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Abstract

We propose a general class of Markov-switching-ARFIMA processes in order to com-

bine strands of long memory and Markov-switching literature. Although the coverage

of this class of models is broad, we show that these models can be easily estimated

with the DLV algorithm proposed. This algorithm combines the Durbin-Levinson and

Viterbi procedures. A Monte Carlo experiment reveals that the finite sample perfor-

mance of the proposed algorithm for a simple mixture model of Markov-switching mean

and ARFIMA(1, d, 1) process is satisfactory. We apply the Markov-switching-ARFIMA

models to the U.S. real interest rates, the Nile river level, and the U.S. unemployment

rates, respectively. The results are all highly consistent with the conjectures made or

empirical results found in the literature. Particularly, we confirm the conjecture in Be-

ran and Terrin (1996) that the observations 1 to about 100 of the Nile river data seem

to be more independent than the subsequent observations, and the value of differencing

parameter is lower for the first 100 observations than for the subsequent data.
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1 Introduction

It is well known that many time series data exhibit long memory, or long-range dependence,

including the Nile river level, ex post real interest rate, forward premium, and the dynamics

of aggregate partisanship and macroideology. Among the many other examples that Beran

(1994) gives the Nile river data has been known for its long memory behavior since an-

cient times, and this is one of the time series that led to the discovery of the Hurst effect

(Hurst, 1951) and motivated Mandelbrot and his co-workers (Mandelbrot and van Ness, 1968;

Mandelbrot and Wallis, 1969) to introduce fractional Gaussian noise to model long memory

phenomenon.

Long range dependence also has been observed in financial data. As demonstrated by

Ding et al. (1993), de Lima and Crato (1993) and Bollerslev and Mikkelsen (1996) that the

volatility of most financial time series exhibits strong persistency and can be well described as

a long memory process. Evidence of financial market volatility’s strong persistency inspired

Breidt et al. (1998) to propose a class of long memory stochastic volatility (LMSV) models.

Deo et al. (2006) also show that the LMSV model is useful for forecasting realized volatility

(RV) which is an important quantity in finance.

Figure 1 displays the yearly Nile river minima based on measurements at the Roda gauge

near Cairo during the years 622-1284. Beran (1994, p.33) documents that “When one only

looks at short time periods, then there seem to be cycles or local trend. However, looking at

the whole series, there is no apparent persisting cycle.” The changing pattern of the Nile river

data leads Bhattacharya et al. (1983) to argue that the so-called Hurst effect can also be

explained as if the observations are composed as the sum of a weakly dependent stationary

process and a deterministic function. As a consequence it is important to distinguish between

a long memory time series and a weakly dependent time series with change-points in the

mean. This question has been intensively considered in the literature, including Künsch

(1986) and Heyde and Dai (1996). Berkes et al. (2006) presents an overview about this

strand of literature. Similarly, Diebold and Inoue (2001) shows that long memory also may

be easily confused with a Markov-switching mean. Thus, most of the existing literature

considers long memory as a competing modeling framework against the structural change

and Markov-switching models.

The Nile river level time series is far more complicated than a pure long memory or
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Figure 1: Yearly Nile river minima based on measurements at the Roda gauge near Cairo.

a weakly dependent time series with change-points in the mean to describe. Beran and

Terrin (BT) (1996) suggest therefore that the Hurst parameter characterizing the yearly Nile

river might change over time. When estimating the Nile river data with the autoregressive

fractionally-integrated moving-average (ARFIMA) or I(d) process introduced by Granger

(1980), Granger and Joyeux (1980) and Hosking (1981), Beran and Terrin (1996, p.629)

show that the data can be well fitted with an ARFIMA(0, d, 0) model with d = 0.4, where

the fractional differencing parameter d of ARFIMA process acts like the Hurst parameter

H of fractional Gaussian noise in characterizing the hyperbolic decay of the autocovariance

function of a long memory process. BT further claim that the observations 1 to about

100 seem to be more independent than the subsequent observations, and the value of the

fractional differencing parameter might be lower for the first 100 observations than for the

subsequent data. If this claim is right, then there should be a structural change in the

long range persistence of the Nile river data around the year 720, and the Nile river data

neither can be described with a pure long memory nor a weakly dependent time series with

change-points in the mean.

The possible change of the differencing parameter stimulate BT to propose a statistic for

testing the stability of the fractional differencing parameter. This testing statistic has been

further discussed and extended in Horváth and Shao (1999) and Horváth (2001). However,
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their methods can not identify the change points of the fractional differencing parameter.

A Bayesian random persistent-shift (RPS) method for detecting structural change in the

differencing parameter and the process level has been considered in Ray and Tsay (2002).

Nevertheless, the RPS method is not built on the Markov-switching framework, thus may not

fully characterize the cycling behavior of the data series, i.e., “seven years of great abundance”

and “seven years of famine” — the Joseph effect named by Mandelbrot and van Ness (1968)

and Mandelbrot and Wallis (1969).

