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A B S T R A C T

Spatially explicit global cropping system data products, which provide critical information on harvested areas,
crop yields, and other management variables, are imperative to tackle current grand challenges such as global
food security and climate change. These cropping system datasets are also very useful for researchers as they can
support various scientific analyses in research projects. Yet, effectively searching, navigating, and fully under-
standing various global datasets can be a daunting task for researchers and policy analysts. In this review, we first
compare a few selected global data products, which use crop census and statistical data as the main data source,
and identify key problems and challenges of the global crop mapping such as data accuracy and consistency. We
then pointed out the future perspectives and directions in further improving the global cropping data products.
Collective mechanisms and efforts with the support of open-access data hosting platforms, standard protocols, and
consistent financial support are necessary to produce high-quality datasets for researchers, practitioners, and
policymakers. Moreover, machine learning and data fusion approaches can also be further explored in future
mapping exercises.
1. Introduction

Agriculture has provided livelihood and fed the world for thousands
of years, and agricultural activities have dramatically transformed the
biosphere in terms of land-use change, freshwater withdrawal, nitrogen
cycle (e.g. fertilizer use in agriculture), and biodiversity loss. Agriculture
is thus at the heart of a few intertwined global challenges such as food
security, climate change, poverty reduction, environment and ecosystem
protection, and biodiversity preservation. Providing enough food for the
seven billion people on the planet and at the same time reducing the
harmful effects of agricultural production are some of the biggest chal-
lenges in the 21st century (Foley et al., 2011). Currently, 9% of the world
population i.e. around 700 million people are suffering severe food
insecurity, despite more than enough food having been produced for
everyone worldwide (Anderson et al., 2015; Roser and Ritchie, 2019).
Agriculture plays a direct role in achieving the second Sustainable
Development Goal (SDG 2), Zero Hunger, which seeks to simultaneously
address food security challenges and global environmental sustainability
(Blesh et al., 2019).
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In the future, agriculture needs to produce more to meet the ever-
increasing food demand, which is expected to be doubled by 2050 due
to the rising population and, more importantly, the shifts in consumption
patterns from a diet higher in starchy foods to one that is richer in pro-
tein, including meats and dairy products—which demand more land to
produce—as the affluence increases. Up to 1.3 billion people may be at
risk of food insecurity including undernutrition and malnutrition in 2050
in present low-income economies, if they fail to increase agricultural
productivity, secure enough croplands for food production instead of
renewable energy, and/or imports from other countries (Baldos and
Hertel, 2014; Fader et al., 2013).

On the other hand, agriculture and associated land use and land cover
change, e.g. deforestation, contributed over 20% of the global carbon
emission (Tubiello et al., 2015). Agriculture is now a major driver behind
many environmental threats, and it is a major force driving the envi-
ronment beyond the ‘‘planetary boundaries” (Foley et al., 2011; Rock-
str€om et al., 2009). This means that the increase of food production also
needs to be sustainable and not at the cost of the environment, i.e.
mitigating carbon emission and protecting soil and water resources. At
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1 http://www.fao.org/ag/agl/aglw/aquastat/irrigation map/index.stm.
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the same time, agricultural production, which is sensitive to weather
conditions, namely precipitation, temperature, and natural extreme
weather events (e.g. droughts and floods) has been witnessed the adverse
effects of the changing climate (Fischer et al., 2005).

