ℓ′1N,x) ∼D x

and (ℓ′1N,y) ∼D y, so that (ℓ′1N,x) ∼ x and (ℓ′1N,y) ∼ y since ≿D is a subrelation to ≿. Since,

by assumption, (ℓ′1N,x) ∼ (ℓ′1N,y), we have x ∼ y by transitivity. By the same argument,

(ℓ1N,x) ∼ x and (ℓ1N,y) ∼ y, since also ℓ ≥ max{ℓ(x), ℓ(y)}. As x ∼ y, we obtain (ℓ1N,x) ∼
(ℓ1N,y) by transitivity.

Case 2: ℓ < min{ℓ(x), ℓ(y)}. If ℓ = ℓ̄, then there does not exist r ∈ N such that max{y[r], ℓ} <

x[r] ≤ ℓ (or max{x[r], ℓ} < y[r] ≤ ℓ). To show this, suppose to the contrary that ℓ = ℓ̄ and there

exists r ∈ N such that max{y[r], ℓ} < x[r] ≤ ℓ. Choose ℓ′ and ℓ′′ such that max{y[r], ℓ} < ℓ′ <

ℓ′′ < x[r]. Since x[r] ≤ ℓ̄ ≤ ℓ(y), there exists n > r such that y[n] ≥ ℓ′′. Write x′ = (ℓ′1N,x),

y′ = (ℓ′1N,y), x
′′ = (ℓ′′1N,x), and y′′ = (ℓ′′1N,y). By definition, x′

[ ], y
′
[ ] ∈ Xℓ′

n on which ≿D

and ≿ coincide, so that x′ ∼D y′ is equivalent to x′ ∼ y′. Likewise, x′′
[ ], y

′′
[ ] ∈ Xℓ′′

n on which ≿D

and ≿ coincide, so that x′′ ∼D y′′ is equivalent to x′′ ∼ y′′. By assumption, x′ ∼ y′ and x′′ ∼ y′′,

implying that x′ ∼D y′ and x′′ ∼D y′′. However, by construction

wu
n(x

′′)− wu
n(x

′) ≥ (n− r)(ℓ′′ − ℓ′) > wu
n(y

′′)− wu
n(y

′) .

Since wu
n(x

′) = wu
n(y

′) and wu
n(x

′′) = wu
n(y

′′) are needed for x′ ∼D y′ and x′′ ∼D y′′, we obtain

a contradiction. Thus, since there does not exist r ∈ N such that max{y[r], ℓ} < x[r] ≤ ℓ (or

max{x[r], ℓ} < y[r] ≤ ℓ), we obtain that (ℓ′1N,x) ∼ (ℓ′1N,y) for all ℓ
′ ∈ (ℓ , ℓ) implies (ℓ′1N,x) ∼D

(ℓ′1N,y) for all ℓ
′ ∈ (ℓ , ℓ]. Therefore (ℓ1N,x) ∼ (ℓ1N,y) since ≿D is a subrelation to ≿.

Likewise, if ℓ = ℓ, in which case it suffices to let ℓ̄ ∈ (ℓ,min{ℓ(x), ℓ(y)}), there does not exist

r ∈ N such that ℓ ≤ x[r] < min{y[r], ℓ̄} (or ℓ ≤ y[r] < min{x[r], ℓ̄}). Similarly, this can be used to

show that (ℓ′1N,x) ∼ (ℓ′1N,y) for all ℓ
′ ∈ (ℓ , ℓ̄) implies (ℓ1N,x) ∼ (ℓ1N,y) also in this subcase.

Case 3: min{ℓ(x), ℓ(y)} ≤ ℓ ≤ max{ℓ(x), ℓ(y)}. Suppose that ℓ(x) > ℓ(y) (the case ℓ(x) <

ℓ(y) is similar). We first show that (ℓ, ℓ̄)∩ (ℓ(y), ℓ(x)) = ∅. Because if there exists ℓ′ ∈ (ℓ, ℓ̄) such

that ℓ(y) < ℓ′ < ℓ(x), then, by assumption, x′ ∼ y′, where x′ = (ℓ′1N,x) and y′ = (ℓ′1N,y).

However, x′ ≻D y′ since ℓ(x′) > ℓ(y′), and thus x′ ≻ y′ since ≿D is a subrelation to ≿, leading

to a contradiction. Hence, either ℓ = ℓ = max{ℓ(x), ℓ(y)}, which allows the proof of Case 1 to be

adapted, or ℓ = ℓ̄ = min{ℓ(x), ℓ(y)}, which allows the proof of Case 2 to be adapted.

≿ satisfies Monotonicity. For any x, y ∈ X, if x > y, then x[ ] > y[ ]. Since u ∈ U is

increasing, u(x[1]) ≥ u(y[1]) and x[r] ≥ y[r] for all r ≥ 2. Hence, x ≿D y and x ≿ y since ≿D is a

subrelation to ≿.

≿ satisfies Strong Anonymity. For any π ∈ Π and x ∈ X, if y = xπ, then x[ ] = y[ ]. Hence,

x ∼D y and x ∼ y since ≿D is a subrelation to ≿.

≿ satisfies Liminf-Restricted Dominance. Consider any x, y ∈ X with xi > yi for some i ∈ N,
lim infj∈N xj > yi, and xj = yj for all j ∈ N \ {i}. Write n =

∣∣{j ∈ N|yj ≤ yi}
∣∣. There are two

cases.

Case 1: xi ≥ ℓ(x). Write n =
∣∣{j ∈ N : yj ≤ yi}

∣∣. Then x[r] = y[r] for all r < n,
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x[n] = y[n+1] > y[n] = yi, and x[r] ≥ x[r−1] = y[r] for all r > n. Hence, wu
n(x) − wu

n(y) > 0 (since

u ∈ U is increasing) and x[r] ≥ y[r] for all r > n. Therefore, x ≻D y and x ≻ y since ≿D is a

subrelation to ≿.

Case 2: xi < ℓ(x). Write m =
∣∣{j ∈ N : xj ≤ xi}

∣∣ and n =
∣∣{j ∈ N : yj ≤ yi}

∣∣. Note

that m ≥ n since xi > yi and xj = yj for all j ∈ N \ {i}. Then x[r] = y[r] for all r < n,

x[n] = min{xi, y[n+1]} > y[n] = yi, x[r] ≥ x[r−1] = y[r] for all r ∈ {n + 1, n + 2, . . . ,m}, and

x[r] = y[r] for all r > m. Hence, wu
m(x)−wu

m(y) > 0 (since u ∈ U is increasing) and x[r] = y[r] for

all r > m. Therefore, x ≻D y and x ≻ y since ≿D is a subrelation to ≿.

