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Abstract

We study a voting model with incomplete information in which the evaluation of social
welfare must be based on information about agents’ top choices plus general qualitative
background conditions on preferences. The former is elicited individually, while the latter
is not. We apply this ‘frugal aggregation’ model to multi-dimensional budget allocation
problems, relying on the specific assumptions of convexity and separability of preferences.

We propose a solution concept of ex-ante Condorcet winners which is widely and flex-
ibly applicable and naturally incorporates the epistemic assumptions of particular frugal
aggregation models. We show that for the case of convex preferences, the ex-ante Con-
dorcet approach naturally leads to a refinement of the Tukey median. By contrast, in the
case of separably convex preferences, the same approach leads to different solution, the
1-median, i.e. the minimization of the sum of the L1-distances to the agents’ tops. An al-
gorithmic characterization renders the latter solution analytically tractable and efficiently
computable.

Keywords: Social choice under partial information; frugal aggregation; ex-ante Condorcet
approach; participatory budgeting; Tukey median.
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his detailed feedback on the 2019 version and pointers to a number of relevant contributions in the computer
science literature. All errors are our own.
†Department of Economics, University of California at Davis, kdnehring@ucdavis.edu.
‡Department of Economics and Management, Karlsruhe Institute of Technology, clemens.puppe@kit.edu.

1



1 Introduction

Many economic and political decisions involve the allocation of resources under a budget
constraint. Examples are the allocation of public goods, the redistribution across classes of
beneficiaries, the allocation of tax burden, the choice of intertemporal expenditure streams,
or the macro-allocation between expenditure, tax receipts and net debt. Here we explore the
possibility of taking these collective decisions by voting.

Standard approaches to preference aggregation and voting assume ordinal or even cardinal
preference information as their input. Their application to public resource allocation problems
poses substantial difficulties for a variety of reasons. First, at the foundational level, except for
the one-dimensional case with two public goods and single-peaked preferences (Black, 1948;
Arrow, 1951/63), one is faced with generic impossibility results under almost every reasonable
domain restriction (Kalai et al., 1979; Le Breton and Weymark, 2011) just as in spatial voting
models (Plott, 1967). In particular, in higher dimensions there is no hope to generally find a
Condorcet winner even if all agents have well-behaved preferences. Indeed, the indeterminacy
of majority voting is generic and can be severe; for example, generically every alternative
can be the outcome of a dynamic (non-strategic) majority vote for an appropriate agenda
(McKelvey, 1979). Thus, from the general point of view of ordinal social choice theory, it is
even conceptually unclear what allocations an optimal voting rule should aim at. Second, and
especially important for the voting as opposed to the abstract social choice perspective, at a
more pragmatic level, a basic problem already arises from the sheer number of alternatives
which grows exponentially in the number of dimensions (i.e. alternative uses of the public
resource). Collecting a complete ordering over the set of all alternatives from each agent
(whether citizen or representative) as required for many voting mechanisms is often simply
infeasible. Clearly, much is to be said for making the task of the voter as easy as possible.

Here, we take a minimalist approach by assuming that only voters’ preference tops are
individually elicited. (Note that one needs to know at least voters’ tops to have an ade-
quate basis for collective decisions in the most straightforward case in which voters agree
unanimously). We also allow the social evaluator to rely on some background information
about the structure of preferences. As in other economic settings, convexity of preferences
s frequently highly plausible. Additional assumptions such as preference separability may
also be plausible and useful. This background information is represented as a set of possible
preference orderings, or ‘models.’

This paper aims to determine which of the feasible social choices (allocations) is norma-
tively best in light of the elicited and background information. To address this question, we
take a qualitative, non-probabilistic approach which assumes that this information is known
and nothing else. Formally, the epistemic state of the social evaluator is modeled by a set
of possible preference profiles. An obvious methodological alternative would be to model the
uncertainty in a Bayesian manner by assigning probabilities to the profiles in this set. But, for
multiple reasons, such an approach appears to have limited appeal here. In particular, whose
subjective probability is supposed to be the basis of the evaluation? If the social evaluator
was understood as a social planner (‘bureaucrat’), one may think of the required judgmental
input as reflecting the planner’s expertise; but in a voting context, the social evaluator is nat-
urally viewed as ‘the group’ at a constitutional stage at which individual preference profiles
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are unknown. A qualitative specification of the epistemic basis for the social evaluation seems
especially attractive since it would appear to be much more amenable for agreement at the
constitutional stage.

Alluding to the notion of ‘fast and frugal heuristics’ due to Gigerenzer and Goldstein
(1996), we call our approach ‘frugal’ to mark its reliance on minimally demanding informa-
tional assumptions as well as on a coarse, qualitative treatment of uncertainty. Our aim is
to show that even from these minimalist, pragmatically appealing premises, attractive and
credible choice implications can be derived. We formulated the search for a frugal normative
optimum as the combination of two notoriously difficult rational choice problems: The search
for a frugal normative optimum combines two notoriously difficult rational choice problems:
the Arrowian problem of interpersonal aggregation of preference rankings in the absence of in-
terpersonal comparisons, and the problem of rational individual choice under non-probabilistic
ignorance.1 As both problems are prone to ‘impossibility’ results, it would appear that the
combination of the two must be an even tougher nut to crack.

As plausible as this expectation of yet more and deeper impossibilities may seem, we
show how they can be overcome by means of a (novel) ‘ex-ante Condorcet’ (EAC) approach
for suitable modeling choices. The EAC approach is based on ex-ante comparisons between
pairs of alternatives based on the interval of possible preference vote counts. A basic yet
fundamental observation yields a canonical ex-ante majority relation which can be defined
independently of subjective attitudes such as pessimism, optimism, ambiguity-aversion or
ambiguity-seeking. The EAC approach selects – whenever possible – the maximal elements
of this relation, the ex-ante Condorcet winners. In the models at the center of this paper,
we show that such winners do exist (either outright or with appropriate qualification) and
characterize them.

In the simplest case of public resource allocation among two possible uses, convexity is very
powerful as it implies single-peakedness of ex-post preferences. The ex-post Condorcet winner
is the median of voters’ tops and thus known ex-ante and equal to the ex-ante Condorcet
winner. Yet, with more than two goods, things get a lot more complicated. For instance,
the ‘plain convex model’ in which knowledge of convexity alone is assumed, does not yield
very useful implications. Indeed, generically (i.e. with tops in general position), all tops are
ex-ante Condorcet winners when there are more than two goods, just like in the absence of
any preference information whatsoever (see Proposition 4). Admitting all convex preferences
on equally possible footing turns out to be too radical an assumption to leverage the obvious
potential of the knowledge of convexity. To achieve this, we refine the plain convex model in
two different ways.

The first such approach ‘regularizes’ the plain convex model by imposing restrictions on
the pattern of ex-post preferences given a profile of tops. To execute this formally, we assume a
parametric form of convex preferences, namely quadratic preferences. A particular quadratic
form Q describes the substitution-complementation-separability ‘structure’ of a quadratic
preference ordering in terms of the cross-partials of the utility function. ‘Regularity’ in the
relevant sense is introduced by assuming that the ex-post distribution of voters’ preference

1For the latter, see the classical reference by Luce and Raiffa (1957), as well as Nehring (2000, 2009) for a
more recent perspective.
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structures Q is stochastically independent of the distribution of their tops. This assumption
defines the ‘homogeneous quadratic model.’ It holds in particular whenever all voters share
the same Q; such profiles are instances of intermediate preferences à la Grandmont (1978).

In the second approach, the social evaluator assumes that (‘knows that’) individual voters’
preferences are separable besides being convex, but assumes nothing further about ex-post
profiles of preferences. Separability seems often appealing for broad expenditure categories,
but may make less sense for more finely described goods.

The two main results of the paper characterize the ex-ante Condorcet winners in the two
models – in the separably convex case by adding a localization twist. In the homogeneous
quadratic model, we show in Theorem 1 that an ex-ante Condorcet winner always exists
and is always a Tukey median. Tukey medians are classical coordinate-free generalizations of
ordinary medians to multiple dimensions, see Small (1990) for a classic survey and Rousseeuw
and Hubert (2017) for comprehensive treatment. Conversely, a Tukey median is an ex-ante
Condorcet winner whenever it is ‘strict’ (as formally defined in Section 3). In a variant of
the first main result, we also provide an alternative characterization of strict Tukey medians
as ex-ante Condorcet winners based on a ‘similarity hypothesis’ that is weaker in effect and
is imposed directly on the range of ‘plausible’ majority margins in each binary comparison
(Theorem 2).

In the separably convex model, unrestricted ex-ante Condorcet winners need not always
exist, but local ex-ante Condorcet winners do exist and are singled out by appeal to the
underlying separability assumption on preferences. These local ex-ante Condorcet winners
are characterized in a number of ways. The first characterization in Theorem 3 shows them
as equivalent to metric medians based on the L1-norm (‘1-medians’).2 In the present setting,
1-medians have a natural resource allocation interpretation and permit a highly informative
and operationally transparent characterization that ensures fast spread-sheet computability
even in high dimensions (Theorem 4). As a corollary, Theorem 4 yields a characterization of
1-medians as a refinement of a coordinate-based version of the Tukey median (Proposition 9).

Related Literature

To the best of our knowledge, the present is the first ‘frugal aggregation’ model of its kind.
But there are, of course, related approaches in the literature. The Tukey median has been
studied implicitly in the social choice literature inasmuch as it is equivalent to the outcome of
the minimax voting rule in standard spatial voting with Euclidean preferences (Kramer, 1977;
Demange, 1982; Caplin and Nalebuff, 1988). In fact, the latter two contributions amount to
substantive analyses of properties of the Tukey median itself which are directly relevant to
the present study (see Sections 3 and 5). The Euclidean model can be viewed as a special,
degenerate case of a frugal model in which voters preferences conditional on their top are
known. It is intuitive and supported by heuristic argument in Section 3.4 below that the
(Condorcetian) normative frugal optimum in such a model is the L2-median (which minimizes

2The 1-medians can be viewed as an instance of the median rule known from general aggregation theory,
see, e.g., Barthélémy and Monjardet (1981); Nehring and Pivato (2021). Our terminology deviates from some
of the statistical literature which denotes by ‘1-median’ the minimizers of the Euclidean (i.e. L2-)distance, see
e.g., Vardi and Zhang (2000).
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the sum of Euclidean distances), not the Tukey median. Methodologically, it seems arguable
that the great popularity of the spatial voting model stems in no small part from the fact
that preferences are determined by voters tops (rather than the appeal of the assumption of
Euclidean preferences per se). The proposed frugal approach may thus also be attractive from
a more analytical rather than strictly normative approach by explicitly modeling the analysts’
absence of knowledge of the voters’ precise preferences.

Most work of theoretical interest in the frugal theme of this paper has come from the
computer science literature, see Boutilier and Rosenschein (2016) for an overview.3 One strand
explores the implications of partial knowledge of complete (ex-post) preference profiles for
inferences about the outcome of standard social choice rules and criteria, e.g. via the notions
of ‘possible’ vs. ‘necessary’ winners (Konczak and Lang, 2005); in this vein, we characterize
the possible Condorcet winners in our EAC approach (see Proposition 1 below). Another
(smaller) strand in the literature adopts a decision-theoretic ex-ante approach as this paper
does. Some papers seek solutions that maximize expected welfare based on some utilitarian
welfare criterion and a probability distribution over profiles, frequently uniform. Others argue
for the modeling of the social evaluator’s epistemic state in terms of a set of possible profiles,
as we do, and argue for the application of classical criteria of decision making under ignorance
such as maximin or minimax regret (Lu and Boutilier, 2011). In the highly complex state
spaces associated with the epistemic models studied here, it may be very difficult to execute
these approaches if that is possible at all. Significantly, the two quoted strands share the major
conceptual limitation of having to rely on an interprofile-comparable standard of aggregate
welfare ex-post. Thus, they in fact assume that the Arrovian problems of coherent aggregation
and interpersonal non-comparability have been solved or assumed away, e.g. by assuming
strong forms of utilitarian aggregation ex-post.4

By contrast, the EAC approach introduced here rests on an evaluation of decisions in pairs
of alternatives taking the full state space (set of possible profiles) into account. In such pairwise
comparisons, the majority criterion carries over naturally to the ex-ante stage, without raising
new issues of interpersonal comparison, and allowing a tractable characterization in many
cases. These pairwise comparisons need then be put together to obtain a coherent rationale
for an ex-ante evaluation of complex choices such as budget allocations. At this juncture,
Arrovian style issues of coherent aggregation might arise in principle. It is a rather remarkable
finding of this paper that, in the the frugal models studied here, these problems do not arise
or are resolved easily.

With respect to the focal application to the allocation of public budgets, there is an
important recent literature on ‘participatory budgeting’ with intended application to cities
and local communities (Shah, 2007). Participatory budgeting schemes have been put into
practice at various scales in many places around the world including Porto Allegre (Brasil),
Paris, Barcelona, New York City, and at various other places. The ballots are typically
very parsimonious, often taking the form of a set of projects approved.5 Again, most of

3We thank Jérôme Lang who pointed us to the pertinent literature.
4We use the ex-ante vs. ex-post distinction purely for conceptual purposes, without any assumption of an

ex-post stage at which the actual profile of preferences is observed.
5See, e.g., the open source project ‘Stanford Participatory Budgeting Platform’ (https://pbstanford.org)

which offers guidance and allows municipalities, cities and other institutions to run participatory budgeting
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the theoretical contributions come from the computer science community, with a focus on
indivisibilities and on ‘proportionality’ considerations to ensure that the interest of different
local subcommunities are fairly represented (Aziz and Shah, 2020). By contrast, our focus is
on divisible budgets (continuous or discrete), and on finding allocations that best satisfy the
aggregate interest (in parallel with most of standard voting theory).6

To the best of our knowledge, none of the contributions take an explicitly frugal normative
approach. Instead, they either focus on the voting mechanism directly, or make strong and
specific assumptions on preferences. Interestingly, the two recent contributions (Goel et al.,
2019; Freeman et al., 2021) assume L1-preferences, and show that under this domain restric-
tion there exist strategy-proof selections from the 1-median. The separably convex model
analyzed in Section 4 below can be viewed as providing a foundation of sorts for employing
such preferences as a focal case in that normatively, the EAC solution can be interpreted as
the utilitarian optimum relative to imputed L1-preferences.

A special case of the discrete separably convex model with contact to a different strand
of the literature is the committee problem discussed in Section 4.6 below, see in particular
(Lang and Xia, 2016).

Plan of Paper

In the next section, Section 2, we introduce the general EAC approach. The subsequent
sections address the budget allocation problem, Section 3 under the background assumption of
convex preferences, Section 4 under the assumption of convexity plus separability. Section 3.1
considers the ‘plain’ convex model and shows that the EAC solution in this model coincides
with generic plurality rule. Section 3.2 introduces the model of quadratic preferences and
shows that under a suitable homogeneity condition on profiles of ex-post preferences the
EAC solution coincides with (a refinement of) the Tukey median. Section 3.3 shows that
the homogeneity assumption in the quadratic model can be replaced by a (a priori weaker)
‘similarity’ condition imposed directly on the possible majority intervals. Section 3.4 discusses
properties of the Tukey median, foremost its affine equivariance, and compares it to potential
alternatives, in particular the ‘p-medians’ that are based on the minimization of aggregate
Lp-distances.

Section 4 introduces the ‘separably convex’ model. The basic facts are gathered in Sections
4.1-4.4; the (localized) EAC solution is shown to coincide with the 1-median in Section 4.5.
The special case of the committee selection problem is treated in Section 4.6. The efficient
computability of the EAC solution is demonstrated in Section 4.7. An interconnection of the
EAC solution of the convex model (the strict Tukey median) and the separably convex model
(the 1-median) is provided in Section 4.8. Section 4.9 shows how the EAC approach can be
applied to the case of indivisible projects.

With reference to the work by Caplin and Nalebuff (1988, 1991), Section 5 points out that
in certain situations pragmatic considerations might favor the adaption of the 1-median rather

elections online.
6In Section 4.9 below, we show how to accommodate indivisibilities in individual projects in the presence

of divisible ‘general expenditure.’
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than Tukey median as an actual voting rule even when the epistemic case for separability is
weak. Section 6 concludes.

An extensive appendix provides further illustrations, additional results and extensions
(Appendix A.1-A.8). All remaining proofs are gathered in Appendix B.

2 Condorcet Winners, Ex-Ante

We envisage a social evaluator who has to choose from a universe of alternatives X, based on
epistemic states of a specific structure: a profile of individual top alternatives θ = (θ1, ..., θn),
for some number n ∈ N of voters, and a corresponding set of possible ex-post preferences.
The later is described by a set of ‘admissible’ profiles <= (<1, ...,<n) of ex-post preferences
M. We allow for any finite size of the electorate; hence if we denote by R the set of all weak
orders on X, we have M ⊆

⋃
n∈NRn. In the following, we will refer to M as a model (of

preferences). It specifies the background assumption on the qualitative structure of ex-post
preferences given a profile of tops.

For simplicity we assume that every admissible preference <i has a unique top alternative
in X which we denote by τ(<i). Given a model M and a profile θ = (θ1, ..., θn), we denote
the epistemic state of the social evaluator by Ω(θ,M), i.e.

Ω((θ1,...,θn),M) := {(<1, ...,<n) ∈M | θi = τ(<i) for all i} .

For all distinct x, y ∈ X, an epistemic state Ω(θ,M) induces an interval m(θ,M)(x, y) in the
possible support counts in the vote of x against y, specifically let

m(θ,M)(x, y) :=
[
m−(θ,M)(x, y) , m+

(θ,M)(x, y)
]
,

where

m−(θ,M)(x, y) := min
<∈Ω(θ,M)

#{i : x �i y}, (2.1)

m+
(θ,M)(x, y) := max

<∈Ω(θ,M)

#{i : x �i y}. (2.2)

The family of these intervals will be what matters in our analysis. Sometimes a submodel
M′ ⊆M induces exactly the same support count intervals as the model M itself, for all θ
and all x, y ∈ X; in that case, we call M′ a rich submodel of M.

In deciding ex-ante on a hypothetical choice between x and y, it is natural to base this
choice on a comparison of the intervals m(θ,M)(x, y) and m(θ,M)(y, x). A definitive and
unambiguous comparison based on knowledge alone is possible if and only if the support
intervals m(θ,M)(x, y) and m(θ,M)(y, x) do not overlap, i.e. if it is known that more voters
prefer x to y than vice versa – whatever the precise margin may be. If m(θ,M)(x, y) lies
entirely above m(θ,M)(y, x), we say that x is a necessary majority winner over y, and denote
this by

xP nec
(θ,M)y :⇐⇒ m−(θ,M)(x, y) > m+

(θ,M)(y, x).
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The maximal elements with respect to this relation is referred to as the majority admissible
set, and denoted by

MA(θ,M) := {x ∈ X | for no y ∈ X, yP nec
(θ,M)x}.