Facing all of these challenges, we need good data and information to
provide more responsive and evidence-based analysis on interrelated
aspects of improving the use and allocation of resources across food,
land, water, energy, and environment. Data, in particular spatially
explicit data on the scale and intensity of agricultural and pastoral sys-
tems are essentially the first order of business in the identification of
priority land use information for policy-relevant research. This infor-
mation is essential as a starting point for beginning to understand land
use patterns in a way that is meaningful from a quantitative, analytical
perspective. The design of policy mechanisms for reducing poverty and
vulnerability is dependent on targeting rural economies and populations,
and particularly in stimulating agricultural growth. The efficacy of any
plans developed along these lines is dependent upon knowing where and
how agriculture is practiced. Cropland, which refers to the land area that
is arable and under permanent crops according to the Food and Agri-
culture Organization (FAO) of the United Nations, takes about 1.6 billion
hectares of land, accounting for 12% of the earth's terrestrial surface
(FAOSTAT, 2021). Croplands are the basis for food production and
supply over 90% of all food calories (Kastner et al., 2012). While we have
relatively good data on the cropland distribution, the data on the crop
types, yields, and management at fine resolution and global scale are still
lacking. Data on agricultural production (i.e. harvested area, production
quantity, and yield) are usually collected and reported at national and
sub-national geo-political boundaries (e.g. provinces and districts), but
this level of statistics does not give a sense of the diversity and spatial
patterns in agricultural production and is not spatially explicit which is
critical for many environmental and biophysical models. These data gaps
undermine our efforts in addressing the grand challenges, e.g. food se-
curity (Annan, 2018). Thus, there is pressing demand in creating
well-suited global gridded cropping systems data products with adequate
resolutions, both spatial and temporal resolutions, and with areas, yields,
and, even better, management variables of multiple major crops.

Despite the importance and necessity of geospatial data on cropping
systems, information on the distribution and performance of specific
crops is often available only through national or sub-national statistics.
There are some attempts to produce global crop maps. SPAM2000 pro-
duces the first global crop distribution for 20 major crops for the year
circa 2000 (You et al., 2014). Besides International Food Policy Research
Institute (IFPRI), there are three other independent efforts to incorporate
the detailed information available from statistical surveys with supple-
mental spatial information to produce a spatially explicit global dataset
specific to individual crops for the year 2000. These global studies have
been reported by Fischer et al. (2013), Monfreda et al. (2008), and
Portmann et al. (2010). Anderson et al. (2015) compared all the four
global cropping system models (including SPAM) and found that there
are substantial differences among the model results. The recent rapid
increase in public availability of fine to moderate resolution satellite
imagery, namely from the Landsat OLI and Copernicus Sentinel-1 and
Sentinel-2 sensors, provides a unique opportunity to improve cropping
system datasets. And yet the applying at a global scale at individual crop
types remains a challenge.

Kim et al. (2021) recently conducted a systematic and comprehensive
review on the global gridded cropping system data products, including
global and regional data products; multiple-crops and single crop (e.g.
only rice) products; datasets including multiple variables such as area,
yields; and intensity and datasets with a single variable (e.g. only yield);
and census-based datasets and remote sensing and other source-based
datasets. The review gave a sweeping overview of the literature and
datasets in the mapping of global cropping systems. While the review
covered a broad range of data products, the analysis and comparison are
understandably lack in-depth assessment on the particular type of data
products given the wide disparity of various data products.
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Herewebuildupon this reviewand focuson theglobal griddedcropping
systemdataproducts thatareglobal scale,mainlyusedcensus and statistical
data as inputs, and covering multiple crops. The global scale multi-crops
datasets, reflecting the spatial distribution and heterogeneity of the
various crop productions, are particularly imperative to study the cross-
regional interactions such as the tele-coupling of the world food systems
(Levers and Müller, 2019), the spatial decoupling of the food production
and consumption (Fader et al., 2013), and long-term interactions between
crop production and climate change (e.g. Sacks et al., 2010). Compared to
remote sensing-based global products, the statistical data-based products
can provide much richer information on the crop types and more accurate
yields. In addition, the farm management data (e.g. fertilizer inputs) and
socioeconomic data (e.g. population and income) coming with the statis-
tical data are relatively easy to be incorporated and combined for further
in-depth analysis. Multiple crop type classification over a large geographic
extent remains a challenge for remote sensing-based approaches, particu-
larly for smallholder farming where land is quite fragmented and cropping
is complex (Anderson et al., 2015; Song et al., 2017).

