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Robust maximization of consumption with logarithmic utility

Daniel Hernández-Hernández and Alexander Schied*

Abstract— We analyze the stochastic control approach to the
dynamic maximization of the robust utility of consumption and
investment. The robust utility functionals are defined in terms
of logarithmic utility and a dynamically consistent convex risk
measure. The underlying market is modeled by a diffusion
process whose coefficients are driven by an external stochastic
factor process. Our main results give conditions on the minimal
penalty function of the robust utility functional under which
the value function of our problem can be identified with the
unique classical solution of a quasilinear PDE within a class of
functions satisfying certain growth conditions.

I. INTRODUCTION

One of the fundamental problems in mathematical finance
and mathematical economics is the construction of invest-
ment strategies that maximize the utility functional of a
risk-averse investor. In the majority of the corresponding
literature, the optimality criterion is based on a classical
expected utility functional of von Neumann-Morgenstern
form, which requires the choice of a single probabilistic
model P. In reality, however, the choice of P is often
subject to model uncertainty. Schmeidler [?] and Gilboa and
Schmeidler [10] therefore proposed the use of robust utility
functionals of the form

X 7−→ inf
Q∈Q

EQ[U(X) ], (1)

where Q is a set of prior probability measures. In analogy to
the move from coherent to convex risk measures, Maccheroni
et al. [16] recently suggested to model investor’s preferences
by robust utility functionals of the form

X 7−→ inf
Q

(
EQ[U(X) ] + γ(Q)

)
, (2)

where γ is a penalty function defined on the set of all possible
probabilistic models.

Optimal investment problems for robust utility functionals
(1) were considered, among others, by Talay and Zheng
[24], Quenez [18], Schied [19], Burgert and Rüschendorf
[3], Schied and Wu [23], Föllmer and Gundel [8], and the
authors [13]. For the generalized utility functionals of type
(2), the most popular choice for the penalty function has
so far been the entropic penalty function γ(Q) = kH(Q|P)
for a constant k > 0 and a reference probability measure
P; see, e.g., Hansen and Sargent [12] and Bordigoni et al.
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[2]. The duality theory for the optimal investment problem
with a general penalty function γ was developed by Schied
[21]. It was extended by Wittmüss [25] to the consumption-
investment problem with random endowment.

In this paper, we propose a stochastic control approach
to the dynamic maximization of robust utility functionals of
the form (2). The penalty function γ will be defined in a
Brownian setting and, apart from certain basic requirements
such as time consistency, has a rather general form. In
particular, we will go beyond the very particular situation
of entropic penalties and include the ‘coherent’ setting (1)
as a special case. Our setting will involve logarithmic utility
U(x) = log x and an incomplete financial market model,
whose volatility, interest rate process, and trend are driven
by an external stochastic factor process. In this setting, the
control approach to the optimization of the terminal wealth
was developed by the authors in a previous paper [14]. We
now extend these results by also allowing for intertemporal
consumption.

Our goal consists in characterizing the value function
and the optimal investment strategy via the solution of a
quasilinear Hamilton-Jacobi-Bellman PDE. As a byproduct,
we also obtain a formula for the least-favorable martingale
measure in the sense of Föllmer and Gundel [8]. In contrast
to earlier approaches such as [24], we avoid the use of
viscosity solutions and concentrate our effort on obtaining
strong regularity results, which allow us to identify the
value function as a unique classical solution of the PDE
in question. Regularity of solutions is important because it
facilitates the use of standard numerical methods for solving
the PDE, and we will use such methods in illustrating some
interesting qualitative properties of the optimal strategy.

Our method consists in combining the duality results from
[21] and [25] with a PDE approach to the dual problem of
determining optimal martingale measures. This technique has
already been applied successfully by Castañeda-Leyva and
Hernández-Hernández [4], [5] to the maximization of von
Neumann-Morgenstern expected utility and by the authors
[13] and Schied [22] in the maximization of ‘coherent’ robust
utility functionals of the form (1). The approach has also
been applied successfully to the maximization of the robust
utility (2) of the terminal wealth; see [14]. In this paper,
we extend the results from [14] to the case of combined
intertemporal consumption and investment.