An aggregation rule is called majority admissible if it only chooses from the majority
admissible set whenever that set is non-empty. From the definition it is immediate that the
majority admissible set is increasing with the underlying model, i.e., for all θ,

M ⊆M′ =⇒ MA(θ,M) ⊆ MA(θ,M′) (2.3)

(with equality on the right hand side if M is a rich submodel of M′). Moreover, it is evident
that every Condorcet winner with respect to any profile of ex-post preferences is majority
admissible. Under a weak richness condition on the model, the converse holds as well, i.e. the
majority admissible set coincides with the possible ex-post Condorcet winners. Specifically,
say that a model M is copious if, for all θ = (θ1, ..., θn) and x ∈ X the following condition is
satisfied. For all J ⊆ {1, ..., n} and all Y ⊆ X,

∀i ∈ J ∀y ∈ Y ∃ <∈ Ω(θ,M), y �i x =⇒ ∃ <∈ Ω(θ,M)∀i ∈ J ∀y ∈ Y, y �i x. (2.4)

An alternative x is an (ex-post) Condorcet winner at a profile < if for no alternative y ∈ X,
#{i : y �i x} > #{i : x �i y}, i.e. if no alternative receives strictly higher support than x in
a binary comparison.

Proposition 1. Suppose that M is copious. For all x ∈ X and all profiles θ, x ∈ MA(θ,M)

if and only if there exists a profile <∈ Ω(θ,M) such that x is a Condorcet winner at <.

(Proof in appendix.)

With sufficient ignorance, the relation P nec
(θ,M) will tend to be incomplete. In those cases,

a substantive ex-ante comparison requires a balance of uncertainties, i.e. a comparison of the
intervals m(θ,M)(x, y) and m(θ,M)(y, x) when they overlap. Due to the ‘complementarity’ of
vote counts ex-post, a comparison of the lower and upper endpoints of these intervals must
yield the same result; formally we have:

Fact 2.1. For all θ and all distinct x, y ∈ X,

m−(θ,M)(x, y) ≥ m−(θ,M)(y, x) ⇐⇒ m+
(θ,M)(x, y) ≥ m+

(θ,M)(y, x).

To verify this, simply observe that, for all distinct w, z ∈ X, m−(θ,M)(w, z) +m+
(θ,M)(z, w) =

n− n0, where n0 is the number of voters who are indifferent between w and z at all profiles
in Ω(θ,M).

Hence an unambiguous balance of uncertainties ex-ante is possible; in contrast to the clas-
sical theory of decision making under ignorance (see, e.g. the survey Luce and Raiffa, 1957),
there is no need or even meaningful role for an evaluators degree of pessimism vs. optimism
(ambiguity-aversion vs. ambiguity-seeking in more modern terminology).
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Define the ex-ante majority relation R(θ,M) as follows. For all distinct x, y ∈ X,

xR(θ,M)y :⇐⇒ m−(θ,M)(x, y) ≥ m−(θ,M)(y, x) (2.5)

⇐⇒ m+
(θ,M)(x, y) ≥ m+

(θ,M)(y, x).

The maximal elements with respect to the ex-ante majority relation are referred to as the
ex-ante Condorcet winners, i.e.

CW(θ,M) := {x ∈ X | xR(θ,M)y for all y ∈ X}.

Evidently, P nec
(θ,M) ⊆ P(θ,M) where P(θ,M) is the asymmetric part of the ex-ante majority

relation R(θ,M), and hence,
CW(θ,M) ⊆ MA(θ,M).

An aggregation rule is called ex-ante Condorcet consistent if it selects all ex-ante
Condorcet winners (if there are any). Observe that every rich submodel M′ ⊆M induces
the same majority admissible set and the same set of ex-ante Condorcet winners, i.e. for all
profiles θ, MA(θ,M′) = MA(θ,M) and CW(θ,M′) = CW(θ,M).

Before proceeding, it is worth noting the generality of the ex-ante Condorcet approach.
Here we describe the epistemic state of the social evaluator in terms of a set of possible ex-post
preferences. Alternatively, the epistemic state of the social evaluator might be given in terms
of precise probabilities, or, as a joint generalization of both, in terms of sets of priors. In
the first case, the role of the majority interval would be desribed by an estimated majority
(support count); in the latter case, the majority interval would be generalized as an interval of
expectations, but again, an unambiguous balancing of uncertainties in the manner described
in Fact 2.1 is available. In Section 3.3, we will characterize ex-ante Condorcet winners in a
reduced-form approach in which ‘plausible’ majority intervals are specified directly.

3 Budget Allocation: Convex Preference Models

In the rest of this paper, we will study the following budget allocation problem. Suppose that
a group of agents has to collectively decide on how to allocate a fixed budget Q ≥ 0 to a
number L of public goods (‘projects’). Throughout we assume fixed prices, thus the problem
is fully determined by specifying the expenditure shares. Furthermore, we assume that all
individuals have monotone preferences. Expenditure x` on public good ` may be bounded
from below and above, so that feasibility requires x` ∈ [q`−, q

`
+] for some integers q`−, q

`
+ where

we allow that q`− = −∞ and/or q`+ =∞. Together, these assumptions allow us to model the
allocation problem as the choice of an element of the following (L− 1)-dimensional polytope

X :=

{
x ∈ RL |

L∑
`=1

x` = Q and x` ∈ [q`−, q
`
+] for all ` = 1, ..., L

}
, (3.1)

where x = (x1, ..., xL). The space X is referred to as the set of feasible allocations, or
alternatively, in our context as a resource agenda.
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A weak order < on X is convex if, (i) for all x, y, z, w ∈ X, y = t · x + (1 − t) · z for
some 0 ≤ t ≤ 1, x < w and z < w jointly imply y < w. It will be convenient to also require
the following property: (ii) for all x, y, z ∈ X, y = t · x + (1 − t) · z for some 0 < t < 1,
and x � z jointly imply x � y. Observe that this is still weaker than the standard textbook
notion of strict convexity ; for instance, linear preferences satisfy both conditions (i) and (ii)
while they are usually not considered as ‘strictly’ convex. We will maintain both assumptions
throughout and denote the set of all weak orders satisfying (i) and (ii) by Rco.

3.1 The Plain Convex Model

The most straightforward starting point under the general assumption of convexity of prefer-
ences is to consider the model Mco := ∪n∈N(Rco)n, which we refer to as the plain convex
model.

3.1.1 The One-Dimensional Case: Median Voting

In the case of two goods, i.e. L = 2, Rco coincides with the set of all single-peaked preferences
on X ⊆ R, and the choice of the median top(s) constitutes the unique ex-ante Condorcet
consistent aggregation rule; specifically, we have the following result. For every profile θ =
(θ1, ..., θn), denote by θmed the unique median if n is odd, and by [θmed− , θmed+ ] the median
interval if the number of voters is even. The following result is easily verified.

Proposition 2. Suppose that L = 2, and let θ = (θ1, ..., θn) be a profile of tops in X. Then,

CW(θ,Mco) = MA(θ,Mco) =

{
{θmed} if n is odd

[θmed− , θmed+ ] if n is even
.

Thus, in the one-dimensional case the ex-post and ex-ante Condorcet criterion give the
same result under single-peakedness. The reason is, of course, that under knowledge of single-
peakedness any given top uniquely determines the preference on both sides of the top, and
that is all what is needed to apply the Condorcet criterion.7

3.1.2 The Multi-Dimensional Case: Generic Plurality Rule

In the multi-dimensional case, a result similar to Proposition 2 holds if the top profile is
contained in a one-dimensional subspace;8 but in general, majority admissibility has very
weak implications in the plain convex model. Specifically, say that a set Y ⊆ X is collinear if
the points in Y all lie on the same line; furthermore, say that Y ⊆ X is in general position if
no three distinct elements of Y are collinear.

Proposition 3. Let θ = (θ1, ..., θn) be a profile of tops; then x ∈ MA(θ,Mco) if and only
if, for no subset J ⊆ {1, ..., n} of more than n/2 voters, the set {x} ∪ {θi}i∈J is collinear and
x 6∈ co({θi}i∈J).

7Note that our somewhat stronger condition on preferences formulated above guarantees that preferences
are strictly decreasing on both sides of the top; the only remaining uncertainty in the one-dimensional case is
about the comparison of alternatives from different sides of the top.

8see, Fact B.1 in the appendix.
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(Proof in appendix.)

Frequently, it will be useful to identify profiles of individual tops with type profiles of tops
with different popular mass. Specifically, we denote by θ = (θ1; p1, ..., θm; pm) the (anony-
mous) profile in which the fraction pi of all voters has top θi, where 0 < pi ≤ 1 and

∑
i pi = 1;

in that context, we also refer to θi as the type of voter i, and we assume without of loss of
generality that the θi are pairwise distinct.

In the plain convex model, the ex-ante Condorcet winner coincides with the plurality
winner generically, as follows.

Proposition 4. Consider a type profile (θ1; p1, ..., θm; pm) such that the set {θ1, ..., θm} ⊆ X is
in general position. If pi∗ is maximal among {p1, ..., pm}, then θi∗ ∈ CW(θ,Mco). Moreover,
if pi∗ is uniquely maximal among {p1, ..., pm}, then

CW(θ,Mco) = {θi∗}.

(Proof in appendix.)

This is somewhat paradoxical. Intuitively it would appear that preference convexity con-
tains substantial information beyond knowledge of the tops which Proposition 4 appears to
contradict. What is amiss?

Example 1. Consider a large set of voters with pairwise distinct tops in an ε–neighborhood
U of, say the point (1, 1, 1), in general position. In addition, suppose that two voters are
concentrated on one point outside that neighborhood, say at x = (0, 0, 3) (see Figure 1). Then,
according to Proposition 4, x is the unique ex-ante Condorcet winner.

For example, we have xP(θ,Mco)y where y = (δ, δ, 3 − 2δ) for sufficiently small δ > 0.

Indeed, m−(θ,Mco)(x, y) = 2 while m−(θ,Mco)(y, x) ≤ 1 (cf. Fig. 1); note that, if all tops plus the
point y are in general position, it is even possible that all voters with top in U prefer x to y
in the plain convex model.

x = (0, 0, 3)

y

U

Figure 1: Illustration of Proposition 4

In any case, we obtain m+
(θ,Mco)(x, y) ≥ n − 1, i.e. there is almost complete ignorance

about the support count ex-ante. If the epistemic state of the social evaluator is literally that
of complete ignorance within Mco, then the ex-ante preference for x over y seems defensible.
Note, however, that for x to be preferred to y by some voter with top θi in U , i’s preference
must be very special; for instance, almost any ellipse with center at θi that includes x will also
include y. Thus, presumably, for a more finely elicited epistemic state E the upper support
m+
E(x, y) would be less, even much less, than the converse upper support m+

E(y, x).
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While attractively simple, the usefulness and appropriateness of the complete ignorance
assumption is thus challenged by situations as in Example 1. The applicability of the plain
convex model is limited because it implies only extremely weak restrictions on the compar-
ison of non-top alternatives. At the same time, examples such as Example 1 show that the
distribution of tops can suggest restrictions on preferences over non-top alternatives in the
aggregate. Heuristically, similar tops tend to give rise to similar comparisons among any
pair of non-top alternatives. In the following, we offer two conceptually distinct yet comple-
mentary approaches to make this heuristic precise. The first assumes that the distribution
of the substitution-complementation structure of preferences is stochastically independent of
the distribution of tops; to formalize this, it is assumed that voters’ preferences are quadratic.
The second is based on the more direct assumption that in estimating the range of ‘plausible’
majority margins, voters’ tops can be bi-partitioned into convex similarity clusters.

3.2 Common Structure: The Quadratic Model

Say that a preference < on X is quadratic if it can be represented by a utility function of the
form

uθ(x) = (x− θ)T · Q · (x− θ), (3.2)

for some θ ∈ X and a negative definite, symmetric L × L matrix Q. Geometrically, the
representation in (3.2) means that the indifference curves are generated from circles with
center θ by a common affine transformation; in particular, they are ellipsoids. Quadratic
preferences can be viewed as (second-order) Taylor approximations of any underlying smooth
preference around the top. In particular, the (globally constant) cross-partial derivatives
given by Q capture the specific pattern of local complementarities and/or substitutabilities
between different goods. Denote by Mquad the model consisting of all profiles of quadratic
preferences on X, the plain quadratic model. Evidently, for all tops θ ∈ X and all x, y ∈ X
such that θ, x, y are not collinear, there exist quadratic preferences <,<′ both with top θ such
that x � y and y �′ x. By consequence, we have:

Fact 3.1. The model Mquad is a rich submodel of Mco. In particular, the two models induce
the same ex-ante majority relation and CW(θ,Mquad) = CW(θ,Mco).

Thus, also from the perspective of the ex-ante Condorcet solution the plain quadratic
model can be viewed as representative of the plain convex model. In particular the ‘generic
plurality’ conundrum posed by Example 1 continues to apply to the plain quadratic model.
The great advantage of the quadratic model is that it allows for a clear separation between
the preference top and the preference structure (described by the quadratic from Qi.

The tightest way to formalize the idea that voters (with distinct tops) have ‘similar’
preferences is to require that their preferences be quadratic with the same quadratic form,
i.e. indifference curves of different voters can be obtained from each other by translation.
Specifically, say that a profile <= (<1, ...,<n) of quadratic preferences with tops (θ1, ..., θn) is
uniform if there exists a quadratic form Q (independent of i) such that, for all i, the preference
<i is represented by

uθi(x) = (x− θi)T · Q · (x− θi).
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Since a preference is quadratic if and only if is obtained from a Euclidean preference (with
circles as indifference curves) by an affine transformation, we have the following result.

Fact 3.2. Let x, y ∈ X be any two distinct alternatives, and <= (<1, ...,<n) a uniform profile
of quadratic preferences with tops θ = (θ1, ..., θn). Then, there exists a (Euclidean) half-space
H ⊆ RL such that the hyperplane ∂H passes through the midpoint between x and y, and

{θi |x �i y} ⊆ int(H) and {θi | y �i x} ⊆ int(Hc), (3.3)

where Hc is the complement of H in RL. Conversely, for any (Euclidean) half-space H that
separates x from y such that ∂H passes through the midpoint between x and y, there exists a
uniform profile of quadratic preferences that satisfies (3.3).

Denote by Mquad ⊆Mquad the set of all uniform profiles and observe how the uniformity
assumption solves the puzzle posed by Example 1 above. By an intermediate value argument,
one can choose y so that at least n−3

2 tops in U are on either side of the line connecting x
and y. Then, any half-space H through the midpoint between x and y that contains y also
contains at least n−3

2 tops. Thus, m−
(θ,Mquad)

(y, x) = n−3
2 while m−

(θ,Mquad)
(x, y) = 2. It

follows that x cannot be an ex-ante Condorcet winner at this profile in the uniform quadratic
model.

While the uniform quadratic model Mquad gives a satisfactory answer in situation as
described in Example 1, it is arguably too restrictive in applications. In particular, in any
uniform profile, the preference of one voter determines the entire preference ordering of all
voters given their respective tops. A more permissive condition requires only that, conditional
on each top, the distribution of the preference structure of all voters with that top is the same.
Specifically, denote by µ|θ the distribution over the quadratic forms of all voters with top θ, and
say that a profile of quadratic preferences is homogeneous if µ|θ = µ|θ′ for all θ, θ′ that occur

as tops in the profile. Denote by M̂quad the family of all homogeneous profiles of quadratic

preferences, and observe that Mquad ⊆ M̂quad ⊆ Mquad. Observe that the homogeneity
assumption in effect requires admissible profiles to have a product structure over tops and
quadratic forms; in other words, the conditional distributions of tops conditional on any fixed
quadratic form are identical. From this, one easily infers that:

Fact 3.3. The ex-ante majority relations of the uniform and the homogeneous quadratic model
coincide; in particular, CW(θ,M̂quad) = CW(θ,Mquad).

(Proof in appendix.)

It turns out that the ex-ante Condorcet winners in the uniform and the homogeneous
quadratic models coincide and are closely related to the Tukey median (Tukey, 1975). For all
x ∈ X, denote by Hx the family of all Euclidean half-spaces that contain x (i.e. the family of
all sets of the form {y ∈ X : a · y ≥ a · x} for some non-zero vector a ∈ RL). For every x ∈ X
and all profiles θ, denote by

d(x;θ) := min
H∈Hx

#(θ ∩H)

the Tukey depth of x at the profile θ. Intuitively, the Tukey depth measures the ‘centrality’ of
x with respect to the profile of tops: the larger d(x;θ) the more tops θi lie in every direction
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viewed from x, and d(x;θ) = 0 means that x can be separated from the entire set of tops θ
by a hyperplane. Denote by d(θ) := maxx∈X d(x;θ) the maximal Tukey depth over X. The
Tukey median rule selects, for every profile θ, the alternatives that attain this maximal depth:

T (θ) := arg max
x∈X

d(x;θ) = {x ∈ X | d(x;θ) = d(θ)}.

Our first main result involves the following refinement. For all profiles θ and all x, denote
by H∗x := {H 3 x : #(θ ∩H) = d(θ)}. A Tukey median x ∈ T (θ) is strict if, for no y ∈ T (θ),
H∗y ( H∗x. The set of strict Tukey medians is denoted by T ∗(θ).

Theorem 1. For all profiles θ, CW(θ,M̂quad) is non-empty; moreover, every element of

CW(θ,M̂quad) is a Tukey median, and indeed a strict one. Conversely, every strict Tukey

median is an element of CW(θ,M̂quad), i.e. CW(θ,M̂quad) = T ∗(θ).

(Proof in appendix; see also the remarks on the proof idea in the following subsection.)

3.3 The Similarity Hypothesis

An alternative but related approach to formalize the idea that agents with similar tops will
tend to rank non-top alternatives similarly is through a ‘similarity hypothesis’ directly imposed
on the estimated majority intervals (and not indirectly via structural assumptions on the
underlying model of possible preference profiles). The present alternative approach can thus
be viewed as a ‘reduced-form’ approach to representing a social evaluators epistemic state.

