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Abstract
Mountains play a critical role in water cycles in semiarid regions by providing for the majority of
the total runoff. However, hydroclimatic conditions in mountainous regions vary considerably in
space and time, with high interannual fluctuations driven by large-scale climate oscillations. Here,
we investigated teleconnections between global climate oscillations and the peak precipitation
season from February to June in the Tian-Shan and Pamir Mountains of Central Asia. Using
hierarchical climate regionalization, we identified seven subregions with distinct precipitation
patterns, and assessed correlations with selected climate oscillations at different time lags. We then
simulated the seasonal precipitation in each subregion from 1979 to 2020 using the most prevalent
teleconnections as predictors with support vector regression (SVR). Our findings indicate that the
El Niño–Southern Oscillation, the Pacific Decadal Oscillation, and the Eastern Atlantic/West
Russia pattern are among the major determinants of the seasonal precipitation. The dominant
lead-lag times of these oscillations make them reliable predictors ahead of the season. We detected
notable teleconnections with the North Atlantic Oscillation and Scandinavian Pattern, with their
strongest associations emerging after onset of the season. While the SVR-based models exhibit
robust prediction skills, they tend to underestimate precipitation in extremely wet seasons. Overall,
our study highlights the value of appropriate spatial and temporal aggregations for exploring the
impacts of climate teleconnections on precipitation in complex terrains.

1. Introduction

Mountains play a crucial role in providing water
resources, particularly in arid and semiarid regions,
where they act as ‘water towers’ by providing the
majority of the total runoff (Viviroli andWeingartner
2004). However, large-scale ocean-atmosphere oscil-
lations can cause high interannual hydroclimatic
variability, particularly in semiarid regions (Scholes
2020). In regions where livelihoods depend on river
runoff for irrigating agricultural land, mountain
droughts that reduce downstream runoff can be a
particular bane. Early warning systems that provide
accurate seasonal precipitation forecasts can permit

better preparation for water shortages (Portele et al
2021).

Landlocked in the heart of the Asian contin-
ent, the Pamir and Tian-Shan Mountains are vital
for water cycles in Central Asia, since these moun-
tains provide the largest fraction of river discharge
(Immerzeel et al 2020). High interannual hydrocli-
matic fluctuations in these mountain ranges impose
substantial burdens on irrigated crop production
that dominates the southern parts of Central Asia
(Karthe et al 2017). Better preparing for variable
downstream river runoff has long been called for,
such as through implementing early warning sys-
tems based on seasonal forecasts (Karthe et al 2017,
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Apel et al 2018, World Bank 2018, Gerlitz et al 2019,
Xenarios et al 2019). In this regard, global and
regional climate oscillations have been suggested as
viable indicators for long-range seasonal hydrological
outlooks in the region (Gerlitz et al 2020).

Much of the previous research on the relationship
between climate oscillations and precipitation variab-
ility focused on entire Central Asia and explored the
effects of the El Niño-Southern Oscillation (ENSO).
It was reported that ENSO during its El Niño phase
increases precipitation intensity across Central Asia,
with the amplitude of this effect being particularly
strong from the autumn to summer (Mariotti 2007,
Chen et al 2018, Gerlitz et al 2019). In contrast, La
Niña state is associated with below-average precipita-
tion in the region. ENSO impacts can be amplified by
the Pacific Decadal Oscillation (PDO): More severe
droughts in Central Asia tend to occur during ENSO’s
La Niña phase when the PDO is in the cold phase
(Wang et al 2014).

Recurring large ocean-atmospheric fluctuations
in the Atlantic Ocean are another source of seasonal
and interannual precipitation variations in Central
Asia. The most prominent are the North Atlantic
Oscillation (NAO), Scandinavian pattern (SCAN),
and East Atlantic/Western Russia pattern (EAWR), all
of which refer to periodic fluctuations in atmospheric
pressure between specific regions of the Atlantic
Ocean and Eurasia. These teleconnectionsmanifest as
wave trains that modulate the location and strengths
of the westerlies (Bothe et al 2012). The Atlantic
Multidecadal Oscillation (AMO) is a periodic vari-
ation in currents in the northern Atlantic Ocean,
and its positive state in the winter is associated with
higher precipitation in Central Asia (Gerlitz et al
2019).

