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Abstract

We study liquidity provision by competitive high-frequency trading firms (HFTs)
in a dynamic trading model with private information. Liquidity providers face
adverse selection risk from trading with privately informed investors and from
trading with other HFTs that engage in latency arbitrage upon public informa-
tion. The impact of the two different sources of risk depends on the details of
the market design. We determine equilibrium transaction costs in continuous
limit order book (CLOB) markets and under frequent batch auctions (FBA). In
the absence of informed trading, FBA dominates CLOB just as in Budish et al.
(2015). Surprisingly, this result does no longer hold with privately informed
investors. We show that FBA allows liquidity providers to charge markups and
earn profits – even under risk neutrality and perfect competition. A slight vari-
ation of the FBA design removes the inefficiency by allowing traders to submit
orders conditional on auction excess demand.
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1 Introduction and Related Literature
In modern financial markets, highly correlated securities are traded on multiple finan-
cial exchanges. This fragmentation has been fostered by regulation both in the US
(Reg NMS, 2005) and the EU (MiFID, 2004; MiFID II & MiFIR, 2014) in order to
stimulate competition among trading venues. Prices remain aligned across exchanges
by two mechanisms: Either by liquidity providers updating their limit prices or by
high-frequency trading firms (HFTs) performing latency arbitrage. Latency arbitrage
can be referred to as the practice of exploiting a time disparity in order execution
(e.g. due to differences in trading technologies). When some market participants have
speed advantages over liquidity providers, they can profitably trade on mispricings in
prevailing bid-ask quotes, thereby bringing back prices to their “fundamental value”.
Latency arbitrage, however, imposes an additional adverse selection risk on liquidity
providers, as shown by Budish et al. (2015) and Foucault et al. (2003, 2013, 2017).
When prices on some exchanges respond to information more quickly, prices on other
exchanges become stale. While liquidity providers try to adjust their prices, other
HFTs try to “snipe” the old quotes before the adjustment, thereby earning arbitrage
rents. In equilibrium, liquidity providers take this adverse selection risk into account
and quote wider spreads, leading to increased transaction costs for investors. The
risks of liquidity provision – and thus bid-ask spreads – are highly sensitive to the
market microstructure, i.e. to the rules by which traders interact on the market.1

The currently predominant design of financial markets is the continuous limit order
book (CLOB) setup, also known as continuous double auction. Under CLOB, finan-
cial exchanges process orders serially, in the order of receipt. Therefore, only the
fastest traders get to transact or update their quotes, inducing a potentially wasteful
arms race for trading speed (Budish et al., 2015). Both economists and practition-
ers have proposed alternative market designs intended to prevent latency arbitrage.
One such alternative is the frequent batch auction (FBA) market design, raised by
policy makers (Farmer and Skouras, 2012) and academics (Budish et al., 2015). The
idea of FBA is to depart from continuous trading and to introduce periodic market
clearing with uniform price double auctions. Budish et al. (2015) propose a trading
model populated by noise traders and trading firms, the latter sorting into liquidity
providers and stale-quote snipers. The authors show that FBA can mitigate arbitrage

1Readers interested in a broader literature review on market microstructure may consult O’Hara
(1995, 2015), Madhavan (2000), Harris (2003), or Biais, Glosten, and Spatt (2005).
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considerably. Once all firms have access to the same speed technology, stale-quote
sniping is eliminated entirely and competitive liquidity providers quote efficient prices
at zero bid-ask spreads.

