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Forecasting Risk Measures Based on 
Structural Breaks in the Correlation Matrix

Abstract
Correlation models, such as Constant Conditional Correlation (CCC) GARCH model or Dynamic 
Conditional Correlation (DCC) GARCH model, play a crucial role in forecasting Value-at-Risk (VaR) 
or Expected Shortfall (ES). The additional inclusion of constant correlation tests into correlation 
models has been proven to be helpful in terms of the improvement of the accuracy of VaR or ES 
forecasts. Galeano & Wied (2017) suggested an algorithms for detecting structural breaks in the 
correlation matrix whereas Duan & Wied (2018) proposed a residual based testing procedure for 
constant correlation matrix which allows for time-varying marginal variances. In this chapter, we 
demonstrate the application of aforementioned correlation testing procedures and compare its 
performance in backtesting VaR and ES predictions. Portfolios in consideration are constructed 
from four stock indices DAX30, STOXX50, FTSE100 and S&P500.
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1 Introduction

Multivariate GARCH model is appealing in both theoretical and practical usages, due

to its parsimonious specification and its feasibility of the estimations in high dimen-

sional portfolio of assets. The correlation-based models, i.e., Constant Conditional

Correlation (CCC) model and Dynamic Conditional Correlation (DCC) model are

considered in this chapter. Berens et al. (2015) has shown that the usage of structural

break testing procedure for correlations is able to significantly improve the forecasting

precision of VaR and ES based on CCC model. Adams et al. (2017) argued that a

spurious daily correlation dynamics among assets exists and the levels of correlations

shift due to correlation breaks detected by the algorithm proposed by Galeano & Wied

(2014). This series of structural break tests for constant correlation matrix is able to

detect the level shifts of correlations being associated with crucial financial events.

In this chapter, we examine the impact of the integration of constant correlation

test by Duan & Wied (2018) into CCC and DCC models. One takes the conditional

correlation models without structural break tests of the correlation matrix as a bench-

mark model. Then, the new testing procedure is compared with the test of Wied

(2017) via a series of evaluations of backtesting VaR and ES forecasts. In addition to

the cases of single break points in the correlation matrix, the algorithm by Galeano

& Wied (2017) allows for the consideration of multiple break points in the correlation

matrix. These tests are performed in four equally weighted portfolios from four stock

indices STOXX50, DAX30, FTSE100 and S&P500, respectively.

The rest of this chapter is organized as follows. We briefly introduce basic defini-

tions and models in Section 2. In Section 3, we review the structural breaks tests for

correlation matrix, after which we discuss popular backtesting procedures in Section 4.

In Section 5 we present an empirical application, followed by our conclusions in Section

6.
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2 Definitions and Models

In order to fulfill the regulatory requirements from Basel III Accords, see Basel Com-

mittee (2010), banks and financial institutes ought to assess the potential losses of

their portfolios. The common appealing metrics of market risk measures are Value-

at-Risk(VaR) and Expected Shortfall (ES). The latter tends to replace the former as

the main risk measure as in Basel accords, see Basel Committee (2016) and Basel

Committee (2017).

For starters, one defines the random variable ri,t = log pi,t−log pi,t−1, i = 1, . . . , k, t =

1, . . . , T as the daily log return of i-th asset in a portfolio at time point t where pi,t

denotes the asset price for the i-th asset at time t. The portfolio return can be written

as rp,t =
∑k

i=1 ωiri,t at time t, where ωi, i = 1. . . . , k represents the portfolio weights

associated with i-th asset. The extension of original definition in McNeil & Frey (2000)

gives the dynamics of the portfolio return rp,t as rp,t = µp,t + σp,tZt where Zt follows

i.i.d. distribution FZ(z) with mean zero and unit variance. µp,t and σp,t are measurable

with respect to Ft−1 which contains all information about the return series available

up to time t − 1. The cumulative distribution function (CDF) of rp,t given the in-

formation set Ft−1 is Ft(rp) = P (rp,t ≤ rp|Ft−1). Accordingly, the quantile function

of rp,t given the information set Ft−1 at level α ∈ (0, 1), i.e., the VaR at level α is

Qt(rp,t|Ft−1) = F−1
t (α) = inf{rp ∈ R : Ft(rp) ≥ α}, where the function F−1(·) is the

inverse CDF function. In Christoffersen (2003), the α-VaR of a portfolio is defined as

the largest amount such that the probability that the loss of portfolio return over a

specific time horizon is greater than VaR is α. Or equivalently, the VaR of portfolio

return at level α is defined as the lower α-quantile of the distribution of the portfolio

return at time t: VaRα
p,t = F−1

rp,t(α). Indeed, in some context VaRα
p,t can be positive

when one defines it with respect to the loss variable lp,t = −rp,t. In order to determine

the VaR forecast on t based on Ft−1, the predicted distribution of return is necessary

in the first place. Franke et al. (2015) allows that the CDF function of rp,t incorporates

time-varying parameter vector θt ∈ Rp and static parameter vector φ ∈ Rq. One de-

fines a forecast distribution at time point t as P θt
t (rp,t|Ft−1). The possible conditional

distributions of rp,t belong to the parameter class Pt = {P θt
t |θ(t) ∈ Θ}.
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Since VaR does not guarantee the property of subadditivity, Artzner et al. (1999)

proposed a coherent risk measure, namely Expected Shortfall (ES) or tail-VaR, which

is the expected value of portfolio loss given the VaR exceedance has occurred. If the

function Ft(·) defined above is continuous at α quantile, then the ES can be written as

ESα(rp,t|Ft−1) = E(rp,t|rp,t ≤ Qt(rp,t|Ft−1)). (1)

To evaluate the correctness of the risk measures forecasting, namely backtesting, Bayer

& Dimitriadis (2020) introduced a general and strict definition of the terminology to

compare the forecasts for the risk measure ρ and the realized return series: a backtest

for the forecasts {ρ̂t, t = 1, . . . , T} for the d-dimensional risk measure ρ relative to the

realized return series {rp,t, t = 1, . . . , T} is a function f : RT × RT×d → {0, 1}.

Next, we focus on the necessary steps of delivering the final risk measure forecasts.

In order to capture the marginal dynamics in random variables, one often resorts to

GARCH-type models. For example, a simple univariate GARCH model enables us to

predict the marginal volatilities. Let ri,t denotes log-return of i-th asset at time t. The

univariate GARCH(1,1) model follows

ri,t = µi,t + εi,t

εi,t = σi,tηi,t

σ2
i,t = α1,i + α2,iε

2
i,t−1 + β1,iσ

2
i,t−1,

(2)

where ηi,t stands for the innovation term, which is commonly assumed to be Student’s

t or Hansen’s skewed-t distribution. One could estimate the vector of dynamic param-

eters (α1,i, α2,i, β1,i)
′ via Maximum Likelihood Estimation (MLE), then one-step-ahead

volatility σ̂i,t+1 is obtained with the plug-in estimated dynamic parameters:

σ̂2
i,t+1 = α̂1,i + α̂2,iε

2
i,t + β̂1,iσ

2
i,t. (3)

The multivariate GARCH would be more relevant to the empirical volatility modeling

and the risk measure forecasting. The multivariate GARCH model can be expressed

as

rt = µt + Σ
1/2
t Zt, (4)

where rt represents d × 1 vector of the log returns at time t and µt is treated as

the constant mean vector of log returns. Σ
1/2
t is the Cholesky factor of a positive
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definite conditional covariance matrix Σt. The innovations Zt could be assumed to

follow Student’t distribution. There are plenty of possibilities in specifying Σt, e.g.,

modeling the conditional covariance directly or modeling the conditional variances and

correlations instead. According to Bollerslev (1990), the conditional covariance matrix

Σt can be decomposed to a constant conditional correlation matrix and time-varying

conditional standard deviations:

Σt = DtRcDt, (5)

where Dt = diag{σi,t}di=1 is the diagonal matrix of the standard deviations of i-th

assets, i = 1, . . . , d. Rc denotes the constant correlation matrix:

Rc =


1 ρ1,2 . . . ρ1,d

ρ2,1 1 . . . ρ2,d

...
...