This review thus looks into the evolution of the census-based global
cropping system mapping by comparing a few key datasets, identifies
existing problems and challenges, and points out the future directions of
this line of research. We only focus on crops, while livestock, forestry,
grassland, etc. are not included. In the following sections, we first review
the existing efforts of global crop mapping, then we describe the current
state of the artin global cropping maps. In Section 3, we look into the
existing weakness and shortcomings of the crop mapping products,
briefly discuss the challenges. In Section 4, we point out the opportunities
and future perspectives in global cropping system mapping. Finally, we
end the paper with a conclusion section.

2. Current status of global census-based cropping system
mapping

Recent studies have generated increasingly sophisticated results
portraying the down-scaling of crop production statistics or agricultural
census data across regional and global extents at a moderately high
spatial resolution. Here we focus on three major global datasets: M3
(Monfreda et al., 2008), MIRCA (Portmann et al., 2010), and spatial
production allocation model (SPAM) (You et al., 2014). We briefly
describe the input data and methods underpinning these studies and
attempt to summarize and compare their key attributes as well as their
likely strengths and weaknesses with regard to the range of applications
to which their results may be applied.

LRF (Leff et al., 2004) synthesized satellite-derived land cover data
and agricultural census data worldwide. Then LRF further allocated the
18 major crops to a global 5 Arc minute grid using simply the share of the
harvested area of each of the 18 crops in the statistics reporting unit.
After masking non-cropland areas and applying a smoothing algorithm to
correct for abrupt and arbitrary changes across administrative bound-
aries, LRF intersected the resulting proportions of individual crops with a
global cropland distribution data set (Ramankutty and Foley, 1998) to
obtain an assessment of the per-pixel proportion of each of the crops
within the cropland extent. Ramankutty et al. (2008) further improved
on this work and developed a Year 2000 global land cover data set for
croplands and pasture on a 5 arc minute spatial resolution by combining
agricultural land use inventory data and land cover imagery and, in a
companion paper(Monfreda et al., 2008), the development of the M3
dataset was described using pixel-level cropland area shares as weights to
distribute administrative crop statistics into pixels for the year 2000
(harvested) of 175 distinct crops of the world (Monfreda et al., 2008). By
combining work from Ramankutty et al. (2008), LRF and the global map
of irrigation areas (GMIA),1 MIRCA produced a global monthly growing
areas distributions of 26 irrigated crops on the same 5 arc minute grid.

http://www.fao.org/ag/agl/aglw/aquastat/irrigation%20map/index.stm
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While the primary focus of past downscaling efforts has been to assess
the spatial distribution of crops at the mesoscale or landscape scale (all
used a spatial resolution of 5 arc minutes), uniquely SPAM goes further in
a number of ways. First, SPAM concerns not just with the distribution of
crop production, but also with how crops are grown, the specific farming
or production systems. Crop yields, the intensity of input use, and the
potential for unintended environmental consequences (externalities) of
production are quite different between rainfed and irrigated production
systems, and between commercially oriented and subsistence producers
within the rainfed systems. Second, SPAM relies on an additional
collection of sub-national statistical data with a special focus on devel-
oping countries. Third, the SPAM model relies on using further ancillary
information including crop prices, population density (CIESIN, IFPRI and
WRI, 2004) and crop-specific biophysical suitability (Fischer et al., 2010)
to distribute sub-national statistics within the cropland extent (Ram-
ankutty et al., 2008) based on a method known as cross entropy (Golan
et al., 1996).