Knowledge about the impacts of the IndianOcean
Dipole (DMI), an irregular oscillation of sea surface
temperature between the western and eastern parts of
the Indian ocean (Saji et al 1999), is patchy. Existing
evidence suggests that summer runoff fluctuations in
main tributaries of the Amu-Darya, the largest river
in the region which originates in the Pamir moun-
tains, are negatively associated with DMI (Dixon and
Wilby 2019). However, the timing of this relationship
remains unknown. Recent findings indicate a negat-
ive but weak correlation between summer precipita-
tion in the Tian-Shan and concurrent DMI, and that
it inverts and weakens over the winter season (Guan
et al 2022).

Cyclical climatic phenomena that occur inland
may also impact the precipitation variability in the
region. For example, the Siberian High (SH), a
high atmospheric pressure anomaly that forms across
central Siberia during the winter, dominates cli-
mate variability in the Northern Hemisphere dur-
ing the winter months (Cohen et al 2001). The SH
can impact winter precipitation variability across the
mountainous region of South Asia that neighbours

the Pamir (Riaz and Iqbal 2017). Finally, the quasi-
Biennial oscillation (QBO), which regulates the direc-
tion of stratospheric winds in the equatorial zones, is
positively associated with precipitation in some areas
of Central Asia, but this relationship appears statistic-
ally insignificant across the larger part of Central Asia
(Brönnimann et al 2016, Gerlitz et al 2019).

Unfortunately, knowledge of how these climate
oscillations affect local precipitation patterns in the
mountains of Central Asia is incomplete. Using pre-
dominantly coarser gridded precipitation datasets,
previous research largely focused on the larger geo-
graphical domain ofCentral Asia, ofwhich themoun-
tains of Central Asia only make up a tiny fraction.
However, the complex terrain and orographic effects
in themountains drive distinct precipitation patterns,
typically with high spatial heterogeneity. In addition,
climate teleconnections are known to exhibit non-
stationary behaviour in space and time. For instance,
the relationship between SCAN and cold season pre-
cipitation in Central Asia may inverse depending on
the location (Gerlitz et al 2019). In the mountain
areas, a positive relationship between SCAN and pre-
cipitation during thewinter can becomenegative dur-
ing the summer (Schiemann 2007). These regional
specificities call for a rigorous characterization of the
spatial bounds of the targeted precipitation season,
something that can be accomplished through climate
regionalization (Badr et al 2016, Satti et al 2017).

In addition, climate teleconnections usually
exhibit nonlinear behaviour, which limits the predict-
ive power of traditional linear techniques for seasonal
climate forecasting (NRC 2010, Bothe et al 2012). On
the other hand, machine learning-based approaches
reportedly can better account for nonlinearities and
interactions and thus outperform traditional statist-
ical methods (Chantry et al 2021, Gibson et al 2021).
Many machine learning methods generally rely on
large sample sizes, which impedes their usage in data-
limited regions such as Central Asia. However, kernel-
based approaches, such as support vector machines,
offer more advantages in handling multivariate data
in smaller samples and avoid overfitting (NRC 2010,
Raghavendra and Deka 2014).

Here we have three main objectives. First, we aim
to identify distinct precipitation subregions in the
Tian-Shan and Pamir Mountains during the peak
season via hierarchical climate regionalization. We
define the peak precipitation season as the period
from February to June, when precipitation and its
interannual variation have the highest magnitude
across most of the study area5. Second, we aim to
determine the relationships between selected global
climate oscillations and the variability of the peak

5 Another rationale for targeting the season with high interan-
nual variability of precipitation is to reduce uncertainties in sea-
sonal hydrological forecasts, see supplementary material S1 to this
manuscript.
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season precipitation in each identified subregion.
Finally, we assess the predictability of peak season
precipitation with support vector regression (SVR),
which uses the leading spatiotemporal modes of tele-
connections as predictors.

2. Material andmethods

2.1. Study area
This study focuses on the Tian-Shan Mountains
that are in the territories of Kyrgyzstan, Kazakhstan,
Uzbekistan, and the Pamir Mountains located in the
territories of Tajikistan and Afghanistan (figure 1).
The Pamir Mountains serve as the primary water-
shed for Amu-Darya, and the Tian-Shan Mountains
serve as the primary watershed for Syr-Darya, Central
Asia’s two largest rivers (Schär et al 2004, Immerzeel
et al 2020).