≿ satisfies Liminf-Restricted Finite Separability. Consider any x, y, x̃, ỹ ∈ X for which there

exists a finite subset N ⊂ N, such that:

(i) xi = x̃i < min{ℓ(x), ℓ(x̃)} for all i ∈ N ;

(ii) yi = ỹi < min{ℓ(y), ℓ(ỹ)} for all i ∈ N ;

(iii) xj = yj and x̃j = ỹj for all j ∈ N \N .

Write x̄ = maxi∈N xi, m =
∣∣{j ∈ N : xj ≤ x̄}

∣∣, m̃ =
∣∣{j ∈ N : x̃j ≤ x̄}

∣∣, and m̄ = max{m, m̃}.
Also, write ȳ = maxi∈N yi, n =

∣∣{j ∈ N : yj ≤ ȳ}
∣∣, ñ =

∣∣{j ∈ N : ỹj ≤ ȳ}
∣∣, and n̄ = max{n, ñ}.

By definition, we have x[r] = y[r] for r > m̄, so that x ≿D y if and only if wu
m̄(x) − wu

m̄(y) ≥ 0,

that is if and only if
∑

i∈N u(xi) ≥
∑

i∈N u(yi). Likewise, we have x̃[r] = ỹ[r] for r > n̄, so that

x̃ ≿D ỹ if and only if wu
m̄(x̃) − wu

m̄(ỹ) ≥ 0, that is if and only if
∑

i∈N u(x̃i) ≥
∑

i∈N u(ỹi). But

since
∑

i∈N u(xi) =
∑

i∈N u(x̃i) and
∑

i∈N u(yi) =
∑

i∈N u(ỹi), we have that x ≿D y if and only

if x̃ ≿D ỹ. Because ≿D is a subrelation to ≿, this implies that x ≿ y if and only if x̃ ≿ ỹ.

≿ satisfies Critical-Level Consistency. Consider any x ∈ X and z ∈ R. If z ≥ ℓ(x) then

x[ ] = y[ ] whenever y = (z,x); similarly, x[ ] = ỹ[ ] whenever ỹ = (z1N,x). Thus, if z ≥ ℓ(x),

x ∼D (z,x) ∼D (z1N,x). Because ≿D is a subrelation to ≿, we obtain that x ∼D (z,x) ∼D

(z1N,x). If z < ℓ(x) and y = (z,x), then there exists n =
∣∣{j ∈ N : yj ≤ z}

∣∣ such that

x[r] = y[r] for all r < n, x[n] = y[n+1] > y[n] = z, and x[r] ≥ x[r−1] = y[r] for all r > n. Hence,

wu
n(x) − wu

n(y) > 0 (since u ∈ U is increasing) and x[r] ≥ y[r] for all r > n. Therefore, x ≻D y

and x ≻ y since ≿D is a subrelation to ≿. If z < ℓ(x) and ỹ = (z1N,x), ℓ(ỹ) < ℓ(x) so that

x ≻D (z1N,x) and x ≻ (z1N,x) since ≿D is a subrelation to ≿.

Lemma 7. Let a, b ∈ R be such that a < b. If u ∈ U , then there exist 0 < Γ < Λ satisfying that,

for any c, d ∈ R such that a ≤ c < d ≤ b,

Γ|d− c| < |u(d)− u(c)| < Λ|d− c| .

Proof. Assume that u ∈ U ; thus, u : R → R is continuous, increasing and finitely non-concave.

Let a, b ∈ R be such that a < b. Consider any c, d ∈ R such that a ≤ c < d ≤ b and let e, f ∈ R
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be such that e < a and f > b. Because u is finitely non-concave, there exists Θ > 0 such that[
u(d)−u(c)

d−c

/
u(a)−u(e)

a−e

]
< Θ and

[
u(f)−u(b)

f−b

/
u(d)−u(c)

d−c

]
< Θ .

Write
Γ = 1

Θ
u(f)−u(g)

f−b and Λ = Θu(a)−u(e)
a−e .

Given that u is increasing, Γ > 0. Furthermore,[
u(d)−u(c)

d−c

/
u(a)−u(e)

a−e

]
< Θ implies that u(d)− u(c) < Λ(d− c) ,

which is equivalent to |u(d)− u(c)| < Λ|d− c|. And[
u(f)−u(b)

f−b

/
u(d)−u(c)

d−c

]
< Θ implies that u(d)− u(c) > Γ(d− c)

which is equivalent to |u(d)− u(c)| > Γ|d− c|.

Lemma 8. For any x, y ∈ X and any π ∈ Π, if
∑∞

i=1 |xπ(i) − yi| < +∞, then

∞∑
r=1

∣∣x[r] − y[r]
∣∣ ≤ ∞∑

i=1

|xπ(i) − yi| .

Proof. Step 1. We show that for any n ∈ N \ {1}, for any (x1, . . . , xn), (y1, . . . , yn) ∈ Rn
+ with

x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn, and for any permutations π1 and π2 on {1, . . . , n},
n∑

i=1

|xi − yi| ≤
n∑

i=1

|xπ1(i) − yπ2(i)| . (2)

We begin by showing that (2) holds if n = 2. Let (x1, x2), (y1, y2) ∈ R2
+ with x1 ≤ x2 and

y1 ≤ y2. Also, let π1 and π2 be permutations on {1, 2}. Without loss of generality, we assume π1

is the identity mapping. Thus, we show that

|x1 − y1|+ |x2 − y2| ≤ |x1 − y2|+ |x2 − y1| . (3)

If x1 = x2 or y1 = y2, then (3) holds with equality. Suppose that x1 < x2 and y1 < y2. We

distinguish two cases. First, suppose that x1 ≤ y1 < y2 ≤ x2. Then,

|x1 − y1|+ |x2 − y2| < |x1 − y2|+ |x2 − y2| < |x1 − y2|+ |x2 − y1|.

Thus, (3) holds. Next, suppose that x1 ≤ y1 and x2 ≤ y2. Then,

|x1 − y1|+ |x2 − y2| = |y1 − x1 + y2 − x2|

≤ |y1 − x2|+ |y2 − x1| = |x1 − y2|+ |x2 − y1|.
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Thus, (3) holds.