The above considerations lead us to combine the long memory and Markov-switching liter-

ature into a unified framework. We introduce a Markov-switching-ARFIMA (MS-ARFIMA)

process by extending the hidden Markov model. Given that the hidden Markov model has

become extremely popular in speech recognition as shown in Juang and Rabiner (1991) and

Qian and Titterington (1991), and in econometrics, finance, genetics, and neurophysiology

as outlined in Robert et al. (2000), the MS-ARFIMA model provides a flexible modeling

framework for many applications to these fields. Moreover, the research conducted in this

paper also solve the puzzle raised by Diebold and Inoue (2001) by estimating the differencing

parameter allowing for the parameters of interest are Markov-switching.

The remaining parts of this paper are arranged as follows: Section 2 presents the MS-

ARFIMA process and the algorithms for estimating the parameters of interest. In Section 3

we consider the finite sample performance of the proposed algorithm under the simple mixture

of a Markov-switching mean and an ARFIMA(1, d, 1) process. We then apply the proposed

methodology to the U.S. real interest rates, the Nile river data, and the U.S. unemployment

rates in Section 4. Section 5 provides a conclusion.

2 Models and Main Results

The objective of this paper is to propose a general class of Markov-switching-ARFIMA

processes in order to combine strands of long memory and Markov-switching literature. This

class of models offers a rich dynamic mixture of a Markov chain and an I(d) process.

Let {st}
T
t=1 be the latent sample path of an N -state Markov chain. At each time st can
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assume only an integer value of 1, 2, · · · , N , and its transition probability matrix is

P ≡




p11 p21 · · · pN1

p12 p22 · · · pN2

...
...

. . .
...

p1N p2N · · · pNN




,

where pij = P (st = j | st−1 = i) and
∑N

j=1 pij = 1 for all i.

An I(d) process, xt, is defined as:

(1 − L)dxt = ht,

where L is the lag operator (Lkt = kt−1) and ht is a short memory process. When d > 0, the

I(d) process is often called the long memory process, because its autocovariance function is

not summable so as to capture the long range dependence of a time series. In addition, the

I(d) process is nonstationary when d ≥ 1

2
, otherwise, it is covariance stationary.

Combining the defining feature of a Markov chain and that of an I(d) process, we propose

the following MS-ARFIMA(p, d, q) process:

wt = µst
I{t ≥ 1} + (1 − L)−dst σst

ztI{t ≥ 1} = µst
I{t ≥ 1} + yst

, (1)

where I{.} is the indicator function and zt is stationary process with mean zero and bounded

positive spectral density fu(λ) ∼ G0 as λ → 0 at each possible regime, thus including

stationary and invertible ARMA process as its special case. The most distinguished feature

of the process is that the fractional differencing parameter dst
well known in the long memory

literature is allowed to be a Markov chain satisfying the following Assumption A:

Assumption A. st is independent of zτ for all t and τ .

The model in (1) subsumes many interesting models in the literature. When N = 1, wt

reduces to the specification in (7) of Shimotsu and Phillips (2005):

wt = µ0 + (1 − L)−d0σ0ztI{t ≥ 1} (2)

which also can be represented as:

wt = µ0 +
t−1∑

k=0

(d0)k

k
σ0zt−k, (3)
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where

(d0)k =
Γ(d0 + k)

Γ(d0)
= (d0)(d0 + 1) . . . (d0 + k − 1) (4)

is Pochhammer’s symbol for the forward factorial and Γ(.) is the gamma function. More-

over, under the model in (1) and dst
= 0, wt still includes the Markov-switching AR model

considered in Hamilton (1989) as one of its special cases. We will show that the estimation

of the model in (1) can be easily implemented with the algorithm proposed in this paper,

even though the parameter estimation from a noisy version of realizations of Markov mod-

els is extremely difficult in all but very simple examples as well documented in Qian and

Titterington (1991).

Let the total sample size be T , and denote Wt ≡ (w1, w2, · · · , wt)
⊤ the column vector

containing the observations from time 1 to time t, while St = (s1, s2, · · · , st)
⊤ represents

the corresponding states, and Yt = (y1, y2, · · · , yt)
⊤ in (1) is similarly defined. The column

vector α = (µ1, . . . , µN , σ1, . . . , σN , φ11, . . . , φ1p, φ21, . . . , φNp, d1, . . . , dN , θ11, · · · , θNq)
⊤ and

pij (transition probabilities) consist of the parameters characterizing the conditional density

function (cdf) of wt. After stacking the parameter vector α and the transition probabilities

pij into one column vector ξ, we can represent the cdf of wt as f (wt | St,Wt−1; ξ), clearly

showing that the cdf of wt depends on the entire past routes of states (in general). Indeed,

there are NT possible paths of states running throughout the observations WT .

