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Abstract

The volatility implied by observed market prices as a function of the strike
and time to maturity form an Implied Volatility Surface (IV S). Practical
applications require reducing the dimension and characterize its dynamics
through a small number of factors. Such dimension reduction is summarized
by a Dynamic Semiparametric Factor Model (DSFM) that characterizes the
IV S itself and their movements across time by a multivariate time series of
factor loadings. This paper focuses on investigating long range dependence
in the factor loadings series. Our result reveals that shocks to volatility per-
sist for a very long time, affecting significantly stock prices. For appropriate
representation of the series dynamics and the possibility of improved fore-
casting, we model the long memory in levels and absolute returns using the
class of fractional integrated volatility models that provide flexible structure
to capture the slow decaying autocorrelation function reasonably well.
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1 Introduction

As a measure of the standard deviation of the daily range of price move-
ments, volatility is an important determinant of the riskiness of an asset,
a crucial parameter in derivative pricing such as options. Findings across
several asset markets have reported high persistence of volatility shocks and
that over sufficiently long periods of time, volatility is typically stationary
with ”mean reverting” behavior, Bollerslev and Jubinski (1999). Such series
are characterized by distinct but nonperiodic cyclical patterns and their be-
havior is such that current values are not only influenced by immediate past
values but values from previous time periods, allowing for persistence or long
memory. Long memory describes the correlation structure of a series at long
lags.

It is well known that the volatility implied by observed option prices as
a function of the strike and time to maturity form an Implied Volatility Sur-
face (IV S). For each day the IV S forms a high dimensional object that has
unknown stochastic behavior that needs to be analyzed. For practical appli-
cations such as in risk management, it is desirable to reduce the dimension of
this object and characterize its dynamics through a small number of factors.
Such dimension reduction may be summarized by a Dynamic Semiparamet-
ric Factor Models (DSFM) that characterize the IV S and their movements
across time by a multivariate time series of factor loadings, Borak et al.
(2005), Fengler et al. (2007) and Borak et al. (2007).

The DSFMs approximate the implied volatility surface by regressing log-
implied volatility on a two-dimensional covariate containing moneyness and
time-to-maturity. To introduce this model, denote by Yt,j = log {σ̂t,j(κ, τ)},
the log-implied volatility where t = 1, . . . , I is an index of time, in this case
the number of the day, and j = 1, . . . , Jt is the number of IV observations
on day t. Let Xt,j = (κt,j, τt,j) be a two-dimensional covariate where κt,j is a
moneyness matrix and τt,j denotes time-to-maturity. Moneyness is defined as

κt,j =
Kt,j

Ft,j
where Kt,j is a strike and Ft,j = Ste

(rt,j ,τt,j) the underlying futures

price belonging to the option trade (t, j). The model is expressed as:

Yt,j =
K∑

k=0

zt,kmk(Xt,j) + εt,j (1)

where zt,0 = 1, mk are smooth basis functions (k = 0, . . . , K) and zt,k are time
dependent weights or factor loadings. The IV S is assumed to be a weighted
sum of the smooth functional factors, mk and its dynamics is explained by
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the stochastic behavior of the factor loadings, zt,k. Approximations of the
factor loadings are obtained by fitting model (1) to the implied volatility ob-
servations and the functions mk are estimated by orthogonal series estimators
so that they have zero correlations among each other, Borak et al. (2005).
The factor loadings zt = (zt,1, . . . , zt,K)> forms an unobserved multivariate
time series.

The estimates ẑt,k and m̂k are obtained in (1) as minimizers of the fol-
lowing least squares criterion:

I∑
t=1

Jt∑
j=1

∫ {
Yt,j −

K∑
k=0

ẑt,km̂k

}2

Kh(u−Xt,j) du, (2)

where Kh denotes a two-dimension kernel function, chosen as a product of
one-dimensional kernels Kh(u) = kh1(u1) × kh2(u2), where h = (h1, h2)

>

are bandwidths and kh(v) = k(h−1v)/h is a one-dimensional kernel function.
The minimization procedure is iterative, searching through all functions m̂k :
R2 −→ R (k = 0, ..., K) and time series ẑtk ∈ R (t = 1, ..., I; k = 1, ..., K).
The estimation procedure can be seen as a combination of functional princi-
pal component analysis, nonparametric curve estimation and backfitting for
additive models. The DSFM therefore simultaneously estimate the factor
functions and fits the surface.

This paper applies the DSFM on the German DAX index market from
04.01.1999 to 25.02.2003. Figure 1 displays the implied volatility surface
from the DSFM fit for the DAX-Option on 2 May 2000, with moneyness
between 0.8 and 1.12 and time to maturity between 0 and 0.5 years. Figure
2 shows three volatility-driving factors that could be interpreted in terms of
level, slope and curvature factor. z1 governs movements in the general level,
z2 is largely associated with changes in the slope and z3 is closely related to
dynamic changes in the curvature of the IVS.