We now consider the case where n > 2. Let (x1, . . . , xn), (y1, . . . , yn) ∈ Rn
+ with x1 ≤ · · · ≤

xn and y1 ≤ · · · ≤ yn. Consider any permutations π1 and π2 on {1, . . . , n}. Again, without

loss of generality, we assume π1 is the identity mapping. For each k ∈ {0, 1, . . . , n}, we define

(yk1 , . . . , y
k
n) ∈ Rn

+ as follows. If k = 0, (y01, . . . , y
0
n) = (yπ2(1), . . . , yπ2(n)). For each k ∈ {1, . . . , n},

yki =


yk if i = k

yk−1
k if i = min{j ∈ {k, . . . , n} : yk−1

j = yk}

yk−1
i otherwise.

Note that (yn1 , . . . , y
n
n) = (y1, . . . , yn). Further, for each k ∈ {1, . . . , n}, either (yk1 , . . . , y

k
n) =

(yk−1
1 , . . . , yk−1

n ) or (yk1 , . . . , y
k
n) is constructed by exchanging two components of (yk−1

1 , . . . , yk−1
n )

so as to make them rank-ordered. Thus, from (3), it follows that for each k ∈ {1, . . . , n},
n∑

i=1

|xi − yki | ≤
n∑

i=1

|xi − yk−1
i | .

Thus, we obtain
n∑

i=1

|xi − yi| ≤
n∑

i=1

|xi − yπ2(i)| .

Step 2. Let x, y ∈ X and π ∈ Π. Assume
∑∞

i=1 |xπ(i) − yi| < +∞. We show that ℓ(x) = ℓ(y).

By way of contradiction, suppose ℓ(x) ̸= ℓ(y). Without loss of generality, we assume ℓ(x) > ℓ(y).

Let ε = (ℓ(x)− ℓ(y))/2. From the definition of ℓ(x), there exists N ∈ N such that, for all n > N ,

xn > ℓ(x)− ε. We define M ⊆ N by M = {n ∈ N : yn < ℓ(y) + ε. From the definition of ℓ(y), it

follows that |M | = +∞. Let z = xπ and define N̄ = max{π(n) ∈ N : n ∈ {1, . . . , N}}. Then, for
all n > N̄ , zn > ℓ(x)− ε. Letting M̄ = {n ∈ M : n ≥ N̄}, we obtain

∑
i∈M̄ |zi− yi| = +∞. Thus,

∞∑
i=1

|xπ(i) − yi| ≥
∑
i∈M̄

|zi − yi| = +∞ .

This is a contradiction since
∑∞

i=1 |xπ(i) − yi| < +∞.

Step 3. Let x, y ∈ X and π ∈ Π. Suppose that
∑∞

i=1 |xπ(i) − yi| < +∞. It follows from Step

2 that ℓ(x) = ℓ(y). We define x̃ ∈ X by, for each i ∈ N,

x̃i =

xπ(i) if xπ(i) < ℓ(x),

ℓ(x) if xπ(i) ≥ ℓ(x).
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Analogously, define ỹ ∈ X by, for each i ∈ N,

ỹi =

yi if yi < ℓ(y),

ℓ(y) if yi ≥ ℓ(y).

Note that for all i ∈ N, |x̃i − ỹi| ≤ |xπ(i) − yi|. Thus,
∞∑
i=1

|x̃i − ỹi| ≤
∞∑
i=1

|xπ(i) − yi| . (4)

Note that for any n ∈ N, there exists N ∈ N with N > n such that (x̃1, . . . , x̃N ) and (ỹ1, . . . , ỹN )

contain all the components of (x[1], . . . , x[n]) and (y[1], . . . , y[n]), respectively. Hence, by (2),

n∑
i=1

∣∣x[i] − y[i]
∣∣ ≤ N∑

i=1

|x̃i − ỹi| ≤
∞∑
i=1

|x̃i − ỹi| .

Thus, from (4), the sequence {Dn}n∈N in R+ defined by Dn =
∑n

i=1

∣∣x[i] − y[i]
∣∣ is bounded above.

Since {Dn}n∈N is non-decreasing, it is convergent and we obtain

lim
n→+∞

Dn =
∞∑
i=1

∣∣x[i] − y[i]
∣∣ ≤ ∞∑

i=1

|xπ(i) − yi| .

Thus, the proof is completed.

A.2 Proof of Lemma 1

Let the Strongly Anonymous (Generalized) Utilitarian swr ≿U be associated with the transfor-

mation function u ∈ U .

Step 1: For any x, y ∈ X, if x ≿U y, then (x[ ],y[ ]) ∈ D and limn→∞
(
wu
n(x)−wu

n(y)
)
≥ 0. By

Definition 2, there exists ∆ ∈ R+∪{∞} such that, for all π ∈ Π, limn→∞
(
vun(x[π])−vun(y[π])

)
= ∆.

In particular, limn→∞
(
vun(x[ ])− vun(y[ )

)
= limn→∞

(
wu
n(x)− wu

n(y)
)
= ∆ ≥ 0. Suppose by way

of contradiction that (x[ ],y[ ]) /∈ D. This implies that

lim
n→∞

∑
r≤n:y[r]>x[r]

(
y[r] − x[r]

)
= +∞.

Let a = min{inf(x[ ]), inf(y[ ])} and b = max{sup(x[ ]), sup(y[ ])}. By Lemma 7, there exists Γ > 0

satisfying that for any c, d ∈ R such that a ≤ c < d ≤ b, Γ|d − c| < |u(d) − u(c)|. Hence, for all

n ∈ N,
Γ

∑
r≤n:y[r]>x[r]

(
y[r] − x[r]

)
<

∑
i≤n:y[r]>x[r]

(
u(y[r])− u(x[r])

)
,

so that

lim
n→∞

∑
r≤n:y[r]>x[r]

(
u(y[r])− u(x[r])

)
= +∞ .
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There exists ε > 0 and π ∈ Π which alternates between selecting elements from {r ∈ N : y[r] > x[r]}
and {r ∈ N : x[r] > y[r]} and which always selects a sufficient number of elements of {r ∈ N :

y[r] > x[r]} before selecting additional elements from {r ∈ N : x[r] > y[r]} such that, for all n ∈ N,
vun(x[π])− vun(y[π]) ≤ −ε. This contradicts that ∆ ∈ R+ ∪ {∞}.

Step 2: For any x, y ∈ X, if (x[ ],y[ ]) ∈ D and limn→∞ (wu
n(x)− wu

n(y)) ≥ 0, then x ≿U y.