...
...

ρd,1 ρd,2 . . . 1

 . (6)

The conditional variances could follow the GARCH(1,1) process. The conditional co-

variance is written as

Σt =


σ2

1,t ρ1,2σ1,tσ2,t . . . ρ1,dσ1,tσd,t

ρ2,1σ2,tσ1,t σ2
2,t . . . ρ2,dσ2,tσd,t

...
...

. . .
...

ρd,1σd,tσ1,t ρd,2σd,tσ2,t
... σ2

d,t

 . (7)

The CCC-GARCH model can be estimated in two steps: the conditional variances in d

margins are firstly fitted by univariate GARCH model and the standardized residuals

ε̂t, then the constant conditional correlation of the standardized residuals is estimated

in the second step. The estimation of CCC-GARCH is computationally easy but might

be too restrictive in practice. Engle & Sheppard (2001) extended the CCC model to

the DCC-GARCH framework which allows for a time-varying correlation matrix Rt

instead of Rc. In details,

Σt = DtRtDt, (8)

where Dt is the diagonal matrix of the conditional standard deviations and Rt can be

written as Rt = Q∗tQtQ
∗
t . The Qt can be expressed as

Qt = (1− a− b)R̄+ aut−1u
′
t−1 + bQt−1 (9)
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and

Q∗t = (Qt � Ik)−1/2, (10)

where � denotes the Hadamard multiplication. The standardized returns ut−1 can

be represented ut−1 = R
1/2
t−1et−1 where et−1 is the i.i.d. innovations with mean 0 and

covariance matrix Id. R̄ is the unconditional covariance matrix of ut. Compared to

the estimation of the CCC-GARCH model, the estimation of the DCC-GARCH model

requires the estimation of dynamic parameters a and b in equation (9) in the third

step. The one-step-ahead VaR and ES forecasts rely on the forecast of the conditional

covariance matrix Σt+1 = Dt+1Rt+1Dt+1 given the constant µt. The same GARCH

model is utilized in the prediction of the univariate variances, hence the VaR and ES

predictions are only determined by the forecasts of the correlation matrix Rt+1. In

CCC-GARCH model, the correlation matrix Rc is set to be constant over time, as

a result, the conditional covariance matrix turns to be Σt+1 = Dt+1RcDt+1. With

the conditional covariance matrix Σt+1 one can generate the predicted distribution at

t + 1. For example, we resort to parametric Monte Carlo simulation to determine the

simulated distribution of returns for VaR and ES forecasts as described in Algorithm

1 in Appendix A.1.

3 Structural Break Tests for the Correlation Ma-

trix

Unlike the approaches dealing with the structural break in bivariate time series, e.g.,

Wied, Krämer & Dehling (2012), Wied (2017) proposed a fluctuation test for structural

break in d-dimensional correlation matrix. Define the vector of pairwise correlations

as ρt = {ρi,jt }1≤i<j≤p. The null hypothesis H0 is ρ1 = . . . = ρT whereas alternative

hypothesis H1 : ¬H0. The test statistics is given by

QW
1,T = max

2≤k≤T

k√
T
||Ê−1/2

1,T Pk,1,T ||1, (11)

where Pk,1,T = {ρ̂ij1,k − ρ̂ij1,T}1≤i≤j≤p ∈ Rp(p−1)/2 and ρ̂ij1,k is the estimated pairwise

correlation between variable i and j based on the first k observations and Ê1,T is the

bootstrap estimator of asymptotic covariance of {ρ̂ij1,T}1≤i<j≤p. According to Corollary
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1 in Wied (2017), under the null hypothesis and Assumptions 1-5 in Wied (2017) hold,

we have

max
2≤k≤T

k√
T
||Ê−1/2

1,T Pk,1,T ||1 →d sup
0≤s≤1

||B
p(p−1)

2 (s)||1, (12)

where B
p(p−1)

2 (s) is a vector of p(p−1)
2

-dimensional Brownian bridge. The H0 will

be rejected as long as max2≤k≤T
k√
T
||Pk,1,T ||1 is larger than the 1 − α quantile of

sup0≤s≤1 ||B
p(p−1)

2 (s)||1. The factor E can be estimated with the help of block boot-

strap estimator. For b = 1, . . . , B, the vector of pairwise correlation coefficient based

on b bootstrapped sample is vb = {ρ̂ijb,T}1≤i<j≤p, then the empirical covariance matrix is

Ê1,T = 1
B

∑B
b=1(vb − v̂)(vb − v̂)′, where v̂ = 1

B

∑B
b=1 vb. To identify and locate multiple

break points in correlations of financial assets, Galeano & Wied (2017) proposed an ef-

fective algorithm which is summarized as Algorithm 2 in Appendix A.1. Assuming that

z1, · · · , zl are the timing of the changes in the correlation matrix. The test statistics

in (11) is the rewritten as

QW
1,T = sup

0≤z≤1

τ(z)√
T
||Ê−1/2

1,T Pτ(z),1,T ||1, (13)

where Pτ(z),1,T = {ρ̂ij1,τ(z)− ρ̂
ij
1,T}1≤i≤j≤p ∈ Rp(p−1)/2 and τ(z) = [2 + z(T − 2)] with floor

function [·]. The estimator of the change point is determined in terms of the break

fraction such that ẑ = τ(ẑ∗)/T with ẑ∗ = arg maxk
τ(z)√
T
||Pτ(z),1,T ||1. The test statistics

constructed on the subsamples during the iterations follows

QW
η(l1),τ(l2)(z) =

τ(z)− η(l1) + 1√
τ(l2)− η(l1) + 1

||Ê−1/2
η(l1),τ(l2)Pτ(z),η(l1),τ(l2)||1, (14)

where η(z) = τ(z) − 1, z ∈ [l1, l2],∀0 ≤ l1 ≤ l2 ≤ 1, Pτ(z),η(l1),τ(l2) = {ρ̂ijη(l1),τ(z) −

ρ̂ijη(l1),τ(l2)}1≤i≤j≤p and Ê
−1/2
η(l1),τ(l2) is the bootstrap estimator based on the sample from

η(l1) to τ(l2). The asymptotic critical value for a given upper tail probability is defined

as cT,α. QW
η(zk−1+ 1

T
),τ(zk)

is the test statistics based on sample ranged from η(zk−1 + 1
T

)

to τ(zk), k = 1, . . . , l + 1 with z0 = 0, zl+1 = 1.