The aim of this paper is to investigate dependence in the factor loadings
of implied volatility strings because information on persistence can guide the
search for economic explanation of the movements in asset returns as well
as in risk management applications. Several research involving the autocor-
relation functions of various volatility measures (squared, log-squared and
absolute returns) have reported decay at a very slow mean-reverting hyper-
bolic rate, Ding et al. (1993), Bollerslev and Wright (2000) and Sibbertsen
(2004). Our analysis follow this line of research on long range dependence
investigation and modeling.
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Figure 1: Implied volatility surface from DSFM fit for the DAX-Option on
2 May 2000, with moneyness between 0.8 and 1.12 and time to maturity
between 0 and 0.5 years.
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Figure 2: Time series plots in levels of three loading series from a DSFM fit
for the DAX-Option analyzed from 04.01.1999− 25.02.2003
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First, we consider model independent tests for stationarity, I(0) against
fractional alternatives I(d). We apply the rescaled variance test (V/S) of
Giraitis et al. (1999) that uses the heteroscedastic and autocorrelation con-
sistent (HAC) estimator of the variance, Newey and West (1987) for nor-
malization and the semiparametric (LobRob) test of Lobato and Robinson
(1998), that does not depend on a specific parametric form of the spectrum in
the neighborhood of the zero frequency. We also apply the log-periodogram
regression estimator (GPH) of Geweke and Porter-Hudak (1983) and the
Gaussian Semiparametric estimator (GSP ) of Robinson (1995a) in estimat-
ing the degree of long memory in the factor loadings series. Results are
indicative of long-range dependence in the factor loadings series in levels and
absolute returns. The first factor, z1 can be interpreted as highly persis-
tent and influences all options similarly, irrespective of maturity. The second
factor z2 gradually diminishes for longer maturities and the third factor z3
governs large volatility changes in relatively short maturities.

Second, for appropriate representation of the series dynamics and the
possibility of improved forecasting, we model long memory in volatility using
the ARFIMA, FIGARCH and HY GARCH models. These models pro-
vide flexible structure that captures slow decaying autocorrelation reasonably
well. In comparison, models in absolute returns have better performance,
confirming the findings of Ding et al. (1993), that absolute returns are most
appropriate indicator to represent the long memory volatility processes. Our
results imply that shocks to the volatility will persist for long time, affecting
the DAX stock prices significantly.

Such dependence or persistence will have importance economic conse-
quences for short-term trading and long range investment strategies. Better
option pricing may results from models that price and hedge derivative secu-
rities when there is prior information on long-memory volatility in terms of
expectation on the potential level of volatility and the rate at which volatil-
ity changes. In the presence of long memory, Granger and Joyeux (1980),
Geweke and Porter-Hudak (1983) have shown the possibility for improved
price forecasting performance within a linear time series framework than
with traditional procedures. Option pricing have also been shown to be sig-
nificantly different when standard models are applied as compared to models
allowing for long memory.

By applying the GARCH, EGARCH, FIEGARCH and IEGARCH
models, Bollerslev and Mikkelsen (1996) have shown that the price of an
option increases with the degree of integration. This means that GARCH
models give the lowest price whereas the highest option price is obtained
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for the IGARCH model. For long memory alternative, Herzberg and Sib-
bertsen (2004) have shown that prices for the FIGARCH, HY GARCH are
inbetween the GARCH and IGARCH prices. In addition to documented
studies of the economic implications of long memory, Cheung and Lai (1995),
Wilson and Okunev (1999), revealed that portfolio diversification decisions
in the case of strategic asset allocation may become extremely sensitive to
the investment horizon. There may be diversification benefits in the short
and medium term, but not if the assets are held together over the long term if
long memory is present. e.g., in a market that exhibits antipersistence, asset
prices tend to reverse its trend in the short term thus creating short-term
trading opportunities. In addition Mandelbrot (1971) has shown that in the
presence of long memory the arrival of new market information cannot be
fully arbitraged away. It is also known that the possibility of speculative
profits as a result of superior long-range dependence model forecast would
cast doubt on the basic tenets of market efficiency.

Motivated by evidence of long range dependence in the factor loadings
levels and absolute returns, we perform estimation and prediction using the
ARFIMA, FIGARCH and HY GARCH models that are known to provide
flexible structure to capture slow decaying autocorrelation reasonably well
than with traditional ARMA procedures.

The rest of our work is structured as follows. Section 2, introduces
fractional integration and Long-memory processes. Here we examine some
methodology for testing and estimating long range dependence that we apply
in our analysis. Section 3 introduces the structure of the class of models we
apply to analyze the long memory in the factor loading series. In section 4
we report and discuss our results for the series in levels and absolute returns.
A summary of our analysis results and conclusions is given in section 5.

2 Fractional integration and long-memory

The framework of fractional integration yields convenient modeling of long
range dependence, Granger and Joyeux (1980), Baillie (1996). A time series
process zt is integrated of order d, I(d) if

(1− L)dzt = εt (3)

where εt ∈ I(0) and L is the lag operator (Lzt = zt−1). The non-integer
parameter d is the difference parameter and (1 − L)d is the fractional filter

defined by its binomial expansion (1−L)d =
∑∞

j=0
Γ(j−d)

Γ(−d)Γ(j+1)
Lj where Γ(z) =
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∫∞
0

tz−1e−tdt is the gamma function. The autocorrelation function of such a
series is given by

ρk =
Γ(1− d)Γ(k + d)

Γ(d)Γ(k + 1− d)
∼ Ck2d−1 (4)

for d in the range of (0, 0.5), where C is a strictly positive constant. In
such case zt is said to exhibit long memory. For 0 < d < 0.5, the series
is stationary. For d = 0, the series is an I(0) process and said to have no
long-memory. For 0.5 < d < 1 the process is mean reverting as there is
no long run impact of an innovation to future values of the process. In the
case where 0 < d < 1, not only the immediate past value of zt influence the
current value, but also values from previous time periods as well. The sum
over the autocorrelation does not converge, so that it is a suitable model for
long memory, Granger and Joyeux (1980).