For a profile to count as a plausible basis for estimating the range of majorities for a
particular pair of distinct alternatives we require it to satisfy the following condition. Say that
a profile of preferences <= (<1, ...,<n) with tops (θ1, ..., θn) satisfies the similarity hypothesis
for the pair x, y ∈ X of distinct alternatives, if there exists a partition of X into two convex
sets (hence half-spaces) Hx and Hy such that

(i) x ∈ Hx and y ∈ Hy,

(ii) #{i : x �i y} ≥ #{i : y �i x} =⇒

#{i : x �i y and θi 6∈ Hx} ≤ #{i : y �i x and θi 6∈ Hy}.

Intuitively, by condition (i) the two half-spaces represent a linear classification into the ‘x-
supporters’ (the tops of those voters who prefer x to y) and the ’y-supporters;’ condition (ii)
allows for some misclassification but bounds its extent.

Denote by SHx,y;θ the set of ex-post preference profiles satisfying the similarity hypothesis
for x and y at the profile θ, and let

m̂−(θ,SH)(x, y) := min # {i : x �i y for some <∈Mco ∩ SHx,y;θ}

be the ‘plausible lower majority’ of x against y. Accordingly, we refer to

xR(θ,SH)y :⇐⇒ m̂−(θ,SH)(x, y) ≥ m̂−(θ,SH)(y, x), (3.4)

as the plausible ex-ante majority relation and denote by CW(θ, SH) its maximal in X.
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Theorem 2. For all profiles θ, CW(θ,SH) is non-empty and x ∈ CW(θ, SH) if and only if
x is a strict Tukey median.

Remark 1. One might consider other, prima-facie more restrictive versions versions of the
similarity hypothesis by requiring equality of the extent of misclassification in condition (ii),
or even rule out any misclassification at all. This would not change the plausible majority
margins, i.e. the m̂−(θ,SH)(x, y); hence, it would also neither change the ex-ante majority relation
nor the ex-ante Condorcet winners.

Remark 2. One might also consider strengthening condition (i) by requiring symmetry of
the classification, i.e. by requiring that the midpoint between x and y be contained both in
Hx and Hy. This in fact changes the plausible majority intervals and the ex-ante majority
relation, but it does not change the ex-ante Condorcet winners (as shown in Lemma B.8 in
the appendix). Indeed, the majority margins now coincide with those of the uniform and
homogeneous quadratic model by Fact 3.2.

The proof of Theorem 2 (provided in the appendix) proceeds in three main steps. First,
it is observed that the ex-ante majority relation R(θ,SH) can be characterized in terms of the
relative depth of two alternatives vis-á-vis each other, i.e.,

xR(θ,SH)y ⇐⇒ min
H∈Hx, y 6∈H

#(θ ∩H) ≥ min
H∈Hy , x 6∈H

#(θ ∩H). (3.5)

Using this one can show that, for all profiles θ, the relation R(θ,SH) is quasi-transitive (i.e. its
strict part is transitive), and that its maxima coincide with the strict Tukey median. Finally,
the set of maxima is shown to be non-empty by an argument based on Zorn’s lemma. (We
cannot invoke standard arguments here because the upper contour sets are not generally open.)
The full proof requires a number of intermediate steps that are detailed in the appendix.

Theorem 1 follows from Theorem 2 by the fact that the ex-ante majority relation of the
homogeneous quadratic model coincides locally with the plausible ex-ante majority relation
defined by (3.4); this implies that the ex-ante Condorcet winners of the homogeneous quadratic
model coincide with CW(θ, SH) (see Lemma B.8 in the appendix).

Example 2. For illustration, consider the following example. Suppose that there are five
voters with tops θi, i = 1, ..., 5, respectively, that form a pentagon as shown in Figure 2. The
ex-ante Condorcet winners are given by the points in the inner convex pentagon marked in
red.9 Fig. 2 also shows a point y and its associated upper contour set with respect to the
plausible ex-ante majority relation (in blue). Note in particular that the points x and y have
the same (absolute) Tukey depth but different relative depth with xP(θ,SH)y.
If we compare x and y in Fig. 2 with respect to the ex-ante majority relation of the homoge-
neous quadratic model, we again obtain xP(θ,SH)y; but if we look at alternative x′, say, we get
both x′R(θ,SH)y and yR(θ,SH)x

′ but x′P
(θ,M̂quad)

y due to Fact 3.2. This shows that the ex-ante

9This can be verified from the following observations. First, any line passing through the inner red pentagon
has at least two tops on either side; on the other hand, for any point outside the inner pentagon there is a
Euclidean half-space containing that point and at most one top. In particular, the maximal Tukey depth is
d(θ) = 2; all points in the convex hull of the tops that are not in this inner pentagon have depth one; and all
points outside the convex hull of the tops have depth zero.

15



θ1

θ5 θ2

θ4 θ3

y x
x′

Figure 2: The pentagon

majority relation of the homogeneous quadratic model generally differs from the plausible ex-
ante majority relation (even though the corresponding ex-ante Condorcet winners coincide by
Theorems 1 and 2).

While every Tukey median is strict in Example 2, it is an open question if this is the
case generally. It must be the case whenever Tukey medians are unique (because strict Tukey
medians always exist). Demange (1982) has in fact shown such uniqueness whenever voters’
tops are continuously distributed with a convex support.

3.4 Why the Tukey Median?

The Tukey median is a standard multi-dimensional median in multi-variate statistics. But
there are also other multi-dimensional medians, in particular those based on Lp-norms. Prima
facie, these appear natural also in the current setting. Specifically, for 1 ≤ p <∞, let

||x||p :=

(
L∑
`=1

|x`|p
)1/p

denote the Lp-norm, and consider, for all profiles θ = (θ1, ..., θn), the ‘scoring functions’
∆p(·,θ) defined by ∆p(x;θ) :=

∑n
i=1 ||x − θi||p. The corresponding solution to the budget

allocation problem on X is given by minimizing this scoring function, i.e.,

Cp−med(θ) := arg min
x∈X

∆p(x;θ).

Because in the one-dimensional case, Cp−med coincides for all p with the standard median, we
will refer to the corresponding solution as the p-median.

The p-medians are majority admissible in either the plain convex model and the homoge-
neous quadratic model, for all p ∈ [1,∞). They are attractive from a social choice perspective
also because they represent a social evaluation by means of imputed utility functions which
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can be viewed as representing an ex-ante expected utility of a voter with known top (namely,
the Lp-distance to the top).

But while the p-medians adequately capture the knowledge of convexity of preferences
they arguably fail to fully capture the ignorance about the shape of individual preferences
beyond that. Arguably, a solution that fully reflects that ignorance should satisfy the following
condition of ‘qualified’ affine equivariance. Say that a solution C(θ) ⊆ X satisfies qualified
affine equivariance if, for all affine mappings λ : RL −→ RL with full rank, and for all
profiles θ ∈ Xn such that λ(θ) ∈ Xn,

[C(θ) ⊆ co(θ) & C(λ(θ)) ⊆ co(λ(θ))] =⇒ C(λ(θ)) = λ(C(θ)). (3.6)

Indeed, the information about ex-post preference profiles restricted to the convex hulls in the
convex model is equivariant under the affine transformation; hence, the choice should also be
equivariant provided it is restricted to the convex hull of the tops.10

While the p-medians violate the qualified affine equivariance condition (3.6) for all p ∈
[1,∞), the strict and non-strict Tukey medians as well as plurality rule satisfy it. Another
simple rule that satisfies (qualified) affine equivariance is the mean rule which selects the
coordinate-wise average of the voter’s top allocations.11

Fact 3.4. The strict and non-strict Tukey median rules as well as the mean rand plurality
rules satisfy the qualified affine equivariance condition (3.6).

(Proof in appendix.)

The following general ‘impossibility’ result shows that a price has to be paid if one in-
sists on majority admissibility and the qualified affine equivariance condition as axiomatic
requirements in the convex model.

Proposition 5. There is no upper hemicontinuous solution that always chooses from the
convex hull of the tops and satisfies both the qualified affine equivariance condition (3.6) and
majority admissibility either with respect the plain convex model or, a fortiori by (2.3), with
respect to the homogeneous quadratic model.

(Proof in appendix.)

Proposition 5 has the corollary that no majority admissible and affinely equivariant so-
lution can admit a utilitarian representation with continuous and concave imputed utility
functions, since such a solution would automatically be upper hemicontinuous.12 This has
the further consequence that a viable solution such as the (strict) Tukey median cannot be
expected to satisfy the following standard reinforcement property. Let θ and θ′ be two profiles

10Outside the convex hull, the mapping λ may not map feasible alternatives to feasible alternatives; so in
this sense, the information about preferences outside the respective convex hull does not match. Restricting
attention to the convex hulls thus appeals to a weak IIA-style argument.

11The mean rule corresponds to the minimization of the scoring function
∑n
i=1 (||x− θi||p)q with p = q = 2.

12Plurality rule has a utilitarian representation with the non-continuous imputed utility functions that assign
unit utility to the top allocation and zero to all other allocations, resepctively.
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of tops corresponding to two disjoint sets of voters, and denote by θ t θ′ the profile of the
combined electorate; a solution C(·) satisfies reinforcement if

C(θ) ∩ C(θ′) 6= ∅ =⇒ C(θ t θ′) = C(θ) ∩ C(θ′). (3.7)

Both the strict and non-strict Tukey medians violate (3.7) as shown by the following
example.

Example 3. Let L = 3, Q = 4, and consider the following two profiles each giving the
tops of two distinct sets of 10 voters (cf. Fig. 3): the profile θ (marked in red in Fig. 3)
contains four voters with top (2, 2, 0), three voters with top (2, 0, 2), and three voters with
top (4, 0, 0); the profile θ′ (marked in blue in Fig. 3) contains four voters with top (2, 2, 0),
three voters with top (2, 0, 2), and three voters with top (0, 2, 2). As is easily verified, we have
T (θ) = T (θ′) = {(2, 2, 0)}. Reinforcement would thus require the choice of (2, 2, 0) also at
the combined profile θ t θ′, but in fact we have T (θ t θ′) = {(2, 1, 1)} with the point (2, 1, 1)
achieving a Tukey depth of 9/20. Note that the strict and non-strict Tukey median coincide
due to their uniqueness at the relevant profiles in this example.

From a traditional social choice perspective, the violation of reinforcement might be viewed
as a serious normative drawback of the (strict) Tukey median. However, we submit that
this conclusion is inappropriate in the present, epistemic setting. For here, the similarity
hypothesis implies an epistemic interaction between the information about the profiles in the
two subpopulations under consideration. This interactions explains naturally the potential
failure of reinforcement. For instance, consider in Example 3 the comparison of the allocations
(2, 1, 1) vs. (2, 2, 0). By the mere convexity of ex-post preferences the support count in the
combined profile is 6 voters for (2, 1, 1) against 8 voters for (2, 2, 0); but due to the similarity
hypothesis the point (2, 1, 1) receives the additional support either of the three voters at
(4, 0, 0) or the three voters at (0, 2, 2) (see Figure 3).

(0, 0, 4)

(4, 0, 0) (0, 4, 0)
3

3+3
(2, 0, 2)

4+4

(2, 2, 0)

3 (0, 2, 2)

(2, 1, 1)

Figure 3: The (strict) Tukey median violates reinforcement

To compare our proposal of the Tukey median solution to the standard ‘spatial’ voting
approach, consider the Euclidean model MEuclid of all profiles of preferences representable
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by the negative L2-distance to the respective tops; this amounts to the spatial voting model
adapted to the present resource allocation problem with a convex feasibility constraint (typi-
cally, the standard literature considers an unconstrained model). Majority admissibility in the
Euclidean model is still rather weak; in particular, in view of the classical result by McKelvey
(1979), it is generically multi-valued. Moreover, in that model the appropriate invariance
requirement is one of (qualified) invariance to isometries rather than affine transformations.
This is in fact compatible with the reinforcement condition. Among the p-medians, these
three conditions characterize the 2-median which minimizes the sum of Euclidean distances
to the individual tops. Thus, the natural candidate for a frugal optimum in the Euclidean
model is the 2-median, not the Tukey median.

The frugal perspective thus contrasts starkly with the standard approach of the literature
which uses the Euclidean model to apply different voting rules and solution concepts to profiles
of complete preferences. In particular, it is straightforward to observe that the minimax voting
rule is equivalent to the choice of the Tukey median of voters’ tops, see in particular Kramer
(1977). Other important contributions to this literature are Demange (1982) and Caplin and
Nalebuff (1988) which analyze mathematical properties of the Tukey median. For a recent
application to the ‘political economy’ of the firm, see Crès and Tvede (2021).

4 The Separably Convex Model

Consider the situation depicted in Figure 4. Assume that in the type profile (θ1; p1, θ2; p2, θ3; p3)
none of tops receives a majority while θ1 is the plurality winner, i.e. pi < 1/2 for i = 1, 2, 3
and p1 > p2, p3; moreover, suppose that the three tops are not collinear, but θ3 is ‘nearly’
on the line segment between θ1 and θ2. Then, the strict Tukey median chooses the plurality
winner θ1. The rationale for choosing θ1 over θ3 is based on a possible preference of θ1 over
θ3 by the voters with top θ2. But if θ3 is nearly on the line segment between θ1 and θ2 this
is a tight affair and can hold only for very special convex preferences.

Thus, the choice of θ1 is a risky implication of the regularized convex model. And indeed, it
may be demonstratively mistaken if more is known about individual preferences, for instance,
if in addition to convexity it is known that individual ex-post preferences are separable.
Specifically, in the present section we will study the ‘separably convex’ model and show that
under this model the ex-ante Condorcet winner at the type profile shown in Fig. 4 is θ3, as
intuition suggests.

For expository convenience and generality, we will discretize the space of feasible allocation,
i.e. consider the space

X :=

{
x ∈ ZL |

L∑
`=1

x` = Q and x` ∈ [q`−, q
`
+] for all ` = 1, ..., L

}
, (4.1)

where Z is the set of all integers; the adaption of the following analysis to the continuous case
is given in Appendix A.
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(0, 0, Q)

(Q, 0, 0) (0, Q, 0)

θ1

θ2

θ3

Figure 4: Almost collinearity

4.1 Definition

Intuitively, separable convexity states that if an individual would disapprove a unit transfer
of expenditure from good j to good k at an allocation x, then this individual would also
disapprove such transfer at any allocation that has less expenditure on j and more expenditure
on k; formally:

Definition (Separable Convexity) For any allocation x ∈ X denote by x(kj) the allocation

that results from x by transferring one unit of money from good j to good k, i.e. xk(kj) = xk+1,

xj(kj) = xj−1 and x`(kj) = x` for all ` 6= k, j. Say that a preference order < on X is separably

convex if x � x(kj) implies y � y(kj) for all k, j, x, y such that yk ≥ xk and yj ≤ xj.

Separable convexity contains two special cases: (i) ‘linear’ convexity (i.e. single-peakedness)
and (ii) separability. Case (i) is given by the additional condition that x` = y` for all ` 6= k, j
(see the left panel in Figure 5), while case (ii) is given by the additional condition that yk = xk

and yj = xj . Separable convexity integrates these two requirements but is somewhat stronger
than the logical conjunction of linear convexity and separability. To see this, note that sepa-
rability is vacuous for L = 3 due to the budget constraint on the domain of feasible allocations
X over which < is defined. The right panel in Fig. 5 shows the general case for L = 3, k = 3
and j = 2, combining convexity and separability.

Denote by Rsepco the set of all separably convex weak orders on X with a unique top.
The leading example of such weak orders are preferences with an additively separable utility
representation of the form

u(x) = u(x1, ..., xL) =
L∑
`=1

u`(x`), (4.2)

where the u` : R → R are strictly increasing and concave for all ` = 1, ..., L. For future
reference, we denote the set of all preferences with such an additively separable and concave
representation by Raddco.

The main object of analysis of the present section is the (plain) separably convex
model Msepco := ∪n∈N(Rsepco)n. (We omit the term ‘plain’ in the following whenever no
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Figure 5: Separable convexity

confusion can arise.) Before proceeding, we note that the (plain) additively separable model
Maddco := ∪n∈N(Raddco)n is rich submodel of the separably convex model, i.e. it induces
exactly the same intervals of possible support counts (see Lemma B.2 in the appendix).

4.2 Inferred Preferences

First, we study the information about the unobservable preferences that can be inferred from
an individual top under the background assumption of separable convexity. For instance, if a
voter submits the top alternative x in the right panel of Fig. 5, by virtue of the background
assumption of separable convexity the social evaluator can infer that this voter prefers y to
ykj . In general, for all θ ∈ X, and all distinct x, y ∈ X, let

x >sepco
θ y :⇐⇒ x � y for all <∈ Rsepco with top θ. (4.3)

We will refer to >sepco
θ defined by (4.3) as the voter’s inferred preference relation (under

the separably convex model); observe that it is a partial order. For all x, y ∈ ZL, let

[x, y] :=
{
w ∈ ZL | for all ` = 1, ..., L, x` ≤ w` ≤ y` or y` ≤ w` ≤ x`

}
.

We will refer to [x, y] as the box spanned by x and y and to the elements of [x, y] as the (not
necessarily feasible) allocations between x and y. Moreover, say that two allocations x, y ∈ X
are neighbors if and only if [x, y] ∩ X = {x, y}. Denote by Γres the graph that results from
connecting all neighbors in X with an edge. (Observe that Fig. 5 above depicts exactly this
graph.) Importantly, the betweenness can be derived from the graph in that

w ∈ [x, y] ⇐⇒ w is on a shortest Γres-path connecting x and y. (4.4)

The metric in the graph Γres will also play a significant role. In resource terms, it is easily
seen that

d(x, y) :=
1

2

L∑
`=1

|x` − y`|;
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in other words, the graph distance of Γres coincides with the natural (normalized) ‘resource’
metric on X, i.e. the L1-metric. In terms of the graph distance, property (4.4) can thus be
re-written as

[x, y] = {w ∈ X | d(x, y) = d(x,w) + d(w, y)} (4.5)

for all x, y ∈ X. The following result is fundamental to the subsequent characterization of
the ex-ante Condorcet winner.

Lemma 4.1. For all θ ∈ X and all distinct x, y ∈ X,

x >sepco
θ y ⇐⇒ x ∈ [θ, y]. (4.6)

Proof. We show that x is preferred to y by any separably convex preference order < with top
θ whenever x is between θ and y. Thus, consider a shortest Γres-path between θ and y through
x. Let w and w(kj) be any two neighbors on that path such that w ∈ [x, y] and w(kj) ∈ [w, y]

as in Figure 6. By construction, we have yk ≥ θk and yj ≤ θj . If θ is the top alternative of
<, we clearly have θ � θ(kj); hence by separable convexity, w � w(kj) (see Fig. 6). Since the
argument applies to all neighbors w and w(kj) on the chosen shortest path between x and y,
we obtain x � y by transitivity.