However, one crucial assumption of the aforementioned nonparametric test is that

the marginal variances are required to be constant. Duan & Wied (2018) proposed

a residual-based multivariate constant correlation testing procedure. Once again, the

null hypothesis is that the vector of pairwise correlations is constant over time. One as-

sumes the true DGP with a single break point λ0 in both marginal means and marginal
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variances. The test statistics is in the form of a multivariate cumulative sum of stan-

dardized residuals. The feasible test statistics follows

Q̂n = max
1≤j≤n

j√
n

√
(Ŝj − Ŝn)′Ω̂−1(Ŝj − Ŝn), (15)

where the partial sums based on residuals are defined as Ŝj = 1
j

∑j
t=1 vech(ẐtẐ

′
t). The

standardized residuals are

Ẑt,i =
Xt,i − µ̂i,1

σ̂i,1
It/n<λ0 +

Xt,i − µ̂i,2
σ̂i,2

It/n≥λ0 , t = 1, . . . , n, i = 1, . . . , d. (16)

Under the null hypothesis and necessary assumptions, the test statistics convergence

to the non-standard limit process. Hence, a block bootstrap method is necessary for

the approximation of the limit process. The procedure is summarized in Algorithm 3

in Appendix A.1 and the details can be found in Duan & Wied (2018).

4 Backtesting Procedures

4.1 Backtesting Value-at-Risk

This subsection shortly review a series of tests for VaR and ES backtesting. The

backtesting procedure is defined as that the risk measure forecasts are compared to

the actual financial losses within a particular time horizon. The backtesting of the

risk measures investigates whether the risk measure forecasts are correctly specified.

Following the definition in Christoffersen (2003), based on the ex ante VaR forecasts

and ex post returns, a hit sequence of VaR violations can be defined as

It+1 =

1, rt+1 < V aRα
t+1

0, rt+1 > V aRα
t+1.

(17)

The hit sequence gives a 1 if the return on t+1 is smaller than the VaR forecast V aRα
t+1

at time t+ 1 whereas the hit sequence gives a 0 if the return outperforms the predicted

VaR at time t + 1. Under a perfect VaR forecasting model, the hit sequence of VaR

violations should not be completely predictable and follows Bernoulli distribution over

time, i.e., It+1 ∼i.i.d. Bernoulli(α). In the VaR backtesting, when the hit sequence is

obtained from a correctly specified VaR model, VaR forecasts at level α violate the

realized returns only in α of the days in the time horizon.

8



Kupiec (1995) proposed an unconditional coverage test which enables us to test if

the empirical VaR violation rate from a particular risk model is statistically significant

from the expected level α implied by the VaR confidence level. The likelihood of i.i.d.

hit sequence is

L(π) = (1− π)T0πT1 , (18)

where T0 and T1 are the number of non-violations and violations, respectively. π is

the VaR violation rate from a specific VaR model, which could be simply estimated by

the empirical fraction of violations π̂ = T1
T0+T1

. The likelihood function with estimated

violation rates turns to be

L(π̂) = (1− T1

T0 + T1

)T0(
T1

T0 + T1

)T1 . (19)

Under the null hypothesis that π = α, the likelihood function follows

L(α) = (1− α)T0αT1 . (20)

In order to test the unconditional coverage hypothesis, it is sufficient to employ a

likelihood ratio test,

QK = −2 log

(
(1− α)T0αT1

(1− T1
T0+T1

)T0( T1
T0+T1

)T1

)
. (21)

This test statistics is asymptotically χ2-distributed with one degree of freedom. If the

p-value p = 1−Fχ2
1
(QK) is smaller than the desired significance level, the H0 is rejected.

Since the arrivals of VaR violations are expected to randomly spread over the time

horizon, the VaR models which generate clustered VaR violations over time would be

rejected in the application. Christoffersen (1998) proposed a test for the assumption

of i.i.d. distribution of VaR violations. If the sequence of violation is dependent over

time, then it can be assumed as a first order Markov sequence with the transition

probability matrix. Christoffersen (2003) defined an indicator variable It such that

It = 0 corresponds to no violation at time t whereas It = 1 indicates the violation

occurs at t. In addition, πij is the transition probability from state i at time t to state

j at time t+ 1. The likelihood function of the first order Markov process is

L(Π1) = (1− π01)T00πT0101 (1− π11)T10πT1111 , (22)

9



where Tij, i, j = 0, 1 is the number of observations from state i to state j. Under

the independence hypothesis, the probability that the violation occurs tomorrow does

not depend on the state today, i.e., π = π01 = π11. Next, one defines the estimated

probability of the occurance of the violation: π̂01 = T01
T01+T00

and π̂11 = T11
T11+T10

. A

likelihood ratio test can be used to test the null hypothesis of independence.

Engle & Manganelli (2004) proposed a dynamic quantile test for the distribution of

VaR violations, or so-called CAViaR test. One could evaluate the performance of VaR

forecasts with such a testing procedure. Similarly, as shown in Berens et al. (2015),

the following autoregression based on the VaR violations can be considered:

It = α + β1It−1 + β2V aRt + ut, (23)

where ut can be assumed to follow a logistic distribution. Under the null hypothesis that

the model is correctly specified, the statistical significance of coefficients β1 = β2 = 0

can be tested with a likelihood ratio test. The test statistics follows χ2
2 asymptotically.

Diebold & Mariano (1995) proposed a test for relative comparison forecasting per-

formance between two VaR forecasting models in terms of the forecasting accuracy.

L(rt+1, V aR
k
t+1) is a generic loss function for the actual return rt+1 and the α-VaR

forecast obtained from k-th model V aRk
t+1, k = A,B at time t+ 1. The test statistics

is

QDM =
R−1

∑M+R
t=M+1(L(rt+1, V aR

A
t+1)− L(rt+1, V aR

B
t+1))√

Σ̂(dt)
(24)

where Σ̂(dt) denotes the HAC estimator of the long run variance of dt := L(rt+1, V aR
A
t+1)−

L(rt+1, V aR
B
t+1). M is the number of observations used in estimation period whereas

R is the number of observations in the prediction period. V aRA
t+1 and V aRB

t+1 are

predicted VaR at time t+ 1 from VaR model A and B, respectively. The null hypoth-

esis is E(dt) = 0 and the alternative hypothesis is E(dt) < 0 and E(dt) > 0. Large

negative (positive) test statistics indicates VaR model A outperforms (underperforms)

VaR model B. Test statistics being close to zero implies the prediction performance of

two models are equivalent. An example of the loss function is

L(rt+1, V aRt+1) = α(rt+1−V aRt+1)(1−I{rt+1<V aRt+1})+(1−α)(V aRt+1−rt+1)I{rt+1<V aRt+1}.

(25)
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An alternative approach for comparing the predictive performance between VaR

models is Conditional Predictive Ability (CPA) test from Giacomini & White (2006).