Since (x[ ],y[ ]) ∈ D, there exists δ ∈ R+ such that
∑

i:y[r]>x[r]

(
y[r] − x[r]

)
= δ. By Lemma 7, the

sum
∑

i≤n:y[r]>x[r]

(
u(y[r]) − u(x[r])

)
is bounded above by Λδ, and it is by definition increasing.

Hence, there exists ∆− ∈ R− such that
∑

i:y[r]>x[r]

(
u(x[r])− u(y[r])

)
= ∆−.

Write ∆ = limn→∞
(
wu
n(x)−wu

n(y)
)
=

∑∞
r=1

(
u(x[r])−u(y[r])

)
. If ∆ ∈ R+, then we have ∆+ =∑

i≤n:x[i]>y[i]

(
u(x[i])−u(y[i])

)
= ∆−∆− < +∞. Hence,

∑∞
r=1

∣∣u(x[r])−u(y[r])
∣∣ = ∆+−∆− < +∞.

We obtain x ≿U y since absolute convergence implies unconditional convergence. Similarly, if

∆ = +∞, then ∆+ = +∞ and limn→∞
(
vun(x[π]) − vun(y[π])

)
= +∞ for all π ∈ Π, thereby

obtaining x ≿U y also in this case.

A.3 Completing the proof of Theorem 1

The proof of Theorem 1 is completed by means of the following result.

Proposition 5. The Strongly Anonymous (Generalized) Utilitarian swr ≿U is regular. Consider

any swr ≿. If there exists u ∈ U such that the Strongly Anonymous (Generalized) Utilitarian swr

≿U associated with u is a subrelation to ≿, then ≿ satisfies Limited Inequity, Liminf-Restricted

Dominance, Liminf-Restricted Finite Separability, and Critical-Level Consistency.

Proof. Let u ∈ U , and let ≿ be a swr to which the Strongly Anonymous Utilitarian swr ≿U

associated with u is subrelation. By Observation 2, the Strongly Anonymous Utilitarian Domi-

nance swr ≿D associated with u is a subrelation to ≿U . Hence, since ≿U associated with u is a

subrelation to the swr ≿, also ≿D associated with u is a subrelation to ≿. So, by Proposition 4,

≿ satisfies Finite Completeness, Restricted Continuity, Monotonicity, Strong Anonymity, Liminf-

Restricted Dominance, Liminf-Restricted Finite Separability, and Critical-Level Consistency. It

remains to be shown that ≿U satisfies Weak Continuity and that ≿ satisfies Limited Inequity.

Step 1: ≿U satisfies Weak Continuity. Consider any y ∈ X. Let {xk}k∈N be a sequence in

{x ∈ X : x ≿U y}, and assume that {xk}k∈N converges to x∗ in d1. We show that x∗ ≿U y,

which means that {x ∈ X : x ≿U y} is closed in (X, d1). Since {xk}k∈N converges to x∗ in d1, it

follows from Lemma 8 that

lim
k→+∞

∞∑
r=1

∣∣∣xk[r] − x∗[r]

∣∣∣ = 0. (5)

Because {xk}k∈N are bounded sequences that converge to x∗ in d1, then a = infk∈N{inft xk
t }

and b = supk∈N{supt xk
t } are well-defined finite numbers. By Lemma 7, there exists Λ ∈ R++
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such that for all z, z′ ∈ [a, b]:

|u(z)− u(z′)| ≤ Λ|z − z′| . (6)

Let ε ∈ (0, Λ). By (5), there exists K ∈ N such that

∞∑
r=1

∣∣∣xK[r] − x∗[r]

∣∣∣ < ε

2Λ
.

From (6), we obtain

∞∑
r=1

∣∣∣u(xK[r])− u(x∗[r])
∣∣∣ ≤ Λ

∞∑
i=1

∣∣∣xK[r] − x∗[r]

∣∣∣ < ε

2
. (7)

On the other hand, since xK ≿U y, it follows that

lim
n→+∞

n∑
r=1

(
u(xK[r])− u(y[r])

)
≥ 0 .

Thus, there exists N ∈ N such that for all n > N ,

n∑
r=1

(
u(xK[r])− u(y[r])

)
≥ −ε

2
. (8)

Thus, for all n > N , we obtain by (7) and (8) that

n∑
r=1

(
u(x∗[r])− u(y[r])

)
=

n∑
r=1

(
u(x∗[r])− u(xK[r])

)
+

n∑
r=1

(
u(xK[r])− u(y[r])

)
≥ −

n∑
r=1

∣∣∣u(x∗[r])− u(xK[r])
∣∣∣+ n∑

r=1

(
u(xK[r])− u(y[r])

)
≥ −

∞∑
r=1

∣∣∣u(x∗[r])− u(xK[r])
∣∣∣+ n∑

r=1

(
u(xK[r])− u(y[r])

)
> −ε .

Since ε ∈ (0,Λ) was chosen arbitrarily, we obtain

lim inf
n→+∞

n∑
r=1

(
u(x∗[r])− u(y[r])

)
= lim inf

n→+∞

(
vun(x)

∗
[ ] − vun(y)[ ]

)
= lim inf

n→+∞

(
wu
n(x

∗)− wu
n(y)

)
≥ 0 .

Note also that, for each k ∈ N and each r ∈ N, x⋆[i] + |xk[r] − x⋆[r]| ≥ xk[r] ≥ x⋆[r] − |xk[r] − x⋆[r]| and
y[r] ≥ y[r] − |xk[r] − x⋆[r]|. Hence, max{xk[r], y[r]} ≥ max{x⋆[r], y[r]} − |xk[r] − x⋆[r]| and max{xk[r], y[r]} −
xk[r] ≥ max{x⋆[r], y[r]}−2|xk[r]−x⋆[r]| for each k ∈ N and each t ∈ N. We obtain that for each N ∈ N
and k ∈ N,

N∑
r=1

[
max{xk[r], y[r]} − xk[r]

]
≥

N∑
r=1

[
max{x⋆[r], y[r]} − x⋆[r]

]
− 2

N∑
r=1

|xk[r] − x⋆[r]| .
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Because {xk}k∈N are bounded sequences that converge to x∗ in dS1 , there exists K ∈ N such that∑∞
r=1 |xK[r] − x⋆[r]| is finite. This implies that∑

r:y[r]>x[r]

(y[r] − x[r]) =
∞∑
r=1

[
max{x⋆[i], y[r]} − x⋆[r]

]
= δ

where δ ∈ R+. Hence (x[ ]
∗,y[ ]) ∈ D.