This proves sufficiency of the betweenness property on the right hand side of (4.6) for an
inferred strict preference of x over y; necessity is demonstrated by the explicit construction
of a suitable separably convex preference order in the appendix.

w
x

y
w(kj)

θ

θ(kj)

Figure 6: Betweenness implies inferred preference

Consider again our initial example in Fig. 4 above. By Lemma 4.1, we obtain that all
voters of type 1 (those with top θ1) can be inferred to prefer θ3 to θ2 under separable convexity;
in fact for these voters, any point in the dashed area is preferred to θ2. Similarly, all voters
of type 2 (those with top θ2) can be inferred to prefer θ3 (and any point in the dashed area)
to θ1. Consequently, θ3 is the only majority admissible alternative among the three tops in
the profile (θ1, θ2, θ3) under separable convexity (and indeed the unique solution under the
separably convex model, as we shall see below).
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4.3 Majority Admissibility in the Separably Convex Model

Majority admissibility has substantially stronger implications in the separably convex model
than in the convex models; nevertheless, it may still not be decisive if L > 2. We illustrate
this here in special cases (for further examples, see Appendix A.2). Call a subset D ⊆ X an
ordered domain (with respect to the separably convex model) if, for all three elements from D,
one is between the other two. The terminology is justified by the fact an ordered domain D
can be ordered by a linear order .D such that x.D y.D z if and only if y ∈ [x, z]. Furthermore,
say that D is line-like if, for some fixed pair of coordinates j, k ∈ {1, ..., L}, any two elements
of D agree in all coordinates ` 6∈ {j, k}. Evidently, every line-like domain is also ordered, but
the converse is not true. We have the following result.

Proposition 6. Let D ⊆ X be an ordered domain.

(i) Suppose that θ = (θ1, ..., θn) is such that supp θ ⊆ D, then

MA(θ,Msepco) ∩D ⊆ C1−med(θ)

with equality if n is odd.

(ii) If D contains three elements that are not collinear, there exists θ with supp θ ⊆ D such
that

Cp−med(θ) ⊆ D \ C1−med(θ)

for all p > 1.

(iii) Let D ⊆ X be line-like domain and θ = (θ1, ..., θn) a profile with suppθ ⊆ D and n odd,
then

MA(θ,Msepco) = Cp−med(θ) = {θmed}

for all p ≥ 1, where θmed is the (unique) median element of θ with respect to the order
.D.

(Proof in appendix.)

By the third part of Proposition 6 and Proposition 1, if an ex-post Condorcet winner
exists for a line-like profile with an odd number of voters, it must be the unique median top
(however, even for line-like profiles an ex-post Condorcet winner need not exist, as shown
by Example 7 in Appendix A.3). The first part of Proposition 6 asserts that the majority
admissible elements of an ordered domain coincide with the 1-median; the second part shows
that, by contrast, all p-medians with p > 1 sometimes choose only alternatives that are not
majority admissible under the separably convex model. The general conclusion from this is
that, among all p-medians, only the 1-median remains a viable candidate for the separably
convex model.

For illustration, consider Figure 7 which depicts an ordered domain D. Suppose that three
types of agents have their top within D, specifically at θ1, θ2 and θ3, respectively. Suppose
that no type represents an absolute majority. Then, the 1-median of the corresponding profile,
and the only majority admissible point within D, is θ2. However, outside D there might exist

23



other majority admissible alternatives, for instance the point w; therefore, the first inclusion
in part (i) of Proposition 6 is restricted to the majority admissible elements within the set
D. Part (ii) is shown by considering profiles with support {θ1, θ2, θ3} as in Fig. 7 but with
non-uniform mass; specifically, if θ1 has the uniquely largest mass among them but less than
50%, all p-medians uniquely select the ‘plurality winner’ θ1. But clearly, θ1 is not majority
admissible at such profile because more than 50% of the voters can be inferred to strictly
prefer θ2 in the separably convex model.

w

θ2

θ1

θ3
D

Figure 7: Majority admissibility in an ordered domain

4.4 The ‘Condorcet Solution:’ Local Ex-Ante Condorcet Winners

Under the separably convex model the information contained in the inferred partial order can
be recovered from the local comparisons of all neighbors in the graph Γres, as follows.

Fact 4.1. For all tops θ ∈ X, the inferred preference relation >sepco
θ coincides with the

transitive closure of its restriction to the graph Γres.

(Proof in appendix.)

This implies that the necessary majority criterion itself can be recovered from local infor-
mation:

Fact 4.2. For all profiles θ, the necessary majority relation P nec
(θ,Msepco) coincides with the

transitive closure of its restriction to the graph Γres. In particular, if yP nec
(θ,Msepco)x, then there

exists a neighbor y′ of x such that y′P nec
(θ,Msepco)x.

(Proof in appendix.)

Fact 4.2 suggests to focus on the restriction of the ex-ante majority relation to local
comparisons, as follows. For all profiles θ and all distinct x, y ∈ X, the local majority
relation is given by

xRloc
(θ,Msepco)y :⇐⇒

[
xR(θ,Msepco)y and xΓresy

]
(4.7)

with asymmetric part P loc
(θ,Msepco). For all profiles θ, define the set of local ex-ante Condorcet

winners by

CWloc(θ,Msepco) := {x ∈ X | for no y ∈ X, yP loc
(θ,Msepco)x}.
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Thus, an alternative is a local ex-ante Condorcet winner if it is not beaten by any neighbor
in terms of the ex-ante majority relation. Henceforth, we will refer to the set of local ex-ante
Condorcet winners also simply as the Condorcet solution (in the separably convex model).
Note that, by Fact 4.2, we have

CWloc(θ,Msepco) ⊆ MA(θ,Msepco). (4.8)

for all profiles θ. For illustration, consider the alternative w in Fig. 7. While majority
admissible, w is beaten by its neighbor θ2 in terms of ex-ante majority; indeed, the coordinate-
wise median θ2 is the unique Condorcet solution in this example.

4.5 The Condorcet Solution Coincides with the 1-Median

We are ready to state the first main result of this section. A subset Y ⊆ X is called box
convex if it contains with any two elements the entire interval spanned by them, i.e. x, y ∈ Y
implies [x, y] ⊆ Y .

Theorem 3. For all profiles θ,

CWloc(θ,Msepco) = C1−med(θ).

In particular, the set of local ex-ante Condorcet winners in the separably convex model is
non-empty and box convex.

We provide the sketch of the proof, the full argument is given in the appendix. First,
observe that using Lemma 4.1 we obtain the following tri-partition of X for any pair of
neighbors.

Lemma 4.2. For every pair of neighbors x, y ∈ X and every profile θ = (θ1, ..., θn),

(x 6>sepco
θi

y and y 6>sepco
θi

x) ⇐⇒ d(x, θi) = d(y, θi). (4.9)

In particular, every pair of neighbors induces the following tri-partition of X (see Fig. 8):

{θi : x >sepco
θi

y} = {θi : (d(x, θi) = d(y, θi) + 1},
{θi : x 6>sepco

θi
y and y 6>sepco

θi
x} = {θi : (d(x, θi) = d(y, θi)},

{θi : y >sepco
θi

x} = {θi : (d(y, θi) = d(x, θi) + 1}.

Using Lemma 4.2, it follows easily that, for all neighbors x, y,

xP loc
(θ,Msepco)y ⇐⇒ ∆1(x;θ) ≤ ∆1(y;θ).

This implies acyclicity of P loc
(θ,Msepco), hence non-emptiness of CWloc(θ,Msepco) and the agree-

ment of CWloc(θ,Msepco) with the local minimizers of the aggregate distance. We then ob-
serve that, for each top θ, the distance function d(x, θ) is a separable and convex (in each
coordinate) function of x. Hence, aggregate distance ∆1(·;θ) is likewise separable and convex
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Figure 8: The tri-partition of X for neighbors x and y

in each coordinate. It follows that every local minimum of aggregate distance is a global
minimum, and that the set of minimizers is box-convex.

The ‘scoring rule’ representation of the Condorcet solution as the 1-median provided by
Theorem 3 has significant consequences. Most importantly, it reconciles the Condorcet and
Borda perspectives in the frugal model under separable convexity; indeed, the Borda perspec-
tive can be fleshed out in a natural manner by interpreting distance as negative preference
rank, see Appendix A.4. This has further attractive implications. First, it is immediate from
Theorem 3 that the ex-ante Condorcet set satisfies the reinforcement property (3.7). Perhaps
more surprisingly, it also implies the absence of the no-show paradox, i.e. it can never be
harmful for a voter to participate and submit her true top, see Appendix A.6.

In contrast to their local counterpart, global ex-ante Condorcet winners need not exist in
the separably convex model, see Example 8 in Appendix A.7. We now turn to an application
that further supports the local perspective.

4.6 Special Case: The Committee Selection Problem

Consider the following committee selection problem. There are L potential candidates among
which a committee of size Q has to be formed where Q is any integer between 1 and L.
Formally, the agenda X is thus given by (4.1) with the additional restriction that, for all
` = 1, ..., L, q`− = 0 and q`+ = 1, i.e. that each potential candidate ` is either a member
of the selected committee, or not. Evidently, ‘linear’ convexity of preferences plays no role
here, and separable convexity reduces to mere (ordinal) separability in the sense that the
preference for an exchange of a committee member by a non-member is independent of who
the other members of the committee are. Formally, let X be the set of all committees with
exactly Q members. For all K,K ′ ⊆ L with #K = #K ′ = Q − 1 and all k, j ∈ L such that
K,K ′ ⊆ L \ {k, j},

K ∪ {k} � K ∪ {j} ⇐⇒ K ′ ∪ {k} � K ′ ∪ {j}. (4.10)
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Thus, candidates can be compared independently of the presence or absence of other candi-
dates. In particular, (4.10) excludes complementaries and team effects resulting from different
competencies. This condition has already been considered in the context of committee se-
lection problems, see Lang and Xia (2016) for an overview of the literature. Note that local
preferences extract all available information under separability. Accounting for the social
evaluator’s ignorance, a voter i is treated as indifferent between two adjacent committees
K ∪ {k} and K ∪ {j} with K ⊆ L \ {k, j} whenever i’s top committee either contains both
k and j, or none of them. This seems eminently sensible – with the given background infor-
mation, how could the selection of candidates different from both k and j throw any light on
the selection between these two candidates? The ex-ante majority rule aggregates preferences
in a canonical way and picks the committee(s) consisting of Q members which receive the
highest popular support, as follows. For each candidate ` = 1, ..., L and all profiles θ of top
committees, let n`(θ) be the number voters i such that ` belongs to i’s top committee θi
(‘candidate `’s support’).

Proposition 7. A set K∗ ⊆ L with Q members constitutes a local ex-ante Condorcet winning
committee at the profile θ if and only if no candidate outside K∗ receives more support than
some candidate in K∗, i.e. if for all ` 6∈ K∗

n`(θ) ≤ min
j∈K∗

nj(θ).

(Proof in appendix.)

Thus, the Condorcet solution in the committee selection problem yields the canonical
solution which has been studied in the literature under the name of Q–approval voting (some-
times also more informally referred to as ‘bloc’ voting). Proposition 7 adds a novel epistemic
foundation of Q–approval voting within the frugal aggregation approach.

4.7 Properties of the Condorcet Solution

In this subsection, we provide a simple and powerful characterization of the Condorcet solution
that allows one to compute it efficiently.13 We also derive a number of its basic properties.
In the following fix a profile θ = (θ1, ..., θn) with n voters and denote, for every ` = 1, ..., L
and every k = 1, ..., n, by θ`[k] ∈ X the k-th smallest vote in coordinate `, that is, the

vector (θ`[1], θ
`
[2], ..., θ

`
[n]) results from the values θ`1, θ

`
2, ..., θ

`
n simply by re-arranging the latter

in ascending order so that θ`[1] ≤ θ`[2] ≤ ... ≤ θ`[n] (possibly with some equalities). Denote by

Q[k] :=
∑L

`=1 θ
`
[k], and let k∗(θ) be the largest k = 1, ..., n such that Q[k] ≤ Q. Finally, say

that the profile θ = (θ1, ..., θn) is unanimous if θ1 = θ2 = ... = θn. Note that for a unanimous
profile one has k∗(θ) = n since, evidently, θ`[1] = θ`[2] = ... = θ`[n] = θ`i for all i = 1, ..., n and all

` = 1, ..., L. Also observe that k∗(θ) < n for all non-unanimous profiles.

Theorem 4. For every non-unanimous profile θ = (θ1, ..., θn), x ∈ CWloc(θ,Msepco) if and
only if, for all ` = 1, ..., L,

θ`[k∗(θ)] ≤ x
` ≤ θ`[k∗(θ)+1]. (4.11)

13The result has been obtained independently and in a different context by Freeman et al. (2021, Lemma
6.3).
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(Proof in appendix.)

Condition (4.11) means that q∗(θ) := k∗(θ)/n is the ‘endogenous’ (i.e. profile-dependent)
quota of voters who can be satisfied in all coordinates (of course, these have to be different
sets of voters in different coordinates). The following example illustrates this.

Example 4. Consider the case L = 3, Q = 10, and a profile θ with four voters such that
θ1 = (5, 0, 5), θ2 = (0, 2, 8), θ3 = (2, 6, 2) and θ4 = (4, 3, 3), say. For the corresponding
matrices (θ`i ) and (θ`[k]|Q[k]) with ` = 1, ..., L and i, k = 1, ..., n we thus obtain

(θ`i ) =


5 0 5
0 2 8
2 6 2
4 3 3

 and (θ`[k]|Q[k]) =


0 0 2 | 2
2 2 3 | 7
4 3 5 | 12
5 6 8 | 19

 .

Since Q[2] = 7 < 10 (= Q) < 12 = Q[3], we obtain k∗(θ) = 2, and thus an endogenous quota
of q∗(θ) = 0.5; in accordance with (4.11), we obtain

CWloc(θ,Msepco) = {(2, 3, 5), (3, 2, 5), (3, 3, 4), (4, 2, 4), (4, 3, 3)}

(see Figure 9). Now suppose that voter 4 changes her vote to θ̃4 = (3, 2, 5) while the other
voters keep their position. If we denote the resulting profile by θ̃, we obtain

(θ̃`i ) =


5 0 5
0 2 8
2 6 2
3 2 5

 and (θ̃`[k]| Q̃[k]) =


0 0 2 | 2
2 2 5 | 9
3 2 5 | 10
5 6 8 | 19

 .

Now, since Q̃[3] = 3 + 2 + 5 = 10 (= Q), we obtain k∗(θ̃) = 3, hence an endogenous quota of

q∗(θ̃) = 0.75. Moreover, since Q̃[k∗(θ̃)] = Q there is a unique net majority winner, and indeed

CWloc(θ̃,Msepco) = {(3, 2, 5)}.

As illustrated by the example, Theorem 4 suggests to view the Condorcet solution as
the allocations corresponding to a ‘re-calibrated’ coordinate-wise median that maximizes,
uniformly across all coordinates, the fraction of agents who can be given their preferred
amount of each public good or more.

Using Theorem 4 the complexity of computing the Condorcet solution can be determined
as follows. First, one needs to sort n numbers L times. The best sorting algorithms are known
to be of order n · log n, hence this yields L · n · log n computational steps.14 In addition, one
needs to sum L numbers at most n times and compare their sum to the fixed quantity Q.
Thus, the determination of the box

∏
`[θ

`
[k∗(θ)], θ

`
[k∗(θ)+1]] involves in total a computational

complexity of at most
L · n · log n + L · n + n

single steps. The Condorcet solution corresponding to the profile θ results from intersecting
this box with the resource agenda X.

14See, for instance, Knuth (1998).
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Figure 9: The Condorcet solution CWloc(θ,Msepco) from Example 4

The simple characterization provided by Theorem 4 allows one to derive further important
properties of the Condorcet solution. First, it immediately implies that it respects coordinate-
wise unanimity in the sense that CWloc(θ,Msepco) is contained in the box spanned by the
voters’ tops. Specifically, we have for all profiles θ,

CWloc(θ,Msepco) ⊆ boxco(θ), (4.12)

where, for all Y ⊆ X, boxco(Y ) denotes the smallest box convex set that contains Y .
In fact, Theorem 4 entails much tighter bounds that yield almost uniqueness for large

populations, as follows. By (4.11), the ex-ante Condorcet solution is contained in the box∏L
`=1[θ`k∗(θ), θ

`
k∗(θ)+1]. In particular, the ‘denser’ the support of a profile, the smaller the

Condorcet solution. Say that a subset Y ⊆ X is essentially unique if

max
x,y∈Y, `=1,...,L

|x` − y`| ≤ 1.

Thus, a subset of X is essentially unique if every two of its elements differ in each coordinate
by at most one unit. Also, say that the support of a profile θ = (θ1, ..., θn) is coordinate-wise
connected if, for each ` = 1, ..., L, the set {θ`i}i=1,...,n forms an interval in Z, i.e. {θ`1, ..., θ`n} =
[mini θ

`
i ,maxi θ

`
i ]. The following is an immediate corollary of Theorem 4.

Proposition 8. The Condorcet solution CWloc(θ,Msepco) is essentially unique whenever θ
is coordinate-wise connected.

If one considers the population preferences as a statistical sample resulting from indepen-
dent draws from an underlying continuous distribution with connected support, the expected
gap [θ`k∗(θ), θ

`
k∗(θ)+1] would shrink roughly in inverse proportion to the number of agents n.
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Hence the diameter of CWloc(θ,Msepco) would likewise shrink in inverse proportion to n.
So, heuristically, in such situations one would expect the Condorcet solution to shrink quite
rapidly with the number of agents.

4.8 The Condorcet Solution as a Coordinate-Based ‘Tukey Median’

At first sight, the proposed solution in the separably convex model, the 1-median, seems
to be qualitatively quite different from the proposed solution in the convex model under
the similarity hypotheses, the Tukey median. But there is in fact a deep connection, and
the ex-ante Condorcet solution can be viewed as a refinement of an appropriate notion of a
coordinate-based ‘Tukey’ median, as follows.