In addition to the standard squared error or the absolute error loss function, as assumed

in Santos et al. (2013), an asymmetric linear loss function of order α is given as:

Lα(et+1) = (α− I{et+1<0})et+1, for α ∈ (0, 1), (26)

where et+1 = rt+1 − V aRα
t+1 is the prediction error. The out-of-sample loss difference

from predictive model A and B is defined as ∆Lα(et+1) = LAα (et+1) − LBα (et+1). Un-

der the null hypothesis of equivalent predictive abilities in two models, the moment

restriction holds: E(∆Lα(et+1)|Ft) = 0 almost surely t = 1, 2, . . ., or equivalently

E(ht∆Lα(et+1)) = 0, where ht is a Ft-measurable test function of instruments which

helps predicting the difference between two models in terms of the forecast performance,

e.g., ht = (1,∆Lα(et)) as in Giacomini & White (2006). Under the null hypothesis,

the difference of loss between two models follows a martingale difference process. The

test statistics is in the Wald-type:

QCPA = T (T−1

T−1∑
t=1

ht∆Lα(et+1))′Ω̂−1(T−1

T−1∑
t=1

ht∆Lα(et+1)), (27)

where Ω̂ is the consistent estimator of the variance of ht∆Lα(et+1). The null hypothesis

is rejected when QCPA > χ2
T,1−α.

4.2 Backtesting Expected Shortfall

To backtest the expected shortfall, we are interested in the discrepancy between actual

loss of return rt+1 and predicted ES eαt when the VaR exceedance occurs on t+ 1 such

that the condition E((rt+1 − eαt )It+1|Ft) = 0 is fulfilled under the null hypothesis, see

McNeil & Frey (2000). Recall that the dynamics of log returns rt can be written as

rt = µt + σtZt, where Zt ∼i.i.d. FZ(z) with mean zero and unit variance. Then the

residuals are defined as

ert+1 =
rt+1 − eαt
σt+1

= Zt+1 − E(Z|Z < zα). (28)

These residuals are i.i.d. and have zero conditional expectation on rt+1 < eαt . The

residuals can be standardized as er∗t+1 = ert+1√
Var(Z|Z<zα)

. The empirical counterpart
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of the standardized residuals, namely exceedance residuals are expressed as êr∗t+1 =

rt+1−êαt
σ̂t+1

√
V̂ar(Z|Z<zα)

. êαt is the estimate of the expected shortfall and V̂ar(Z|Z < zα) is

the estimate of the variance of the random variance Z being truncated at zα. Under

the null hypothesis that the distribution of Zt is correctly specified and the expected

shortfall is correctly estimated, the exceedance residuals should be i.i.d. with mean

zero and unit variance. This hypothesis can be tested with the help of the bootstrap

procedure proposed by Efron & Tibshirani (1993) without assuming the underlying

distribution of the residuals. Furthermore, it applies to both the standardized residuals

and unstandardized ones.

As pointed out by Weber (2006), Fissler et al. (2015) and Fissler & Ziegel (2016), the

main challenges of ES backtesing is the non-elicitability and non-identifiability. Many

existing approaches perform the ES backtesting based on the entire or tail distribution

of the return series, or the cumulative violation process, e.g. Löser et al. (2018). Some

tests requires the auxiliary quantities, for example the information of the VaR forecasts

as additional inputs for the ES backtesting in addition to the ES forecasts themselves,

see Nolde & Ziegel (2017). Alternatively, Bayer & Dimitriadis (2020) proposes new

regression-based ES backtests which only require ES forecasts as input variables. The

log returns are regressed on the ES forecasts and an intercept term. If the ES forecasting

model is correctly specified, the intercept term should be zero and the slope should be

one. The testing procedure follows Mincer & Zarnowitz (1969),

rt = γ1 + γ2ê
α
t + uet . (29)

The functional ES of rt at α can be written as ESα(rt|Ft−1) = γ1 + γ2ê
α
t given that

ESα(uet |Ft−1) = 0 almost surely. The test hypothesis is

H0 : (γ1, γ2) = (0, 1) vs. H1 : (γ1, γ2) 6= (0, 1). (30)

Under the null hypothesis, êαt = ESα(rt|Ft−1) holds almost surely when the model for

ES forecasts is correctly specified. As pointed out by Gneiting (2011), the ES is not

elicitable and the regression model can not be estimated for the ES on a standalone

basis since the strictly consistent loss and identification functions are not available for

the functional ES. Based on the joint loss and identification functions for VaR and ES

in Fissler & Ziegel (2016), Patton et al. (2019) and Dimitriadis & Bayer (2019) propose
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a joint regression framework to estimate the regression parameters:

rt = V ′t β + uvt and rt = W ′
tγ + uet , (31)

where Vt andWt are k-dimensional, Ft−1 measurable covariate vectors andQt(u
v
t |Ft−1) =

0 and ESα(uet |Ft−1) = 0 almost surely. First, they employ the auxiliary VaR forecasts

v̂αt at level α ∈ (0, 1) as the explanatory variable in the quantile equation, i.e., the

Vt = (1, v̂αt ) and Wt = (1, êαt ) are selected. The auxiliary ESR backtest is presented as

rt = β1 + β2v̂
α
t + uvt and rt = γ1 + γ2ê

α
t + uet . (32)

The hypotheses are tested via the Wald-type test statistics:

TA−ESR = T (γ̂T − (0, 1))Ω̂−1
γ T (γ̂T − (0, 1))′, (33)

where Ω̂−1
γ is the consistent covariance estimator for the covariance of the parameter

vector γ. The choice Vt = Wt = (1, êαt ), i.e., only the information of ES forecasts being

utilized, gives us the second ES regression test, namely the strict ESR backtest. It is

the first backtesting for the ES standalone, but it potentially suffers from the model

misspecification, see Bayer & Dimitriadis (2020) for greater details.

The banks and financial institutions have incentives to report less conservative risk

forecasts which leads to lower capital requirements. The concern of the regulators only

focuses on the prevention of underestimation of financial risks, hence an ES backtest-

ing procedure for one-sided hypotheses would be sufficient. The third version of the

regression backtesting is proposed, i.e., the forecast error rt − êαt is only regressed on

an intercept term in the ES-specific regression:

rt − êαt = β1 + β2ê
α
t + uvt and rt − êαt = γ1 + uet . (34)

The one-sided hypothesis is defined as

H0 : γ1 ≥ 0 vs. γ1 < 0. (35)

The testing is accomplished by t-tests with the estimated asymptotic covariance matrix,

please see Bayer & Dimitriadis (2020) for further details.
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5 Empirical Illustration

We consider the log return series of eight stocks in STOXX50, DAX30, FTSE100 and

S&P500 indices, respectively. In each index, the eight stocks with highest market

values on January 1st 2010 with complete data history are selected into the portfolio

under consideration. Equally weighted assets constitute of each portfolio. The log

returns are computed from the sample ranged from January 1st 2005 to December 29th

2017 with 3390 observations and the non-trading days are excluded. The raw data is

extracted from Thomson Reuters Financial Datastream. The descriptive statistics can

be found in Table 1. The annualized volatilities of the log-returns range from 19.492%

to 23.155%. The excess kurtosis also shows that the fat tailed-ness exist in each of the

four portfolios.