2.1 Tests and estimators of long memory processes

We consider two model independent tests for stationarity, I(0) against frac-
tional alternatives I(d). The tests include the rescaled variance test (V/S)
of Giraitis et al. (1999) that uses the heteroscedastic and autocorrelation
consistent (HAC) estimator of the variance, Newey and West (1987) for nor-
malization and the semiparametric (LobRob) test of Lobato and Robinson
(1998), that does not depend on a specific parametric form of the spectrum
in the neighborhood of the zero frequency.

The Rescaled Variance test is applied by centering the KPSS statistic
based on the partial sum of the deviations from the mean:

V/S(q) =
1

T 2σ̂2
T (q)

 T∑
k=1

{
k∑

j=1

(zj − zT )

}2

− 1

T

{
T∑

k=1

k∑
j=1

(zj − zT )

}2
 (5)

where Sk =
∑k

j=1(zj − zT ) are the partial sums of the observations and

σ̂2
T (q) = γ̂0 + 2

∑q
j=1

(
1− j

1+q

)
γ̂j, is the heteroscedastic and autocorrelation

consistent (HAC) estimator of the variance, (q < T ). γ̂0 is the variance
of the process, and the sequence {γ̂j}q

j=1 denotes the autocovariances of the
process up to the order q. Giraitis, Kokoszka and Leipus (2000) have shown
that this statistic can detect long range dependence in the volatility for the
class of ARCH(∞) processes.
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The Semiparametric test is based on the approximation of the spec-
trum of a long memory process. This test allows to discriminate between
d > 0 and d < 0. In the univariate case the test statistic for I(0) against
I(d) is given by

tLobRob =
√

(m)
Ĉ1

Ĉ0

(6)

with Ĉk = 1
m

∑m
j=1 ζk

j I(λj) and ζj = log(j)− 1
m

∑m
i=1 log(i), where

I(λ) = 1
2πT

∣∣∣∑T
t=1 zte

itλ
∣∣∣2, (i =

√
−1) is the estimated periodogram. λj =

2πj
T

, j = 1, . . . ,m << [T/2] is a degenerate band of Fourier frequencies
with bandwidth parameter m. Under the null hypothesis the test statistic is
asymptotically normally distributed. If the statistic is in the lower fractile of
the standardized normal distribution, the series exhibit long-memory whilst
if in the upper fractile of that distribution, the series is antipersistent.

To estimate the memory parameter d, we apply two frequently used es-
timators, the log-periodogram regression estimator (GPH) of Geweke and
Porter-Hudak (1983) and the Gaussian Semiparametric estimator (GSP ) of
Robinson (1995a).

The log-periodogram regression estimator is based on the peri-
odogram of a time series zt, (t = 1, . . . , T ) defined by

I(λj) =
1

2πT

∣∣∣∣∣
T∑

t=1

zte
−iλt

∣∣∣∣∣
2

(7)

where λj = 2πj
T

, j = 1, . . . ,m (m is a positive integer). The memory para-
meter d is estimated from a linear regression of the log I(λj) on a constant
and the variable Xj = log

{
4 sin2(λj/2)

}
:

d̂GPH = −
∑m

j=1(Xj − X̄) log {I(λj)}
2
∑m

j=1(Xj − X̄)
(8)

We consider only harmonic frequencies λj = 2πj
T

, (the jth Fourier frequency)
with j ∈ (l,m], where l is a trimming parameter discarding the lowest fre-
quencies and m is a bandwidth parameter. The cut-off parameter ensures
robustness of the estimator. For the Gaussian case with d ∈ (−0.5, 0.5),
the estimator is consistent and asymptotically normal with standard error of
π/
√

24m, Robinson (1995b).

Validity of the GPH estimator for an enlarged interval has been demon-
strated by Velasco (1999). More precisely, he shows that in the interval
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[0.5, 0.75), where the time series is nonstationary, asymptotic Normality and
consistency is preserved as in the original interval (−0.5, 0.5), while for values
of d in the interval [0.75, 1) the estimator is still consistent. Deo and Hurvich
(2001) have shown that this estimator is also valid for some non-Gaussian
time series.

The Gaussian Semiparametric estimator is based on the approxi-
mation, limλi→0+ f(λi) = Cλ−2d

i of a long memory process in the Whittle
approximate maximum likelihood estimator, LW (θ). For m∗ = [T

2
], an ap-

proximation to the Gaussian likelihood, Beran (1994) is given by

LW (θ) = − 1

2π

m∗∑
j=1

log fθ(λj) +
IT (λj)

fθ(λj)
(9)

for a given parametric spectral density fθ(λ). Estimating d is by solving the
minimization,

arg min
C,d

L(C, d) =
1

m

m∑
j=1

{
log(Cλ−2d

j ) +
I(λj)

Cλ−2d
j

}
where I(λj) is the periodogram evaluated for a degenerated range of m har-
monic frequencies λj = 2πj

T
, j = 1, . . . ,m << [T

2
], where [.] represents the

integer part operator, bounded by the bandwidth parameter m, which in-
creases with the sample size T but more slowly. This bandwidth m must
satisfy 1

m
+ m

T
→ 0 as T → ∞. If m = [T

2
], this estimator is a Gaussian

estimator for the parametric model f(λ) = Cλ−2d.