All three datasets draw on the Sustainability and the Global Envi-
ronment (SAGE) data source (Ramankutty et al., 2008) to define the
distribution and area intensity of cropland, and MIRCA and SPAM
datasets that distinguish between rainfed and irrigated cultivation draw
in the same GMIA (Siebert et al., 2005) to assess the irrigated portion of
the crop production. All three models used the FAOSTAT data to provide
national totals for cropland area, and the harvested area and average
yields of individual crops, while also making great efforts to collect
sub-national crop statistics to the lowest admninistrative level as possible
(e.g. up to the third sub-national administrative unit). Since MIRCA used
M3 to provide its input data on the spatial allocation of the total area and
average yield, it relies initially on the same sources of subnational crop
statistics. SPAM relies on a separate collection of sub-national statistical
data sources, focusing on increased coverage in African and Asian
countries, although both draw from the FAO Agro-MAPS data source
(http://kids.fao.org/agromaps/). MIRCA and SPAM both use FAO's
AQUASTAT and global map of irrigated area (GMIA) for identifying
crop-specific irrigation extents and practices, but MIRCA relies on a more
complete collection of national/sub-national crop calendars and crop-
ping intensities to produce monthly and not annual crop distribution
maps. Because the SPAM approach attempts further disaggregation of its
rainfed production into commercial and subsistence categories (beyond
Fig. 1. A diagrammatic comparison of global gridded crop production datasets 2000.
et al. (2014). Data products: No. of crops � No. of systems � No. of attributes � No
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the irrigated production), it needs additional sets of input data. These
include crop-specific area shares and yield differences amongst irrigated
production and large-scale/commercial and smallholder rainfed pro-
duction, the spatial differences in the biophysical suitability of individual
crops for irrigated and rainfed (commercial and subsistence) production,
and the spatial patterns of population density as well as crop prices.

The scope, approach, and results of the M3, MIRCA, and SPAM ini-
tiatives are summarized in Fig. 1 and Table 1. In broad terms, the M3
approach covers the most complete coverage of crops (a total of 175
crops including tree and forage crops and managed grasslands) including
both harvested area and yield. MIRCA downscales 26 crops each divided
into rainfed and irrigated production areas, as well as two aggregate
categories of “other annual” and “other perennial” crops. Furthermore,
MIRCA, unique amongst the three approaches, applied a temporal
downscaling to estimate rainfed and irrigated area bymonth. SPAM 2000
has the most limited crop coverage, just 20 crops (and an “other crops”
category), but SPAM downscales the area and yield of each crop into
three different production systems: irrigated, commercial rainfed, and
subsistence rainfed.

Table 1 summarizes key features of both the granularity of input data
and methodological details of the three approaches. The major de-
terminants of the accuracy and reliability of downscaling efforts are (1)
the quality of the cropland extent indicating the physical extent and area
intensity of cropland, and (2) the spatial resolution and reliability of the
sub-national crop statistics. Since all approaches rely on the same crop-
land dataset (Ramankutty et al., 2008), a primary difference between M3
and MIRCA on the one hand and SPAM on the other lies in the collection
of sub-national production statistics used as input data. M3 has a total of
22106 statistical reporting units globally, of which 56 were national,
2299 were first level sub-national disaggregation (e.g. US state level),
and 19751 were second level (e.g. US county level) reporting units.
SPAM has 24507 statistical units, of which 251 were national level, 2758
were the first sub-national level, and 21498 were the second sub-national
level. SPAM focused its data collection efforts particularly in developing
countries. For example, in Africa SPAM used 4150 second-level statistical
reporting units, while M3 has only 300 second-level statistical reporting
units. MIRCA took M3 downscaled crop data results as its starting point
for allocating the total harvested area for each crop into rainfed and
irrigated areas. MIRCA team collected detailed information on crop
Note: M3 – Monfreda et al. (2008), MIRCA –Portmann et al. (2010), SPAM – You
. of products per year.

http://kids.fao.org/agromaps/


Table 1
Comparison of major global gridded crop data products.

Feature M3 MIRCA SPAM

Statistical Reporting/
Inventory Units
(SRU)a

22106 (56-2299-19751)a 402 (calendar units) 24507 (251-2758-21498)a

Cropland extent/Area
intensity sources

SAGE/Ramankutty SAGE/Ramankutty
GMIA (Siebert)

SAGE/Ramankutty

Irrigated extent/Area
intensity source

n/a GMIA (Siebert)
(and M3 crop distribution)

GMIA (Siebert)

Cropping calendars/
Cropping intensity

n/a Assembled by MIRCA team Assembled by SPAM team (for all systems)

Crop-specific area
downscaling

Crop-specific share of pixel
cropland area¼ crop area share
of total SRU cropland