Finally, the fact that (x[ ]
∗,y[ ]) ∈ D and lim infn→+∞

(
wu
n(x

∗)−wu
n(y)

)
≥ 0 imply that there

exists ∆ ∈ R+ ∪ {∞} such that limn→∞
(
wU
n (x

∗)− wU
n (y)

)
= ∆. Thus, x∗ ≿U y follows. The

proof that {x ∈ X : y ≿U x} is closed in (X, d1) is analogous.

Step 2: Any swr ≿ to which ≿U is a subrelation satisfies Limited Inequity. We first show

that ≿U associated with u satisfies Limited Inequity. Since u ∈ U , u is a finitely non-concave

function. Hence, there exists Γ ∈ R++ such that:

Γ >
[
u(z4)−u(z3)

z4−z3

/
u(z2)−u(z1)

z2−z1

]
for all z1 < z2 ≤ z3 < z4. Consider any x, y ∈ X with yi < xi ≤ xj < yj for some i, j ∈ N,
xk = yk for all k ∈ N \ {i, j}, and yj − xj = (1/Γ) (xi − yi). There are three cases:

1. If yj < ℓ(y), then writing n =
∣∣{k ∈ N : yk ≤ yj}

∣∣, x[k] = y[k] for all k > n and

vun(x[ ])− vun(y[ ]) = u(xi) + u(xj)− u(yi)− u(yj)

= u(xi)−u(yi)
Γ

[
Γ− u(yj)−u(xj)

yj−xj

/
u(xi)−u(yi)

xi−yi

]
> 0

because u is increasing. Hence, x ≿D y and x ≿U y since ≿D is a subrelation to ≿U .

2. If xj < ℓ(y) ≤ yj , then, for any n >
∣∣{k ∈ N : xk ≤ xj}

∣∣, y[n] ≥ x[n] > xj and vun(x[ ]) −
vun(y[ ]) = u(xi) + u(xj)− u(yi)− u(y[n]). Hence, since y[n] is non-decreasing and converges

to ℓ(y), we have, for all π ∈ Π,

lim
n→∞

(
vun(x[π])− vun(y[π])

)
= u(xi) + u(xj)− u(yi)− u(ℓ(y))

≥ u(xi) + u(xj)− u(yi)− u(yj)

= u(xi)−u(yi)
Γ

[
Γ− u(yj)−u(xj)

yj−xj

/
u(xi)−u(yi)

xi−yi

]
> 0

because u is increasing, implying that x ≿U y.

3. If ℓ(y) ≤ xj , then, for all π ∈ Π,

lim
n→∞

(
vun(x[π])− vun(y[π])

)
= u

(
min{xi, ℓ(y)}

)
− u

(
min{yi, ℓ(y)}

)
≥ 0

because xi > yi and u is increasing, implying that x ≿U y.

Hence, 1/Γ is in the set E determined for ≿U , implying that ≿U satisfies Limited Inequity.
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However, any swr ≿ to which ≿U is a subrelation has also the property that x ≿ y for any

x, y ∈ X as considered above. Hence, 1/Γ is also in the set E determined for ≿, implying that

also ≿ satisfied Limited Inequity.

A.4 Proof of Lemma 2

Step 1: Representing a complete swr ≿ℓ
n on (−∞, ℓ]n. Let ℓ ∈ R and n ∈ N with n ≥ 3. We

define the binary relation ≿ℓ
n on (−∞, ℓ]n as follows. For all (x1, . . . , xn), (y1, . . . , yn) ∈ (−∞, ℓ]n,

(x1, . . . , xn) ≿
ℓ
n (y1, . . . , yn) if and only if xnz ≿ ynz , (9)

where z = ℓ1N. Since ≿ satisfies Finite Completeness and Weak Continuity, ≿ℓ
n is a continuous

complete preorder on RN
+ . Since ≿ satisfies Strong Anonymity and Liminf-Restricted Finite

Separability, we have that ≿ℓ
n satisfies the independence condition of Debreu (1960). Furthermore,

each coordinate of Rn
+ is essential in the sense of Debreu (1960) because ≿ satisfies Liminf-

Restricted Dominance. Thus, it follows from Theorem 3 in Debreu (1960) that there exist n

real-valued functions u1ℓn , . . . , unℓn on R+ such that, for all (x1, . . . , xn), (y1, . . . , yn) ∈ (−∞, ℓ]n,

(x1, · · · , xn) ≿ℓ
n (y1, · · · , yn) if and only if

n∑
i=1

uiℓn (xi) ≥
n∑

i=1

uiℓn (yi) .

Also, the functions u1ℓn , . . . , unℓn are determined up to a common positive affine transformation.

Since ≿ℓ
n is a continuous complete pre-order on Rn

+ and that ≿ satisfies Strong Anonymity

and Liminf-Restricted Dominance, the functions u1ℓn , . . . , unℓn must be the same continuous and

increasing function. By defining uℓn = uiℓn for all i ∈ {1, . . . , n}, we obtain the following representa-

tion of ≿ℓ
n on (−∞, ℓ]n, for ℓ ∈ R and n ∈ N with n ≥ 3: There exists a continuous and increasing

real-valued function uℓn on (−∞, ℓ] such that, for all (x1, . . . , xn), (y1, . . . , yn) ∈ (−∞, ℓ]n,

(x1, · · · , xn) ≿ℓ
n (y1, · · · , yn) if and only if

n∑
i=1

uℓn(xi) ≥
n∑

i=1

uℓn(yi) . (10)

Note that uℓn is determined up to a positive affine transformation.

Step 2: Link between the complete swrs ≿ℓ
n for different n ∈ N. Fix ℓ ∈ R and write uℓ = uℓ3.

We show that uℓ has the property, for all n ≥ 3 it is the case that, for all x, y ∈ Xℓ
n,

x ≿ y if and only if
n∑

i=1

uℓ(xi) ≥
n∑

i=1

uℓ(yi) . (11)

It is straightforward to prove this if n = 3. Thus, let n > 3. Then, it follows from (9) and
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(10) that for any x, y ∈ Xℓ
3,

(x1, x2, x3) ≿
ℓ
3 (y1, y2, y3) ⇔ x ≿ y ⇔ (x1, x2, x2, ℓ, . . . , ℓ) ≿

ℓ
n (y1, y2, y3, ℓ, . . . , ℓ)

⇔
3∑

i=1

uℓn(xi) ≥
3∑

i=1

uℓn(yi).