An estimator for d is given by

d̂GSP = arg min
d

{
log

(
1

m

m∑
j=1

I(λj)

Cλ−2d
j

)
− 2d

m

m∑
j=1

log(λj)

}
. (10)

Robinson (1995a) showed that
√

m(d̂GSP − d)
d→ N(0, 1/4) and is valid in

the presence of some form of conditional heteroscedasticity, Robinson and
Henry (1999). In general, Phillips and Shimotsu (2004) have shown that the
ranges of consistency and asymptotic normality for the model type in (3) are
thesame as those of the GPH estimator.

3 Long Memory Models

Several studies have dealt with models that provide useful ways of analyzing
the relationships between the conditional mean and variance of a process ex-
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hibiting long memory and slow decay in its levels. In our analysis we consider
an autoregressive fractional integrated moving average (ARFIMA) process
model, Granger and Joyeux (1980), Hosking (1981), the (FIGARCH), Bail-
lie et al. (1996), a combination of fractional integrated process for the mean
with regular GARCH process for conditional variance and the HYperbolic
GARCH, (HY GARCH) of Davidson (2004).

The ARFIMA(p,d,q) model represented as

Φ(L)(1− L)d(zt − µ) = Θ(L)εt (11)

where εt ∼ i.i.d(0, σ2
ε) extends the integration order of the conventional

ARMA model to a non-integer value between 0 and 1. Φ(L) = 1 − φ1L −
φ2L

2−· · ·−φpL
p and Θ(L) = 1+ θ1L+ θ2L

2 + · · ·+ θqL
q are the autoregres-

sive and moving average polynomials in the lag operator L respectively. d
is the long memory parameter and (1− L)d is the fractional difference filter
as defined in equation 3. The ARFIMA process displays persistence for
0 < d < 0.5 and anti-persistence for −0.5 < d < 0. For |d| > 0.5, the process
is non-stationary as it has finite variance.

In our application, the values for p and q are chosen such that the ordered
pair (p, q) minimizes the AIC criterion. We estimate the model parameters
µ, φ, θ and d by maximum likelihood approach of Doornik and Ooms (2004)
that allows for (break-) regressors in the mean and structural changes in the
variance, and by non-linear least squares estimation method of Beran (1994)
that is asymptotically efficient in the presence of GARCH errors.

The FIGARCH(p,δ,q) model of Baillie et al. (1996) given as

Φ(L)(1− L)dε2
t = ω + Θ(L)νt (12)

where νt = ε2
t − σ2

t combine the fractional integrated process for the mean
with regular GARCH process for the conditional variance. The conditional
variance can be represented as

σ2
t =

ω

1− θ(L)
+

[
1− φ(L)(1− L)δ

1− θ(L)

]
ε2

t (13)

with 0 ≤ δ ≤ 1. The δ in FIGARCH does not have the same interpretation
of persistence as d in ARFIMA. The fractional differencing operator in the
ARFIMA model applies to the constant term in the mean equation while
in FIGARCH it does not apply to ω in the variance equation. We base our
analyis on the FIGARCH parametrization proposed by Chung (1999),

Φ(L)(1− L)d(ε2
t − σ2) = Θ(L)(ε2

t − σ2) (14)

10



where σ2 is the unconditional variance of εt. The conditional variance is
formulated as

σ2
t = σ2 +

[
1− φ(L)(1− L)δ

1− θ(L)

]
(ε2

t − σ2) (15)

For p = q = 1, Chung (1999) shows that σ2 > 0 and 0 ≤ φ1 ≤ θ1 ≤ 1
is a sufficient condition for positive σ2

t . When δ = 0 or 1, the FIGARCH
model nests the GARCH(p, q) and IGARCH processes respectively. The
IGARCH model is a short memory process having no variance and while
the FIGARCH has shortest memory with δ > 0 closest to 1. If δ > 0
the FIGARCH is a non-stationary long memory process, otherwise is a
stationary long memory process, Laurent and Peters (2002). The fractional
difference filter is defied by,

(1− L)δ =
∞∑

j=0

Γ(δ + 1)

Γ(j + 1)Γ(δ − j + 1)
Lj (16)

= 1− δL− 1

2
δ(1− δ)L2 − 1

6
δ(1− δ)(2− δ)L3 − . . . (17)

= 1−
∞∑

j=1

Cj(δ)L
j (18)

such that C1(δ) = δ, C2(δ) = 1
2
δ(1−δ), etc. By construction,

∑∞
j=1 Cj(δ) = 1

for any δ, belonging to same class type models as the IGARCH.

The hyperbolic GARCH model, HYGARCH(p,α,d,q) of Davidson
(2004) extends the conditional variance of the FIGARCH(p, δ, q) model by
introducing weights to the difference operator in equation 12 such that (1−
L)d =

[
(1− α) + α(1− L)d

]
. The parametrization of HY GARCH(p, α, d, q)

models is given by

σ2
t =

ω

1− θ(L)
+

[
1−

φ(L)
{
1 + α(1− L)d

}
1− θ(L)

]
ε2

t (19)

where α are weights to (1 − L)d. The parameters α and d are assumed
positive. The HY GARCH(p, α, d, q) nest GARCH models (for α = 0),
IGARCH (for α = d = 1) and FIGARCH (for α = 1 or log α = 0). When
α < 1 (log α < 0) the process is stationary.
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4 Empirical Analysis

The factor loadings series data are obtained from DSFM for implied volatil-
ity on the German DAX index market from January 1999 to February 2003
(data available at, http://sfb649.wiwi.hu-berlin.de/fedc). Table 1 presents
descriptive statistics. Plots of sample autocorrelation functions, spectrum
and periodogram (on log-log plane) are shown in Figure 3. The autocorre-
lation are positive and decay hyperbolically to zero as the lag increases. A
linear relationship in the periodogram on log-log plane indicates the presence
of self-similarities, the fluctuations in a power-law fashion. Figure 4 shows
time series plots in absolute returns of three factor loadings series.