In proportion to share of irrigated/rainfed crop area
in calendar unit (cu) and as f (cropping intensity by
cu, and M3 total crop area allocation by pixel)

Crop systems-specific share of pixel cropland area¼ f (system
share of SRU crop production, pixel system-specific area and
yield potential, SRU crop value/ha j all SRU pixel values)

Allocation algorithm Crop by crop Crop by crop All crops simultaneously

Yield downscaling Reported SRU crop yield
assigned uniformly to all
downscaled crop area in SRU

n/a Yields vary by system and by pixel in proportion to potential
system yield, scaled and area weighted to derive reported SRU
yield

Data and methods

Note: M3 – Monfreda et al. (2008), MIRCA –Portmann et al. (2010), SPAM – You et al. (2014).
a SRU format: (C - 1–2) C - Country-level only, 1 - 1st level admin units, 2 – 2nd level admin units.
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calendars, cropping intensities, irrigation, and crop water use. Within
each calendar unit the grid cell level apportioning of total crop area into
irrigated and rainfed shares, and further into monthly area allocations
were made according to these unit-specific data sources. As a source of
irrigated areas globally both MIRCA and SPAM used the GMIA Ver 4.0
released in 2007 (Siebert et al., 2005), but the MIRCA and SPAM teams
compiled information in the national and sub-national shares of different
production systems and cropping intensities independently.

Perhaps the most important methodological differences among M3,
MIRCA, and SPAM are in the approaches used to downscale statistical
data reported at the administrative unit level into gridcell specific values.
M3 uses the most straightforward method. It allocates the total harvested
area into each gridcell within the statistical reporting unit using the same
proportion of that gridcell cropland area. Crop yield in each grid cell is
assigned as being the same as the yield reported for the statistical unit on
average. This approach implicitly assumes both environmental condi-
tions and production systems are homogeneous across the cropland ex-
tents of each statistical reporting unit, making no allowance for local
variation in temperature, rainfall, and soil condition. This approach does
not, furthermore, acknowledge the very significant differences between
the yield levels of irrigated and rainfed production systems, nor of
commercial and smallholder producers within these sometimes large and
highly diverse statistical reporting units. MIRCA deals only with the
harvested area and essentially uses the relative share of rainfed and
irrigated cropland within each grid cell to break out M3 total crop areas
into gridcell specific rainfed and irrigated areas (Anderson et al., 2015).

With regard to more recent data products, unfortunately, only SPAM
team has continued their effort after producing global crop maps for the
year 2000. They expanded their crop coverage to more than 40 crops and
covered over 90% of all crop productions in the world. The SPAM team
has produced global crop maps for 2005, 2010, and 2017 (for Africa
only) so far. The datasets are open access on a dedicated website www
.mapspam.info (Yu et al., 2020).

3. Existing problems and challenges

Over the years, the global cropping system data products have made
remarkable progress in various perspectives, including the number of
crops covered and the accuracy of the spatial downscaling. Yet, many
71
problems and shortcomings can also be found in the current data prod-
ucts, which hinder the quality and applications of these data products.

First, most data products on global cropping systems are merely
snapshots, e.g. the year 2000 of the global cropping systems. As afore-
noted, only SPAM has been updated quasi-regularly. This is because the
global crop system mapping still relies on official agricultural statistics.
For many developing countries particularly African countries, agricul-
tural production statistics even for key staple crops come out late and are
problematic, if they exist at all. This lack of timely and reliable infor-
mation on production volumes impedes food-crisis relief efforts, perfor-
mance, and accentuates seasonal price volatility. Timely crop
informationwill producemore effective responses to food crises, superior
food and agricultural policies, a more informed citizenry, and more
efficient commodity pricing. Lack of prospects for regular updates also
erodes the trust and confidence in regular users.

Second, both spatial and temporal resolutions can be improved.
While 5 arc minute spatial resolution can reasonably support the global-
scale analysis, it is not enough in many regional-scale analyses. As for
temporal resolutions, even SPAM data produce every few years, mostly
at a five-year interval. Many applications, for example, in climate
change impacts analysis, requires annual or even monthly time reso-
lution (e.g. Portmann et al., 2010). Without long- or medium-term
annual datasets, applications are confined.