Evidence for the positive welfare effects of batch auctions in financial markets is
mounting. Wah and Wellman (2016) and Wah et al. (2016) present simulations of
agent-based trading models where FBA leads to lower transaction costs than CLOB.
Menkveld and Zoican (2017) argue that slower trading leads to fewer trades among
HFTs which decreases adverse selection and thus spreads. Baldauf and Mollner (2020)
point out an important trade-off between liquidity provision and price discovery; they
find that FBA implements outcomes on the “efficient frontier” of that trade-off while
CLOB does not. Aldrich and López Vargas (2020) conduct a series of laboratory
experiments confirming that FBA leads to lower transaction costs than CLOB. On
the empirical side, Riccò and Wang (2020) analyze the transition from FBA to CLOB
on the Taiwan Stock Exchange in March 2020 and find that FBA had lower spreads
(and lower trading volume). Ibikunle and Zhang (2021) use data on UK-listed stocks
and find that an increase in latency arbitrage is associated with a rise in FBA volume;
the authors interpret this as sub-second periodic auctions providing a “safe haven”
for slower traders. Besides lower spreads, auctions might have additional advantages.
There is an older literature on not-so-frequent batch auctions showing that these
can improve market quality, particularly information aggregation and price efficiency
(Madhavan, 1992; Economides and Schwartz, 1995; Kandel et al., 2012; Pagano and
Schwartz, 2003; Pagano et al., 2013). In a more recent paper, Jagannathan (2020)
shows that batch auctions have the potential to dampen shocks and crashes.

Despite their potential advantages, frequent batch auctions do not seem to have caught
on.2 Budish et al. (2020) argue that financial exchanges themselves profit from the
speed race by selling speed technology such as fast data feeds and co-location services
and therefore have little incentive to change their market design. Other academics
point out that FBA might come with some disadvantages as well. Du and Zhu (2017)
present a periodic auction model with volatile private information, inventory costs
and fully strategic traders. In equilibrium traders engage in “demand reduction”,

2According to Securities and Authority (2019), periodic auctions in European trading venues
only account for around 1.5% of total trading volume as of January 2019. European venues with
periodic auction designs include Cboe Periodic Auctions (accounting for roughly 70% of periodic
auction volume in Europe), ITG POSIT Auction, Nasdaq Auction on Demand, Turquoise Uncross,
Turquoise Lit Auctions, UBS MTF, GS Sigma-X MTF and MS MTF.
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leading to an important trade-off: Fast trading (many auctions per time) allows quick
asset reallocation due to news, but quoting in each auction is inefficient. The authors
estimate the optimal trading frequency to be in the range of a couple of auctions per
second. Fricke and Gerig (2018) show that risk-averse traders suffer from increased
execution uncertainty in FBA. Using U.S. data they estimate the optimal batch fre-
quency to be about half a second. Similarly, Bellia et al. (2020) argue that the lack
of immediate execution in FBA might reduce participation of HFTs which in turn
may impede the quality of price discovery. Finally, Haas et al. (2020) illustrate yet
another trade-off linked to FBA. In their model, batch auctions decrease the num-
ber of sniping opportunities, thus improving liquidity, but less frequent trading also
increases the likelihood of more informed traders per auction, thus hampering liquid-
ity. The practitioner side also appears to be skeptical of FBA. For example, Dorre
(2020) harshly criticizes FBA in a series of blog posts, albeit without exact scientific
reasoning. Jagannathan (2020) conjectures that there are some “aspect[s] of reality
academic research may be missing”.

The main objective of this paper is to compare the CLOB and FBA market designs
on the basis of the bid-ask spreads and markup inefficiencies that they imply. While
existing theoretical literature has mainly focused on adverse selection risks from ei-
ther high-frequency arbitrageurs or from privately informed investors, we will use a
dynamic trading model that allows for the presence of both of these risks simultane-
ously. As will become evident, this does not constitute a minor variation but can have
game-changing effects on the efficiency of the individual market designs. We measure
the (in)efficiency of a particular market design by the excessive markups that investors
expect to pay per unit of time to liquidity providers – we will refer to this measure as
the “expected markup flow”. The core argument will be that liquidity provision under
FBA is inefficient and that the severity of this inefficiency can exceed the one from
latency arbitrage under CLOB. To arrive at this conclusion, we follow the seminal
work of Budish et al. (2015) and use a variation of their original model with one main
adjustment: We allow some traders to have private information about the fundamen-
tal value of the asset. When trading can be motivated by private information, trades
have price impact and the order flow determines the expected fundamental value. In
a sealed-bid batch auction, however, the order flow is unknown ex ante and so is the
true fundamental value during the auction. We will show that fully strategic bidders
take this into account and that quoting becomes inefficient: In equilibrium, market