Since unit root tests are known to perform relatively poorly in distinguish-
ing between I(1) and the I(d) alternatives for d < 1, Diebold and Rudebusch
(1991), we apply model independent tests, V/S and LobRob for I(0) against
I(d) alternatives. With no data driven guideline for the choice of truncation
lags m, we use different values (m = 2, 3, 5, 7, 10, 20, 50) in the V/S test and
(m = 30, 50, 150, 200, 300) in LobRob test.

Results in Tables 2 and 3 for the V/S and LobRob tests respectively in-
dicate long-range dependence in all three factor loadings levels. For absolute
returns, the tests indicate long momory in |z1| and |z3| while antipersistence
could not be rejected in |z2|. Both tests results reject long memory for all
factor loadings returns.

Table 4 shows the d̂GPH and d̂GSP estimates of d for the series in levels,
returns and absolute returns. To evaluate the sensitivity of results for the
d̂GPH estimator, we report estimates of d for bandwidth m = Tα where
α = 0.5, 0.525, 0.575, 0.60, 0.80 and T = 1052 is the sample size. For the
GSP estimator the bandwidth is chosen such that m = [T

4
], [T

8
], [ T

16
], [ T

32
], [ T

64
].

Results for series in levels show 0.5 ≤ d < 1; for the return series most
estimates from d̂GPH and d̂GSP are in −0.5 ≤ d < 0 while estimates of d for
the absolute returns are within 0 ≤ d < 0.5.

To guarantee that the long memory diagnosis is not a consequence of
occasional or structural break such as the 11th September, 2001 terrorist at-
tack on the World Trade Center, we use subsamples of the data to examine
whether long run dependencies can be uncovered, Anderson and Bollerslev
(1998). This approach is possible given that the value of d is not affected
by temporal aggregation, Bollerslev and Wright (2000). Results, not pre-
sented here indicate long memory for short span of the data in levels and
absolute returns. This therefore suggest that long memory is an inherent
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series mean std. dev. min. max. skew. kurt J.Bera
(p value)

z1 1.165 0.253 0.465 1.538 -0.820 2.698 0.000
z2 0.005 0.035 -0.286 0.104 -0.251 6.958 0.000
z3 0.000 0.028 -0.103 0.134 0.933 5.452 0.000

Table 1: Summary statistics for factor loadings times series on the German
DAX index market from January 1999 to February 2003, a sample of 1039
observations.
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Figure 3: Plots of sample autocorrelation functions (lag length 300), spectrum
and periodogram (in the log-log plane) of the factor loadings series.

characteristics of the factor loading series.

To summarize, our analysis suggest long-range dependence in loading
levels as well as in absolute returns for z1 and z3. In general no long memory
in returns was detected and evidence of antipersistence in the absolute returns
for z2 could not be ruled out. We therefore interpret that there is quite some
correlation structure in the loadings in levels as well as in absolute returns.
This implies some degree of persistence and the expectation of a slow decay
in impulse responses. We also observe that the long range dependence is
different for each factor loading such that it could be interpreted in terms
of a long term, middle long term and short term impact on the dynamics
of IV S. The first factor loading, z1 is highly persistent and influences all
options similarly, irrespective of maturity. The impact of the second factor
loading, z2 gradually diminishes for longer maturities, while the third factor
governs large volatility changes in relatively short maturities.

13



Data Plot  02/14/07 20:21:23

Page: 1 of 1

1999 2000 2001 2002 2003

0.05

0.10

0.15

0.20

0.25

0.30
|z1| 
|z3| 

|z2| 
 

Figure 4: Time series plots of the three factor loading series in absolute
returns from 04.01.1999− 25.02.2003

level
m 2 3 5 7 10 20 50
z1 4.63 3.29 2.22 1.68 1.24 0.68 0.32
z2 3.77 2.89 1.99 1.54 1.15 0.65 0.31
z3 3.54 2.68 1.82 1.38 1.02 0.57 0.27

rt

m 2 3 5 7 10 20 50
z1 0.02 0.02 0.03 0.03 0.04 0.05 0.06
z2 0.00 0.01 0.01 0.01 0.01 0.02 0.03
z3 0.01 0.01 0.02 0.02 0.03 0.03 0.04

|rt|
m 2 3 5 7 10 20 50
z1 0.24 0.21 0.19 0.15 0.13 0.09 0.07
z2 0.05 0.05 0.05 0.04 0.05 0.04 0.04
z3 0.84 0.78 0.72 0.64 0.56 0.44 0.28