In the next section we describe the set-up of our problem
and state the theorems for our main findings. Their proofs
can be obtained by appropriately adapting the proofs in [13].
Specifically, one has to replace the duality results from [21]
by those from [25]. In setting up the control approach to the



dual problem and in identifying the optimal consumption-
investment strategy, one can follow the arguments in [22].

II. STATEMENT OF MAIN RESULTS

We consider a financial market model with a locally
riskless money market account

dS0
t = S0

t r(Yt) dt

and a risky asset defined under a reference measure P through
the SDE

dSt = Stb(Yt) dt+ Stσ(Yt) dW 1
t .

Here W 1 is a standard P-Brownian motion and Y denotes
an external economic factor process modeled by the SDE

dYt = g(Yt) dt+ ρ dW 1
t + ρ dW 2

t , (3)

where ρ ∈ [−1, 1] is some correlation factor, ρ :=
√

1− ρ2,
and W 2 is a standard P-Brownian motion, which is inde-
pendent of W 1 under P. We suppose that the economic
factor cannot be traded directly so that the market model
will typically be incomplete.

We assume that g(·) is in C2(R) with derivative g′ ∈
C1

b (R), and r(·), b(·), and σ(·) belong to C2
b (R), where

Ck
b (R) denotes the class of bounded functions with bounded

derivatives up to order k. The ‘market price of risk’ is defined
via the function

θ(y) :=
b(y)− r(y)

σ(y)
,

and we will assume that σ(·) ≥ σ0 > 0 for some constant
σ0. The assumption of time-independent coefficients is for
notational convenience only and can easily be relaxed.

In most economic situations, investors typically face model
uncertainty in the sense that the dynamics of the relevant
quantities are not precisely known. One common approach
to coping with model uncertainty is to allow in principle
all probability models corresponding to probability measures
Q � P and to penalize each such model with a penalty
γ(Q). To define γ(Q), we assume henceforth that everything
is modeled on the canonical path space (Ω,F , (Ft)) of W =
(W 1,W 2). Then every probability measure Q � P admits
a progressively measurable process η = (η1, η2) such that

dQ

dP
= E

( ∫
0

η1t dW
1
t +

∫
0

η2t dW
2
t

)
T

Q− a.s.,

where E(M)t = exp(Mt − 〈M〉t/2) denotes the Doleans-
Dade exponential of a continuous semimartingale M . Such
a measure Q will receive a penalty

γ(Q) := EQ

[ ∫ T

0

h(ηt) dt
]
, (4)

where h : R2 → [0,∞] is convex and lower semicontinuous.
For simplicity, we will suppose h(0) = 0 so that γ(P) = 0.
We will also assume that h is continuously differentiable on
its effective domain dom h := {η ∈ R2 |h(η) < ∞} and
satisfies the coercivity condition

h(x) ≥ κ1|x|2 − κ2 for constants κ1, κ2 > 0. (5)

The choice h(x) = |x|2/2 corresponds to the entropic
penalty function considered in Hansen and Sargent [12] and
Bordigoni et al. [2]; see Remark 2.6 below. Again, our
assumption that h does not depend on time is for notational
convenience only.

Let A denote the set of all pairs (c, π) of progressively
measurable processes such that c ≥ 0,

∫ T

0
cs ds < ∞, and∫ T

0
π2

s ds < ∞ P-a.s. For (c, π) ∈ A and x > 0, we define
Xx,c,π as the unique solution of the linear SDE

dXx,c,π
t =

Xx,c,π
s (1− πs)

S0
s

dS0
s +

Xx,c,π
s πs

Ss
dSs − cs ds

with initial value Xx,c,π
0 = x. The process Xx,c,π thus

describes the evolution of the wealth process of an investor
with initial endowment Xx,c,π

0 = x > 0 investing the fraction
πs of the current wealth into the risky asset at time s ∈ [0, T ].
By A(x) we denote the subclass of all (c, π) ∈ A that are
admissible in the sense that Xx,c,π

t ≥ 0 P-a.s. for all t.
The objective of the investor is to maximize

inf
Q�P

(
EQ

[ ∫ T

0

U(ct) dt+ U(Xx,c,π
T )

]
+ γ(Q)

)
(6)

over (c, π) ∈ A(x). The utility function U : (0,∞) → R
will be specified in the sequel as a HARA utility function
with risk aversion parameter α = 0, i.e.,

U(x) = log x. (7)