3
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makers can charge additional markups and make strictly positive expected profits
– even under risk neutrality and perfect price competition. These markups trans-
late into increased transaction costs and hence into welfare losses for investors. The
inefficiency resembles bid shading (also known as demand reduction), a well-known
phenomenon in multi-unit, uniform price double auctions, and the following result
applies: Every equilibrium in multi-unit, uniform price auctions is inefficient due to
bid shading (Ausubel et al., 2014, Theorem 1, p. 1380). From that perspective, our
paper is similar to Jovanovic and Menkveld (2021) who also consider an auction setup
with an unknown number of bidders. However, the authors focus on randomization
in mixed-strategy equilibria, similar to the classic model of sales (Varian, 1980), while
we focus on inefficiencies of pure-strategy equilibria. In our model, there are two key
determinants of trading costs: Firstly, the relative frequencies of privately informed
trading versus publicly observable news events and, secondly, the absolute frequency
of trading relative to the length ot the batch interval. When overall trading activity
is high and privately informed trading is relatively frequent, expected markup flow in
equilibrium is lower in CLOB than under FBA, and vice versa.

We provide three sets of results: Firstly, we prove existence and uniqueness of pure-
strategy equilibria in CLOB and under FBA (uniqueness of equilibrium quotes up to
permutation of trading firms). We derive closed-form representations of equilibrium
bid-ask spreads and markups of liquidity providers under each market design. Sec-
ondly, we highlight the distinct inefficiencies of FBA and CLOB and show that the
former can strictly exceed the latter. More precisely, we derive a boundary in the
parameter space between FBA and CLOB such that each market design is welfare-
dominant (in terms of expected markup flow) on one side of the boundary. Thirdly,
we show that a slight variation of the FBA design – in which traders may submit
quotes conditional on excess demand within an auction – is welfare-optimal in the
sense that it leads to zero markups and lowest possible transaction costs for investors.
Overall, we intend to contribute to the literature by formally shedding light on yet
undiscovered inefficiencies and by offering a potential solution. We believe that these
results are not only appealing from a theoretical perspective but can also provide
additional insights for policy makers and market design authorities.

The remainder of this paper is organized as follows. Section 2 illustrates some of
the main results with simple examples. Section 3 introduces the trading model and
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discusses its key assumptions. Section 4 presents the equilibrium concepts used for the
different market designs and derives closed-form solutions for equilibrium inefficiencies
under CLOB and FBA. Section 5 compares equilibrium trading costs and inefficiencies
and establishes conditions for CLOB to welfare-dominate FBA. Section 6 presents a
slight modification of FBA with conditional quoting schedules such that full efficiency
is restored. Finally, Section 7 concludes. We provide proof ideas of important results
throughout the text while detailed proofs are deferred to Appendix A. The Online
Appendix contains supplementary materials and discussions.

2 Introductory Examples
Besides direct costs such as custody fees or broker commissions, bid-ask spreads con-
stitute the lion’s share of transaction costs. Should market microstructures have a
significant bearing on those costs, clever market design can help to mitigate these in-
efficiencies. Albeit bid-ask spreads might appear negligible, even small decreases can
translate into considerable welfare improvements given the enormous volume trans-
acted on financial exchanges across the world.3 We focus in particular on CLOB and
FBA in this regard. The two distinct characteristics of the CLOB market design are
continuous trading and serial order processing: Traders can send messages (i.e. post,
cancel or adjust orders) at any time and the financial exchange processes incoming
orders serially, one after the other, in order of receipt. Therefore, CLOB rewards
speed advantages as only the fastest traders can transact or update their quotes. In
the FBA design, by contrast, the trading day is divided into discrete intervals and
uniform price, sealed-bid double auctions are conducted frequently over the course of
the trading day. During an auction interval, traders can submit or modify orders at
any time and the financial exchange collects – but does not immediately process –
all incoming messages. At the end of the auction interval, the exchange batches all
outstanding orders and treats them as if having arrived at the same time. It then
computes aggregate demand and supply schedules and a uniform market clearing price
at which each transaction is executed.4 After market clearing quantities and the price