2.2. Data
We used monthly precipitation estimates from
the Multi-Source Weighted-Ensemble Precipitation
(MSWEP) dataset, which is available at a spatial
resolution of 0.1◦ from 1979 to 2020 (Beck et al
2019). MSWEP version 2.8 uses improved weight
maps (GloH2O 2021) to merge precipitation estim-
ates from gauging stations, reanalysis product ERA5
(Hersbach et al 2020) and satellite-based precipit-
ation estimates from IMERG GPM (Huffman et al
2019). A recent comparison of the MSWEP v2.8 to
independent gauging station estimates over the Pamir
and Tian-Shan Mountains revealed high agreement,
especially for spring precipitation (Peña-Guerrero
et al 2022).

We used monthly indices of the climate oscilla-
tions for the period from 1978 to 2020 (table 1).
The Southern Oscillation Index (SOI) here serves as a
proxy of the ENSO state.

2.3. Methods
2.3.1. Regionalization of seasonal precipitation
We applied Ward’s hierarchical minimum variance
method (Ward 1963) to identify spatial clusters with
similar precipitation patterns. It is an agglomerative
hierarchical clustering technique, where the criterion
for choosing the pair of clusters to merge at each step
is based on minimizing the increase in the sum of
squared errors. We conducted precipitation region-
alization using pixelwise monthly precipitation from
February to June from 1979 to 2020.

2.3.2. Associations between climate oscillations and
seasonal precipitation
We calculated the Spearman’s rank correlation coef-
ficient between the seasonal precipitation averages
for each subregion and each climate oscillation index
at varied lead-lag times. Because the associations
between oscillation indices and precipitation might
change over time, we explored possible associations

of each oscillation index starting from January of the
preceding year until the end of June, i.e. the final
month of the targeted peak season. We evaluated
the field significance of the most prevalent temporal
patterns on pixel-level within each subregion using
the false discovery rate (FDR) approach. The FDR
identifies locally significant tests by imposing more
stringent constraints to the expected proportion of
falsely rejected local null hypotheses (Benjamini and
Hochberg 1995, Wilks 2006).

2.3.3. Development of forecast models
We used the climate oscillations with the strongest
temporal lead-lags that passed the FDR test as pre-
dictors in the SVR. The seasonal precipitation series
were split into training (80%) and validation (20%)
samples by applying stratified partitioning based on
the probability distribution function. We used the
mean absolute percentage error (MAPE), squared
coefficient of correlation (r2) and Kling-Gupta effi-
ciency (KGE) to assess the overall performance of the
SVR models. Since some oscillations may have the
largest impact after the start of the precipitation sea-
son, we constructed both forecast and in-season SVR
models for each subregion, with the latter utilizing in-
season values of those oscillations.
Note: Supplementary material S1 (available

online at stacks.iop.org/ERL/17/055002/mmedia)
provides an expanded description of the method-
ological steps summarized above.

3. Results

3.1. Spatial variability of the annual and seasonal
precipitation
We identified seven subregions with distinct precipit-
ation patterns (figure 2). The Tian-Shan Mountains
separate into three precipitation subregions, which
we refer to as theWestern Tian-Shan, Northern Tian-
Shan, and Inner Tian-Shan. In addition, we obtained
a precipitation subregion in the central part of the
Tian-Shan that we label Ferghana-Alay. The Pamir
Mountains are also delineated into three subregions,
whichwe denote as theWestern Pamir, Central Pamir,
and Eastern Pamir.

Long-termmonthly precipitation within the sub-
regions corroborates their unique precipitation pat-
terns (figure 3). Precipitation peaks and the largest
interannual changes occur during the spring months
in all subregions, except in the Inner Tian-Shan and
Eastern Pamir, where precipitation is skewed towards
the summer season. The Western Tian-Shan and
Western Pamir have the highest intra- and inter-
annual variations. Precipitation in the Inner Tian-
Shan as well as the Central and Eastern Pamir fol-
lows a less dynamic annual cycle with a relatively
lower incidence of extreme deviations from long term
means.

3
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Figure 1. Location of the Tian-Shan and Pamir Mountains.

Table 1. Climate oscillation indices used in this study.