Our goal is to characterize the value function

u(x) :=

sup
π∈A

inf
Q�P

(
EQ

[ ∫ T

0

log ct dt+ logXx,c,π
T

]
+ γ(Q)

)
of the robust utility maximization problem (6) in terms of the
solution v of the quasi-linear parabolic initial value problem{

vt = 1
2vyy + φ(vy) + gvy + (1 + t)r

v(0, ·) = 0, (8)

where the nonlinearity φ(vy) = φ(t, y, vy(t, y)) is given by

φ(t, y, z) := ψ(t, y, (ρ, ρ)z) y, z ∈ R.

for the function

ψ(t, y, x) := inf
η∈R2

{
η · x+

1
2
(1 + t)(η1 + θ(y))2 + h(η)

}
,

with y ∈ R, x ∈ R2. Here, η · x denotes the inner product
of η and x. The easy case is the one in which the effective
domain of h is compact:

Theorem 2.1: Suppose that dom h is compact. Then the
value function u of the robust utility maximization problem
satisfies

u(x) = (1 + T ) log x+ v(T, Y0),

where v : [0, T ] × R → R is the unique classical solution
to (8) within the class of functions in C1,2((0, T ) × R) ∩
C([0, T ]× R) satisfying a polynomial growth condition.

Suppose furthermore that η∗ : [0, T ] × R → R is
a measurable function such that η∗(t, y) belongs to the



supergradient of the concave function x 7→ ψ(t, y, x) at
x = (ρ, ρ)vy(t, y). Then an optimal strategy (ĉ, π̂) ∈ A(x)
for the robust problem can be obtained by letting

π̂t =
η∗1(T − t, Yt) + θ(Yt)

σ(Yt)

and by consuming at a rate proportional to the current total
wealth Xx,bc,bπ

t :

ĉt =
1

1 + T − t
Xx,bc,bπ

t .

Moreover, by defining a measure Q̂ ∼ P via

dQ̂

dP
= E

( ∫
0

η∗(T − t, Yt) dWt

)
T
, (9)

we obtain a saddlepoint (π̂, Q̂) for the maximin problem (6).
The regularity of the value function obtained in the pre-

ceding theorem is important, because it facilitates the use of
standard numerical methods for solving the PDE (8).

Remark 2.2: The proof of Theorem 2.1 shows that the
probability measure P ∗ with density

dP ∗

dP
= E

(
−

∫
0

θ(Ys) dW 1
s +

∫
0

η∗2(T − s, Ys) dW 2
s

)
T

is a least favorable martingale measure in the sense of
Föllmer and Gundel [8]. This will also be true in the setting
of Theorems 2.3 and 2.5.

The problem becomes more difficult when dom h is
noncompact, because then we can no longer apply standard
theorems on the existence of classical solutions to (8). Other
difficulties appear when dom h is not only noncompact but
also unbounded. For instance, we may have γ(Q) <∞ even
if Q is not equivalent but merely absolutely continuous with
respect to P, and this leads to difficulties when one tries to
work directly on the primal problem. Moreover, since the
optimal η∗ takes values in the unbounded set dom h, one
needs an additional argument to ensure that the stochastic
exponential in (9) is a true martingale and hence defines
a probability measure Q̂ � P. Our strategy to get the
necessary integrability of the process η∗1(T − t, Yt) is to use
qualitative properties of solutions v to (8) as to control the
growth of the gradient vy . In doing so, we have to eliminate
the possible competition between the linear term gvy and the
nonlinear term φ(vy) by imposing a growth condition on φ.

Theorem 2.3: Suppose that g is bounded and that there
exists some ε > 0 such that

lim inf
|p|→∞

∣∣∣φ(t, y, p)
p

∣∣∣ ≥ ε+ |g(y)|. (10)

Then the value function u of the robust utility maximization
problem satisfies u(x) = (1 + T ) log x + v(T, Y0) where
v is the unique classical solution of (8) within the class of
functions in C1,2((0, T )×R)∩C([0, T ]×R) with bounded
gradient vy . Under these conditions, also the conclusions on
the optimal strategy (ĉ, π̂) and the measure Q̂ in Theorem
2.1 remain true.

The most interesting case is the one in which both dom h
and the function g are unbounded. Here we need an addi-
tional condition on the shape of the function ψ. Note that g
is unbounded if, e.g., Y is an Ornstein-Uhlenbeck process.