Third, most existing global cropping systems data can well reflect the
spatial distribution and patterns of crops and their yields. But the data ac-
curacy largely depends on the input data sources, i.e. the crop census and
statistical data, which is known to be inconsistent and inaccurate. Tomake
thingsworse, the statistical dataare essentially collectedonanational basis.
Thatmeans thedataqualityand standardvarycountrybycountry.Thus, the
data uncertainty is difficult to quantify. And inmost cases, there are no data
uncertainty assessment and systematic validation at all. Like any models,
the results should ideally be validated by a systematic evaluation, however,
no product could do such an evaluation because we simply don't know the
true spatial distribution of crops at a global scale. Instead each product did
some partial validation. For example, SPAM and M3 used additional
regional level crop area information to do partial verification. All of them
claim that they get feedback and comments from data users. SPAM keeps
updating their product once feedbacks are available, and released updated
products using different versions of SPAM (e.g. SPAM 2000 Version 2.03).

http://www.mapspam.info
http://www.mapspam.info
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This may lead to the “garbage in, garbage out” symptoms of many data
products.Researcherswhoare using these dataproducts shouldbeawareof
the potential problems of data quality and potential biases resulting from
limitations in data availability and quality.

Fourth, most of these cropping system data products were produced
independently by a few groups. Although there are loose communica-
tions and collaborations among the teams, the data processing and pro-
duction were carried out by individual team. Even the input data sources
are the same, the results, due to the disparity of methods in spatial
allocation, can be very different. Collective efforts are still largely
lacking.

The reasons behind these problems are manifolds. Global data pro-
duction requires enormous resources, such as financial support, human
resources, computation infrastructure, etc. Most team members are re-
searchers, who usually cannot afford to spend years of effort or simply do
not have the long-term financial support to constantly produce and up-
date the global datasets. The good-quality input data, mainly the national
and sub-national statistical data, on a global or continental extent are
extremely difficult to attain. And many inputs datasets lack reliable data
quality assurance and uncertainty assessment. Little can be done from the
producing team perspective. All these challenges are holding back the
progress of the global cropping system mapping.

4. Opportunities and future perspectives

Having identified the existing weaknesses of the existing global data
products of cropping systems and various challenges, we would also like
to point out the looming and forthcoming opportunities, which include
the increasing availability of data, noticeably the remote sensing data,
the rapid development of computational infrastructure (e.g. affordable
cloud storage and computation resources), the trending methods in
artificial intelligence (e.g. machine learning), and the sprouting organi-
zation platforms (e.g. data alliance, for example, data.org) driven the
increasing awareness and demand of the importance of the global crop-
ping system data. Recently some quite good global, regional or national
datasets on cropping intensity, crop phenology, and harvest areas have
been published in peer-reviewed journals (e.g. Song et al., 2017; Zhang
et al., 2021). All of these new developments provide opportunities for
future efforts in producing better global cropping systems data products.
Innovations in satellite-based remote sensing present opportunities to
access more agricultural production data than ever before. The recent
rapid increase in public availability of fine to moderate resolution sat-
ellite imagery, namely from the Landsat (US NASA) and Copernicus
Sentinel-1 and Sentinel-2 sensors (European Space Agency), provides a
unique opportunity to improve agricultural production information. New
technologies–such as high-resolution photography, unmanned aerial
vehicles (UAVs), robust and low-cost solar-powered sensors, rapidly
expanding cellular phone networks, combined with machine learning
algorithms and vast data processing power–present enormous opportu-
nities to collect data on agricultural production. At the same time, there
has been remarkable progress in utilizing satellite-based production es-
timates in countries such as the United States, though these advances
have not translated to less food-secure regions of the world.