Table 1: Summary Statistics

STOXX50 DAX30 FTSE100 S&P500

Minimum -8.782% -10.705% -8.269% -12.359%

5% Quantile -1.881% -2.232% -1.570% -2.085%

Median 0.050% 0.080% 0.039% 0.090%

95% Quantile 1.887% 2.056% 1.538% 2.029%

Mean 0.037% 0.031% 0.025% 0.059%

Maximum 9.611% 13.826% 9.042% 11.444%

Volatility 1.228% 1.422% 1.036% 1.459%

Skewness 0.028 -0.015 -0.002 -0.026

Excess Kurtosis 6.445 10.472 7.619 11.764

Annualized Volatility 19.492% 22.580% 16.449% 23.155%

Note: The data set consists of log returns of four portfolios from January 2005 to December 2017.

The annualized volatility is calculated based on 252 days.

The univariate modeling of volatility is performed by fitting the GARCH(1,1) model

to the log return of the asset in a rolling window of 1000 observations up to time t.

In order to make the one-step-ahead forecast of the volatility for the i-th asset σ̂i,t+1,
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the equation (3) with the estimated α1, α2 and β1 are employed to compute. The

innovations are fixed to be Student’s t distributed with mean 0, scale parameter 1 and

ν = 15 degrees of freedom in all margins.

Two different structural break tests for correlations are performed prior to the

estimation of two conditional correlation models. The standardized residuals ẑi,t being

filtered from the aforementioned univariate GARCH model are fed into the structural

break tests. The standardized residuals are computed by ẑi,t = ε̂t,iσ̂
−1
i,t where σ̂i,t is

the plug-in estimator of the conditional volatility according to (2) and ε̂i,t is obtained

by subtracting µ̂i from ri,t. The structural break tests are applied to the residuals

in the rolling window with the length T = 1000 up to time t. Two distinct versions

of each structural break test are considered here, i.e., the tests could detect either

an unique break point or multiple break points. For each test, the data point at

which the test statistic takes the maximum value is firstly determined based on the

test sample. If the maximum of the test statistics is equal to or larger than the

corresponding critical value, the null hypothesis of the constant correlation is rejected,

which means that the point associated with the maximum test statistic is decided as the

single break point. To obtain the multiple change points, the full sample is segmented

into two subsamples at the single change point and one searches for any significant

change points in the subsamples. This procedure continues until no significant points

can be found according to Galeano & Wied (2017). The sample starting from the

latest identified break point to the last point in the sample is utilized to estimate the

constant correlation matrix Rc and time-varying correlation matrix Rt. The predicted

correlations at t + 1 are accomplished by the CCC and DCC models as described in

Section 2. The one-step-ahead prediction of correlations is chosen to rely on the rolling

window since the estimated parameters based on the sample within the rolling window

are able to account for the most recent information.

Next, in order to calculate the VaR and ES forecasts at t + 1, it is necessary

to obtain the predicted distributions of the portfolio returns which are determined

through simulations, i.e., for i-th asset in the portfolio at day t+1, K = 10000 random

observations following Student’s t distribution with the degree of freedom ν = 15

are generated as innovations and then transformed into simulated returns {r̃t+1}Kk=1
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with the help of the estimated mean µ̂ and predicted volatility σ̂i,t+1. The simulated

individual log returns construct the corresponding portfolio. The α-quantile of the

simulated portfolio log-returns is the VaR at the α level. The parameters α = 0.05 and

α = 0.01 are selected as two significance levels for VaR and ES forecasts at which the

VaR and ES forecasts are compared with the realized portfolio returns to assess the

model performance, respectively. The ES forecasts at day t + 1 are obtained by the

mean of the simulated log returns below the estimated V aRα at the day.

An acceptable VaR forecasting model should generate an appropriate VaR violation

ratio which is defined as the actual number of VaR violations divided by the total

number of VaR forecasts, i.e., the VaR violation ratio from a VaR forecasting model

is close enough to the VaR quantile α. Panel A in Table 2 presents the VaR violation

ratios for 5%-VaR and 1%-VaR from all six VaR prediction models for four portfolios.

The correlation models integrated with structural break tests generally deliver the VaR

violation ratios which are closer to the nominal VaR percentages than that from the

correlation models without any tests. The CCC models dominate DCC models in

terms of the VaR violation ratios. Among all correlation models, the CCC model with

Wied (2017) test (hereinafter referred to as the ‘wied17’ or the ‘non-parametric’ test)

detecting multiple break points outperforms other models. Furthermore, the results

of Kupiec (1995) unconditional coverage test are shown in Panel B in Table 2. The

null hypothesis is not rejected for all cases of 5%-VaR forecasts. When it comes to the

1%-VaR, the test results are mostly rejected at 5% or 1% significance level and the null

hypothesis is not rejected for few portfolios based on the correlation models with the

wied17 test at all significance levels, which confirms the findings in the VaR violation

ratios.

To investigate the existence of VaR violation clusters, the Christoffern test and the

CaViaR test are employed to evaluate the model performance from the perspective

of the distribution of the VaR violations. In Panel C in Table 2, the null hypothesis

of Christoffern test is frequently rejected for the 5%-VaR forecasts in FTSE portfolio

at 10% and 5% significant level, respectively. The CCC model combined with non-

parametric test with multiple change points and the DCC model with both types of the

non-parametric test improve the model performance being compared to the correlation
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Table 2: The results of VaR forecasts in four portfolios