Table 2: The rescaled variance V/S test for I(0) against I(d) for series in
levels, return (rt) and absolute return (|rt|). q is the truncation lag. If the
evaluated statistics are over the critical value, 0.1869 for I(0), we fail to reject
the alternative hypothesis that the series display long memory.
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level
m 30 50 150 200 300
z1 -6.08 -10.60 -30.07 -38.46 -53.60
z2 -6.50 -11.05 -28.83 -35.98 -49.20
z3 -5.72 -9.86 -28.33 -36.33 -50.70

rt

m 30 50 150 200 300
z1 0.65 0.96 2.69 2.58 2.83
z2 2.02 1.47 5.14 5.76 7.03
z3 1.40 1.61 2.91 2.99 4.25

|rt|
m 30 50 150 200 300
z1 -1.25 -1.88 -7.76 -10.04 -12.42
z2 0.715 0.37 -0.01 -0.52 -1.00
z3 -4.83 -6.81 -9.08 -11.13 -9.69

Table 3: tLobRob: Semiparametric test for I(0) of a time series against long-
memory and antipersistence for factor loadings in levels, return (rt) and ab-
solute return (|rt|). Short memory is rejected against long-memory if the test
statistic is in the lower tail of the standard normal distribution. If the test
statistic is in upper tail of the standard normal distribution, short memory
is rejected against antipersistent.
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d̂GPH : z1 d̂GSP : z1
m level rt |rt| m level rt |rt|
32 0.95 -0.20 0.31 16 0.77 -0.36 -0.21
38 0.90 -0.25 0.18 32 0.83 -0.20 0.28
54 0.98 -0.15 0.17 65 0.95 -0.09 0.29
65 0.96 -0.14 0.19 131 0.89 -0.17 0.31
261 0.97 -0.10 0.27 263 0.93 -0.12 0.27

d̂GPH : z2 d̂GSP : z2
m level rt |rt| m level rt |rt|
32 0.69 -0.63 -0.09 16 0.79 -0.86 -0.38
38 0.73 -0.52 0.02 32 0.68 -0.62 -0.10
54 0.84 -0.35 -0.04 65 0.75 -0.34 -0.01
65 0.85 -0.39 -0.05 131 0.67 -0.39 -0.02
261 0.70 -0.40 -0.00 263 0.66 -0.37 0.03

d̂GPH : z3 d̂GSP : z3
m level rt |rt| m level rt |rt|
32 0.95 -0.24 0.33 16 0.68 -0.50 0.69
38 0.85 -0.32 0.31 32 0.86 -0.27 0.38
54 0.99 -0.16 0.36 65 0.84 -0.24 0.35
65 0.90 -0.23 0.35 131 0.83 -0.22 0.21
261 0.84 -0.22 0.17 263 0.85 -0.17 0.17

Table 4: The Log periodogram (d̂GPH) and the Gaussian semiparametric
(d̂GSP ) estimates of d for levels, returns and absolute returns. Bandwidth
m for GPH estimator is m = Tα with α = 0.5, 0.525, 0.575, 0.60, 0.8 and
T = 1052 is the sample size. For the GSP estimator the bandwidth is chosen
such that m = [T

4
], [T

8
], [ T

16
], [ T

32
], [ T

64
].
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Level z1 z2 z3
ARFIMA (5, d, 4) (3, d, 3) (1, d, 5)

d 0.29 ( 1.78) 0.53 (4.87) 0.29 ( 0.74)
φ1 0.59 ( 3.13) -0.23 (-0.60) 0.96 (26.10)
φ2 0.07 ( 0.31) 0.74 (4.01)
φ3 0.29 ( 1.84) 0.34 (0.99)
φ4 0.50 ( 2.71)
φ5 -0.47 (-3.92)
θ1 0.19 ( 0.94) 0.17 (0.35) -0.51 (-1.41 )
θ2 0.04 ( 0.29) -0.71 (-3.49) -0.01 (-0.24)
θ3 -0.17 (-1.37) -0.24 (-0.64) -0.09 (-2.62)
θ4 -0.58 (-4.78) 0.03 ( 0.79)
θ5 -0.08 (-2.44)

constant -0.10 0.01
Ln(`) 1892.33 2755.75 3585.06
AIC -3764.66 -5453.51 -7152.12

Table 5: ARFIMA estimation of factor loading series in levels, z1, z2 and
z3 from 04.01.1999 to 25.02.2003. The φ coefficients correspond to the au-
toregressive part and the θ coefficients to the moving average part. t-value of
the estimated parameters in brackets, Ln(`) is the log-likelihood and (AIC)
Akaike Information Criterion.

4.1 Long Memory Models Application

For appropriate representation of the factor loadings series dynamics and the
possibility of improved forecasting, we model the long memory in levels and
absolute returns using the ARFIMA, FIGARCH and HY GARCH mod-
els. These models are known to describe volatility reasonably well and pro-
vide flexible structure that captures slow decaying autocorrelation functions.
Estimation results with ARFIMA model for series in levels and absolute
returns are reported in Tables 5 and 6 respectively. Estimates of d are highly
significant across all time series in levels. The t-statistic are highly significant
to reject the null hypothesis (H0 : d = 0) at 1% significance level. Results for
absolute returns |z2| does confirm earlier tests results in that antipersitence
in |z2| may not be rejected.