To illustrate the proposed algorithm for the model in (1), we first consider the simplest

case where wt in (1) is generated as:

wt = µst
I{t ≥ 1} + (1 − L)−d0σ0εtI{t ≥ 1} = µst

I{t ≥ 1} + yt, (5)

where d < 1

2
and εt is a zero mean normally, independently and identically distributed white

noise (i.i.d.) with E(ε2
t ) = 1. That is, wt in (5) is a special type of MS-ARFIMA(0, d, 0)

process whose differencing parameter is fixed across different regimes. Under Assumption A

and εt ∼ N(0, 1) i.i.d. process, the likelihood function of WT , L(ST ,WT ; ξ) hereafter, for the

hidden Markov model in (5) equals

L(ST ,WT ; ξ) = (2π)−T/2|Λ|−1/2 exp
(
−

1

2
Y⊤

T Λ−1YT

) T∏

t=1

Pr(st | st−1), (6)

where Λ = E(YTY
⊤

T ), and Pr(s1 | s0) is evaluated with the unconditional probability that

the process will be in regime s1. Given that yt in (5) is a simple ARFIMA(0, d, 0) process,

6



we can use the Durbin-Levinson algorithm to derive

(2π)−T/2|Λ|−1/2 exp
(
−

1

2
Y⊤

T Λ−1YT

)
=

T∏

t=1

(2π)−1/2v
−1/2

t−1 exp

{
−

(yt − ŷt)
2

2vt−1

}
, (7)

where ŷt denotes the one-step ahead predictor of yt with the observation Yt−1 as j ≥ 2,

and vt−1 is the corresponding one-step ahead prediction variance. Deriche and Tewfik (1993)

also have employed the Durbin-Levinson algorithm to estimate a univariate ARFIMA(0, d, 0)

processes without Markov-switching characteristic. Note that as t = 1, ŷ1 = 0, and v0 = γ0

corresponds to the variance of yt. As a result, the likelihood function in (6) can be rewritten

as:

L(ST ,WT ; ξ) =
T∏

t=1

(2π)−1/2v
−1/2

t−1 exp

{
−

(yt − ŷt)
2

2vt−1

}
Pr(st | st−1), (8)

indicating that the unconditional likelihood function of the mixture model in (5) can be

exactly and recursively evaluated provided that we can identify the true path of st, S
∗

T .

We do not know in reality the value of S∗

T . However, the recursive structure shown in (8)

is especially suitable for implementing the Viterbi (1967) algorithm in the digital commu-

nication literature to identify the most likely path of states among the NT possible routes

within WT . We thus combine the Durbin-Levinson algorithm and the Viterbi algorithm to

suggest a Durbin-Levinson-Viterbi (DLV) algorithm for the model in (5). When compared

to the original Viterbi algorithm designed for solving the problem of maximum a posteri-

ori probability estimate of the state sequence of a finite-state discrete-time Markov process

observed in white noise, the DLV algorithm proposed in this paper is concerned with the

hidden Markov process observed in a much more general ARFIMA noise. Since the DLV

algorithm can estimate the differencing parameter of a time series allowing for the presence

of a Markov-switching mean, the puzzle raised by Diebold and Inoue (2001) that long mem-

ory can be easily confused with a Markov-switching mean is thus resolved by using this DLV

algorithm.

To locate the most likely path running through the data WT with the idea of Viterbi

(1967), we note first that, for each time t, there are N possible states ending at time t, i.e.,

(st = i), i = 1, . . . , N . For a particular node of these N end points at time t, say (st = j),

there exists a corresponding most likely path:

(St−1(st = j), st = j) = (s1(st = j), s2(st = j), · · · , st−1(st = j), st = j) , (9)
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which ends at this particular node (st = j). We refer to the path (St−1(st = j), st = j) in

(9) as the survivor associated with the node (st = j). Note that, with little loss of clarity,

we do not explicitly specify that the path depends on the parameter ξ and the observations

Wt in order to simplify the notation. The likelihood function generated from this survivor

(St−1(st = j), st = j) and the formula in (8) is recorded as L(St−1(st = j), st = j,Wt; ξ) and

is crucial for locating the most likely path running from time 1 to time T . In short, for each

node (st = j) at time t, there exists a most likely path, survivor (St−1(st = j), st = j), and its

associated likelihood function L(St−1(st = j), st = j,Wt; ξ). Most importantly, the number

of survivors at each time t is always equal to N .

Given the N survivors at time t and in order to locate the survivor (St(st+1 = i), st+1 = i)

for a particular node (st+1 = i) at time t + 1, among the N segments connecting the node

(st+i = i) and the N time-t survivors (St−1(st = j), st = j) recorded at time t, we select the

one producing the largest likelihood function L(St(st+1 = i), st+1 = i,Wt+1; ξ) among these

N possible candidates, and name it as the survivor (St(st+1 = i), st+1 = i) for this particular

node (st+1 = i). The computation of the aforementioned likelihoods is simple, because we

record the likelihood functions of the N time-t survivors at each time t.