5%-VaR 1%-VaR

Model Test cp STOXX DAX FTSE S&P STOXX DAX FTSE S&P

Panel A: VaR Violation Ratio

CCC

No Test - 0.052 0.053 0.050 0.051 0.016 0.015 0.014 0.016

Wied 2017
Single 0.051 0.050 0.049 0.048 0.015 0.013 0.014 0.016

Multiple 0.050 0.050 0.049 0.046 0.014 0.012 0.012 0.013

DW 2018
Single 0.054 0.054 0.053 0.050 0.016 0.014 0.015 0.017

Multiple 0.052 0.056 0.053 0.052 0.015 0.015 0.015 0.021

DCC

No Test - 0.056 0.057 0.057 0.054 0.017 0.019 0.014 0.018

Wied 2017
Single 0.052 0.055 0.053 0.053 0.015 0.015 0.013 0.018

Multiple 0.051 0.055 0.052 0.050 0.014 0.015 0.013 0.015

DW 2018
Single 0.055 0.056 0.057 0.054 0.017 0.017 0.015 0.018

Multiple 0.053 0.057 0.056 0.054 0.015 0.016 0.014 0.020

Panel B: Kupiec Test

CCC

No Test - 0.660 0.458 0.985 0.889 0.008∗∗∗ 0.020∗∗ 0.104 0.010∗∗

Wied 2017
Single 0.876 0.989 0.908 0.659 0.036∗∗ 0.163 0.069∗ 0.006∗∗∗

Multiple 0.973 0.989 0.908 0.405 0.056∗ 0.418 0.295 0.143

DW 2018
Single 0.416 0.403 0.581 0.965 0.008∗∗∗ 0.050∗ 0.029∗∗ 0.002∗∗∗

Multiple 0.730 0.194 0.581 0.670 0.014∗∗ 0.020∗∗ 0.029∗∗ 0.000∗∗∗

DCC

No Test - 0.202 0.115 0.137 0.421 0.003∗∗∗ 0.000∗∗∗ 0.069∗ 0.001∗∗∗

Wied 2017
Single 0.594 0.265 0.459 0.538 0.023∗∗ 0.020∗∗ 0.151 0.001∗∗∗

Multiple 0.802 0.307 0.647 0.958 0.056∗ 0.032∗∗ 0.151 0.016∗∗

DW 2018
Single 0.237 0.227 0.137 0.369 0.003∗∗∗ 0.004∗∗∗ 0.029∗∗ 0.001∗∗∗

Multiple 0.471 0.138 0.164 0.421 0.014∗∗ 0.007∗∗∗ 0.045∗∗ 0.000∗∗∗

Panel C: Christoffern Test

CCC

No Test - 0.282 0.186 0.083∗ 0.618 0.619 0.299 0.441 0.132

Wied 2017
Single 0.050∗ 0.347 0.074∗ 0.914 0.523 0.373 0.471 0.146

Multiple 0.040∗∗ 0.183 0.160 0.946 0.330 0.423 0.355 0.063∗

DW 2018
Single 0.209 0.202 0.012∗∗ 0.904 0.140 0.327 0.104 0.179

Multiple 0.461 0.083∗ 0.031∗∗ 0.718 0.287 0.299 0.104 0.089∗

DCC

No Test - 0.040∗∗ 0.212 0.097∗ 0.816 0.686 0.201 0.471 0.042∗∗

Wied 2017
Single 0.078∗ 0.067∗ 0.178 0.885 0.301 0.299 0.411 0.215

Multiple 0.057∗ 0.125 0.136 0.778 0.330 0.313 0.063∗ 0.118

DW 2018
Single 0.077∗ 0.074∗ 0.097∗ 0.478 0.686 0.259 0.104 0.196

Multiple 0.192 0.195 0.007∗∗∗ 0.856 0.287 0.272 0.092∗ 0.071∗

Panel D: CaViaR Test

CCC

No Test - 0.542 0.190 0.136 0.773 0.876 0.559 0.741 0.157

Wied 2017
Single 0.144 0.266 0.047∗∗ 0.938 0.801 0.261 0.440 0.094∗

Multiple 0.120 0.244 0.201 0.922 0.609 0.505 0.446 0.117

DW 2018
Single 0.431 0.420 0.013∗∗ 0.976 0.302 0.405 0.265 0.137

Multiple 0.762 0.221 0.031∗∗ 0.898 0.567 0.471 0.209 0.052∗

DCC

No Test - 0.116 0.336 0.243 0.816 0.901 0.426 0.683 0.070∗

Wied 2017
Single 0.211 0.140 0.247 0.931 0.567 0.367 0.594 0.189

Multiple 0.152 0.231 0.165 0.908 0.586 0.407 0.139 0.179

DW 2018
Single 0.200 0.159 0.129 0.772 0.798 0.415 0.198 0.231

Multiple 0.426 0.429 0.009∗∗∗ 0.961 0.562 0.385 0.159 0.049∗∗

Note: Two types of change points (denoted by ‘cp’) are allowed: single and multiple change points.

The notations ∗, ∗∗ and ∗ ∗ ∗ indicate the 10%, 5%, and 1% statistical significance levels, respectively.
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models without any structural break tests, respectively. In addition, the DCC model

with Duan & Wied (2018) test (hereinafter referred to as the ‘dw18’ or the ‘residual-

based’ test) with multiple change points show the improvement in STOXX portfolio.

With the respect to 1%-VaR prediction, the DCC models with both versions of the

wied17 test and the dw18 test outperform the plain DCC model in S&P portfolio. The

results of CaViaR test show no significant improvement in the correlation models with

structural break tests.

In Figure 1, it is hard to distinguish the CCC model and its counterparts including

the break points identified by Wied (2017) test except that the model with multiple

break points deliver more conservative VaR forecasts during the volatile period between

2015 and 2016 but less conservative risk forecasts during the calm period in 2012. As

Figure 2 presented, the result of the CCC model with its counterparts with Duan &

Wied (2018) follows the same pattern except the larger difference between the plain

CCC model and the CCC models with structural break tests is observed at the end of

the sample period. The same findings can be identified in the comparison between the

plain DCC model and its variants with structural break points as illustrated in Figure

3 and Figure 4.

To compare the VaR prediction performance between different VaR forecasting

models, the CPA test proposed by Giacomini & White (2006) is used to compare differ-

ent VaR models. The counting numbers in Table 4 in Appendix A.2 gives the frequency

that a specific model candidate is preferred over another model in four portfolios. With

respect to 5%-VaR forecasts, the plain CCC model has the comparable performance

with the CCC model combined with structural break tests in four portfolios except

that the CCC model with the wied17 test with single change point outperforms the

plain CCC model. The plain DCC model generally has higher conditional predictive

ability than the CCC and DCC counterparts with different tests. The CCC models

being integrated with residual-based tests have better forecasting performance than

the CCC model combined with the non-parametric test with multiple change points.

The DCC model with the residual-based test with a single change point outperforms

the DCC model with the two non-parametric tests. When it comes to 1%-VaR, the

comparison of the performance of the CCC model and its counterparts is ambiguous.
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Figure 1: The CCC model with the Wied (2017) test for the 5%-VaR forecast in

STOXX portfolio
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Note: This figure shows the actual returns, 5%-VaR forecasts and 5%-VaR violations based on the

CCC model being combied with the Wied (2017) test for the STOXX portfolio with respective lines

and dots in different colors, the circles at the bottom of the figure indicate the data points where the

respective violations of the VaR forecasts occur.

The plain DCC model outperforms the CCC and DCC models including change points

except the CCC model with the residual-based test including multiple change points.

The statistically significant results in the last three columns in the Table 4 indicates

that the test is generally indifferent between the CCC and DCC models and their

counterparts including the structural break tests. The comparison between different

VaR forecasting models with respect to the individual portfolio can be found in Table

5 to Table 8 in Appendix A.2.

To evaluate the accuracy of the ES forecasting of different risk forecasting models,

three backtests are employed. Panel A in Table 3 shows that the null hypothesis of the

exceedance residuals backtest proposed by McNeil & Frey (2000), i.e., the mean of the

exceedance residuals is zero or intuitively the risk measurement procedure correctly

estimates the ES, is rejected for the 5%-ES forecasts being obtained from all models

(including all CCC and DCC models) for DAX, STOXX and S&P portfolios at 0.05

statistical significance levels. It indicates that all variants of the CCC model are ap-
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Figure 2: The CCC model with the Duan & Wied (2018) test for the 5%-VaR forecast

in STOXX portfolio

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

−
0.