Climate oscillation
index Name Type Source

SOI Southern Oscillation Index Sea level pressure
difference

Ropelewski and Jones
(1987)

QBO Quasi-Biennial Oscillation Stratospheric zonal wind Naujokat (1986)
PDO Pacific Decadal Oscillation Sea surface temperature

difference
Mantua et al (1997)

EAWR East Atlantic/West Russia
pattern (EAWR)

Sea level pressure
difference

Barnston and Livezey
(1987)

NAO North Atlantic Oscillation
(NAO)

Sea level pressure
difference

Barnston and Livezey
(1987)

SCAN Scandinavian pattern Sea level pressure
difference

Barnston and Livezey
(1987)

AMO Atlantic Multidecadal
Oscillation

Sea surface temperature
difference

Enfield et al (2001)

DMI Dipole Mode Index Sea surface temperature
difference

Saji and Yamagata (2003)

SH Siberian High Sea level pressure
difference

Reconstructed from the
NCEP-NCAR reanalysis,
using monthly anomalies
over 40–60◦ N and
80–100◦ E

Annual and seasonal precipitation have a stronger
link to geographic location than to the average
elevation of a subregion (figure 3 and supplement-
ary material S2). The Western Tian-Shan and Pamir
receive the highest amounts of annual precipitation,
while the eastern parts of the study area receive

the least, despite having a higher elevated terrain.
This disparity becomes even more pronounced when
February-to-June season precipitation is considered:
seasonal totals in the high-elevation Inner Tian-Shan,
Central Pamir, and Eastern Pamir are barely half of
the precipitation levels in the western subregions.

4
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Figure 2. Spatial distribution of the precipitation subregions and their approximate areas. The background colour legend is
identical to that in figure 1.

3.2. Associations between climate oscillations and
seasonal precipitation
The correlations between global oscillation indices
and seasonal precipitation in the study area reveal
contrasting temporal patterns (figure 4). Their
propagation across the subregions is, however,
less heterogeneous, i.e. oscillation indices at any
given month tend to have the same trend (sign)
of correlation with the peak season precipitation
across all subregions, except for the Eastern
Pamir.

The average seasonal precipitation across most
subregions is strongly correlated with SOI and PDO
over a longer period than with any other oscillation.
The seasonal precipitation and SOI exhibit a stat-
istically significant negative correlation already three
months prior to the start of the season in most subre-
gions, and persists longer in the western regions. The
PDO has a positive relationship with seasonal precip-
itation, which appears as early as sevenmonths before
the start of the season, reaching statistically significant
levels by September to November.

The SCAN and NAO have a relatively shorter
temporal association with the seasonal precipitation,
which is strongest in the spring after the onset of the
peak season. The state of SCAN in March to May
shows the higher correlation, particularly for the pre-
cipitation in the elevated western and central Pamir,
followed by the Inner Tian-Shan. In February and
March, the NAO has a negative relationship with the
seasonal precipitation in all subregions, except the
Eastern Pamir. The statistically significant correla-
tions of NAO (0.05 confidence level) however appear
only in Ferghana-Alay and Inner Tian-Shan.

The EAWR and SH have stronger associations
with seasonal precipitation during specific months.
October EAWR has a substantial and positive cor-
relation with seasonal precipitation over most of the
study area, but is less robust in Eastern Pamir. SH in
December exhibits a mild negative association that
also spans all subregions, but is statistically signific-
ant at 0.05 confidence level only in Ferghana-Alay and
Inner Tian-Shan.

We detected even longer lead times for the AMO
and DMI, both negatively correlated with seasonal
precipitation. A one year lead time of AMO and DMI
results in a statistically significant correlation for pre-
cipitation over the Western and Central Pamir. The
AMO extends its statistically significant correlation
with the seasonal precipitation into the Inner Tian-
Shan subregion. The QBO and precipitation are pos-
itively correlated for the central and northeastern
parts of the study area, albeit weaker andwith a longer
temporal autocorrelation.

The local correlation patterns during the months
when climate oscillations exhibit the strongest aver-
age association with seasonal precipitation (here-
inafter referred to as ‘dominant lead-lag time’)
show higher spatial homogeneity across subregions
(figure 5). Because most associations either persist
or even become stronger at longer temporal scales,
the majority of the climatic oscillation indices were
aggregated as 3 month averages. This aggregation did
not include EAWR and SH, which have strong correl-
ation during specific months.While SOI also demon-
strated a persistently strong correlation over a longer
time scale, the figure 5 depicts only correlation of SOI
in December.