This recursive updating process proceeds from time 1 to time T and results in N time-

T survivors (ST−1(sT = i), sT = i) and their associated likelihood function L(ST−1(sT =

i), sT = i,WT ; ξ), for each i = 1, . . . , N . From these N time-T survivors we select the one

producing the largest likelihood function, say L(ST−1(sT = g), sT = g,WT ; ξ), as the most

likely path running from time 1 to time T . Combining a numerical optimization procedure

and this chosen likelihood function L(ST−1(sT = g), sT = g,WT ; ξ) generated from the

Viterbi algorithm and the Durbin-Levinson algorithm displayed in (7), we can estimate the

parameters ξ and identify the states ST hidden in the observations WT .

We now consider another special type of MS-ARFIMA(p, d, q) process:

wt = µst
I{t ≥ 1} + yt = µst

I{t ≥ 1} + (1 − L)−d0σ0ztI{t ≥ 1}, φ(L)zt = θ(L)εt, (10)

where

φ(L) = 1 − φ1L − . . . − φpL
p, θ(L) = 1 + θ1L + . . . + θqL

q, (11)

and the roots of the polynomial φ(L) and those of θ(L) in (11) are all outside the unit circle

and share no common roots. The model in (10) is much more general than that in (5), but
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still can be estimated with the preceding Viterbi algorithm after some modifications. Please

note that the value of fractional differencing parameter is unchanged across different regimes

as that imposed in (5).

Note that the term yt in (10) can be rearranged as

yt = (1 − L)−d0σ0φ(L)−1θ(L)εt, t = 1, 2, . . . . (12)

We then have

φ(L)yt = (1 − L)−d0σ0θ(L)εt = σ0θ(L)(1 − L)−d0εt = σ0θ(L)ỹt, t = 1, 2, . . . , (13)

where ỹt = (1 − L)−d0εt is an ARFIMA(0, d, 0) process. Dueker and Serletis (2000) use the

same transformation method for estimating an ARFIMA(p, d, q) process. Conditional on a

set of φ(L) and θ(L) and a suitable starting value, the conditional likelihood function of yt

in (12) can still be evaluated exactly with the transformed ARFIMA(0, d, 0) ỹt in (13) and

the Durbin-Levinson algorithm defined in (7). For example, conditional on y0 being equal to

0, we can extract an ARFIMA(0, d, 0) process from an ARFIMA(1, d, 1) process as follows:

σ0ỹt = yt − φ1yt−1 − σ0θ1ỹt−1, t = 1, . . . , T. (14)

Conditional on a set of φ(L) and θ(L) and a suitable starting value for the parameter ξ, we

can recursively and exactly evaluate the conditional likelihood function of the hidden Markov

model using the DLV algorithm proposed previously.

The same idea also applies to the class of MS-ARFIMA(p, d, q) processes in (1) where d

can be Markov-switching. However, we cannot use the Durbin-Levinson algorithm when the

fractional differencing parameter is allowed to be Markov-switching. Nevertheless, the Viterbi

algorithm is still powerful enough to locate the most likely path under this circumstance.

That is, conditional on a suitable starting value for the parameter ξ, we employ the recursive

structure inherent in Viterbi algorithms to identify the most likely path running through the

data set.

3 Monte Carlo Experiment

In this section we consider a Monte Carlo experiment to demonstrate the finite sample per-

formance of the proposed DLV algorithm on a special version of the model in (1):

wt = µst
I{t ≥ 1} + (1 − L)−d0σ0(1 − φ1L)−1(1 + θ1L)εtI{t ≥ 1}. (15)

9



We employ three different values of the fractional differencing parameter:

d0 = {0.2, 0.3, 0.4}, (16)

along with the following parameters:

µ1 = 4, µ2 = 1, φ1 = 0.5, θ1 = 0.5, p11 = p22 = 0.95, (17)

and σ0 is chosen to ensure that the variance of the ARFIMA(1, d, 1) noise in (15) is equal

to 1 across different configurations. Note that the positive values of d0 in (16) are chosen to

reflect the variations used in the long memory literature.

All the computations are performed with GAUSS. Two hundred replications are conducted

for each specification at 3 different sample sizes (T = 100, 200, 400) usually encountered in

the empirical applications. For each sample size T , 200 additional values are generated in

order to obtain random starting values. The optimization algorithm used to implement the

DLV algorithm is the quasi-Newton algorithm of Broyden, Fletcher, Goldfarb, and Shanno

(BFGS) contained in the GAUSS MAXLIK library. The maximum number of iterations for

each replication is 100.

Table 1 contains the simulation results when the true value of parameters are used as

the initial values for estimation procedure. The results reveal that the bias performance

from the DLV algorithm is satisfactory (especially when the sample size is larger) for all

configurations considered. Moreover, the associated root-mean-squared error (RMSE) almost

always decreases with the increasing sample size. We find only two cases where the pattern

of RMSE change is not what we expect, i.e., when d0 = 0.4, the RMSE of estimating the

parameters µ1 and µ2 as T = 400 is found to be a little higher than that of estimating the

parameters µ1 and µ2 as T = 200. These two observations demonstrate the ability of the

DLV algorithm to deal with the mixture model considered in this section. The performance of

DLV algorithm for estimating the fractional differencing parameter is particularly displayed

with the box-plots in Figure 2. The above-mentioned observations are clearly borne out in

this figure.