Recall that uℓ is determined up to a positive affine transformation. Thus, there exist aℓn ∈ R++

and bℓn ∈ R such that uℓn = aℓnu
ℓ + bℓn. Thus, it follows from (9) and (10) that for all x, y ∈ Xℓ

n,

x ≿ y ⇔ (x1, . . . , xn) ≿
ℓ
n (y1, . . . , yn) ⇔

n∑
i=1

uℓn(xi) ≥
n∑

i=1

uℓn(yi)

⇔
n∑

i=1

aℓnu
ℓ(xi) + nbℓn ≥

n∑
i=1

aℓnu
ℓ(yi) + nbℓn ⇔

n∑
i=1

uℓ(xi) ≥
n∑

i=1

uℓ(yi) .

Let n = 2 and ℓ ∈ R and assume that x, y ∈ Xℓ
2. Since x, y ∈ Xℓ

3, (9) and (10) imply that

x ≿ y ⇔
3∑

i=1

uℓ(xi) ≥
3∑

i=1

uℓ(yi) ⇔
2∑

i=1

uℓ(xi) ≥
2∑

i=1

uℓ(yi) .

Likewise, for n = 1, we trivially have that x ≿ y is equivalent to uℓ(x1) ≥ uℓ(y1) for x, y ∈ Xℓ
1

because uℓ is increasing and ≿ satisfies Liminf-Restricted Dominance.

Step 3: Extension to all ℓ ∈ R. We show that there exists a continuous and increasing function

u : R+ → R+ such that, for all ℓ ∈ R, all n ∈ N, and all x, y ∈ Xℓ
n,

x ≿ y if and only if

n∑
i=1

u(xi) ≥
n∑

i=1

u(yi) . (12)

From Step 2, we know that, for any ℓ ∈ R, there exists a continuous and increasing function

uℓ : (−∞, ℓ] → R such that (11) holds for all n ∈ N and for all x, y ∈ Xℓ
n. Since, for each ℓ ∈ R,

uℓ is unique up to a positive affine transformation, we can without loss of generality normalize

these functions for all ℓ ≥ 1 so that uℓ(0) = 0 and uℓ(1) = 1.

We show first that uℓ = uℓ
′
on (−∞, ℓ′] for all ℓ, ℓ′ ∈ R satisfying ℓ > ℓ′ ≥ 1. Let ℓ >

ℓ′ ≥ 1 and consider any x, y ∈ Xℓ
3 and x′, y′ ∈ Xℓ′

3 such that (x1, x2, x3) = (x′1, x
′
2, x

′
3) and

(y1, y2, y3) = (y′1, y
′
2, y

′
3), implying that none of the three first components exceeds ℓ′. Since ≿

satisfies Liminf-Restricted Finite Separability:

x ≿ y ⇔ x′ ≿ y′ ⇔
3∑

i=1

uℓ
′
(xi) ≥

3∑
i=1

uℓ
′
(yi) .

Because x, y ∈ Xℓ
3 and uℓ in representation (11) is unique up to an affine transformation, there

exists aℓ ∈ R++ and bℓ such that uℓ = aℓuℓ
′
+ bℓ on (−∞, 1]. On the other hand, since by

assumption uℓ and uℓ
′
are normalized with uℓ(0) = u1(0) = 0 and uℓ(1) = uℓ

′
(1) = 1, we obtain
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bℓ = 0 and aℓ = 1 so that uℓ(x) = uℓ
′
(x) for all x ∈ (−∞, ℓ′].

Likewise, we obtain that, for all ℓ ∈ R with ℓ < 1, all n ∈ N, and all x, y ∈ Xℓ
n,

x ≿ y ⇔
n∑

i=1

u1(xi) ≥
n∑

i=1

u1(yi) . (13)

Define the function u : R → R as follows:

for all z ≤ 1, u(z) = u1(z).

for all z > 1, u(z) = uℓ(z) for some ℓ ≥ z.

Since uℓ = uℓ
′
on (−∞, ℓ′] for all ℓ, ℓ′ ∈ R satisfying ℓ > ℓ′ ≥ 1, u is a well-defined real-valued

function on R. Also, it follows that, for all ℓ ∈ R and all z ∈ (−∞, ℓ], u(z) = uℓ(z). Thus, u is

continuous and increasing on R since, for all ℓ ∈ R, uℓ in continuous and increasing on (−∞, ℓ].

Step 4: u is finitely non-concave. Since ≿ satisfies Limited Inequity, there exists ε > 0 such

that, for all z1 < z2 ≤ z3 < z4 with z4−z3 = ε(z2−z1), we have that x ≿ y if x and y are defined

by x1 = z2, x2 = z3, y1 = z1, y2 = z4 and xi = yi = z4 for all i ≥ 3. Because x, y ∈ X2
z4 , Step 3

implies that u(z2) + u(z3) ≥ u(z1) + u(z4). This can be written:

εu(z4)−u(z3)
z4−z3

= u(z4)−u(z3)
z2−z1

≤ u(z2)−u(z1)
z2−z1

.

So, for all z1 < z2 ≤ z3 < z4 such that z4 − z3 = ε(z2 − z1):

1
ε ≥ u(z4)−u(z3)

z4−z3

/
u(z2)−u(z1)

z2−z1
.

Writing Xε = {(z1, z2, z3, z4) ∈ R4|z1 < z2 ≤ z3 < z4 and z4 − z3 = ε(z2 − z1)} and

Gu(ε) = sup
(z1,z2,z3,z4)∈Xε

u(x4)−u(x3)
x4−x3

/u(x2)−u(x1)
x2−x1

,

Chateauneuf, Cohen, and Meilijson (2005, Lemma 1) show that Gu = Gu(ε) for any ε ∈ R++.

Our results above imply that Gu(ε) < 1/ε. Hence, Gu < +∞ and u is finitely non-concave.

A.5 Proof Proposition 2

Let the Limit of Rank-Discounted Utilitarian swr≿R, the Strongly Anonymous Utilitarian Cesàro

Summation swr ≿S , the Strongly Anonymous Utilitarian Catching-Up swr ≿C , and the Strongly

Anonymous Utilitarian swr ≿U all be associated with u.

Proof of part (i): ≿R and ≿S are regular swrs. By Observation 3 and Proposition 2, ≿R

and ≿S satisfy Finite Completeness, Restricted Continuity, Monotonicity, and Strong Anonymity.

From Definition 4, it remains to be shown that ≿R and ≿S satisfy Weak Continuity.