5
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Figure 3. Long-term monthly precipitation patterns. The boxplots show the interquartile range as boxes, median as line inside the
boxes, and outliers as points. All units are in millimetres.

The field significance test based on the false dis-
covery rate (FDR) approach (table 2) leaves out
approximately half of the revealed associations depic-
ted in figure 5. It is suggested that when data is spa-
tially autocorrelated, as climatic variables do, the con-
trol level of FDR (αFDR) could be accommodated
as double of a global null hypothesis test threshold
(Wilks 2016). At control level of αFDR= 0.1, the
field significance test rejects the null hypothesis for
SOI, PDO, EAWR, and SCAN across all subregions

except Eastern Pamir. The dominant lead-lag times
of these four climate oscillations persist statistic-
ally significant even under a more conservative level
of level of αFDR= 0.05 (see supplementary mater-
ial S4). In addition, the FDR test at αFDR= 0.1
confirms statistical significance of NAÒs connec-
tions with the seasonal precipitation in Inner Tian-
Shan and West Pamir. AMO and DMÌs correla-
tions also meet the field significance test for Central
Pamir.
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Figure 4. Spearman’s rank correlation coefficients (ρ) between the climate oscillation indices and February–June precipitation for
all subregions. Columns indicate the subregions; rows denote months of a climate index, with bottom February–June months
concurrent with the precipitation season. Abbreviations are spelled out in table 1.

3.3. Predictability of area-averaged seasonal
precipitation
Based on the field significance test results, we selec-
ted SOI, PDO, EAWR, NAO, and SCAN as candid-
ate predictors for the SVRs (table 3). The overlap-
ping dominant lag times of SCAN and NAO with
the targeted precipitation season makes them less
useful for the practical forecasting. Hence, the fore-
cast SVR models omitted the former and instead
used only December values of the NAO index, at
which point it begins to display association across
most subregions (albeit being yet statistically non-
significant). To assess the influence of the selec-
ted oscillations regardless of whether they coincide

with the target season, we additionally elaborated in-
season SVR models that incorporate all five climate
oscillations.

In general, the forecast SVR models show robust
prediction skills for all subregions, except the East-
ern Pamir where performance of r2 and KGE were
close to 0 (table 4). The mean absolute percentage
error (MAPE) of the SVR forecasts was on average
15%, ranging between 7% in the Inner Tian-Shan
to 16% in the Western Tian-Shan (table 4). Higher
MAPE values do not necessarily imply poorer pre-
diction skill since the forecast model may show bet-
ter performance in terms of r2 and KGE coefficients.
When compared to the hindcasts produced by the

7
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Figure 5. Spearmaǹ s rank correlation (p-value < 0.05) between climate oscillations at their dominant lead months and pixelwise
precipitation from February to June. Since the oscillations of some teleconnections propagate for several consecutive months, they
are indicated with their 3 month averages (e.g. PDO (SON) represents the correlation coefficients of the PDO index aggregated
over September, October, and November). Superscript ∗ denotes months of climate oscillations that coincide with the
precipitation season. Abbreviations are spelled out in table 1.

Table 2. Proportion of local correlations in each subregion that passed field significance test under αFDR = 0.1. Red highlights indicate
months of the climate indices concurrent with the precipitation season (February–June). For example, ‘PDO (SON)’ refers to the Pacific
Decadal Oscillation index averaged over preceding September, October, November, whereas ‘SCAN (MAM)’ denotes the Scandinavian
Pattern averaged over March, April, May months. Abbreviations are spelled out in table 1.

SOI
(Dec)

PDO
(SON)

QBO
(JJA)

AMO
(FMA)

DMI
(FMA)

EAWR
(FMA)

SH
(Dec)

NAO
(JFM)

SCAN
(MAM)

West Tian-Shan 97 83 0 0 0 99 0 0 59
Ferghana-Alay 99 95 0 0 0 97 0 0 93
North Tian-Shan 95 97 0 0 0 95 0 0 100
Inner Tian-Shan 68 27 0 19 0 74 14 28 74
West Pamir 100 100 0 0 0 100 0 55 97
Central Pamir 87 48 0 72 35 81 0 0 0
East Pamir 0 0 0 0 0 0 0 0

European Centre for Medium-Range Weather Fore-
casts’ (ECMWF) SEAS5 forecasting system, the SVR
models recreate seasonal precipitation more consist-
ently throughout all subregions (see supplementary
material S5). While the forecast SVRmodels simulate
well the interannual variability of seasonal precipita-
tion (figure 6), they tend to underestimate extremely
wet seasons.