Definition 2.4: Let f : R2 → R be an upper semicontin-
uous concave function. We will say that f satisfies a radial
growth condition in direction x ∈ R2 if there exist positive
constants p0 and C such that

max
{
|z|

∣∣ z ∈ ∂f(px)
}
≤ C

(
1 + |∂+

p f(px)| ∨ |∂−p f(px)|
)
,

for p ∈ R, |p| ≥ p0, where ∂f(px) denotes the supergradient
of f in px and ∂+

p f(px) and ∂−p f(px) are the right-hand and
left-hand derivatives of the concave function p 7→ f(px).

Note that if f is of the form f(x) = f0(|x|) for some con-
vex increasing function f0, then the radial growth condition
is satisfied in any direction x 6= 0 with constant C = 1.

Theorem 2.5: Suppose that |φ(t, y, p)/p| → ∞ as |p| →
∞ and assume that ψ(t, y, ·) satisfies a radial growth con-
dition in direction (ρ, ρ), uniformly in y and t. Then the
value function u of the robust utility maximization problem
satisfies u(x) = (1+T ) log x+v(T, Y0) where v is the unique
classical solution of (8) within the class of polynomially
growing functions in C1,2((0, T )×R)∩C([0, T ]×R) whose
gradient satisfies a growth condition of the form∣∣∂−p φ(

y; vy(t, y)
)∣∣ ∨ ∣∣∂+

p φ
(
y; vy(t, y)

)∣∣ ≤ C1(1 + |y|)

for some constant C1. Under these conditions, also the
conclusions on the optimal strategy (ĉ, π̂) and the measure
Q̂ in Theorem 2.1 remain true.

Remark 2.6: For q > 0, the choice h(x) = 1
2q |x|

2

corresponds to the penalty function γ(Q) = 1
qH(Q|P),

where

H(Q|P)=
∫
dQ

dP
log

dQ

dP
dP= sup

Y ∈L∞

(
EQ[Y ]− log E[ eY ]

)
is the relative entropy of Q with respect to P. Due to the
classical duality formula

log E[ eX ] = sup
Q∈Q

(
EQ[X ]−H(Q|P)

)
,

the above choices correspond to the utility functional

inf
Q�P

(
EQ[ logX ] + γ(Q)

)
= −1

q
log E

[
e−q log X

]
.

Hence, as long as there is no consumption, the robust utility
maximization problem (6) is equivalent to the maximization
of the standard expected utility E[U(Xx,c,π

T ) ] for the HARA
utility function U(x) = −x−q. With nontrivial consumption,
however, such a reduction is no longer possible, and our
problem can no longer be formulated exclusively in terms of
standard expected utility. This situation problem is covered
as a special case of Theorem 2.5. Indeed, the function ψ has
the quadratic form

ψ(t, y, x) = −1
2

( (1 + t)q
1 + q

(x1 + θ(y))2 + qx2
2 − θ(y)2

)
,

and it is easily checked that it satisfies the radial growth
condition in any direction. See Hansen and Sargent [12] and



Bordigoni et al. [2] for earlier studies of the problem of
optimal consumption with entropic penalties.
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[19] Schied, A. Optimal investments for robust utility functionals in com-
plete market models. Math. Oper. Research. 30, No. 3, 750-764 (2005).

[20] Schied, A. Risk measures and robust optimization problems. Stochastic
Models, 22, 753-831 (2006).

[21] Schied, A. Optimal investments for risk- and ambiguity-averse pref-
erences: a duality approach. Finance Stochastics 11, No. 1, 107-129
(2007).

[22] Schied, A. Robust control of consumption-investment strategies in a
stochastic factor model. Preprint, TU Berlin (2007).

[23] Schied, A., Wu, C.-T. Duality theory for optimal investments under
model uncertainty. Stat. Decisions 23, No. 3, 199-217 (2005).

[24] Talay, D., Zheng, Z. Worst case model risk management. Finance
Stochast. 6, 517-537 (2002).

[25] Wittmüss, W. Robust optimization of consumption with random en-
dowment. Preprint, TU Berlin (2007).