Second, global data products on cropping systems need to shift focus
on the developing countries, such as Africa. These regions face extreme
challenges in food security and high-quality data on crops will greatly
help the fight of alleviation of poverty and undernutrition and malnu-
trition in these regions. However, the data quality in these regions are
particularly questionable. There is a pressing need to fill the gaps. In
these regions, most production is from smallholder farms with diverse
farming practices and widespread intercropping and sequential cropping
(Annan, 2018). It is harder to estimate crop areas and yields in these
spatially and temporally heterogeneous areas. Moreover, limited use of
fertilizer, irrigation, and pesticides often results in large differences be-
tween actual and potential yields. Crop performance models need to be
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able to capture these biophysical constraints on crop growth, and their
complex and non-linear relationships.

Improving agricultural production information in low-income coun-
tries will require not only better utilization of satellite and on-the-ground
technologies, but also strong partnerships with local research institutions
and governments to ensure that this information is accurate and useful.
The aim is to build flexible, practical, locally-adapted, robust, sustain-
able, and low-cost systems that dramatically improve production esti-
mates in developing countries. This publicly-led data revolution for
agriculture will have widespread benefits, particularly for poor people,
and is a vital means for achieving the Sustainable Development Goals
(SDGs).

Third, big data analysis and machine learning algorithms are prom-
ising tools for data processing, particularly on the spatial downscaling
stage, during the production of global cropping systems data. All these
new emerging methods can complement the current spatial analysis and
entropy-based methods to improve the accuracy of the data downscaling.
The rapid availability of multiple data sources makes these approaches
even more appealing.

Fourth, we call for collective efforts to jointly produce high-quality
and comprehensive cropping datasets. For that, an open-access plat-
form that enables broad collaboration from researchers and even other
non-academic partners, to work together to share and produce global
cropping system data. The platform can draw experiences and in-
spirations from some existing platforms, for example, the Center for
SAGE, and the Global Open Data for Agriculture and Nutrition (GODAN)
initiative (Musker and Schaap, 2018). FAIR principles (Findable, Acces-
sible, Interoperable, and Reusable) should be applied for the open plat-
form. A GitHub-like platform for data producing, instead of collaborative
coding, can be very useful to keep the continuous data production and
ensure the data quality. A current attempt under this concept has been
launched, i.e. Land Use Change Knowledge Information Network
(LUCKiNet, www.luckinet.org), led by the German Centre for Integrative
Biodiversity Research (iDiv) with a consortium of researchers from 12
countries on 4 continents. They are developing a new system–a collab-
orative, open-science infrastructure linking various input data streams
with analytical pipelines for the continuous production, periodic updat-
ing, dynamic improvement, and free online delivery of gridded land-use
data products. These next-generation data products will be broad in
scope, high in detail, interoperable, quality-assured, and fit-for-purpose.
With a recent initiative to develop a 25-year time series of global maps of
multiple state variables that together represent the three dominant
land-use classes (i.e. cropping, grazing, and forestry), the first steps to-
wards realizing this vision have now been taken. Collaborative work-
flows to enable iterative improvements of data products and make the
data alive. A working group focusing on global cropping systems could be
established. A complete open platform allowing broader participation
under the defined protocol and standard might be the ultimate solution
for producing high-quality and timely global cropping system data.

5. Conclusion

Global cropping system data, providing critical information on areas
and yield of crop cultivation, is imperative in tackling current grand
challenges, such as global food security, climate change, environmental
protection, and ecosystem conservation. Despite the increasing number
of global and regional products have been available, many problems and
challenges remain. The quality of global cropping system data is still
questionable and not consistent across space. Agricultural census data,
the main ingredients for crop mapping, are not produced in consistent
ways and thus not comparable from country to country, and year to year.
The assumptions and method in spatially allocating the crops have sig-
nificant room to be improved. At the same time, increasing availability of
the observation data and statistical data on fine spatial and temporal
resolution, development of big data analysis methods, and computation

http://data.org
http://www.luckinet.org
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infrastructure provide unique opportunities for global crop system
mapping. Thus, we call for collective efforts under a transparent and
standard protocol to produce and gradually improve high-quality and
public available global cropping system dataset in contributing to the
achievement of the sustainable development goals.
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