Specifically, for x ∈ X let H̃x consider the family of all ‘coordinate half-spaces’ that contain
x, i.e. all half-spaces of the form H`

x↑ := {y ∈ X : y` ≥ x`} or H`
x↓ := {y ∈ X : y` ≤ x`} for

` = 1, ..., L. For every profile θ and all x ∈ X, denote by

d̃↑(x;θ) := min
`=1,...,L

#(θ ∩H`
x↑),

d̃↓(x;θ) := min
`=1,...,L

#(θ ∩H`
x↓)

the upward coordinate depth of x (at profile θ), and the downward coordinate depth of x
(at profile θ), respectively; and by d̃(x;θ) := min

{
d̃↑(x;θ), d̃↓(x;θ)

}
the (overall) coordinate

depth of x (at profile θ). Define

T̃ (θ) := arg max
x∈X

d̃(x;θ),

T̃ ∗(θ) := arg lex max
x∈X

(
d̃↑(x;θ), d̃↓(x;θ)

)
.

as the coordinate-based Tukey median and the strict coordinate-based Tukey median, respec-
tively. We have the following result.

Proposition 9. For all profiles θ,

CWloc(θ,Msepco) = C1−med(θ) = T̃ ∗(θ) ⊆ T̃ (θ).

(Proof in appendix.)

In the appendix, we show that the inclusion T̃ ∗(θ) ⊆ T̃ (θ) is in general strict (see Example
9 in Appendix B).

4.9 Application: Participatory Budgeting

The recent literature on participatory budgeting has focused on the problem of indivisibility of
projects, see e.g., Aziz and Shah (2020). One approach to this problem has been considered
in Goel et al. (2019, Appendix A.1) where divisibility is achieved by a heuristic appeal to
‘fractional’ implementation of projects. By contrast, here we only assume the existence of one
divisible good (‘money’) but allow for the probabilistic realization of projects under expected
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utility preferences. We show that there is always a Condorcet solution in which all projects
except at most one are either implemented with certainty, or not at all.

There are L − 1 projects each of which can either be realized, or not; the realization of
project ` requires expenditure c` ≥ 0, ` = 1, ..., L − 1; the Lth good is perfectly divisible.
Voters have quasilinear utility functions with respect to the Lth good, so that the costs and
benefits of all projects can be measured in units of the Lth good which we refer to simply as
‘money’ in the following. An allocation of expenditure to projects ξ is feasible if

ξ ∈ {0, c1} × ...× {0, cL−1} × R and
L∑
`=1

ξ` = 0.

Denote by b`i the value of project ` to voter i, and set bLi = 1 for all i. For simplicity, we assume
that, for each voter, all benefits are pairwise distinct and different from unity; this means that
no voter is ever indifferent between two projects and also is never indifferent whether or not
a project should be funded. Under this assumption, voter i’s (ordinal) preference simply
corresponds to a linear ranking of the L different possible uses of the money.

Now let us ‘convexify’ the problem by considering the set of all probability distributions
over the set of feasible allocations, i.e. the agenda

X :=

{
x ∈ RL |

L∑
`=1

x` = 0, x` ∈ [0, 1] for all ` = 1, ..., L− 1

}
,

where x` is the probability that project ` is realized at cost c` for ` = 1, ..., L − 1, and xL is
the (negative of the) expected cost. If voters’ preferences over probability distributions have
expected utility form they can be represented by the linear utility functions

ui(x) =

L∑
`=1

b`i · x`. (4.13)

Note that each voter’s top is located at some extreme point of the L−1-dimensional polytope
X. Denote by Rlin the set of all preferences representable by linear utility functions of the
form (4.13) with pairwise distinct coefficients b`i for every i, and by Mlin := ∪n∈N(Rlin)n the
(plain) linear model. In the appendix we show that Mlin is a rich submodel of the separably
convex model Msepco (see Fact B.2); moreover, we have the following result.

Proposition 10. For every profile θ, CWloc(θ,Mlin) contains at least one allocation in
which at most one project `0 is funded with probability p`0 6∈ {0, 1}.

(Proof in appendix.)

Note that other solutions such as the Tukey median or mean rule would generally yield
much more randomization; indeed, the latter would typically randomize over all projects.
Proposition 10 provides a normative foundation of the analysis in (Goel et al., 2019, Appendix
A.1). The ‘minimal randomization’ solution proposed there of funding those projects that
receive the most approvals with certainty until the budget is exhausted, is derived here as the
ex-ante Condorcet solution under the assumption of separably convex preferences.
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5 Some Pragmatic Considerations

Proposition 9 highlights an important qualitative similarity between the (strict) Tukey me-
dian and 1-median rules. From a pragmatic point of view, the 1-median appears to have
significant advantages over the Tukey median as an actual voting rule. These include its
efficient computability and transparent operation in the light of Theorem 4; by contrast, the
Tukey median is notoriously difficult to compute in general (Rousseeuw and Ruts, 1999). In
addition, the 1-median has attractive incentive properties that the Tukey median lacks, see
Nehring et al. (2008); Freeman et al. (2021); Nehring and Puppe (2022).

So if one can reasonably expect these rules to give sufficiently similar outcomes, there
seem to be good grounds to employ the 1-median rule even when the direct epistemic case for
separability is not compelling in itself. For instance, in profiles with maximal Tukey depth
d(θ) close to 1/2, the Tukey and the 1-median are close to each other. To see this, let for
δ > 0,

B̃δ(θ) :=
{
x ∈ X : d̃(x;θ) ≥ δ

}
,

and consider specifically the value δ = d(θ). By construction, we have T (θ) ⊆ B̃d(θ)(θ), and

by Proposition 9, we have C1−med(θ) ⊆ B̃d(θ)(θ). Thus, both the Tukey median and the

1-median are bounded by the set B̃d(θ)(θ); in particular, C1−med(θ) and T (θ) must be close

whenever B̃d(θ)(θ) is small; heuristically, this will be the case if d(θ) is close to 1/2. How this
can happen is shown by Caplin and Nalebuff (1988, 1991). Indeed, denoting

Bδ(θ) := {x ∈ X : d(x;θ) ≥ δ} ,

their main result shows that for δ = n/e ≈ n · 0.36% the set Bδ(θ) contains both the mean
and the Tukey median for distributions with a log concave density on a convex support; since
B̃δ(θ) ⊆ Bδ(θ) it also contains the 1-median. By the triangle inequality, all three allocations
will thus be close to each other in these cases.

But, of course, in the absence of these distributional assumptions, the Tukey and 1-median
rules can disagree substantially. Indeed, the L1-distance between the respective allocations
can be arbitrarily close to the maximal possible value. Here is an example: consider Q = 1 and
the following profile θ(L) consisting of L voters (= the number of dimensions): 2 voters have
their top at (1, 0, 0, ..., 0), and for each ` = 3, ..., L there is exactly one voter such that θ1

` = 0,
θ`` = 2/L and θk` = 1/L for k 6= 1, `. The unique Tukey median at θ(L) is (1, 0, 0, ..., 0), while
the unique 1-median is ( 1

L ,
1
L ,

1
L , ...,

1
L) as is easily verified using Theorem 4; the L1-distance

between these allocations is 2− 2/L, reflecting the fact that only 1/L of total expenditure is
allocated to the same goods.

6 Conclusion

In this paper, we have demonstrated that the EAC approach can be fruitfully applied to
the budget allocation problem, yielding normatively appealing solutions in cases where the
standard Arrovian aggregation methodology fails. Two major question remain in particular:
(i) What are the incentive properties of the EAC solution?, and (ii) Is the EAC approach
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applicable more broadly also in other contexts? Question (i) is addressed in the companion
paper Nehring and Puppe (2022). Question (ii) is wide open; we hope that the possibility
results presented here may stimulate further research into the merits of the EAC approach
and the frugal aggregation framework more broadly.
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Appendix A: Further results, applications and extensions

A.1 The 1-Median with Three Voters

Figure 10 illustrates the Condorcet solution in the separably convex model (aka 1-median)
for the case of three voters and L = 3. First note that, evidently, for two voters with tops θ
and θ′, respectively, the 1-median is given by the interval [θ, θ′]. Next, consider the case of
three agents with distinct tops θ, θ′ and θ′′, respectively. In Fig. 10, we fix the two tops θ′

and θ′′ in generic position, and describe how the Condorcet solution changes when θ moves
clockwise ‘around’ the interval [θ′, θ′′] (with the Condorcet solution marked in red in each
case; the depicted shapes of CWloc(θ,Msepco) can be easily be verified using Theorems 3 or
4). We note that while the Condorcet solution with three voters is always a triangle (possibly
consisting of a single allocation), it can take on a variety of other shapes if there are more
than three agents.15

A.2 More on Majority Admissibility

Majority admissibility has substantially stronger implications in the separably convex model
than in the convex models; nevertheless, it may still not be decisive if L > 2. The following
example illustrates both of these points.

Example 5. Consider in the standard simplex with L = 3 the top profile θ = (θ1, θ2, θ3) with
three types of voters none of whom represents an absolute majority; more specifically, suppose
that θ1 = (Q/3, 0, 2Q/3), θ2 = (0, 2Q/3, Q/3) and θ3 = (2Q/3, Q/3, 0) (see Figure 11). As is
easily verified, the majority admissible set corresponding to this profile is the entire simplex
for both the plain convex model and the homogeneous quadratic model. To see this, observe
that, for any fixed x ∈ X, the line segments connecting x with each of the three tops never
intersect.

In the separably convex model the majority admissible set is given by the union of three line
segments as shown in Fig. 11. This can be verified as follows. Take a point x on the horizontal
line segment to the left of the coordinate-wise median (Q/3, Q/3, Q/3) (the ‘hub’ in Fig. 11).
The set [θ1, x] lies entirely above the horizontal line segment, the set [θ3, x] lies entirely below
the horizontal line segment, and we have [θ1, x] ∩ [θ3, x] = {x}. Since [θ2, x] is given by the
line segment connecting x and θ2, we also have [θ1, x]∩ [θ2, x] = {x} and [θ2, x]∩ [θ3, x] = {x}.
By Lemma 4.1, it follows that x is majority admissible. By symmetry, all points on the other
three line segments shown in Fig. 11 are majority admissible. Next, consider any point x such
that x3 < Q/3 (i.e. below the horizontal line segment in Fig. 11) and x1 > Q/3 (i.e. to the
left of the line segment pointing downwards in Fig. 11). For every sufficiently small ε > 0 we
have (x1 − ε, x2, x3 + ε) >sepco

θ1
x and (x1 − ε, x2, x3 + ε) >sepco

θ2
x, hence x is not majority

admissible. A completely symmetric argument shows the non-admissibility of all other points
outside the three line segments shown in Fig. 11.

Finally, observe that in this example,

C1−med(θ) = CWloc(θ,Msepco) = {(Q/3, Q/3, Q/3)}.
15The website http://www.frugalmajority.de provides an online application to compute and visualize the

frugal majority for any number of agents for L = 3 and Q ≤ 15.
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Figure 10: The 1-median with three agents and L = 3.
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Figure 11: Majority admissibility in the separably convex model

By (2.3), the majority admissible set shrinks as the model becomes more restrictive. While
it remains always non-empty in the separably convex model (as is immediate from Theo-
rem 3), it can easily become empty in (non-rich) submodels. Consider, for instance, the
plain Euclidean model MEuclid consisting of all profiles of ex-post preferences representable
by the negative Euclidean distance. For the profile θ displayed in Example 5 we obtain
MA(θ,MEuclid) = ∅. To verify this, note first that clearly no allocation x 6∈ co(θ) can be
majority admissible. On the other hand, for every allocation x ∈ co(θ), one can choose two
distinct tops θi, θj ∈ {θ1, θ2, θ3} such that a movement from x along a circle with center θi
brings one closer in Euclidean distance to θj ; by continuity, a position in a neighborhood will
then be strictly preferred to x by voters i and j.

By comparison, consider the set of ‘L1-preferences’ consisting of all preferences that are
representable by the negative L1-distance to the top allocation θ ∈ X, i.e. that have a utility
function uθ of the form

uθ(x) = −||(x− θ)||1.

Note that as the plain Euclidean model the plain L1-model ML1 consisting of the set of
all profiles of L1-preferences is ‘epistemically complete’ in the sense that any individual top
reveals the entire ex-post preference. As can easily be verified, we have MA(θ,ML1) =
{(Q/3, Q/3, Q/3)} in Example 5 (provided that Q is sufficiently large in order to avoid integer
effects). However, the following example shows that also in the L1-model, the majority
admissible set will generally be empty.

Example 6. Consider in the standard simplex with L = 3 the top profile θ = (θ1, θ2, θ3) with
three types of voters at θ1 = (Q, 0, 0), θ2 = (0, Q, 0), and θ3 = (0, 0, Q), respectively. If θ1 has
the uniquely largest mass but still below 50%, one obtains MA(θ,ML1) = ∅ if Q is sufficiently
large; for instance, the allocation (Q, 0, 0) (the unique 1-median) is majority dominated by
(Q/3, Q/3, Q/3), which in turn is majority dominated by (Q/3 + ε,Q/3 + ε,Q/3− 2ε).
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A.3 On the (Non) Existence of Necessary Ex-Post Condorcet Winners

Proposition 1 shows that (under the weak additional condition that the model is copious)
the majority admissible alternatives are the possible ex-post Condorcet winners. One may
wonder if there are interesting, non-trivial conditions on a profile that would guarantee the
existence of a necessary Condorcet winner, i.e. a Condorcet winner for every profile of ex-post
preferences compatible with the information (M,θ). Evidently, an alternative that is the
top of more than half of the voters (an ‘absolute majority winner’) is a necessary Condorcet
winner. The following example shows that there is not much hope to weaken the precondition
for the existence of necessary Condorcet winners significantly even in simple cases.

Example 7 (Non existence of an ex-post Condorcet winner). Consider the standard
simplex with L = 3, Q = 2 and the separably convex model Msepco. Suppose that there are
three voters with tops θ1 = (2, 0, 0), θ2 = (1, 1, 0) and θ3 = (0, 2, 0); thus, the correspond-
ing profile θ is line-like. By Proposition 6(iii), we have MA(θ,Msepco) = {θ2}, hence by
Proposition 1, θ2 is the only candidate for an ex-post Condorcet winner. However, separable
convexity is compatible with the preferences (0, 0, 2) �1 θ2 and (0, 0, 2) �3 θ2, i.e. θ2 is not
a necessary Condorcet winner. (Observe that (0, 0, 2) is not majority admissible since, e.g.,
(1, 0, 1) �1 (0, 0, 2) and (1, 0, 1) �2 (0, 0, 2).)

A.4 The 1-Median as ‘Frugal Borda’ Winners

In this appendix, we show that the Condorcet solution in the separably convex model (aka
1-median) arises naturally also from the perspective of formulating an appropriate ‘frugal’
version of Borda rule. It is well known that Condorcet consistent voting rules and aggregation
rules based on scores in general result in different outcomes (Moulin, 1988a). For instance,
even in the simple case of single-peaked preferences on a line and an odd number of voters,
the Borda rule may not choose the (ex-post) Condorcet winner (which then always exists and
is unique). But in the frugal aggregation model, a natural version of Borda rule coincides
with the advocated (ex-ante) Condorcet solution. Intuitively, the reason is that the symmetric
treatment of non available preference information entailed by the ex-ante Condorcet approach
corresponds to applying Borda rule to metric individual preferences that admit an ordinal
utility representation in terms of the negative L1-distance to the top alternative; and for this
class of ordinal preferences, Borda’s and Condorcet’s aggregation methods indeed give the
same result.

To make this precise, define for a given a top θ ∈ X, the rank sθ(x) ≥ 1 of an alternative
x ∈ X as follows. A chain (with respect to >sepco

θ ) is any subset of X that is totally ordered
by the partial order >sepco

θ . For each x ∈ X, let sθ(x) be the maximal cardinality of a chain
Y 3 x that has x at its bottom (i.e. y >sepco

θ x for all y ∈ Y \ {x}), so that θ itself uniquely
occupies the smallest rank sθ(θ) = 1.

For every profile θ = (θ1, ..., θn) and every alternative x, let

FB(θ,Msepco) := arg min
x∈X

n∑
i=1

sθi(x)

38



denote the set of frugal Borda winners.16 It follows from Lemma 4.1, that the rank of an
alternative x coincides with the graph distance d(x, θ) to the top plus one. This immediately
entails the following result.

Proposition 11. For all θ ∈ X and all x ∈ X, we have sθ(x) = d(x, θ) + 1 for the rank
derived from the partial order >sepco

θ . Thus, in particular, for all profiles θ,

FB(θ,Msepco) = C1−med(θ) = CWloc(θ,Msepco).

A.5 The 1-Median as Imputed Utilitarian Solution

Theorem 3 represents the Condorcet solution in the separably convex model in terms of a
scoring rule, i.e. the minimization of the aggregate L1-distance to the tops. As noted, this can
be interpreted as utilitarian aggregation with respect to imputed cardinal utility functions
given by the negative L1-distance. But the economic meaning of these utility functions is
unclear, in particular they are prima facie only defined on the feasible set X and not on
the underlying good space RL. In this appendix, we show how the utilitarian interpretation
can be meaningfully reformulated. Specifically, for each agent with top θ consider the goal
satisfaction function vθ : RL → R defined by

vθ(x) :=
L∑
`=1

min{x`, θ`}, (A.1)

for all x ∈ RL. Evidently, for every θ ∈ X, vθ(·) is an additively separable function which
is (weakly) increasing and concave in each component. The term min{x`, θ`} measures the
extent to which the ‘goal’ θ` is satisfied in coordinate ` by the allocation x.17 For every profile
θ and all x ∈ X, denote by

vθ(x) :=
n∑
i=1

vθi(x),

the aggregate goal satisfaction at x ∈ X. The term

L∑
`=1

|x` − θ`|+,

where |x` − θ`|+ := max{x` − θ`, 0}, can be interpreted as the potential ‘waste’ of resources
at the allocation x from the point of view of an agent with top allocation θ. Noting that, for
all θ, x ∈ X,

L∑
`=1

|x` − θ`|+ =
L∑
`=1

|θ` − x`|+ = d(x, θ)/2,

16For different approaches to extending the Borda rule to partial orders, see Young (1974); Cullinan et al.
(2014).

17Note that with monotone preferences, oversatisfaction of the goal in the sense that x` > θ` does not hurt
per se; but for a feasible allocation x ∈ X, oversatisfaction in one coordinate is necessarily accompanied by
undersatisfaction of the goal in some other coordinate due to the budget constraint.
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we obtain for all x ∈ X and all θi ∈ X,

vθi(x) =
L∑
`=1

x` −
L∑
`=1

|x` − θ`i |+ = Q−
L∑
`=1

|x` − θ`i |+ (A.2)

= Q− d(x, θi)/2. (A.3)

Equation (A.2) states that, up to a constant, goal satisfaction simply measures aggregate
(potential) waste, and (A.3) implies that minimizing aggregate distance of x ∈ X for a profile
θ of tops in X amounts to maximizing the aggregate goal satisfaction function vθ(·). Thus,
for all profiles θ in X, the Condorcet solution coincides with the utilitarian maximizers of the
individual goal satisfaction functions, i.e. we have the following result.