10
−

0.
05

0.
00

0.
05

0.
10 Actual return

No test
DW(2018) single
DW(2018) multiple
Violation (No test)
Violation (DW(2018) single)
Violation (DW(2018) multiple)

Note: This figure shows the actual returns, 5%-VaR forecasts and 5%-VaR violations based on the

CCC model being combied with the Duan & Wied (2018) test for the STOXX portfolio with respective

lines and dots in different colors, the circles at the bottom of the figure indicate the data points where

the respective violations of the VaR forecasts occur.

propriate for 1%-ES forecasts in STOXX and FTSE portfolios regardless of statistical

significance levels whereas the null hypothesis is rejected for the remaining two port-

folios at either 5% or 1% significance levels. All DCC models are not rejected for the

1%-ES forecasts in the STOXX portfolio and the DCC model with the non-parametric

test allowing multiple change points is only not rejected for the FTSE portfolio. The

result of the conditional calibration backtest proposed by Nolde & Ziegel (2017) is pre-

sented in Panel B in Table 3. Since the conservative risk estimation is generally not the

main concern of the regulators, i.e., the more capitals reserved than minimally required

are allowed, the one-sided calibration test is considered in this context. The inclusion

of the non-parametric tests (with single and multiple break points) into the CCC model

generally gives less rejection frequency of the null hypothesis across the four portfo-

lios being compared to the cases without any tests or with the residual-based test,

which holds for both 5%-ES and 1%-ES forecasts. The conditional calibration backtest

delivers non-conclusive result for the DCC models.
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Table 3: The results of Expected Shortfall Backtesting

5%-ES 1%-ES

Model Test cp STOXX DAX FTSE S&P STOXX DAX FTSE S&P

Panel A: Exceedance Residuals Backtest p-value

CCC

No Test - 0.000∗∗∗ 0.000∗∗∗ 0.002∗∗∗ 0.000∗∗∗ 0.140 0.047∗∗ 0.140 0.004∗∗∗

Wied 2017
Single 0.009∗∗∗ 0.012∗∗ 0.009∗∗∗ 0.000∗∗∗ 0.337 0.022∗∗ 0.141 0.017∗∗

Multiple 0.011∗∗ 0.009∗∗∗ 0.070∗ 0.002∗∗∗ 0.358 0.003∗∗∗ 0.196 0.006∗∗∗

DW 2018
Single 0.002∗∗∗ 0.010∗∗ 0.006∗∗∗ 0.000∗∗∗ 0.141 0.047∗∗ 0.330 0.016∗∗

Multiple 0.009∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.000∗∗∗ 0.284 0.041∗∗ 0.143 0.029∗∗

DCC

No Test - 0.004∗∗∗ 0.000∗∗∗ 0.013∗∗ 0.000∗∗∗ 0.314 0.054∗ 0.016∗∗ 0.005∗∗∗

Wied 2017
Single 0.009∗∗∗ 0.001∗∗∗ 0.007∗∗∗ 0.000∗∗∗ 0.293 0.006∗∗∗ 0.021∗∗ 0.009∗∗∗

Multiple 0.004∗∗∗ 0.001∗∗∗ 0.013∗∗ 0.000∗∗∗ 0.277 0.009∗∗∗ 0.127 0.008∗∗∗

DW 2018
Single 0.002∗∗∗ 0.000∗∗∗ 0.012∗∗ 0.000∗∗∗ 0.406 0.026∗∗ 0.055∗∗ 0.004∗∗∗

Multiple 0.003∗∗∗ 0.000∗∗∗ 0.008∗∗∗ 0.000∗∗∗ 0.227 0.011∗∗ 0.042∗∗ 0.003∗∗∗

Panel B: Conditional Calibration Backtest p-value

CCC

No Test - 0.057∗ 0.038∗∗ 0.241 0.046∗∗ 0.068∗ 0.080∗ 0.157 0.039∗∗

Wied 2017
Single 0.198 0.179 0.469 0.091∗ 0.170 0.179 0.237 0.056∗

Multiple 0.255 0.167 0.681 0.295 0.219 0.170 0.381 0.115

DW 2018
Single 0.074∗ 0.093∗ 0.184 0.084∗ 0.076∗ 0.130 0.168 0.042∗∗

Multiple 0.164 0.044∗∗ 0.139 0.024∗∗ 0.122 0.089∗ 0.127 0.013∗∗

DCC

No Test - 0.031∗∗ 0.003∗∗∗ 0.052∗ 0.010∗∗ 0.072∗ 0.023∗∗ 0.075∗ 0.016∗∗

Wied 2017
Single 0.119 0.021∗∗ 0.138 0.017∗∗ 0.111 0.052∗ 0.105 0.022∗∗

Multiple 0.181 0.029∗∗ 0.259 0.078∗ 0.173 0.061∗ 0.205 0.045∗∗

DW 2018
Single 0.036∗∗ 0.014∗∗ 0.072∗ 0.016∗∗ 0.068∗ 0.044∗∗ 0.086∗ 0.020∗∗

Multiple 0.074∗ 0.013∗∗ 0.069∗ 0.010∗∗ 0.098∗ 0.048∗∗ 0.103 0.010∗∗

Panel C: Intercept ES Regression Backtest p-value

CCC

No Test - 0.022∗∗ 0.024∗∗ 0.089∗ 0.060∗ 0.029∗∗ 0.088∗ 0.097∗ 0.196

Wied 2017
Single 0.065∗ 0.084∗ 0.190 0.059∗ 0.079∗ 0.131 0.091∗ 0.168

Multiple 0.105 0.072∗ 0.286 0.194 0.116 0.118 0.174 0.071∗

DW 2018
Single 0.026∗∗ 0.041∗∗ 0.084∗ 0.075∗ 0.053∗ 0.051∗ 0.081∗ 0.079∗

Multiple 0.073∗ 0.019∗∗ 0.059∗ 0.016∗∗ 0.040∗∗ 0.069∗ 0.053∗ 0.144

DCC

No Test - 0.008∗∗∗ 0.001∗∗∗ 0.020∗∗ 0.011∗∗ 0.107 0.041∗∗ 0.049∗∗ 0.078∗

Wied 2017
Single 0.051∗ 0.012∗∗ 0.055∗ 0.008∗∗∗ 0.060∗ 0.072∗ 0.075∗ 0.135

Multiple 0.072∗ 0.017∗∗ 0.101 0.066∗ 0.066∗ 0.072∗ 0.105 0.135

DW 2018
Single 0.012∗∗ 0.006∗∗∗ 0.026∗∗ 0.010∗∗ 0.021∗∗ 0.081∗ 0.075∗ 0.046∗∗

Multiple 0.046∗∗ 0.005∗∗∗ 0.028∗∗ 0.004∗∗∗ 0.018∗∗ 0.104 0.037∗∗ 0.004∗∗∗

Note: Two types of change points (denoted by ‘cp’) are allowed: single and multiple change points.

The exceedance residuals backtest is proposed by McNeil & Frey (2000). The conditional calibration

backtest proposed by the Nolde & Ziegel (2017) is one-sided test. The intercept ES regression test

proposed Bayer & Dimitriadis (2020) is also an one-sided test. The notations ∗, ∗∗ and ∗ ∗ ∗ indicate

the 10%, 5%, and 1% statistical significance levels, respectively.
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Figure 3: The DCC model with the Wied (2017) test for the 5%-VaR forecast in

STOXX portfolio
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Violation (Wied(2017) multiple)

Note: This figure shows the actual returns, 5%-VaR forecasts and 5%-VaR violations based on the

DCC model being combied with the Wied (2017) test for the STOXX portfolio with respective lines

and dots in different colors, the circles at the bottom of the figure indicate the data points where the

respective violations of the VaR forecasts occur.