The in-season SVR models generally outper-
form their forecast counterparts, as evidenced by

narrower MAPE and higher r2 and KGE. A likely
reason is that they utilize the NAO and SCAN indices
for early spring months, when these indices show
their strongest associationwith seasonal precipitation
(figure 4). The incremental improvements in model
accuracy are especially significant for the central part
of the Pamir. The Ferghana-Alay and Northern Tian-
Shan also benefit from a comparable improvement
in in-season SVR model performance in terms of the
reduced MAPE and higher r2 values.

8
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Table 3. Dominant lead-lag times of the climate indices used as predictors in the forecast and in-season SVR models. Red highlights
indicate months of the climate indices concurrent with the precipitation season (February–June).

Subregion SOI PDO EAWR NAO SCAN

Forecast SVR All subregions (excluding East Pamir) Dec SON Oct Dec —
In-season SVR West Tian-Shan Dec SON Oct Mar MAM

Ferghana-Alay Dec SON Oct Mar MAM
North Tian-Shan Dec SON Oct JFM MAM
Inner Tian-Shan Dec SON Oct JFM MAM
West Pamir Dec SON Oct JFM MAM
Central Pamir Dec SON Oct JFM Mar
East Pamir JFM MAM MAM

Table 4. Performance of the resulting forecast and in-season SVR models on the validation set.

Forecast SVR In-season SVR

Subregion MAPE r2 KGE MAPE r2 KGE

West Tian-Shan 16% 0.40 0.44 16% 0.57 0.41
Ferghana-Alay 14% 0.53 0.65 12% 0.68 0.48
Northern Tian-Shan 13% 0.41 0.36 10% 0.72 0.55
Inner Tian-Shan 7% 0.47 0.52 7% 0.46 0.55
Western Pamir 15% 0.42 0.25 15% 0.55 0.29
Central Pamir 15% 0.37 0.34 14% 0.64 0.30
Eastern Pamir — — — 20% 0.16 0.20

Figure 6. Comparison of the observed seasonal precipitation totals (mm) and precipitation predicted by the forecast SVR models.
Note: The scale of precipitation (y-axis) differs across each subregion graph.

4. Discussion and conclusions

The Pamir and Tian-Shan Mountains of Central
Asia have highly heterogeneous precipitation pat-
terns, with their western areas receiving significantly
more precipitation and experiencing greater interan-
nual variability than their eastern ranges.Most annual

precipitation in the region falls during late winter
to early summer, except in the eastern parts, where
interannual variation is lower and the peak of pre-
cipitation is skewed towards the summer months.
The decreasing precipitation pattern in the moun-
tains from west to the east emanates the wester-
lies’ dominance in moisture transport to Central

9



Environ. Res. Lett. 17 (2022) 055002 A Umirbekov et al

Asia (Bothe et al 2012, Jiang et al 2020, Peng et al
2021).

The moisture transport during February to June
is modulated by multiple global ocean-atmospheric
oscillations, some of which have longer temporal
legacies with varying spatial effects on seasonal pre-
cipitation. Our findings suggest that the ENSO, PDO,
EAWR, NAO, and SCAN are important determinants
of precipitation intensity across Central Asia’s moun-
tains from February to June. This is consistent with
earlier findings (e.g. Mariotti 2007, Wang et al 2014,
Dixon and Wilby 2019, Gerlitz et al 2019), albeit our
spatial scales are different and the targeted seasons do
not precisely align.

ENSO and PDO exert spatially widespread and
gradually evolving relationship with the peak precip-
itation season in the Central Asia mountains, that
is detectable at extended lead times before the start
of the precipitation season. As early as two to four
months prior to the start of the season, the ENSOcon-
dition (as proxied by dominant lead time of SOI) and
PDO are good predictors of seasonal precipitation
across all subregions. In contrast, NAO and SCAN
tend to have a shorter temporal span, emerging at the
beginning of the season and are more pronounced at
higher elevations. This partially restricts their value
for forecasting. Reliable seasonal NAO and SCAN
forecasts would hence improve seasonal precipitation
forecasts, particularly for the southeastern part of the
Central Asian mountains. The EAWR in October is
another important predictor for the seasonal precip-
itation, which confirms other findings using different
precipitation data and a target season fromNovember
to April (Gerlitz et al 2019).