≿S satisfies Weak Continuity. Consider any y ∈ X. Let {xk}k∈N be a sequence in {x ∈ X :
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x ≿S y}, and assume that {xk}k∈N converges to x∗ in d1. We show that x∗ ≿S y, which means

that {x ∈ X : x ≿S y} is closed in (X, d1). For any xk
[ ], x

∗
[ ] ∈ X+, we obtain

lim
n→+∞

n∑
r=1

n− r + 1

n

∣∣∣u(xk[r])− u(x∗[r])
∣∣∣ ≤ ∞∑

r=1

∣∣∣u(xk[r])− u(x∗[r])
∣∣∣ .

Thus, applying the same argument as that used in Step 1 of the proof of Proposition 5, it follows

from the local Lipschitz continuity of u (Lemma 7) and the convergence of {xk}k∈N that there

exists K ∈ N such that

lim
n→+∞

n∑
r=1

n− r + 1

n

∣∣∣u(xK[r])− u(x∗[r])
∣∣∣ < ε

2
, (14)

where ε ∈ (0, Λ) and Λ ∈ R++ are obtained in Lemma 7. Furthermore, since

lim inf
n→+∞

n∑
r=1

n− r + 1

n

(
u(xK[r])− u(y[r])

)
≥ 0 ,

follows from the fact that xK ≿S y, there exists N ∈ N such that for all n > N ,

n∑
r=1

n− r + 1

n

(
u(xK[r])− u(y[r])

)
≥ −ε

2
. (15)

Thus, employing an argument analogous to that used in Step 1 of the proof of Proposition 5, and

using (14) and (15) instead of (7) and (8), it follows that, for all n > N ,

n∑
r=1

n− r + 1

n

(
u(x∗[r])− u(y[r])

)
> −ε .

Hence, since ε ∈ (0, Λ) was chosen arbitrarily, we obtain

lim inf
n→+∞

n∑
r=1

n− r + 1

n

(
u(x∗[r])− u(y[r])

)
= lim inf

n→+∞

(
σu
n(x

∗)− σu
n(y)

)
≥ 0 .

Thus, x∗ ≿S y follows. The proof that {x ∈ X : y ≿S x} is closed in (X, d1) is analogous.

≿R satisfies Weak Continuity. Consider any y ∈ X. Let {xk}k∈N be a sequence in {x ∈ X :

x ≿R y}, and assume that {xk}k∈N converges to x∗ in d1. We show that x∗ ≿R y, which means

that {x ∈ X : x ≿R y} is closed in (X, d1). For any xk
[ ], x

∗
[ ] ∈ X+, we obtain, for all β ∈ (0, 1),

∞∑
r=1

βr−1
∣∣∣u(xk[r])− u(x∗[r])

∣∣∣ ≤ ∞∑
r=1

∣∣∣u(xk[r])− u(x∗[r])
∣∣∣ .

Thus, applying the same argument as that used in Step 1 of the proof of Proposition 5, it follows

from the local Lipschitz continuity of u (Lemma 7) and the convergence of {xk}k∈N that there

exists K ∈ N such that for all β ∈ (0, 1),

∞∑
r=1

βr−1
∣∣∣u(xK[r])− u(x∗[r])

∣∣∣ < ε

2
, (16)
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where ε ∈ (0, Λ) and Λ ∈ R++ are obtained in Lemma 7. Furthermore, since

lim inf
β→1−

(
ρuβ(x

K)− ρuβ(y)
)
≥ 0

follows from the fact that xK ≿R y, there exists β∗ ∈ (0, 1) such that for all β ∈ (β∗, 1),

ρuβ(x
K)− ρuβ(y) ≥ −ε

2
. (17)

Thus, employing an argument analogous to that used in Step 1 of the proof of Proposition 5, and

using (16) and (17) instead of (7) and (8), it follows that, for all β ∈ (β∗, 1),

ρuβ(x
∗)− ρuβ(y) = ρuβ(x

∗)− ρuβ(x
K) + ρuβ(x

K)− ρuβ(y)

=
∞∑
r=1

βr−1
(
u(x∗[r])− u(xK[r])

)
+ ρuβ(x

K)− ρuβ(y)

≥ −
∞∑
r=1

βr−1
∣∣∣u(x∗[r])− u(xK[r])

∣∣∣+ ρuβ(x
K)− ρuβ(y)

> −ε.

Hence, since ε ∈ (0, Λ) was chosen arbitrarily, we obtain

lim inf
β→1−

(
ρuβ(x

∗)− ρuβ(y)
)
≥ 0 .

Thus, x∗ ≿R y follows. The proof that {x ∈ X : y ≿R x} is closed in (X, d1) is analogous.

Proof of part (iii): ≿U is a subrelation to ≿C , ≿R, and ≿S. In view of Theorem 1 it suffices to

show that≿C , ≿R, and≿S are regular and satisfy Limited Inequity, Liminf-Restricted Dominance,

Liminf-Restricted Finite Separability, and Critical-Level Consistency. In the case of ≿C , this

follows directly from Proposition 1. It follows from part (i) that ≿R and ≿S are regular and, by

Observation 3 and Proposition 2, satisfy Liminf-Restricted Dominance, Liminf-Restricted Finite

Separability, and Critical-Level Consistency. Hence, it remains to be shown that ≿R and ≿S

satisfy Limited Inequity. This proof is omitted because it is similar to the proof that ≿U satisfies

this axiom in Step 2 of the proof Proposition 5.

Proof of part (ii): ≿S weakly extends ≿C . In view of Proposition 1 and the proof of part (iii)

it suffices to show that ≿S satisfies Restricted Tail Continuity. This proof is omitted because it

is similar to the proof that ≿C satisfies this axiom in part 2 of the proof Proposition 1.

Proof of part (ii): ≿R weakly extends ≿S. It follows from Jonsson and Voorneveld (2018,

Lemma 1) that, for any x, y ∈ X, lim infn→+∞
(
σu
n(x) − σu

n(y)
)
≤ lim infβ→1−

(
ρuβ(x) − ρuβ(y)

)
.

Thus, x ≿S y implies x ≿R y, showing that ≿R weakly extends ≿S .
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A.6 Proof of Lemma 6

Step 1: Existence of a maximum for vū. The Ramsey model, as described in Section 5, satisfies

Assumptions 1 and 2 of Brock (1970). It therefore follows from Theorem 1 of Brock (1970) that,

for any k ∈ (0, k∗], there exists a feasible x̂ from k such that lim supn→∞
(
vūn(x̂) − vūn(x)

)
≥ 0

for all feasible x from k, where x̂ = x∗1N if k = k∗. Recall that vū : X → R− ∪ {−∞} where,

for all x ∈ X, vū(x) = limn→∞ vūn(x) is well-defined (it may be −∞) and always takes a non-

positive value; indeed it is an infinite sum of non-positive real numbers. Furthermore, since xξ(k)

is feasible and satisfies vū(xξ(k)) > −∞, it follows that vū(x̂) ≥ vū(xξ(k)) > −∞. Therefore,

Theorem 1 of Brock (1970) implies that there exists a feasible x̂ from k such that vū(x̂) ≥ vū(x)

for all feasible x from k, where x̂ = x∗1N if k = k∗.