3It is worth to mention that transaction costs in general – and bid-ask spreads in particular
– have significantly declined throughout the last decades (Jones, 2002, 2013). Nevertheless, this
development does not imply that today’s bid-ask spreads are optimal. We do not neglect previous
improvements, but rather ask how transaction costs can be decreased further.

4Supply and demand schedules can intersect in different ways (horizontally, vertically) which
leads to different equilibrium prices. More detailed discussions can be found in Budish et al. (2015).
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have been computed and transactions have been executed, the order history of the
current batch interval is made public by the exchange. The following simple exam-
ples summarize the (far more general) results of this paper in a nutshell. They shed
some light on how – and why – the respective market designs might be vulnerable to
adverse selection risks from informed investors and HFTs.

2.1 CLOB and FBA with HFTs
Suppose there is a single asset with current fundamental value v ≡ 0. The asset value
may change over time due to publicly observable news events. Assume that a positive
event increases v by J = 1. There are two kinds of market participants: Infinitely
many investors and N high-frequency trading firms (HFTs), one of which acts as a
market maker (MM) who quotes bid and ask prices at which she is willing to buy
and sell the asset. Investors arrive stochastically at the exchange and have exogenous
motivations to trade. HFTs and the MM do not have intrinsic trading motives. They
observe – and can act upon – news events simultaneously and posses equally fast
trading technologies.

Consider what happens in the CLOB market design once a positive news event occurs
and the fundamental value jumps to v = 1. All trading firms observe the event
simultaneously and instantaneously send their orders to the exchange. The MM’s
old quotes have become stale so she wants to adjust them upwards by J = 1. The
other N − 1 HFTs try to snipe the old quotes by submitting market buy orders.
Since all firms are equally fast, their orders arrive at the exchange simultaneously and
the MM’s old quotes are sniped with probability N−1

N
. To account for the resulting

losses, the MM quotes a positive bid-ask spread and earns profits from trading with
investors. Equilibrium quotes are such that all firms make equal expected profits and
no one has incentives to deviate. Hence, even in the absence of private information
or technological advantages, CLOB allows for arbitrage. These rents come at the
expense of investors (e.g. mutual funds, retail investors, etc.) who are faced with
higher trading costs in the form of wider bid-ask spreads.5

What would the same situation look like in the FBA market design? Just as under

5Budish et al. (2015) highlight another inefficiency: A socially wasteful arms race for speed
among HFTs which eventually also harms investors in the form of higher trading costs.
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CLOB, trading firms could instantaneously send their orders to the exchange upon a
positive news event (HFTs: market buy orders, MM: quote adjustment). In contrast
to CLOB, the exchange batches all outstanding orders at the end of an auction and
does not process them serially. Therefore, the canceled quotes of the MM do not even
enter the supply schedule when the market clearing price is computed and only the
adjusted quotes are considered. FBA thereby eliminates sniping risk entirely and the
MM quotes zero bid-ask spreads, implying zero costs for investors.6