Proposition 12. For all profiles θ,

C1−med(θ) = CWloc(θ,Msepco) = arg max
x∈X

vθ(x).

Within the class of additively separable and concave utility functions, the goal satisfaction
functions vθi arise naturally from the perspective of the frugal aggregation model, by the fol-
lowing heuristic argument. Consider a (cardinal) differentiable utility function u(x1, ..., xL) =∑

` u
`(x`) with monotone and concave component functions u`. In the optimum θ ∈ X among

all feasible allocations in X, the marginal rates of substitution must all be equal to unity be-
cause allocations are defined in terms of expenditure (neglecting any integer problems for
simplicity); that is, for the marginal utilities, we obtain ∂u`(θ`)/∂x` = ∂uk(θk)/∂xk for all
`, k. By the concavity of the component functions, marginal utility is higher below than above
the optimum, i.e. for all `, k, all r < θ` and θk < s we have

∂u`(r)

∂x`
≥ ∂uk(s)

∂xk
.

Since the only available information in the frugal model is the top θ, an application of the
principle of insufficient reason suggests treating all marginals below the top equal to each
other, and likewise all marginals above the top. Setting the marginal utilities below the top
equal to α and those above the top equal to β < α, these are affinely equivalent on the
feasible set X to the goal-satisfaction utilities defined in (A.1), which correspond in fact to
the special case of α = 1 and β = 0. Note that this argument forces the imputed utilities to
be non-differentiable but allows them to be strictly monotone.

A.6 The Condorcet Solution Satisfies Reinforcement and the No No-Show
Paradox in the Separably Convex Model

The scoring rule representation in terms of the 1-median immediately implies that the Con-
dorcet solution in the separably convex model satisfies the reinforcement condition (3.7).
A property closely related to reinforcement is the absence the so-called ‘no-show’ paradox
(Fishburn and Brams, 1983; Moulin, 1988b). We show now that the Condorcet solution
satisfies a strong version of the avoidance of the no-show paradox in the separably convex
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model. Specifically, we demonstrate that it can never be harmful for an agent to partici-
pate and vote truthfully in the following sense. Given any profile θ, the Condorcet solution
C1−med(θtθh) = CWloc(θtθh,Msepco) resulting from the additional participation of a voter
h contains all maximal elements of C1−med(θ) = CWloc(θ,Msepco) with respect to >sepco

θh
;

moreover, for every new local ex-ante Condorcet winner y resulting from the additional par-
ticipation of voter h (if any) there exists a maximal element x in C1−med(θ) with respect to
>sepco
θh

such that y >sepco
θh

x.
Formally, for every profile θ = (θ1, ..., θn) and every agent h 6∈ {1, ..., n}, denote by θ t θh

the profile (θ1, ..., θn, θh). Moreover, denote by C1−med(θ)h the set of all allocations x ∈
C1−med(θ) such that C1−med(θ)∩[x, θh] = {x}. Thus, C1−med(θ)h is the subset of undominated
allocations in C1−med(θ) from the perspective of an agent with top θh (and separably convex
preferences). The following result shows that by participating and submitting the top θh, an
agent is always better off in the sense that (i) the resulting frugal majority winners contain
all undominated allocations among the former majority winners, and (ii) every new majority
winner (if any) dominates one of these.

Proposition 13. Consider any profile θ = (θ1, ..., θn) and any agent h 6∈ {1, ..., n} with top
θh, then

C1−med(θ)h ⊆ C1−med(θ t θh) ⊆
⋃

x∈C1−med(θ)h

[x, θh]. (A.4)

(Proof in Appendix B.)

Figure 12 illustrates this result. On the left-hand side, the Condorcet solution C1−med(θ)
(without agent h’s participation) is marked in red. The right-hand side depicts the Condorcet
solution with participation of agent h whose top is at the upper vertex of the red triangle
representing C1−med(θtθh); the subset C1−med(θ)h of the undominated elements of C1−med(θ)
is encircled by the black oval. Indeed, from h’s perspective, the two allocations discarded by
h’s participation, θ1 and θ2, are strictly worse than their right and left neighbor, respectively;
and each of the three local ex-ante Condorcet winners gained by h’s participation are strictly
preferred by h to at least one element of C1−med(θ)h.

A.7 Ex-Ante Condorcet vs. Tournament Solutions and the Essential Set

How does the proposed Condorcet solution in the separably convex model depart from stan-
dard approaches, and in what way is it superior? Even if one accepts the premise of our present
approach to use individual information only about the top alternative plus the common back-
ground assumption, i.e. to base the collective decision on the ex-ante majority relation (i.e. in
the separably convex model on the inferred partial orders >sepco

θ ), one is not forced to use
a complete ignorance approach as proposed here, but could try to resort to ‘off-the-shelf’
solution concepts. First, one could use solution concepts offered by tournament theory, such
as the top cycle, or the weak Condorcet winners, see e.g. Laslier (1997), with the underlying
tournament given by the (global) ex-ante majority relation defined in (2.5). The problem is
with this approach is that the standard solution concepts are either sometimes empty (global
Condorcet winners), or frequently very large (the top cycle). To overcome the indeterminacy
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Figure 12: Additional participation of agent h

of the top cycle and related solution concepts one may turn to probabilistic aggregation meth-
ods, for instance using the essential set, i.e. the support of the maximal lotteries given the
tournament R(θ,Msepco) (Brandl et al., 2016). However, this generally also yields additional
indeterminacy as compared to frugal majority rule. We illustrate this by means of the follow-
ing example in which there is no global Condorcet winner, the top cycle is the entire feasible
set, but there is a single local ex-ante Condorcet winner.

Example 8. Suppose that X is given as in (3.1) with L = 3, Q = 3 and [q`−, q
`
+] ⊇ [0, 3] for all

` = 1, 2, 3. Consider the following profile θ with seven agents (see Figure 13): θ1 = (1, 1, 1),
θ2 = θ3 = (3, 0, 0), θ4 = θ5 = (0, 3, 0), and θ6 = θ7 = (0, 0, 3), and fix any rich separably convex
model M. Using Lemma 4.1, it is easily verified that (1, 1, 1) >sepco

θi
(0, 1, 2) for i = 1, 2, 3

and (0, 1, 2) >sepco
θi

(1, 1, 1) for i = 6, 7, while any ranking between (1, 1, 1) and (0, 1, 2) is
compatible with separable convexity for agents i = 4, 5. Thus,

(1, 1, 1)P(θ,Msepco)(0, 1, 2), (A.5)

where P(θ,Msepco) is the asymmetric (‘strict’) part of R(θ,Msepco). Moreover, by Lemma 4.1,
we have (0, 1, 2) >sepco

θi
(0, 0, 3) for i = 1, 4, 5 while any ranking between (0, 1, 2) and (0, 0, 3)

is compatible with separable convexity for agents i = 2.3; hence, notwithstanding the fact
(0, 0, 3) >sepco

θi
(0, 1, 2) for i = 6, 7, we obtain

(0, 1, 2)P(θ,Msepco)(0, 0, 3). (A.6)

Finally, again using Lemma 4.1 , we obtain

(0, 0, 3)P(θ,Msepco)(1, 1, 1) (A.7)

since agents i = 6, 7 have their top at (0, 0, 3) while only agent i = 1 has her top at (1, 1, 1) and
the ranking between these two allocations is not determined by separable convexity for the other
agents i = 2, 3, 4, 5. Combining (A.5), (A.6) and (A.7) we thus obtain that both (1, 1, 1) and
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θ6 = θ7 = (0, 0, 3)

θ2 = θ3 = (3, 0, 0) θ4 = θ5 = (0, 3, 0)

θ1

(0, 1, 2)

Figure 13: Non-existence of a global ex-ante Condorcet winner

(0, 0, 3) are contained in a P(θ,Msepco)-cycle. By a completely symmetric argument, also the
allocations (3, 0, 0) and (0, 3, 0) are part of a P(θ,Msepco)-cycle. This implies that the top cycle
is indeed the entire set X, and that the essential set also contains more than one element.18

However, as is easily verified using Theorem 4 above, the (local) Condorcet solution for this
profile is the single allocation

CWloc(θ,Msepco) = {(1, 1, 1)}.

And indeed, in view of the symmetry of the profile, the allocation (1, 1, 1) seems to be the
clear optimal choice, and it is questionable if there is any identifiable advantage from including
other allocations in the choice set. Our diagnosis is that not all majority comparisons are
equally important, and arguably local comparisons contain all useful information. By treating
local and non-local majority comparisons on par, standard approaches add noise which may
lead to inferior recommendations.

A.8 The Local Ex-ante Condorcet Winners in the Continuous Case

Our local majoritarian foundation of the Condorcet solution (aka 1-median) in the separably
convex model can be re-formulated for continuous resource agendas X ⊂ RL, as follows. A
preference order < on X is separably convex if the following condition is satisfied: whenever
a marginal transfer from good j to good k at allocation x ∈ X makes an agent worse off
(keeping the allocation fixed otherwise), then so does the same transfer at any allocation that
has at most the amount xj of good j and at least the amount xk of good k. Given a profile
of tops θ = (θ1, ..., θn) on X, define the symmetric binary relation Γθ on X by xΓθy if (i)
x and y differ in exactly two coordinates, i.e. x 6= y and for some distinct j, k ∈ {1, ..., L},
x` = y` for all ` 6= j, k, and (ii) for no i = 1, ..., n, min{xj , yj} < θji < max{xj , yj} or
min{xk, yk} < θki < max{xk, yk}. Thus, if xΓθy then x and y are ‘neighbors’ in the sense
that they differ only in two coordinates and no top lies strictly between them in these two
coordinates; geometrically, condition (ii) means that no top lies in the ‘stripe’ between xj

18The essential set is single-valued if and only if this single element constitutes a Condorcet winner, see
Brandl et al. (2016).
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Figure 14: The binary relation Γθ

and yj parallel to the j-axis, and no top lies in the ‘stripe’ between xj and yj parallel to the
j-axis, see Figure 14. Observe that for every profile with finite support, and for all j, k, this
condition is satisfied whenever x and y are sufficiently close to each other.

Similar to Section 4.4 above, define the local ex-ante majority relation now profile by
profile with respect to the relation Γθ, i.e. for all x, y ∈ X,

xRloc
(θ,Msepco)y :⇐⇒

[
xR(θ,Msepco)y and xΓθy

]
and let

CWloc(θ,Msepco) = {x ∈ X | for no y ∈ X, yP loc
(θ,Msepco)x},

as before (for simplicity, we do not notationally distinguish corresponding concepts in the
discrete and the continuous case).

Theorem 3′ For all profiles θ, the set CWloc(θ,Msepco) is non-empty, box-convex and co-
incides with C1−med(θ) (the latter set being defined exactly as in the discrete case).

(Proof in Appendix B.)

The characterization of the Condorcet solution provided in Theorem 4 continues to hold
without change for profiles with finite support. In fact, the endogenous quota characterization
provided by Theorem 4 can be used to define the Condorcet solution for general distributions of
agent’s tops in a straightforward manner. In the case of atomless and continuous distributions
it always yields a unique solution, as follows. For each ` = 1, ..., L, and all t ∈ [0, 1], denote
by ξ`(t) the cumulative distribution of the tops in coordinate `, i.e. ξ`(t) = r if and only if
the fraction t of agents’ tops has at most the amount r in coordinate `; evidently, ξ`(·) is an
increasing function for all `. Let Q(t) :=

∑L
`=1 ξ

`(t) which is clearly also increasing. If the
underlying distribution θ of tops is atomless, Q(·) is in fact strictly increasing and continuous
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on [0, 1] with Q(0) < Q < Q(1). By the intermediate value theorem, there exists exactly one
t∗ ∈ (0, 1) such that Q(t∗) = Q; then

CWloc(θ,Msepco) = {(ξ1(t∗), ..., ξL(t∗))},

i.e. the allocation (ξ1(t∗), ..., ξL(t∗)) is the unique frugal majority winner.

Appendix B: Remaining Proofs

Proof of Proposition 1. By contraposition, let x 6∈ MA(θ,M); we show that x cannot be an

ex-post Condorcet winner. By definition, there exist y ∈ X, such that m−(θ,M)(y, x) >

m+
(θ,M)(x, y); in particular, for all <∈ Ω(θ,M), {i : y �i x} > {i : x �i y}. Hence, x is

not a Condorcet winner at any profile <∈ Ω(θ,M).
Conversely, let x ∈ MA(θ,M), i.e. for no y ∈ X, yP nec

(θ,M)x, or in other words, for all y ∈ X,

m+
(θ,M)(x, y) ≥ m−(θ,M)(y, x).

For all y ∈ X \ {x}, choose <y ∈ Ω(θ,M) such that #{i : x �yi y} is maximized; in particular,
for such a profile we have #{i : x �yi y} ≥ #{i : y �yi x} (since otherwise, y would be a
necessary majority winner gainst x). Denote by Jy := {i : x �yi y}, and by J := ∪y 6=xJy. By
the richness condition (2.4), there exists <∈ Ω(θ,M) such that for all i ∈ J , x �i y for all
y 6= x. Since #J ≥ #Jy for all y 6= x, we have

#{i : x �i y} ≥ #{i : y �i x}

for all y 6= x, i.e. x is an ex-post Condorcet winner at <∈ Ω(θ,M).

Proof of Proposition 2. The proof is straightforward and the argument is well-known.

Proof of Proposition 3. Under convexity of preferences a necessary and sufficient condition
for x �i y to hold for a voter with top θi is that x 6= y and x is on a straight line connecting
y and θ1. This directly implies the statement of the proposition.

The following fact generalizes Proposition 2 to embedded one dimensional subspaces.

Fact B.1. Let M = Mco (plain convex model) or M = Mreg
co (regularized convex model),

and let θ = (θ1, ..., θn) a profile of collinear tops. Specifically, suppose that the tops θi are
ordered along a Euclidean straight line L ⊆ X such that, for all i, θi = θ1 + λi · r, for some
r ∈ RL and λi such that 0 ≤ λi ≤ λi′ whenever i ≤ i′. Then, MA(θ,M)∩L = {θn+1)/2} if n
is odd, and MA(θ,M) ∩ L = [θn/2, θn/2+1] ∩ L if n is even.

Proof. Evidently, the ‘median top(s) within L’ are necessary majority winners against all other
alternatives in L in either convex model; moreover, no alternative outside L is a necessary
majority winner against any of the ‘median top(s) within L.’
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Proof of Proposition 4. Consider any x 6= θi∗ ; by assumption, there is at most one θj 6= θi∗

on the straight line through x and θi∗ . By the observation in the proof of Proposition 3, and
since θi∗ has largest popular support, this implies m−(θ,M)(θi∗ , x) ≥ m−(θ,M)(x, θi∗), i.e. θi∗ is
an ex-ante majority winner against x; if θi∗ has uniquely largest popular support, we even
have m−(θ,M)(θi∗ , x) > m−(θ,M)(x, θi∗). Since x was chosen arbitrarily, the result follows.

Proof of Fact 3.3. By definition, a profile of quadratic preferences is homogeneous if the
marginal distribution µ|θi over the quadratic forms is independent of the top θi. This means
that the profile is a product measure over X ×Q, where Q is the set of all quadratic forms.
But this also means that also the marginal distribution over the tops is independent of the
quadratic form Q. This implies at once that, for all distinct x, y ∈ X,

m−
(θ,M̂quad)

(x, y) = m−
(θ,Mquad)

(x, y),

hence the statement of Fact 3.3.

We prove Theorems 1 and 2 in reverse order. For the proof of Theorems 2 we need a series
of lemmata. Denote the relative Tukey depth of x with respect to y by

m−(θ,Tuk)(x, y) := min
H∈Hx, y 6∈H

#(θ ∩H),

and xR(θ,Tuk)y :⇔ m−(θ,Tuk)(x, y) ≥ m−(θ,Tuk)(y, x), as well as

CW(θ,Tuk) := {x ∈ X| for no y ∈ X, y P(θ,Tuk)x}.

Lemma B.1. For all distinct x, y ∈ X and all profiles θ, R(θ,SH) = R(θ,Tuk), cf. (3.5).

Proof. We show that, for all x, y ∈ X,

m̂−(θ,SH)(x, y) = min
H∈Hx, y 6∈H

#(θ ∩H) = m−(θ,Tuk)(x, y); (B.1)

from this, the statement of Lemma B.1 is immediate. Let H0 be a half-space with x ∈ H0 and
y 6∈ H0 for which #(θ∩H) is minimal. Choose for all tops θi ∈ H0 a convex preference <i such
that x �i y, and for all tops θi 6∈ H0 a convex preference <i such that y �i x. Evidently, the
constructed profile satisfies the similarity hypothesis (without any ‘misclassification’); hence,
the term on the left-hand side of equation (B.1) cannot be strictly larger than the term on
the right-hand side.

Conversely, consider a profile < of convex preferences satisfying the similarity hypothesis,
and assume that it attains the minimal number of x-supporters among all those. By the
minimality, we may assume without loss of generality that #{i : x �i y} ≤ #{i : y �i x}.
Since the misclassification is bounded by condition (ii) in the similarity hypothesis, the number
of x-supporters in a profile satisfying the similarity hypothesis with respect to the linear
classification Hx, Hy cannot be smaller than #(θ∩Hx). This shows the equality in (B.1).

In particular, by Lemma B.1 we have CW(θ,Tuk) = CW(θ,SH) and we now show that
this set coincides with the strict Tukey median.
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Lemma B.2. For all x, y ∈ X, d(x;θ) > d(y;θ) implies xP(θ,Tuk)y.

Proof. Let us henceforth abbreviate and write θ(H) := #(θ∩H). By assumption there exists
a half-space H containing y with θ(H) < d(x;θ), hence in particular x 6∈ H. Thus,

m−(θ,Tuk)(x, y) ≥ d(x;θ) > θ(H) ≥ m−(θ,Tuk)(y, x).

Note that Lemma B.2 implies CW(θ,Tuk) = CW(θ,SH) ⊆ T (θ).

Lemma B.3. For all x, y ∈ X with d(x;θ) = d(y;θ) =: α, one has m−(θ,Tuk)(x, y) = α or

m−(θ,Tuk)(y, x) = α.