Step 2: If a wellbeing stream x̂ is maximum for vū, then k̂i ≤ k∗ for all i ∈ N. By definition,

k̂1 = k ≤ k∗. For n ≥ 2, by way of contradiction, suppose k̂n > k∗ and k̂i ≤ k∗ for i ∈
{1, . . . , n − 1}. Then x′ defined by x′i = x̂i for i ∈ {1, . . . , n − 2}, x′n−1 = f(k̂n−1) − k∗ >

f(k̂n−1) − k̂n = x̂n−1, and x′i = x∗ for i ≥ n is feasible from k since k′n = f(k̂n−1) − x′n−1 = k∗.

Since x̂n−1 < x′n−1 ≤ x∗ and x′i = x̂i for i ∈ {1, . . . , n−2}, it follows that
∑n−1

i=1

(
ū(x′i)−ū(x̂i)

)
> 0.

Furthermore,
∑∞

i=n

(
ū(x′i)− ū(x̂i)

)
= −

∑∞
i=n ū(x̂i) ≥ 0. Hence vū(x′) > vū(x̂), which contradicts

that vū(x̂) ≥ vū(x) for all feasible x from k.

Step 3: If a wellbeing stream x̂ is maximum for vū, then x̂ ∈ X∗(k). By way of contradiction,

suppose that x̂ /∈ X∗(k). Note that ℓ(x̂) = x∗ since ℓ(x̂) < x∗ would contradict vū(x̂) > −∞
and ℓ(x̂) > x∗ would contradict Lemma 5. Hence, x̂i > x∗ for some i ∈ N. Since no stream

x > x∗1N is feasible from k ≤ k∗, there exists i′ such that x̂i′ < x∗. Furthermore, because f is

increasing, there exists ε such that x′ defined as follows is feasible from k: x′i = x∗ for all i ∈ N
such that x̂i ≥ x∗, x′i′ = x̂i′ + ε ≤ x∗, and x′j = x̂j for all other j. By construction, x′ ∈ X∗(k)

and vū(x′) > vū(x̂). This contradicts that x̂ is maximum for vū.

Step 4: If a wellbeing stream x̂ is maximum for vū, then x̂ is non-decreasing. By way of

contradiction, suppose that x̂n > x̂n+1 for some n ∈ N. By Step 2, k̂n ≤ k∗, while, by Step 1,

k̂n = k∗ implies that x̂i = x∗ for all i ≥ n, contradicting x̂n > x̂n+1. Hence, k̂n < k∗. By Step 3,

x̂n+1 < x̂n ≤ x∗. There are two subcases:

(i) If f(k̂n)− x̂n+1 > k∗, then x′ with x′i = x̂i for i ∈ {1, . . . , n− 1}, x′n = f(k̂n)− k∗ > x̂n+1,

and x′i = x∗ for i ≥ n + 1 is feasible from k. Since min{x∗, x′n} > x̂n+1, it follows that

ū(x′n) > ū(x̂n+1), which implies
∑n−1

i=1

(
ū(x′i) − ū(x̂i)

)
= 0 and

∑∞
i=n

(
ū(x′i) − ū(x̂i)

)
> 0.

Hence, vū(x′) > vū(x̂), which contradicts that x̂ is maximum for vū.

(ii) If f(k̂n)− x̂n+1 ≤ k∗, then x′ with x′i = x̂i for i /∈ {n, n+ 1}, x′n+1 = x̂n, and x′n = supX ′
n,

where X ′
n = {x ∈ [0, f(k̂n)] : f(f(k̂n) − x) − x′n+1 ≥ k̂n+2}, is feasible from k since (a)

x̂n+1 ∈ X ′
n implying that X ′

n is nonempty, (b) f is continuous implying that X ′
n is compact

and contains its supremum, and (c) by construction, k′t+2 = f(f(k̂n) − x′n) − x′n+1 = k̂t+2.

To verify that x̂n+1 ∈ X ′
n, write k′′n+1 = f(k̂n) − x̂n+1 and k′′n+2 = f(k̂n+1) − x̂n, implying
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that x̂n+1 ∈ X ′
n is equivalent to k′′n+2 ≥ k̂n+2 since x′n+1 = x̂n. To show this, note that

f(k̂n)− k̂n+1 + f(k̂n+1)− k̂n+2 = x̂n + x̂n+1 = x̂n+1 + x̂n = f(k̂n)− k′′n+1 + f(k′′n+1)− k′′n+2 .

Hence, k′′n+2 − k̂n+2 = f(k′′n+1)− k′′n+1 −
(
f(k̂n+1)− k̂n+1

)
> 0 since

k̂n+1 = f(k̂n)− x̂n < f(k̂n)− x̂n+1 = k′′n+1 ≤ k∗

and f(k) − k is increasing on [0, k∗]. Since k′′n+2 is strictly greater than k̂n+2, it follows

from the continuity of f that min{x∗, x′n} > x̂n+1 and ū(x′n) > ū(x̂n+1), which implies∑n−1
i=1

(
ū(x′i) − ū(x̂i)

)
= 0 and

∑∞
i=n

(
ū(x′i) − ū(x̂i)

)
> 0. Hence, vū(x′) > vū(x̂), which

contradicts that x̂ is maximum for vū.

Step 5: If a wellbeing stream x̂ is maximum for vū, then there is no feasible wellbeing stream

x′ from k such that x > x̂. If k = k∗, then x̂ = x∗1N is efficient. If k < k∗, then x∗1N is not

feasible. Furthermore, x̂ is a nondecreasing stream in X∗(k), implying that x̂1 < x∗. By way of

contradiction, suppose there is x′ feasible from k such that x′ > x̂. If x′1 > x̂1 then vû(x′) > vû(x̂)

contradicting that x is maximum for vû. If x′n > x̂n for n ≥ 2, then we can construct a feasible

stream x′′ such that x′′1 > x′1, x
′′
n = x̂n and x′′i = x′i for all i /∈ {1, n}; indeed f is increasing and

we just need to accumulate less capital in period 1. Then vû(x′′) > vû(x̂), which contradicts that

x̂ is maximum for vû.
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