Estimation results for the FIGARCH(1, δ, 1) and HY GARCH(1, d, 1)
models are reported in Tables 7 and 8 respectively. We assume the Student-t
distribution because it can appropriately account for leptokurticity exhibited
by high frequency financial data, Pagan (1996). Under student-t distributed
innovations, the FIGARCH and HY GARCH long memory parameter es-
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Absolute returns |z1| |z2| |z3|
ARFIMA (2, d, 2) (1, d, 5) (1, d, 2)

d 0.30 ( 4.73) -0.32 (-0.71) 0.24 ( 2.34)
φ1 -0.79 (-4.65) 0.89 ( 5.89) 0.57 ( 4.28)
φ2 0.01 ( 0.02)
θ1 0.61 ( 2.90) 0.06 (-0.31) -0.40 (-2.11)
θ2 -0.22 (-1.09) -0.48 (-5.59) -0.28 (-8.40)
θ3 -0.06 (-0.61)
θ4 -0.03 (-0.40)
θ5 -0.00 (-0.07)

const. 0.3
Ln(`) 2381.53 2913.99 3927.21
AIC -4753.06 -5813.98 -7846.42

Table 6: ARFIMA estimation of factor loading series in absolute returns,
|z1|, |z2| and |z3| from 04.01.1999 to 25.02.2003. The φ coefficients cor-
respond to the autoregressive part and the θ coefficients to the moving av-
erage part. t-value of the estimated parameters in brackets, Ln(`) is the
log-likelihood and (AIC) Akaike Information Criterion.

timates indicate long-memory in levels and absolute returns. Besides, the
student-t distribution parameter, ν are significantly different from zero, in-
dicating strong fat tail phenomena. Estimates, δ > 0 in FIGARCH models
suggest non-stationary long memory characteristics in levels and absolute re-
turns for the first and third factor loadings series, whereas the second series
(δ < 0) indicate a stationary long memory behavior. We assess models fit
through the log-likelihood, Ln(`), the Akaike Information Criterion, (AIC)
and the performance of the Box-Pierce (Q2) statistic for testing remaining se-
rial correlation in the squared standardized residuals, McLeod and Li (1983).

The FIGARCH and HY GARCH models perform well in describing the
high persistence existing in the conditional variance. The Q2(24) statistics
suggests that the FIGARCH model can better capture the autocorrelations
in the conditional variance for the series in levels while the HY GARCH is
more appropriate in the case of absolute returns. The FIGARCH models re-
port higher loglikelihood values for the series in levels while the HY GARCH
values are higher for absolute returns. Moreover, models in absolute returns
produce better fit than those in levels, which confirms the findings of Ding
et al. (1993), that absolute returns are the most appropriate indicators to
represent the long memory volatility processes.
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Figure 5: Actual series (red) and in-sample fit (blue) for the estimated
ARFIMA(p, d, q) model in levels and absolute returns. Time interval from
04.01.1999− 25.02.2003, with 1039 observations.

We examine the in-sample fit of the ARFIMA model for the series in lev-
els and absolute returns, Figure 5 as well as the conditional variance forecast
in levels, Figure 6 and absolute returns, Figure 7 for the FIGARCH and
HY GARCH models. Table 9 show in-sample forecast performance evaluated
on the basis of the Root Mean Square Error (RMSE) and the Mean Absolute
Prediction Error (MAPE). The main findings are that the FIGARCH and
HY GARCH models show better forecast performance than the ARFIMA
model and seems to successfully achieve the aim of modeling the long memory
behavior of volatility in a parsimonious way.
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z1 z2 z3 |z1| |z2| |z3|

µ 1.329 -0.002 -0.003 0.024 0.005 0.003
(11.190) (-0.257) (-3.733) (25.460) (22.660) (21.240)

ω 25.011 5.156 3.534 8.264 5.482 0.590
(2.368) (2.566) (0.538) (2.336) (3.363) (4.203)

δ 0.460 -0.031 0.716 0.291 -0.040 0.172
(4.280) (-1.364) (18.330) (2.693) (-1.344) (2.181)

φ1 0.161 0.742 -0.865 0.085 0.823 0.309
(1.580) (10.100) (-14.110) (0.636) (14.870) (1.931)

β1 0.510 -0.012 -0.261 0.248 -0.031 -0.032
(3.214) (-1.111) (-3.965) (1.586) (-1.830) (-0.415)

ν 10.870 2.560 30.965 4.919 2.243 2.520
(3.185) (11.320) (1.349) (6.016) (22.710) (12.660)

Ln(`) 1938.359 3302.076 3250.264 2424.146 3786.055 4378.002

AIC -3.717 -6.404 -6.243 -4.654 -7.274 -8.413

Q(24) 58.793 19.167 4095.820 164.692 11.872 36.460
[0.000] [0.691] [0.000] [0.000] [0.972] [0.036]

Q2(24) 15.226 0.097 7.319 11.789 0.092 2.156
[0.852] [1.000] [0.998] [0.961] [1.000] [1.000]

Table 7: FIGARCH estimation of the factor loading series in levels and
absolute returns with t statistics in parentheses. Significance is at 5% level.
Estimation is with the Student distribution with ν degrees of freedom. Ln(`)
is the value of the maximized likelihood. Q(24) and Q2(24) are the Box-Pierce
statistic for remaining serial correlation in the standardized and squared stan-
dardized residuals respectively, using 24 lags with p-values in square brackets.
The critical value at significant level of 5% is 36.4 .
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z1 z2 z3 |z1| |z2| |z3|

µ 1.304 -0.001 -0.003 0.024 0.004 0.003
(11.520) (0.703) (-2.061) (26.290) (20.230) (19.900)