Proof. Let H 3 x be such that θ(H) = α; without loss of generality assume that x is on the
boundary of H. Note that H cannot have positive mass at the boundary (except possibly
at x itself); indeed, otherwise a small rotation around x would lower θ(H) which is already
minimal.

If y 6∈ H, then m−(θ,Tuk)(x, y) = α. If y ∈ H one can find H ′ ‘close’ to H such that

θ(H ′) = θ(H), y ∈ H and x 6∈ H ′. Indeed, if y is in the interior of H, move the boundary of
H slightly parallel towards y, and if y is on the boundary of H rotate the boundary slightly
to H ′ so that x ‘drops out.’ Thus, m−(θ,Tuk)(y, x) = α.

Lemma B.4. For all x, y ∈ X with d(x;θ) = d(y;θ) =: α,

xP(θ,Tuk)y ⇐⇒ m−(θ,Tuk)(x, y) > α ⇐⇒ Hαx ( Hαy ,

where Hαx := {H ∈ H | x ∈ H and θ(H) = α}.

Proof. In view of Lemma B.3, we need to show that m−(θ,Tuk)(x, y) > α ⇐⇒ Hαx ( Hαy . If

m−(θ,Tuk)(x, y) > α, then there exists a half-space H such that y ∈ H, x 6∈ H and θ(H) = α,

but there does not exist a half-space H such that x ∈ H, y 6∈ H and θ(H) = α; by the latter,
Hαx ⊆ Hαy , hence by the former in fact Hαx ( Hαy .

Conversely, if Hαx ( Hαy , there does not exist a half-space H such that x ∈ H, y 6∈ H and

θ(H) = α, hence m−(θ,Tuk)(x, y) > α.

Observe that, by Lemma B.4 the relation P(θ,Tuk) is a strict partial order when restricted
to any depth level set. Now consider the Tukey median T (θ), i.e. the depth level set with
maximal depth, and denote by L̃x(θ) := {y ∈ T (θ) | xR(θ,Tuk)y} \ {x} (i.e. the lower contour
set of x with respect to R(θ,Tuk) minus the alternative x itself).

Lemma B.5. For all x ∈ T (θ), the sets L̃x(θ) are relative open in T (θ).

Proof. Consider any pair x, y ∈ T (θ) such that xR(θ,Tuk)y and x 6= y, and let α∗ be the

maximal Tukey depth. By Lemmas B.3 and B.4, we have m−(θ,Tuk)(y, x) = α∗. Thus, there

exists a half-space H with θ(H) = α∗, y ∈ H, x 6∈ H, and without loss of generality we may
assume that the boundary of H has mass zero. Therefore, by moving H slightly (say, in a
parallel way) towards x, we obtain m−(θ,Tuk)(y

′, x) = α∗, and hence xR(θ,Tuk)y
′, for all y′ in a

small neighborhood of y. This shows that L̃x(θ) is relative open in T (θ).
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Proof of Theorem 2. By Lemma B.4, we have CW(θ,Tuk) = CW(θ, SH) = T ∗(θ). Thus, it
only remains to be shown that this set is indeed non-empty. Let

Ũx(θ) := {y ∈ T (θ) | yP(θ,Tuk)x} ∪ {x}

Consider chains of such ‘upper contour’ sets, i.e. subsets C ⊆ {Ũx(θ) | x ∈ T (θ)} totally
ordered by set inclusion, and denote by U the family of all such chains partially ordered by
set inclusion. By Zorn’s Lemma, there exists a maximal element in U , i.e. a maximal chain C∗.
By Lemma B.5, the elements of C∗ are relative closed, and since T (θ) is bounded, they are in
fact (relative) compact. Hence, the intersection ∩C∗ is non-empty, and by maximality of C∗
it consists of a unique element, say Ũx∗(θ). By construction, x∗ ∈ CW(θ,Tuk), in particular
CW(θ,Tuk) = T ∗(θ) is non-empty.

We now turn to the proof of Theorem 1; again, we need some preliminary results.

Lemma B.6. Let M ⊆Mco be any model of convex preferences, and suppose that z ∈ (x, y],
then [

m−(θ,M)(x, y) ≥ m−(θ,M)(x, z)
]

and
[
m−(θ,M)(y, x) ≤ m−(θ,M)(z, x)

]
. (B.2)

In particular, yP(θ,M)x implies zP(θ,M)x, and xR(θ,M)z implies xR(θ,M)y.

Proof. Recalling our slightly stronger than standard notion of ‘convex preference,’ we have
for every convex preference <,

x � z =⇒ x � y, and

y � x =⇒ z � x.

In particular, every preference admissible in M that supports x against z also supports x
against y; this shows the first part of (B.2). Similarly, every preference admissible in M
that supports y against x also supports z against x which shows the second part of (B.2). If
yP(θ,M)x, we thus have

m−(θ,M)(x, z) ≤ m−(θ,M)(x, y) < m−(θ,M)(y, x) ≤ m−(θ,M)(z, x),

i.e. zP(θ,M)x. Similarly, if xR(θ,M)z, we have

m−(θ,M)(y, x) ≤ m−(θ,M)(z, x) ≤ m−(θ,M)(x, z) ≤ m−(θ,M)(x, y),

i.e. xR(θ,M)y.

Define the ‘local’ (strict) net majority relation Q(θ,M) as follows. For all x, y ∈ X,

y Q(θ,M)x :⇐⇒ zP(θ,M)x for all z ∈ (x, y], (B.3)

and let
LCW(θ,M) := {x ∈ X| for no y ∈ X, y Q(θ,M)x}. (B.4)
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Lemma B.7. Let M ⊆Mco; for all θ,

LCW(θ,M) = CW(θ,M).

Proof. Evidently, CW(θ,M) ⊆ LCW(θ,M). The converse is shown by contraposition.
Suppose that x 6∈ CW(θ,M), i.e., yP(θ,M)x for some y ∈ X. By Lemma B.6, we obtain
zP(θ,M)x for all z ∈ (x, y], i.e. y Q(θ,M)x; thus, x 6∈ LCW(θ,M).

Lemma B.8. For all θ,
CW(θ,Mquad) = CW(θ,Tuk).

Proof. Let x∗ ∈ CW(θ,Mquad), i.e. x∗R(θ,Mquad)y for all y ∈ X. By contradiction, assume

that yP(θ,Tuk)x
∗ for some y ∈ X, i.e.

m−(θ,Tuk)(x
∗, y) < m−(θ,Tuk)(y, x

∗). (B.5)

Let H0 ∈ Hx∗ be a Euclidean half-space that separates x∗ from y and that minimizes #(θ∩H)
among all such half-spaces. Without loss of generality, we may assume that x∗ ∈ ∂H0 and that
∂H0∩θ ⊆ {x∗} (the latter by the fact that θ is made up by a finite set of points). Therefore, we
my shift H0 slightly along the straight line S connecting y and x∗ in a parallel way towards
y to H̃0 while keeping the mass with respect to θ constant, i.e. such that #(θ ∩ H0) =
#(θ ∩ H̃0) = m−(θ,Tuk)(x

∗, y). Consider the intersection w of S with ∂H̃0 and the point

z on S such that w is the midpoint between w and x∗ (see Figure 15). By Fact 3.2 we
have m−

(θ,Mquad)
(x∗, z) = #(θ ∩ H̃0) = m−(θ,Tuk)(x

∗, y). Moroever, we evidently also have

m−(θ,Tuk)(x
∗, y) = m−(θ,Tuk)(x

∗, z), and m−(θ,Tuk)(z, x
∗) ≥ m−(θ,Tuk)(y, x

∗). Thus, using (B.5) and

the fact that, for all w, v ∈ X, m−
(θ,Mquad)

(w, v) ≥ m−(θ,Tuk)(w, v), we obtain,

m−
(θ,Mquad)

(z, x∗) ≥ m−(θ,Tuk)(z, x
∗) ≥ m−(θ,Tuk)(y, x

∗)

> m−(θ,Tuk)(x
∗, y) = m−(θ,Tuk)(x

∗, z) = m−
(θ,Mquad)

(x∗, z).

i.e. zP(θ,Mquad)x
∗ in contradiction to the initial assumption that x∗ ∈ CW(θ,Mquad).

Conversely, let x∗ ∈ CW(θ,Tuk), i.e. x∗R(θ,Tuk)x for all x ∈ X. Consider any fixed y ∈ X
distinct from x∗. Let H0 ∈ Hx∗ be a Euclidean half-space that separates x∗ from y and that
minimizes #(θ ∩H) among all such half-spaces. Without loss of generality, we may assume
that x∗ ∈ ∂H0 and that ∂H0 ∩ θ ⊆ {x∗} (the latter by the fact that θ is made up by a finite
set of points). Therefore, we my shift H0 slightly along the straight line S connecting y and x∗

in a parallel way towards y to H̃0 while keeping the mass with respect to θ constant, i.e. such
that #(θ ∩H0) = #(θ ∩ H̃0) = m−(θ,Tuk)(x

∗, y). Consider the intersection w of S with ∂H̃0

and the point z on S such that w is the midpoint between w and x∗ (as in Fig. 15 again). We
clearly have m−(θ,Tuk)(x

∗, y) = m−(θ,Tuk)(x
∗, w) = #(θ∩ H̃0). Let H1 be a Euclidean half-space

containing w that minimizes #(θ∩H) among all half-spaces that contain w and that separate

49



y x∗
z

w

H0

H̃0

Figure 15: Argument from Lemma B.8

w from x∗, i.e. m−(θ,Tuk)(w, x
∗) = #(θ ∩H1). Without loss of generality, we may assume that

w ∈ ∂H1. Since x∗ ∈ CW(θ,Tuk), we have x∗R(θ,Tuk)w, i.e.

#(θ ∩ H̃0) = m−(θ,Tuk)(x
∗, w) ≥ m−(θ,Tuk)(w, x

∗) = #(θ ∩H1).

Since w is the midpoint between z and x∗, we obtain using Fact 3.2 that

m−
(θ,Mquad)

(x∗, z) = #(θ ∩ H̃0) ≥ #(θ ∩H1) = m−
(θ,Mquad)

(z, x∗),

i.e. x∗R(θ,Mquad)z for some y ∈ X. By Lemma B.6 this implies x∗R(θ,Mquad)y. Since y was

arbitrarily chosen, we thus finally obtain x∗ ∈ CW(θ,Mquad).

Proof of Theorem 1. The proof follows from combining Fact 3.3, Lemmas B.1, B.8 and The-
orem 2.

Proof of Fact 3.4. The statement follows at once from the fact that every affine mapping with
full rank transforms any Euclidean half-space again into a Euclidean half-space.

Proof of Proposition 5. By contradiction, suppose that C(·) is a solution satisfying upper
hemicontinuity, the qualified affine equivariance condition (3.6), and majority admissibility
with respect to the plain convex model. Take any profile θ0 with tops (θ0

1, ..., θ
0
n) in general

position and n odd, and consider x ∈ C(θ0). If x ∈ co(θ0), there are coefficients ai ∈ R such
that x =

∑n
i=1 aiθ

0
i . By the affine equivariance condition (3.6), we obtain

∑n
i=1 aiθi ∈ C(θ)

for all profiles θ = (θ1, ...., θn) in general position. By upper hemicontinuity, we indeed obtain∑n
i=1 aiθi ∈ C(θ) for all profiles. However, this contradicts majority admissibility if the profile

θ is collinear, since
∑n

i=1 aiθi will in general differ from the median top.

Fact B.2. The models Mlin and Maddco are both rich submodels of the plain separably convex
model Msepco.

Proof. First, we show that any preference < ∈Madd is separably convex; since Mlin ⊆Madd

the same conclusion holds for the linear as well. Thus, let < be represented as in (4.2) by
an additively separable utility function u(x) =

∑
` u

`(x`) with strictly increasing and concave

50



component functions u` : R→ R. In fact, the separable convexity follows from the concavity
alone, no monotonicity condition on the functions u` is needed. Indeed, suppose that x � x(kj)

and yj ≤ xj as well as yk ≥ xk; since the allocations x and x(kj) differ only in coordinates j

and k, we have u(x) > u(x(kj)) if and only if uj(xj)− uj(xj − 1) > uk(xk + 1)− uk(xk). By

the concavity of uk(·) and uj(·) we obtain[
uj(yj)− uj(yj − 1)

]
≥
[
uj(xj)− uj(xj − 1)

]
>
[
(uk(xk + 1)− uk(xk)

]
≥
[
uk(yk + 1)− uk(yk)

]
,

and hence u(y) > u(y(kj)) as desired.
Next, we show that Madd is indeed a rich separably convex model. Thus, consider

x, y, θ ∈ X such that x 6∈ [θ, y]. We will show that there exists <∈Madd with top θ such
that y � x. This in fact not only shows that Madd is a rich separably convex model but, in
addition, that every allocation can be the top of a preference order in Madd. The statement
is trivial if θ = y; thus, assume henceforth that θ 6= y. In the following, we explicitly construct
appropriate strictly increasing and strictly concave functions u` : X` → R for ` = 1, ..., L,
where X` is the projection of X to coordinate `. First observe that it is clearly possible, for
any given θ` ∈ X` and any ε > 0, to slightly ‘perturb’ the identity function f(x`) = x` to a
strictly concave and strictly increasing function f̃ such that the difference f̃(θ`)−θ` is strictly
larger that f̃(w`)−w` for all w` ∈ X`\{θ`}, and such that the absolute values |f̃(w`)−w`| < ε
for all w` ∈ X`. Note that if all utility functions u` arise from such perturbations, we obtain
in particular

L∑
`=1

(u`(θ`)− θ`) >
L∑
`=1

(u`(w`)− w`) (B.6)

for all w ∈ X \ {θ} (note that every w ∈ X \ {θ} differs from θ in at least one coordinate,
hence the inequality in (B.6) is indeed strict). Since

∑L
`=1 θ

` =
∑L

`=1w
` = Q, this implies∑L

`=1 u
`(θ`) >

∑L
`=1 u

`(w`) for all w ∈ X \ {θ}, i.e. θ is the unique top of the preference
ordering represented by the utility function u =

∑
` u

`.
Now let x 6∈ [θ, y] and assume with loss of generality that x, y, θ are pairwise distinct.

Since x 6∈ [θ, y] there exists a coordinate j = 1, ..., L such that xj 6∈ [θj , yj ]. Thus, either
(xj < θj & xj < yj) or (xj > θj & xj > yj). Consider the first case. It is possible to choose,
for any position of θj and yj , a strictly increasing and strictly concave function uj : X l → R
such that

uj(θj)− θj ≥ uj(yj)− yj ≥ δ > 0 ≥ uj(xj)− xj , (B.7)

where the first inequality in (B.7) is strict whenever θj 6= yj , and such that the difference
uj(θj)− θj is in fact strictly larger than uj(wj)−wj for all wj ∈ Xj \ {θj}. Figure 16 depicts
the two cases θj < yj (left) and yj < θj (right).

Now choose all other functions u` strictly increasing and strictly concave such that u`(θ`)−
θ` is strictly larger than u`(w`) − w` for all w` ∈ X` \ {θ`}, and such that |u`(w`) − w`| <
δ/[2(L − 1)] for all w` ∈ X`, as described above. Let < be the preference order represented
by u =

∑L
`=1 u

`. As argued above, θ is the top alternative of <. Moreover, we have

uj(yj)− yj +
∑
` 6=j

(u`(y`)− y`) > δ/2 > uj(xj)− xj +
∑
`6=j

(u`(x`)− x`),
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i.e. u(y) > u(x), and hence y � x as desired. The argument in the case xj > θj & xj > yj is
completely symmetric.

Now consider the model Mlin of all linear preferences on X. Observe first that only corner
allocations can be the top of a linear preference order on X. To show that Mlin also forms
a rich separably convex model, we need to show that for every corner allocation θ ∈ X and
any pair x, y ∈ X such that x 6∈ [θ, y] one can find an element < ∈ Mlin with top θ and
u(y) > u(x). This is obvious if L = 2, i.e. in the case of a line; thus, assume L ≥ 3. Without
loss of generality assume that θ = (Q, 0, ..., 0). We distinguish three cases.
Case 1. If y1 > x1, choose a1 = 1 and all other a` pairwise distinct such that 0 < a` < ε for
all ` 6= 1. If ε is sufficiently small, we obtain

L∑
`=1

a` · y` >

L∑
`=1

a` · x` (B.8)

i.e. u(y) > u(x) for the linear utility function represented by the a`; moreover, since a1 > a`

for all ` 6= 1, θ = (Q, 0, ..., 0) is indeed the top of the corresponding linear preference.
Case 2. If y1 = x1, then there exists k > 1 such that yk > xk. Choose a1 = 1, ak = 1− ε, and
all other a` pairwise distinct such that 0 < a` < ε for all ` 6∈ {1, k}. If ε is sufficiently small
the coefficients {a1, ..., aL} represent a linear preference with top θ = (Q, 0, ..., 0) and y � x
as desired.
Case 3. Finally, consider the case y1 < x1. Let L− := {` : y` < x`} and L+ := {` : y` > x`}.
By the feasibility of x and y, we have∑

`∈L−
(x` − y`) =

∑
`∈L+

(y` − x`) (B.9)

with each summand in this equation being strictly positive by construction. By the assumption
of the present case, we have 1 ∈ L−, and since x 6∈ [θ, y] there exists k 6= 1 such that k ∈ L−.
This implies by (B.9)

(x1 − y1) <
∑
`∈L+

(y` − x`). (B.10)

Now choose a1 = 1, and all other a` pairwise distinct such that 1− ε < a` < 1 for ` ∈ L+ and
0 < a` < ε for ` ∈ L \ ({1} ∪ L+). For ε sufficiently small, we obtain by (B.10) that y � x
for the linear preference represented by the coefficients {a1, ..., aL} as in (B.8). Furthermore,
since a1 is the uniquely largest coefficient, θ = (Q, 0, ..., 0) is indeed the top of this preference.

Proof of Lemma 4.1. That x ∈ [θ, y] implies x >sepco
θ y has been shown in the main text.

To see the converse implication, assume by way of contraposition that x 6∈ [θ, y]. As in the
proof of Fact B.2 above, one can construct a separably convex (in fact: additively separable)
preference order with top θ such that y � x, i.e. x 6>sepco

θ y. This shows (4.6) and completes
the proof of Lemma 4.1.

Proof of Proposition 6. (i) Every finite profile θ = (θ1, ..., θn) with support in an ordered
domain D can arranged such that, for all j ≤ k ≤ l ≤ m, [θk, θl] ⊆ [θj , θm]. It follows from
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Figure 16: Construction of uj if xj < θj and xj < yj

(4.5) and Lemma 4.1 that C1−med(θ) = {θ(n+1)/2} if n is odd and C1−med(θ) = [θn/2, θn/2+1]
if n is even. This implies the desired inclusion; indeed, all elements in {θ1, ..., θn} \C1−med(θ)
are not majority admissible because they are dominated by the median top(s).