We also check the robustness of the preceding simulation results by changing the choice

of initial values for estimation. The simulations in Table 1 are replicated by setting the

initial values for parameters at the true values except that of d0 is set at zero. The results

10



Table 1. Finite sample performance of the DLV algorithm:

Initial values of parameters are set at the true values of parameters

Parameter µ1 µ2 p11 p22 σ0 d0 φ1 θ1

d0 = 0.4

T = 100 Bias -0.010 -0.106 0.010 0.016 0.008 0.183 -0.128 -0.040

RMSE 1.008 0.991 0.039 0.060 0.022 0.294 0.233 0.138

T = 200 Bias -0.094 -0.098 0.006 0.006 0.003 0.135 -0.101 -0.026

RMSE 0.978 0.978 0.028 0.025 0.015 0.233 0.191 0.086

T = 400 Bias -0.074 -0.076 0.004 0.004 0.001 0.096 -0.073 -0.013

RMSE 0.990 0.990 0.019 0.017 0.010 0.192 0.163 0.060

d0 = 0.3

T = 100 Bias -0.057 -0.070 0.009 0.017 0.012 0.175 -0.109 -0.041

RMSE 1.042 1.024 0.037 0.060 0.030 0.319 0.245 0.131

T = 200 Bias -0.058 -0.055 0.006 0.006 0.005 0.122 -0.079 -0.030

RMSE 0.947 0.944 0.027 0.025 0.020 0.260 0.212 0.086

T = 400 Bias -0.038 -0.043 0.004 0.004 0.001 0.090 -0.061 -0.016

RMSE 0.885 0.883 0.019 0.017 0.015 0.217 0.185 0.061

d0 = 0.2

T = 100 Bias -0.017 -0.041 0.009 0.017 0.014 0.201 -0.115 -0.044

RMSE 0.874 0.853 0.037 0.060 0.037 0.341 0.258 0.128

T = 200 Bias -0.042 -0.047 0.006 0.006 0.006 0.167 -0.106 -0.037

RMSE 0.795 0.792 0.028 0.025 0.024 0.297 0.239 0.088

T = 400 Bias -0.038 -0.046 0.004 0.004 0.002 0.122 -0.085 -0.019

RMSE 0.670 0.669 0.019 0.017 0.018 0.239 0.203 0.061

Notes: Simulations are based on 200 replications. The data is generated from the

mixture model defined in (15), (16) and (17). DLV algorithm is the Durbin-Levinson-

Viterbi algorithm proposed in this paper. Bias is computed as the true parameter

minus the corresponding average estimated values.
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Figure 2: Box-plots of the estimated d from the model defined in (15), (16) and (17) with 200 realizations.

The initial values of parameters are set at the true values of parameters. The value f(g) denotes the model

specification where d = f and T = 100 × g.

contained Table 2 and Figure 3 indicate that the finite sample performance of our procedure

is not sensitive to the initial values used for estimation.

4 Empirical Applications

The methodology developed in this paper is motivated by the dynamic pattern of long mem-

ory behavior. Evidence has been given by many methods for such a changing covariance

behavior of the Nile river. The applications of the proposed MS-ARFIMA model to actual

data are far reaching. For that reason, we consider three data set. The first one is the

U.S. real interest rates, the second one is the Nile river data, and the third one is the U.S.

unemployment rates.

4.1 Example with real interest rates

In this subsection we first consider the U.S. ex post monthly real interest rate constructed

from monthly inflation and Treasury bill rates from January 1953 to December 1990 in

Mishkin (1990). The reason we use the original dataset of Mishkin (1990) is to employ it as

a benchmark for a clear comparison between the results from the MS-ARFIMA model and

12



Table 2. Finite sample performance of the DLV algorithm:

Initial values of parameters are set at the true values of parameters

except that of d0 is set at zero

Parameter µ1 µ2 p11 p22 σ0 d0 φ1 θ1

d0 = 0.4

T = 100 Bias -0.116 -0.122 0.010 0.017 0.009 0.188 -0.130 -0.041

RMSE 1.030 1.017 0.039 0.060 0.021 0.298 0.235 0.137

T = 200 Bias -0.093 -0.096 0.006 0.006 0.003 0.138 -0.103 -0.027

RMSE 0.979 0.979 0.028 0.025 0.015 0.238 0.193 0.087

T = 400 Bias -0.074 -0.076 0.004 0.004 0.001 0.096 -0.073 -0.013

RMSE 0.990 0.990 0.019 0.017 0.010 0.192 0.163 0.060

d0 = 0.3

T = 100 Bias -0.021 -0.034 0.010 0.017 0.012 0.186 -0.115 -0.040

RMSE 0.972 0.949 0.039 0.060 0.030 0.325 0.241 0.127

T = 200 Bias -0.046 -0.049 0.006 0.006 0.005 0.126 -0.081 -0.030

RMSE 0.936 0.937 0.028 0.025 0.021 0.261 0.212 0.086

T = 400 Bias -0.040 -0.044 0.004 0.004 0.002 0.088 -0.059 -0.016

RMSE 0.912 0.912 0.019 0.017 0.015 0.217 0.184 0.060

d0 = 0.2

T = 100 Bias -0.018 -0.038 0.009 0.016 0.014 0.195 -0.110 -0.045

RMSE 0.892 0.864 0.037 0.060 0.037 0.340 0.260 0.130

T = 200 Bias -0.036 -0.040 0.006 0.006 0.006 0.160 -0.100 -0.037

RMSE 0.804 0.801 0.028 0.025 0.024 0.294 0.238 0.087

T = 400 Bias -0.044 -0.051 0.004 0.004 0.002 0.117 -0.082 -0.018

RMSE 0.674 0.673 0.019 0.017 0.018 0.235 0.200 0.060

Notes: Simulations are based on 200 replications. The data is generated from the

mixture model defined in (15), (16) and (17). DLV algorithm is the Durbin-Levinson-

Viterbi algorithm proposed in this paper. Bias is computed as the true parameter

minus the corresponding average estimated values.
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Figure 3: Box-plots of the estimated d from the model defined in (15), (16) and (17) with 200 realizations.

The initial values of parameters are set at the true values except that of d0 is set at zero. The value f(g)

denotes the model specification where d = f and T = 100 × g.

those generated from the methodology employed in earlier papers.

The main feature of the real interest rate is that the whole dataset can be split into

three subperiods, January 1953-October 1979, November 1979-October 1982, and November

1982-December 1990, because the operating procedure of the monetary authority changed in

October 1979 and October 1982 as argued in Mishkin (1990). Another interesting feature of

the real interest rate is that the data of these three subperiods can be well described with

the ARFIMA models as shown in Tsay (2000). The simultaneous presence of structural

break and long memory within the real interest rate allows itself to be an ideal subject to be

investigated with the MS-ARFIMA model.

Allowing the break points to be endogenously determined, Table 3 contains the para-

meter estimates from the following mixture model with a 2-state Markov chain and an

ARFIMA(1, d, 1) noise:

wt = µst
I{t ≥ 1} + (1 − L)−d0σ0ztI{t ≥ 1}, (1 − φ1L)zt = (1 + θ1L)εt, (18)

where φ1 or θ1 is assumed to be zero depending on the noise specification. Following Hamilton

(1989), asymptotic standard errors are calculated numerically.

Table 3 shows that the estimates of µ1, µ2, p11, p22, σ0, and d0 from the DLV algorithm

14



Table 3. Estimates of Parameters Based on Data for U.S. Monthly Real

Interest Rate and the DLV Algorithm

ARFIMA(0, d, 0) ARFIMA(0, d, 1) ARFIMA(1, d, 0) ARFIMA(1, d, 1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

µ1 5.3455 0.7494 5.3168 0.7162 5.3116 0.7124 5.3626 0.7706

µ2 0.7226 0.4814 0.7194 0.4383 0.7184 0.4322 0.7352 0.4958

p11 0.9833 0.0150 0.9833 0.0150 0.9833 0.0150 0.9833 0.0150

p22 0.9977 0.0023 0.9977 0.0023 0.9977 0.0023 0.9977 0.0023

σ0 2.5094 0.0831 2.5091 0.0831 2.5091 0.0831 2.4979 0.0827

d0 0.2225 0.0367 0.2062 0.0520 0.2034 0.0653 0.2337 0.0376

φ1 - - - - 0.0324 0.0946 -0.9847 0.0155

θ1 - - 0.0279 0.0663 - - 0.9675 0.0200

L∗ 1079.0875 1079.0009 1078.9918 1077.0173

Notes: The results are based on the MS-ARFIMA model defined in (18). S.E. stands

for the standard error of the estimate. L∗ represents the negative of the log-likelihood

function of the switching model. DLV algorithm is the Durbin-Levinson-Viterbi

algorithm proposed in this paper.
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Figure 4: US monthly ex post real interest rates, January 1953-December 1990. Solid line denotes the path

of estimated switching means from the specification ARFIMA(0, d, 0) in Table 3, while dotted line denotes

the observed monthly ex post real interest rates.

are quite robust across all 4 different configurations. More importantly, two identical break

points are identified with these four models, thus divide the whole data into three subperiods

as suggested in Mishkin (1990). The endogenous break points identified are November 1980

and May 1986, respectively.

Figure 4 displays the U.S. monthly ex post real interest rates and the path of estimated

switching means generated from the DLV algorithm. Without loss of generality, only the

path of the estimated switching means from the specification ARFIMA(0, d, 0) in Table 3 is

reported. Figure 4 shows that the model in (18) provides a satisfactory fitting of the U.S.

monthly real interest rates. Although the endogenously identified break points are later than

the well-known monetary operating procedure change points (October 1979 and October

1982), this finding is quite reasonable, because it takes some time for the ex post real interest

rate to adjust its path after new information arrives. This argument is buttressed with the

findings in Figure 4 that the endogenously identified break points are more closely connected

to the observed path of the U.S. monthly ex post real interest rates than the monetary

operating procedure change points are.