Bayer & Dimitriadis (2020) argues that most of backtests require additional input

variables such as the VaR forecasts at α level, in response they propose the first strict

ES backtests which only require ES forecasts in addition to realized returns as the

input variables. Among them, the intercept ES regression test is selected to backtest

the ES forecasts against the one-sided alternative due to the incentive of the banks

and financial institutions to report too risky forecasts and the mission of regulators

to only prevent the underestimation of the risks. The result of the intercept ESR

backtest is presented in Panel C in Table 3. Similar to the result of the calibration

test, when the CCC models being integrated with the wied17 test with single and

multiple change points are used, the null hypothesis is rejected at a lower frequency

across all portfolios, i.e., H0 is not rejected for the 5%-ES and the 1%-ES forecasts in

all portfolios at 0.05 significance level. The null hypothesis is rejected for both 5%-ES

and 1%-ES forecasts generated by the DCC model without any structural break tests

at 10% statistical significance level for all portfolios except the 1%-ES forecast in the
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Figure 4: The DCC model with the Duan & Wied (2018) test for the 5%-VaR forecast

in STOXX portfolio
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Violation (DW(2018) single)
Violation (DW(2018) multiple)

Note: This figure shows the actual returns, 5%-VaR forecasts and 5%-VaR violations based on the

DCC model being combied with the Duan & Wied (2018) test for the STOXX portfolio with respective

lines and dots in different colors, the circles at the bottom of the figure indicate the data points where

the respective violations of the VaR forecasts occur.

STOXX portfolio. The intercept ESR backtest shows that the non-parametric test

with a single change point utilized in DCC model is only inappropriate for the 5%-

ES forecasts in DAX and S&P portfolios at 5% and 1% statistical significance levels,

respectively. The null hypothesis is rejected for the DAX portfolio at 5% significance

level when the non-parametric test with multiple change points is used in DCC model.

The DCC models combined with the residual tests are rejected for the 5%-ES forecasts

in all portfolios. The DCC model with the single change point and with multiple change

points being detected in wied17 test are appropriate for the FTSE portfolio and the

STOXX portfolio at 5% significance level, respectively.
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6 Conclusion

The impact of the inclusion of the residual-based constant correlation test by Duan

& Wied (2018) and the non-parametric correlation test by Wied (2017) into the CCC

and DCC models is examined in terms of the potential improvement in the accuracy

of VaR and ES forecasting from the plain CCC and DCC models. The implementation

of the Galeano & Wied (2017) algorithm enables the detection of both single and

multiple change points in the constant correlation tests. We perform several backtesting

procedure for VaR and ES forecasts to evaluate the appropriateness of the considered

correlation models in a standalone or comparative manner.

To enumerate a few main findings: the coverage rate and the unconditional coverage

test shows that the CCC model accounting for the multiple change points identified

by the Wied (2017) test outperforms other models whereas the consideration of Duan

& Wied (2018) test does not lead better forecasting accuracy in comparison with the

plain CCC or DCC models especially for the 1%-VaR forecasts. The CPA test by

Giacomini & White (2006) indicates that the CCC model including the Duan & Wied

(2018) test leads to a better predictive ability in 5%-VaR forecasting than the CCC

model combined with the Wied (2017) test which allows the multiple change points. In

addition, the plain DCC model is generally hard to be beaten by the CCC and DCC

counterparts accounting for structural break points in either the 5%-VaR or the 1%-

VaR forecasts, which seems to be coincided with the results in Berens et al. (2015). The

statistically significant results in CPA test also imply that the inclusion of the structural

break tests would not be able to deliver a significantly different prediction accuracy

in the comparative sense. Among the three tests being employed to backtest the ES

forecasting precision, the intercept ES regression test by Bayer & Dimitriadis (2020)

concludes that the extension of the Wied (2017) test can improve the ES forecasting of

the plain CCC or DCC model while the plain models with or without the Duan & Wied

(2018) test shows the similar performance in terms of the ES forecasting accuracy.
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A Appendix

A.1 Algorithm

Algorithm 1 VaR and ES predictions based on the parametric Monte Carlo simula-

tions
1: for i = 1, . . . , d do

2: a) Specifying the innovation term ηi,t+1 in the GARCH(1,1) process as a particular distribution, e.g., N(0, 1)

or tν .

3: b) Estimate the dynamic parameter vector θi = (α1,i, α2,iβ1,i)
′ in i-th variate, e.g. described in (2).

4: c) Compute conditional mean µ̂i,t+1 and conditional variance σ̂i,t+1 according to GARCH process parameter-

ized by θi with the help of equation (3).

5: d) Compute the predicted i-th predicted return r̃i,t+1 with the estimated µ̂i,t+1, σ̂i,t+1.

6: end for

7: e) Determine the covariance matrix Σt+1 based on CCC or DCC model and generate a large number B of simulated

returns r̃t+1 based on the covariance matrix Σt+1 and the mean vector µt+1.

8: f) The t+ 1 predicted VaR at level α is V aRα = F̂t+1(α)−1, where F̂t+1(α)−1 is the empirical α-quantile of the

distribution of the portfolio return r̃p,t+1 being constructed on the simulated returns r̃t+1. The estimated ES is

calculated as ESα(r̃p,t+1) = E(r̃p,t+1|r̃p,t+1 ≤ V aRα).

Algorithm 2 The detection of multiple change points in the correlation matrix pro-

posed by Galeano & Wied (2017)

1: if QW1,T ≤ cT,α then

2: the algorithm stops, no change points are detected.

3: else a break in correlation matrix is announced, z1 is the break point estimator

4: while maxk{QWη(zk−1+
1
T

),τ(zk)
, k = 1, . . . , l+ 1} > cT,α, given l detected change points z1, . . . , zl in ascending

order do

5: A new change point is detected: kmax = arg maxk{QWη(zk−1+
1
T

),τ(zk)
, k = 1, . . . , l}.

6: end while

7: if l > 1 then

8: for k = 1, . . . , l do

9: Calculate test statistics from sample from η(zk−1 + 1
T

) to τ(zk+1), delete the change points which are

not statistically significant.

10: end for

11: end if

12: end if
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Algorithm 3 Duan & Wied (2018)

1: for i = 1, . . . , d do

2: a) Estimate single break point λ̂i in variance of Xi, according to Wied, Arnold, Bissantz & Ziggel (2012).

3: b) Estimate the vector of sample mean µ̂λ̂i,1
and µ̂λ̂i,2

, the vector of sample variance σ̂λ̂i,1
and σ̂λ̂i,2

before

and after the estimated break points from step a).

4: end for

5: c) Calculate residuals Ẑt according to (16) and estimate its covariance matrix Ω̂.

6: d) Calculate test statistics Q̂n according to (15).

7: e) Compute the p-value based on bootstrap approximation.

8: if time dependent sample then

9: f) Use nonoverlapping block bootstrap X ∗b .

10: else Draw B random samples with replacement with i.i.d. bootstrap Xb.

11: end if

12: g) The bootstrap p-value is given by p = 1
B

∑B
j=1 1Q̂n≤Q∗

j
.

A.2 Tables
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