(ii) Suppose that {θ1, θ2, θ3} are not collinear (as in Fig. 4). Suppose that in a sufficiently
large population, 1/2 of the voters have their top at θ1 while 1/4 of the voters have their top at
θ2 and θ3, respectively. Then, all p-medians for p > 1 uniquely select θ1 as the solution. This
follows from the fact that any movement away from θ1 by one unit along a geodesic increases
the total Lp-distance by 1/2 but reduces it by less than 1/2 because one cannot approach θ2

and θ3 on a common geodesic. (Observe that, by contrast, the 1-median chooses all elements
on the line segment joining θ1 and θ2, precisely because this line segment is on a common
geodesic connecting θ1 with θ2 and θ3.) By continuity, θ1 remains the unique solution if a
sufficiently small positive mass is taken from θ1 and distributed, say, equally, to θ2 and θ3.

(iii) First, it is well-known and easily verified that all p–medians coincide with the standard
median on a line for p ≥ 1. Moreover, the median top θmed = θ(n+1)/2 is clearly majority
admissible. To see that it is the only majority admissible alternative, consider any other
allocation x 6= θmed and any of its neighbors y in [x, θmed]. As is easily verified, we have
y ∈ [x, θi] either for all i ∈ {1, ..., n+1

2 }, or for all i ∈ {n+1
2 , ..., n}; hence, x is not majority

admissible.

Proof of Fact 4.1. Evidently, since >sepco
θ is transitive, it contains the transitive closure of its

restriction to pairs of Γres-neighbors. Conversely, suppose that x >sepco
θ y and consider any

shortest Γres-path from θ to y that contains x. Let w1, ..., wm be consecutive neighbors on
that path with x = w1 and y = wm. As in the proof of Lemma 4.1 in the main text, we
obtain wj � wj+1 for all j = 1, ...,m − 1 and all separably convex preference orderings with
top θ. In particular, wj >

sepco
θ wj+1 for all j = 1, ...,m − 1, i.e. the transitive closure of the
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restriction of >sepco
θ to all neighbors contains the pair (x, y).

Proof of Fact 4.2. If y is a neighbor of x there is nothing to show. Otherwise, consider any
neighbor y′ of x in [y, x]; by Lemma 4.1, we have y′ >sepco

θ x for all tops θ such that y >sepco
θ x.

Thus, if y is an absolute majority winner against x, so must be y′.

The following result provides a key technical tool for showing that any local optimum of
a function is in fact a global optimum.

Lemma B.9. Let f : X → R be a separable function with f(x) =
∑L

`=1 f
`(x`) such that all

functions f `(·) are concave. Then, any local optimum of f on X is also a global optimum of
f on X, i.e. if f(x) ≥ f(w) for all neighbors w ∈ X of x, then f(x) ≥ f(w) for all w ∈ X.
Moreover, the set of optima is box-convex, i.e. every point on a shortest L1-path between two
optima is also an optimum.

Proof. As in the first part of the proof of Fact B.2, the stated conditions imply that f rep-
resents a separably convex preference order on X (recall that no monotonicity condition on
f or the f ` is required for this conclusion). This implies that f must be constant along any
shortest path connecting two local optima. Indeed, suppose by way of contradiction that f is
not constant along some shortest path connecting two local optima x and z. Then there exist
two neighbors along that path, say y and y(kj), such that f(y) < f(y(kj)). Since y and y(kj)

are on a shortest path connecting x and z, we have y(kj) ∈ [y, z] or y(kj) ∈ [y, x]. Without loss
of generality, assume the former; then, by the separable convexity, we obtain f(z) < f(y(kj))
contradicting the assumption that z is a local optimum. From this, all other assertions in
Lemma B.9 follow at once.

Proof of Theorem 3. By Lemma 4.2, we obtain for any profile θ = (θ1, ..., θn) and any two
neighbors x and y,

#{i : x >sepco
θi

y} −#{i : y >sepco
θi

x} = ∆1(x;θ)−∆1(y;θ).

In particular, xRloc
(θ,Msepco)y if and only if ∆1(x;θ) ≤ ∆1(y;θ). This implies the acyclicity of

the local net majority tournament and the inclusion C1−med(θ) ⊆ CWloc(θ,Msepco). Note
moreover, that a neighbor y of a local ex-ante Condorcet winner x is itself a local ex-ante
Condorcet winner if and only if xRloc

(θ,Msepco)y and yRloc
(θ,Msepco)x.

For each top θi, the negative L1-distance−d(x, θi) =
∑

`−|x`−θ`i | is the sum of the concave
functions −|x`−θ`i |, i.e. separable and concave. Hence, as a sum of such functions the negative
of aggregate distance −∆1(·;θ) is likewise separable and concave function. By Lemma B.9,
each of its local optima is a global optimum. This implies CWloc(θ,Msepco) ⊆ C1−med(θ),
hence by the first part of this proof in fact CWloc(θ,Msepco) = C1−med(θ) for all profiles θ.
From this the box-convexity of CWloc(θ,Msepco) follows using Lemma B.9 again.

Proof of Proposition 7. The statement follows easily from Theorem 4 below.
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Proof of Theorem 4. The idea of the proof is to show that (4.11) is equivalent to x being a
local maximum of aggregate goal satisfaction as defined in Appendix A.5, and then to apply
Lemma B.9 and Proposition 12.

We first introduce some notation. For a fixed profile θ = (θ1, ..., θn) ∈ Xn, each ` = 1, ..., L
and r ∈ Z, denote by v`(r) :=

∑n
i=1 min{r, θ`i} so that for the aggregate goal satisfaction

function v(·) we have v(x) =
∑

` v
`(x`). Moreover, let

∇−v`(r) := v`(r)− v`(r − 1),

∇+v
`(r) := v`(r + 1)− v`(r).

By construction, we obtain

∇−v`(r) = #{i : θ`i ≥ r},
∇+v

`(r) = #{i : θ`i ≥ r + 1}. (B.11)

By definition of θ`[k], we have #{i : θ`i ≥ r} ≥ (n − k + 1) whenever r ≤ θ`[k], and hence by

(B.11),
r ≤ θ`[k] ⇒ ∇−v`(r) ≥ (n− k + 1). (B.12)

Similarly, we have #{i : θ`i ≥ r + 1} ≤ (n− k) whenever r ≥ θ`[k], hence, again by (B.11),

r ≥ θ`[k] ⇒ ∇+v
`(r) ≤ (n− k). (B.13)

Now consider any x ∈ X satisfying (4.11), i.e. for all ` = 1, ..., L, θ`[k∗(θ)] ≤ x
` ≤ θ`[k∗(θ)+1]. We

will show that x is a local maximizer of aggregate goal satisfaction v. By Lemma B.9, x is then
also a global optimum, hence a frugal majority winner by Proposition 12. Thus, consider any
neighbor y of x. Without loss of generality, assume that y = x(21), i.e. y1 = x1−1, y2 = x2 +1,

and y` = x` for all ` = 3, ..., L. We have x1 ≤ θ`[k∗(θ)+1] and x2 ≥ θ`[k∗(θ)], therefore, using

(B.12) and (B.13),

v(x)− v(y) = ∇−v1(x1)−∇+v
2(x2)

≥ n− (k∗(θ) + 1) + 1− (n− k∗(θ))

= 0.

This proves that every x ∈ X satisfying (4.11) is indeed a maximizer of aggregate goal
satisfaction.

Conversely, consider x ∈ X that violates (4.11). There are two (not mutually exclusive)
cases.

Case 1. For some coordinate h, xh < θh[k∗(θ)]. In this case, there must exist some other

coordinate j such that xj > θj[k∗(θ)]. Consider the neighbor y of x such that yh = xh + 1,

yj = xj − 1, and y` = x` for all coordinates ` 6= h, `, i.e. y = x(hj). By the same arguments as
above, we obtain using (B.11),

r < θ`[k] ⇒ ∇+v
`(r) ≥ (n− k + 1) (B.14)
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and
r > θ`[k] ⇒ ∇−v`(r) ≤ (n− k). (B.15)

Therefore,

v(y)− v(x) = ∇+v
h(xh)−∇−vj(xj)

≥ n− k∗(θ) + 1− (n− k∗(θ))

= 1,

hence x is not a maximizer of aggregate goal satisfaction.

Case 2. For some coordinate h, xh > θh[k∗(θ)+1]. In this case, there must exist some other

coordinate ` such that x` < θ`[k∗(θ)+1]. Consider the neighbor y of x such that yh = xh − 1,

y` = x` + 1, and y` = x` for all coordinates ` 6= h, `, i.e. y = x(jh). By (B.14) and (B.15), we
obtain

v(y)− v(x) = ∇+v
j(xj)−∇−vh(xh)

≥ n− (k∗(θ) + 1) + 1− (n− (k∗(θ) + 1))

= 1,

hence x is not a maximizer of aggregate goal satisfaction in this case either. This completes
the proof of Theorem 4.

Proof of Proposition 8. Follows at once from Theorem 4.

For the proof of Proposition 9, we need the following lemma.

Lemma B.10. Let x ∈ C1−med(θ). Then,

d̃↓(x;θ) = k∗(θ). (B.16)

If C1−med(θ) is a singleton, i.e. C1−med(θ) = {x}, then d̃↑(x;θ) ≥ n− k∗(θ) + 1, where n is
the number of voters; otherwise, if C1−med(θ) is not a singleton, then

d̃↑(x;θ) = n− k∗(θ). (B.17)

Proof. By Theorem 4, we have

C1−med(θ) =
{
x ∈ X | θ`[k∗(θ)] ≤ x

` ≤ θ`[k∗(θ)+1] for all ` = 1, ..., L
}
,

where θ`[k] is the k-th lowest value in the set {θ`i : i = 1, ..., n}, and k∗(θ) the largest k such

that
∑L

`=1 θ
`
[k] ≤ Q. Therefore, equation (B.16) holds by definition. If C1−med(θ) = {x},

then θ`[k∗(θ)] = x` for all `, hence θ(H`
x↑) ≥ n − (k∗(θ) − 1) = n − k∗(θ) + 1 for all `; thus,

d̃↑(x;θ) ≥ n− k∗(θ) + 1.19

19Observe that d̃↑(x;θ) can be much larger than n − k∗(θ); for instance, if θ is an unanimous profile, we
have d̃↓(x;θ) = k∗(θ) = n as well as d̃↑(x;θ) = n.
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Finally, suppose that x, y ∈ C1−med(θ) for distinct x, y ∈ X. For all `, we have x` ≤
θ`[k∗(θ)+1] and thus θ(H`

x↑) ≥ n− k∗(θ); this implies d̃↑(x;θ) ≥ n− k∗(θ). Moreover, for some

`0, x`0 > y`0 ; since y`0 ≥ θ`0[k∗(θ)], this implies x`0 > θ`0[k∗(θ)], and hence θ(H`
x↑) = n − k∗(θ).

Thus, d̃↑(x;θ) = n− k∗(θ) as asserted in (B.16).

Proof of Proposition 9. It will be convenient to introduce the following notation. For all
profiles θ, denote

Cchs↑(θ) := arg max
x∈X

d̃↑(x;θ),

Cchs↓(θ) := arg max
x∈X

d̃↓(x;θ).

We will show that, for all θ, C1−med(θ) = Cchs↑(θ) ∩ Cchs↓(θ), i.e. C1−med(θ) = T̃ ∗(θ). In
addition, if C1−med(θ) = {x} for some x ∈ X, then C1−med(θ) = Cchs↑(θ) = Cchs↓(θ).
Consider first the case C1−med(θ) = {x} for some x ∈ X. As noted in the proof of Lemma B.10,
one then has θ`[k∗(θ)] = x` for all `; moreover, x ∈ Cchs↑(θ) and x ∈ Cchs↓(θ). If y 6= x, then

yk < xk and ym > xm for some k,m = 1, ..., L, hence θ(Hk
y↓) < θ(Hk

x↓) and θ(Hm
y↑) < θ(Hm

x↑).

Therefore, d̃↑(y;θ) < d̃↑(x;θ) and d̃↓(y;θ) < d̃↓(x;θ), hence Cchs↑(θ) = Cchs↓(θ) = {x}.
Now consider the case in which C1−med(θ) is not a singleton. As in the proof of Lemma

B.10 we have arg maxx∈X d̃↓(x;θ) = k∗(θ) and arg maxx∈X d̃↑(x;θ) = n− k∗(θ), hence

Cchs↓(θ) = {x ∈ X | θ`[k∗(θ)] ≤ x
` for all `}.

and
Cchs↑(θ) = {x ∈ X | x` ≤ θ`[k∗(θ)+1] for all `}.

By Theorem 4, we have C1−med(θ) = Cchs↑(θ) ∩ Cchs↓(θ) = T̃ ∗(θ). Note in particular, that
the intersection of Cchs↑(θ) and Cchs↓(θ) is thus always non-empty. Moreover, we evidently

have C1−med(θ) ⊆ T̃ (θ).

The inclusion T̃ ∗(θ) ⊆ T̃ (θ) is in general strict as shown by the following example.

Example 9. Consider θ with three voters at θ1 = (2, 0, 0), θ2 = (0, 1, 1) and θ3 = (0, 0, 2).
For the point x = (1, 1, 0) we have d̃ ↑ (x;θ) = d̃ ↓ (x;θ) = 1, while for every allocation
w ∈ C1−med(θ) = {(2, 0, 0), (0, 1, 1), (1, 0, 1)} we have d̃↑(w;θ) = 2 and d̃↓(x;θ) = 1. Hence,
x ∈ T̃ (θ) \ T̃ ∗(θ).

Also observe that there is no refinement in the case in which C1−med(θ) = {x}, because
in that case θ(H`

x↓) = θ(H`′
x↓) and θ(H`

x↑) = θ(H`′
x↑) for all `, `′. Nevertheless, one might well

have d̃↓(x;θ) 6= d̃↑(x;θ).

Proof of Proposition 10. The statement follows in a straightforward manner from Theorem 4.
Indeed, order all projects in terms of their individual approvals. By Theorem 4, the ex-ante
Condorcet solution must fund the most popular projects until the budget is exhausted. With
the residual money the next popular project must be funded with some probability. Note
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that there could be several equally popular projects, therefore the Condorcet solution might
contain allocations in which more than one project is funded with non-trivial probability; but
there is always also one allocation among the Condorcet solutions in which all the residual
money goes to one project only.

Proof of Proposition 13. The idea of the proof is to use Theorem 4 in order to show that by
participating an agent moves the interval [θ`[k∗(·)], θ

`
[k∗(·)+1]] ‘closer’ to her top in all coordinates

` simultaneously.
The statement of Proposition 13 is easily verified for a unanimous profile, thus assume in

the following that θ is non-unanimous. Then there exists k∗(θ) < n such that Q[k∗(θ)] ≤ Q
and Q[k∗(θ)+1] > Q as in Theorem 4. Now consider the additional participation of agent h

with top θh. We use the following notation: the profile θ t θh will also be denoted θ̃; for each
`, θ̃`[1] ≤ ... ≤ θ̃

`
[n+1] are the n+ 1 ordered values among {θ`1, ..., θ`n, θ`h}, and

Q̃[k] :=

L∑
`=1

θ̃`[k]

Since, for each `, both the values θ`[k] and θ̃`[k] are weakly increasing in k, we obtain, for all
k ≤ n,

Q̃[k] ≤ Q[k].

Moreover, by the addition of agent h, we have θ`[k−1] ≤ θ̃
`
[k] for all ` and k ≤ n, and hence

Q̃[k+1] ≥ Q[k].

In particular, we obtain Q̃[k∗(θ)] ≤ Q[k∗(θ)] ≤ Q, and Q̃[k∗(θ)+2] ≥ Q[k∗(θ)+1] > Q. Thus, there

are only two cases, either (i) k∗(θ̃) = k∗(θ), or (ii) k∗(θ̃) = k∗(θ) + 1.
In either case, it follows immediately from the definitions that, for all `, the interval

[θ̃`
[k∗(θ̃)]

, θ̃`
[k∗(θ̃)+1]

] is ‘closer’ to θ`h than the interval [θ`[k∗(θ)], θ
`
[k∗(θ)+1]] in the sense that both

θ̃`
[k∗(θ̃)]

∈
[
θ`[k∗(θ)], θ

`
h

]
,

and
θ̃`

[k∗(θ̃)+1]
∈
[
θ`[k∗(θ)+1], θ

`
h

]
.

This implies the two inclusions stated in (A.4) and completes the proof of Proposition 13.

Proof of Theorem 3 ′. Lemma 4.1 continues to hold in the continuous case and we still have
x >sepco

θ y ⇔ x ∈ [θ, y]. As in the proof of Theorem 3 above, we also have, for all profiles
θ = (θ1, ..., θn) and every pair x, y with xΓθy,

#{i : x >sepco
θi

y} −#{i : y >sepco
θi

x} = ∆1(x;θ)−∆1(y;θ). (B.18)

In the continuous case, (B.18) can be derived as follows. Assume without loss of generality
that xj > yj , xk < yk, x` = y` for all ` 6= j, k, and consider any top θi. By condition (ii)
in the definition of Γθ, there are four cases (corresponding to the four non-shaded regions in
Fig. 15 above):
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(a) θji ≥ xj and θki ≤ xk,

(b) θji ≥ xj and θki ≥ yk,

(c) θji ≤ yj and θki ≤ xk, or

(d) θji ≤ yj and θki ≥ yk.

In case (a), we have x ∈ [θi, y] and hence d(θi, y) = d(θi, x) + d(x, y); in case (d) we have
y ∈ [θi, x] and hence d(θi, x) = d(θi, y) + d(x, y). In cases (b) and (c), we have neither
x ∈ [θi, y] nor y ∈ [θi, x], and since |xj−yj | = |xk−yk| by the feasibility of x and y, we obtain
d(θi, x) = d(θi, y) in either of these two cases. Thus, for all supporters of x over y the distance
of their top to y is by d(x, y) larger than the distance of their top to x; for all supporters of
y over x the distance of their top to x is by d(x, y) larger than the distance of their top to y;
and for all other the distance of their top to x is the same as the distance of their top to y;
this implies (B.18).

The rest of the proof follows from straightforward adaption of the arguments given in the
proof of Theorem 3. In particular, Lemma B.9 generalizes in a straightforward manner to the
continuous case. 2
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