Table 3 also shows that a long memory phenomenon is found in the real interest rate as

has been documented in Tsay (2000). Nevertheless, the estimate of the fractional differencing

parameter in Table 3 is much lower than that of 0.666 in Table 3 of Tsay (2000) where the

16



change points are exogenenously determined, and it is more in line with the estimates of

0.204, 0.275, and 0.193 from the individual subperiod data presented in Table 3 of Tsay

(2000). This implies that the persistence of long memory in the real interest rate is much

more mitigated, once we take the potentially switching mean of the data into account, thus

confirming the arguments of Diebold and Inoue (2001) that the presence of Markov-switching

level might increase the persistence of the data under investigation.

4.2 Example with Nile river data

In this subsection we apply the Viterbi algorithm to the Nile river data with the following

model:

wt = µst
I{t ≥ 1} + (1 − L)−dst σst

εtI{t ≥ 1}, (19)

where N is assumed to be 2. For the purpose of comparison, we estimate a fixed regime

ARFIMA(0, d, 0) model for the Nile river data, i.e., N = 1 is imposed on this model. The

estimated value of d from such a fixed regime ARFIMA(0, d, 0) model is 0.3986 and is almost

identical to the finding in Beran and Terrin (1996).

When estimating the model in (19) with the Viterbi algorithm, we find that the value of

the differencing parameter in Table 4 is 0.5770 (nonstationary) for one state, and is 0.2143

(stationary) for the other one. In addition, we identify 5 transitions within the Nile river

data in the year 720, 805, 815, 878, and 1070. The estimated path of dst
from the MS-

ARFIMA(0, d, 0) model in Table 4 is graphed in Figure 5.

Most impressively, the first transition data occurs in the year of 720, and the associated

estimated value of dst
within the period 622 to 719 is 0.2143 which is lower than the 0.5770

observed in the other regime. These two findings correspond closely to the conjectures in

Beran and Terrin (1996) that the observations 1 to about 100 seem to be more independent

than the subsequent observations and the value of differencing parameter might be lower for

the first 100 observations than for the subsequent data.

In Figures 6 and 7 we present the observations and the fitted values generated from

the estimated parameters displayed in Table 4. It is clear that the fitted value from the

MS-ARFIMA(0, d, 0) model is much closer to the real data than that generated from the

model whose differencing parameter is not Markov switching. Combining the findings of

the likelihood values in Table 4, we find that the MS-ARFIMA(0, d, 0) model is a promising
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Table 4. Estimates of MS-ARFIMA(0, d, 0) Model based on the Nile

River Data

MS-ARFIMA(0, d, 0) ARFIMA(0, d, 0)

Estimate S.E. Estimate S.E.

µ1 10.8593 0.6903 11.4847 0.2607

µ2 11.4939 0.0917 - -

p11 0.9930 0.0042 - -

p22 0.9918 0.0050 - -

σ1 0.5430 0.0202 0.6995 0.0192

σ2 0.8143 0.0332 - -

d1 0.5770 0.0430 0.3986 0.0309

d2 0.2143 0.0510 - -

L∗ 687.5642 703.8541

Notes: The MS-ARFIMA(0, d, 0) model is defined in (19). S.E. stands for the

standard error of the estimate based on numerical derivative. L∗ represents the

negative of the log-likelihood function of the estimated model.
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Figure 5: Estimated dst
from the MS-ARFIMA(0, d, 0) model in Table 4.

Figure 6: Solid line denotes the Nile river water level divided by 100, while dotted line denotes the corre-

sponding fitted values from the MS-ARFIMA(0, d, 0) model in Table 4.
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Figure 7: Solid line denotes the Nile river water level divided by 100, while dotted line denotes the corre-

sponding fitted values from the ARFIMA(0, d, 0) model in Table 4.

alternative to describe the Nile river data.

4.3 Example with unemployment rates

In this subsection we apply the Viterbi algorithm to the U.S. quarterly unemployment

rates rates from 1948 to 2006. This data is based on the monthly unemployment rates con-

tained in Bureau of Labour Statistics as those employed in van Dijk et al. (2002) for estimating

a fractionally integrated smooth transition autoregressive (FI-STAR) model. However, van

Dijk et al (2002) employ the original monthly unemployment rates ranging from July 1986

to December 1999, while we use all the data contained in Bureau of Labour Statistics, but

focusing on the quarterly frequency usually considered in the business cycle related studies.

As clearly argued in van Dijk et al. (2002) and shown in Figure 8, there are two important

empirical features of U.S. unemployment rates, i.e., the shocks to the series is quite persistent

and the series seem to rise faster during recessions than it falls during expansions. van Dijk et

al. (2002) find that the estimated d is 0.43 from a FI-STAR model presented in their Table 1.