The negative relationship between NAO and the
seasonal precipitation contrasts prior findings. Earlier
studies found a positive link between the NAO and
cold season precipitation over Central Asia (Syed et al
2010, De Beurs et al 2018), whereas others reported a
negative correlation (Hu et al 2017, Dixon and Wilby
2019, Zhang et al 2019). Our results suggest a negat-
ive correlation between the NAO and spring precip-
itation anomalies, which implies that NAO telecon-
nections are either more heterogenous across elev-
ational gradients in Central Asia or non-stationary
across seasonal scales.

Recent studies have reported on influence of pos-
itive winter SH anomalies on reduced annual pre-
cipitation totals in Central Asia (Zhang et al 2019),
but these decreases likely occur mostly during winter
(Riaz and Iqbal 2017). We have detected significant
correlations between SH in December and the pre-
cipitation from February to June in the north east-
ern part of the Tian-Shan. A separate experiment
(not shown here) suggests that inclusion of the SH
in December as a predictor may contribute to the
forecast accuracy for the Inner Tian-Shan. AMO and
DMI exhibit stronger correlations one year ahead of
the targeted season, but they fail to pass the field

significance test across majority of the studied subre-
gions. Similar patterns of delayed AMO linkages were
found earlier for precipitation over northwest China
(Zhong et al 2019). Additional research is necessary to
ascertain whether AMO andDMÌs long delayed asso-
ciation patterns with spring precipitation in Central
mountains are random or display some mediating
effect.

The SVR-based forecast models display robust
performance, though they also tend to underestim-
ate exceptionally rainy seasons. The prediction skill
is better in those subregions where the interannual
dynamics of precipitation arguably provide a stronger
signal with less noise. In comparison, the flatter pre-
cipitation variations over the Eastern Pamir produce
a poorer signal-to-noise ratio, resulting in lower fore-
cast skill of SVR. Overall, the Eastern Pamir retains
distinct patterns of the seasonal precipitation and
its associations with most studied climate oscilla-
tions; they are either typically weaker in this sub-
region, shifted by several months, or even become
inverse. Such inconsistent correlation patterns and
subsequently the lower predictability of the seasonal
precipitation for the Eastern Pamir could be also
attributed to the comparatively weaker accuracy of
the satellite-based precipitation estimates for this sub-
region (Peña-Guerrero et al 2022).

In sum, we highlighted the value of spatial and
temporal aggregations for assessing climate telecon-
nections, which can be used to improve seasonal pre-
cipitation predictions. Our findings assert that appro-
priate climate regionalization helps to create spatial
clusters with high internal homogeneity of precipit-
ation so that their response to interannual variabil-
ity could serve as a good target for seasonal predic-
tion (Badr et al 2016) Climate teleconnections can
also exhibit nonstationarity over time, which implies
a need for careful definition of the target season; this is
particularly relevant for mountainous regions where
precipitation is more heterogeneous in space and
time. Furthermore, we demonstrated how an under-
standing of the temporal dynamics of teleconnec-
tion can complement seasonal forecasting. Finally,
machine learning-based seasonal precipitation fore-
casting demonstrated capable of handling the nonlin-
ear and highly dimensional features that are inherent
to climate teleconnections.

Data availability statement

The MSWEP v2.8 is available at www.gloh2o.org/
mswep/. The oscillation indices were downloaded
from online repositories of the Climate Research
Unit https://crudata.uea.acuk/cru/data/soi/soi.dat
(SOI), NOAA Climate Prediction Center www.
cpc.ncep.noaa.gov/products/MD_index.php (NAO,
PDO, AMO, DMI, SCAN, EAWR), Free University of
Berlin www.geo.fu-berlin.de/met/ag/strat/produkte/
qbo/qbo.dat (QBO).
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The data that support the findings of this study
are openly available at the following URL/DOI:
https://github.com/tabumis/CA_hydroclimatic.
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