ω 0.000 0.184 0.156 0.790 0.344 0.069
(-0.203) (5.055) (3.344) (1.885) (2.267) (2.120)

d 0.082 0.980 0.919 0.975 0.985 0.001
(1.164) (32.630) (13.220) (7.073) (46.840) (11.610)

φ1 -0.861 0.456 -0.893 -0.024 0.421 0.271
(-20.720) (9.161) (-18.660) (-0.256) (2.820) (1.663)

β1 -0.897 0.321 -0.107 0.730 0.548 -0.050
(-26.300) (0.037) (-1.791) (5.715) (4.431) (-0.776)

ν 11.065 3.106 24.200 5.175 2.414 2.668
(3.059) (7.918) (1.413) (5.538) (9.835) (8.027)

log (α) 0.836 0.083 -1.661 -0.120 -0.504 4.953
(1.003) (1.586) (-7.471) (-1.699) (-2.553) (10.200)

Ln(`) 1934.661 3301.990 3256.190 2428.212 3785.100 4378.439

AIC -3.708 -4.562 -6.252 -4.660 -7.270 -8.412

Q(24) 59.270 7315.110 4096.210 153.997 10.412 37.739
[0.000] [0.000] [0.000] [0.000] [0.988] [0.027]

Q2(24) 19.704 13.140 4.499 11.364 0.084 2.042
[0.610] [0.930] [0.999] [0.940] [1.000] [1.000]

Table 8: HY GARCH estimation of the factor loading series in levels and ab-
solute returns with t statistics in parentheses. Significance is at 5% level. Es-
timation is with the Student-t distribution with ν degrees of freedom. log (α)
is the log of weight α, to the difference operator(1− L)d. Ln(`) is the value
of the maximized likelihood. Q(24) and Q2(24) are the Box-Pierce statistic
for remaining serial correlation in the standardized and squared standardized
residuals respectively, using 24 lags with p-values in square brackets.
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Figure 6: Left-Right panels: FIGARCH and HY GARCH conditional vari-
ance forecast of factor loading in levels. Time interval from 04.01.1999 −
25.02.2003, with 1039 observations.
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Figure 7: Left-Right panels: FIGARCH and HY GARCH conditional vari-
ance forecast of absolute returns. Time interval from 04.01.1999−25.02.2003,
with 1039 observations.
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ARFIMA FIGARCH HY GARCH
RMSE

z1 0.026 0.171 0.171
z2 0.006 0.001 0.001
z3 0.005 0.001 0.001
|z1| 0.019 0.001 0.001
|z2| 0.007 0.001 0.001
|z3| 0.002 0.001 0.001

MAPE
z1 3.180 0.991 0.991
z2 27.600 1.166 0.860
z3 68.720 2.837 9.413
|z1| 52.657 22.910 16.380
|z2| 70.577 1.892 2.409
|z3| 41.706 9.134 10.39

Table 9: In-sample performance of the five-step ahead forecast of the esti-
mated ARFIMA, FIGARCH and HY GARCH models for the factor load-
ing series in levels and absolute returns. The measures of forecast accuracy
are the Root Mean Square Error (RMSE) and the Mean Absolute Prediction
Error (MAPE).
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5 Conclusion

We present an empirical investigation of long memory dynamics in the fac-
tors of Implied Volatility Strings. The factor loadings series are obtained
by applying a Dynamic Semiparametric Factor Model (DSFM) for implied
volatility strings on the German DAX index market. Long range depen-
dence in the factor loadings series is tested using the rescaled variance V/S
and the semiparametric LobRob tests. We estimated the degree of long mem-
ory based on the log-periodogram GPH regression estimator and the GSP
estimator based on the Whittle approximate maximum likelihood estimate.
Results are indicative of long-range dependence in the factor loading series
in levels and absolute returns. The factors can be interpreted in terms of
a long term, middle long term and short term impact on the dynamics of
IV S. The first factor loading, z1 is highly persistent and influences all op-
tions similarly, irrespective of maturity. The impact of the second factor
loading, z2 gradually diminishes for longer maturities and the third factor
governs large volatility changes in relatively short maturities. Such depen-
dence or persistence has importance implications for short-term trading and
long range investment strategies. As a consequence, hedging strategies of
a long position should take into consideration the long-memory effects in a
short position in a call option. This would certainly provide more secure
protection against negative effects of long-range persistence in volatility. On
the other hand, better results could be obtained for models that price and
hedge derivative securities when there is prior information on long-memory
volatility in terms of expectation on the potential level of volatility and the
rate at which volatility changes.

For an appropriate representation of the series dynamics and the possi-
bility of improved forecasting, we model the long memory in volatility via
the class of flexible processes, the ARFIMA, FIGARCH and HY GARCH
models. Our results indicate that these models appear to capture the slow
decaying autocorrelation function and therefore are applicable in mimicking
the dynamics of the factor loadings. In comparison, models in absolute re-
turns have better performance, confirming the findings of Ding et al. (1993),
that absolute returns are the most appropriate indicator to represent the
long memory volatility processes. It would be interesting to find out if there
are persistent time scales that are of local importance or influence the fac-
tor loading time series. Therefore, a possible extensions for future research
would include studies on spectral analysis or wavelet transform to identify
such persistent time scales. In addition, the resulting long range dependence
and evidence of fat tail phenomenon also provides a natural extension to
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investigate long memory value-at-risk. This would be useful to regulators,
derivative market participants and practitioners whose interest is to reason-
ably forecast stock market movements.
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