This implies that a time series model describing long memory and nonlinearity simultaneously

may be useful for modeling U.S. unemployment rates and many other applications.

The aforementioned two features contained in U.S. unemployment also provide another

good opportunity to test the applicability of the MS-ARFIMA model. As a consequence

we estimate the U.S. quarterly unemployment rates with the following MS-ARFIMA(p, d, 0)
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Figure 8: U.S. quarterly seasonally adjusted unemployment rates, 1948-2006.

model:

wt = µst
I{t ≥ 1} + (1 − L)−dst σst

φ(B)−1εtI{t ≥ 1}, (20)

where N is assumed to be 2, and p = {3, 4}. The choice of p = 4 is adopted by following

the model specification in (30) of van Dijk et al (2002), while p = 3 is chosen to check the

robustness of the estimation results from the specification p = 4. The major objective of this

subsection is to investigate whether the long memory observed in van Dijk et al. (2002) can

also be retained from the MS-ARFIMA methodology.

When estimating the model in (20) with the Viterbi algorithm, we find that the values

of the estimated fractional differencing parameter from both MS-ARFIMA(3, d, 0) and MS-

ARFIMA(4, d, 0) models in Table 5 are very close to that found in van Dijk et al. (2002), thus

confirming that long memory phenomenon seems to be present in the U.S. unemployment

rates. For clarity of exposition, the estimated path of dst
from the MS-ARFIMA(3, d, 0)

model and that of dst
from the MS-ARFIMA(4, d, 0) one are graphed in Figure 9 and Figure

10, respectively. These figures clearly show that dst
are around 0.4-0.5 for both regimes

estimated in each MS-ARFIMA(p, d, 0) model in Table 5.

We also check to what extent the fitted values generated from the models in Table 5 can

capture the feature of U.S. unemployment rates. This task is not taken in van Dijk et al.

(2002) when estimating their FI-STAR model for the U.S. monthly unemployment rates. It

is interesting to find in Figure 11 and Figure 12 that the MS-ARFIMA(p, d, 0) model in (20)
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Table 5. Estimates of MS-ARFIMA(p, d, 0) Model based on the U.S.

quarterly unemployment rates

MS-ARFIMA(3, d, 0) MS-ARFIMA(4, d, 0)

Estimate S.E. Estimate S.E.

µ1 3.8080 0.1552 3.4572 0.3711

µ2 5.1358 0.4403 3.8254 0.3334

p11 0.9939 0.0067 0.9877 0.0093

p22 0.9896 0.0083 0.9867 0.0101

σ1 0.1973 0.0135 0.1535 0.0101

σ2 0.3380 0.0206 0.3921 0.0274

d1 0.4919 0.1215 0.4429 0.0987

d2 0.4143 0.1337 0.4342 0.1058

φ1 1.2570 0.1415 1.1325 0.1215

φ2 -0.3822 0.1510 -0.2301 0.1239

φ3 -0.0666 0.0788 -0.0141 0.1053

φ4 - - -0.0495 0.0712

L∗ 36.1377 14.7662

Notes: The results are based on the MS-ARFIMA(p, d, 0) model defined in (20).

S.E. stands for the standard error of the estimate based on numerical derivative.

L∗ represents the negative of the log-likelihood function of the estimated model.
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Figure 9: Estimated dst
from the MS-ARFIMA(3, d, 0) model in Table 5.

Figure 10: Estimated dst
from the MS-ARFIMA(4, d, 0) model in Table 5.
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Figure 11: Solid line denotes the U.S. quarterly seasonally adjusted unemployment rates (1948-2006), while

dotted line denotes the corresponding fitted values from the MS-ARFIMA(3, d, 0) model in Table 5.

provides a reasonable fit to the data, even though we do not include some seasonal control

variables, like seasonal difference operator, as van Dijk et al. (2002) have done for their

empirical studies.

5 Conclusions

A general class of MS-ARFIMA processes is suggested to combine long memory and Markov-

switching models into one unified framework. The coverage of this class of MS-ARFIMA

models is far-reaching, but we show that they still can be easily estimated with the original

Viterbi algorithm or the DLV algorithm proposed in this paper. In addition, the simulation

reveals that the finite sample performance of the DLV algorithm for a simple mixture model

of Markov-switching mean and ARFIMA(1, d, 1) process is satisfactory. When applying the

MS-ARFIMA models to the U.S. real interest rates, the Nile river level, and the U.S. unem-

ployment rates, the estimation results are both highly compatible with the conjectures made

in the literature. Accordingly, the MS-ARFIMA model considered in this paper not only can

be used for solving the puzzle raised by Diebold and Inoue (2001), but can also find many

potential applications in several scientific research fields.
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Figure 12: Solid line denotes the U.S. quarterly seasonally adjusted unemployment rates (1948-2006), while

dotted line denotes the corresponding fitted values from the MS-ARFIMA(4, d, 0) model in Table 5.
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