 
 

SFB 649 Discussion Paper Series 2007 

 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

001 "Trade Liberalisation, Process and Product Innovation, and Relative Skill 
 Demand" by Sebastian Braun, January 2007. 
002 "Robust Risk Management. Accounting for Nonstationarity and Heavy 
 Tails" by Ying Chen and Vladimir Spokoiny, January 2007. 
003 "Explaining Asset Prices with External Habits and Wage Rigidities in a 
 DSGE Model." by Harald Uhlig, January 2007. 
004 "Volatility and Causality in Asia Pacific Financial Markets" by Enzo Weber, 
 January 2007. 
005 "Quantile Sieve Estimates For Time Series" by Jürgen Franke, Jean-
 Pierre Stockis and Joseph Tadjuidje, February 2007. 
006 "Real Origins of the Great Depression: Monopolistic Competition, Union 
 Power, and the American Business Cycle in the 1920s" by Monique Ebell 
 and Albrecht Ritschl, February 2007. 
007 "Rules, Discretion or Reputation? Monetary Policies and the Efficiency of 
 Financial Markets in Germany, 14th to 16th Centuries" by Oliver 
 Volckart, February 2007. 
008 "Sectoral Transformation, Turbulence, and Labour Market Dynamics in 
 Germany" by Ronald Bachmann and Michael C. Burda, February 2007. 
009 "Union Wage Compression in a Right-to-Manage Model" by Thorsten 
 Vogel, February 2007. 
010 "On σ−additive robust representation of convex risk measures for 
 unbounded financial positions in the presence of uncertainty about the 
 market model" by Volker Krätschmer, March 2007. 
011 "Media Coverage and Macroeconomic Information Processing" by 

Alexandra Niessen, March 2007. 
012 "Are Correlations Constant Over Time? Application of the CC-TRIGt-test 

to Return Series from Different Asset Classes." by Matthias Fischer, 
March 2007. 

013 "Uncertain Paternity, Mating Market Failure, and the Institution of 
Marriage" by Dirk Bethmann and Michael Kvasnicka, March 2007. 

014 "What Happened to the Transatlantic Capital Market Relations?" by Enzo 
Weber, March 2007. 

015 "Who Leads Financial Markets?" by Enzo Weber, April 2007. 
016 "Fiscal Policy Rules in Practice" by Andreas Thams, April 2007. 
017 "Empirical Pricing Kernels and Investor Preferences" by Kai Detlefsen, 
 Wolfgang Härdle and Rouslan Moro, April 2007. 
018 "Simultaneous Causality in International Trade" by Enzo Weber, April 
 2007. 
019 "Regional and Outward Economic Integration in South-East Asia" by 
 Enzo Weber, April 2007. 
020 "Computational Statistics and Data Visualization" by Antony Unwin, 

Chun-houh Chen and Wolfgang Härdle, April 2007. 
021 "Ideology Without Ideologists" by Lydia Mechtenberg, April 2007. 
022 "A Generalized ARFIMA Process with Markov-Switching Fractional 
 Differencing Parameter" by Wen-Jen Tsay and Wolfgang Härdle, April 
 2007. 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 



 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

023 "Time Series Modelling with Semiparametric Factor Dynamics" by 
 Szymon Borak, Wolfgang Härdle, Enno Mammen and Byeong U. Park, 
 April 2007. 
024 "From Animal Baits to Investors’ Preference: Estimating and Demixing of 
 the Weight Function in Semiparametric Models for Biased Samples" by 
 Ya’acov Ritov and Wolfgang Härdle, May 2007. 
025 "Statistics of Risk Aversion" by Enzo Giacomini and Wolfgang Härdle, 
 May 2007. 
026 "Robust Optimal Control for a Consumption-Investment Problem" by 
 Alexander Schied, May 2007. 
027 "Long Memory Persistence in the Factor of Implied Volatility Dynamics" 
 by Wolfgang Härdle and Julius Mungo, May 2007. 
028 "Macroeconomic Policy in a Heterogeneous Monetary Union" by Oliver 
 Grimm and Stefan Ried, May 2007. 
029 "Comparison of Panel Cointegration Tests" by Deniz Dilan Karaman 
 Örsal, May 2007. 
030 "Robust Maximization of Consumption with Logarithmic Utility" by Daniel 
 Hernández-Hernández and Alexander Schied, May 2007. 
 


	Frontpage 030.pdf
	SFB649DP2007-030_ges.pdf
	SFB649DP2007-030.pdf
	Endpage 030.pdf