2.2 CLOB and FBA with HFTs and Informed Investors
Now suppose that some traders may have private information about changes in the
fundamental value of the asset. In this case, marketable orders (i.e. trades) have price
impact. They carry informational content and a buy (sell) order can be regarded as
a signal that the fundamental value of the asset has increased (decreased). Market
makers are systematically disadvantaged when trading with informed investors. They
therefore quote positive bid-ask spreads in order to compensate these losses with prof-
its earned from trading with uninformed investors. This informational disadvantage
for market makers and the corresponding increase in bid-ask spreads is the same in
both market designs. The risk from stale quote sniping, however, is still present only
under CLOB and has to be accounted for by quoting higher bid-ask spreads. It seems
straightforward that trading costs in the FBA design will again be strictly lower than
under CLOB. Any markups - other than accounting for privately informed traders -
should be competed away by HFTs who can also act as market makers and undercut
profitable quotes. As it turns out, this does not have to be the case: Market makers in
the FBA design can charge additional markups without being undercut. To illustrate
this point, suppose that a given trading firm (”the seller”) holds two shares of the
asset with current fundamental value v = 0 and wishes to sell both shares through a
uniform price auction. Further suppose that due to the presence of informed traders,
buy orders have price impact normalized to ∆ = 1. Therefore, if one buy order arrives
in the auction interval, the expected fundamental value of the asset is 1. If two buy
orders arrive, the expected fundamental value is 2, and so on. To keep the setup
simple, suppose that the number of buy orders in the auction is either 1 or 2 with
50% probability each. Under FBA, the trading price is determined as the mid-price

6Profits earned from quoting positive bid-ask spreads would be immediately competed away by
other trading firms who can also act as market makers and would undercut these quotes.
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where supply and demand schedules intersect. To make zero expected profit (and for
the market to match buyers and sellers efficiently), it seems intuitive for the seller to
quote the first share at an ask price of a1 = 1 and the second share at a2 = 2. In
case of one (two) arriving buy order(s), the resulting trading price would be p = 1
(p = 2) with zero expected profit for the seller. But is this really an equilibrium? The
answer, somewhat surprisingly, is no. The seller can strictly improve by increasing
the limit price for the first share to â1 = 1.5 – even in case of risk neutrality and
perfect market maker competition. To see this, suppose that other firms would step
in if quoted ask prices are too high and if undercutting them is profitable. How high
can ask quotes be set so that still no other firm has an incentive to underbid the
seller’s quotes? For the second share, there is no room for improvement. For any ask
price â2 > 2, another trader would undercut the quote by ε > 0, thus rendering â2 the
third best ask price which would never execute. If two buy orders arrive, the trader
can sell at the market clearing price a2 − ε > 2 and make positive profits. Therefore,
in equilibrium, the second ask must be a2 = 2. However, the seller can increase her
first quote to â1 = 1.5 (thereby make positive expected profits), and still no other
trader can undercut her profitably. Suppose some other trader would undercut to
a′ = 1.5 − ε. If one buy order arrives, that trader gets to trade at the clearing price
p = a′ and makes expected profits of

E[π′|1 buy order] = p(a′, â1, a2, 1 buy order) − E[v|1 buy order]

= 1.5 − ε − 1 = 0.5 − ε.

If two buy orders arrive, however, the seller’s quote â1 = 1.5 is the second best ask
and hence determines the uniform trading price p = â1. The other trader incurs losses
of

E[π′|2 buy orders] = p(a′, â1, a2, 2 buy orders) − E[v|2 buy orders]

= 1.5 − 2 = −0.5.

Since each event occurs with 50% probability, the overall expected profit of the other
trader is −0.5ε. He would hence decide not to underbid â1 in the first place. The
resulting equilibrium ask price of â1 = 1.5 can be decomposed into â1 = ∆ + x1 =
1 + x1, where 1 is the expected fundamental value in case one buy order arrives and
x1 = 0.5 is the additional markup that the seller can charge in the FBA market design.

8
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If one buy order arrives, the seller’s profit is equal to x1 and if two buy orders arrive,
her profit is zero. Overall, this yields strictly positive expected profits of 0.25.

The MM makes positive expected profits in equilibrium and nobody can profitably
prevent her from doing so. This induces positive trading costs above what is charged
to account for risks from informed investors. The inefficiency arises in uniform price
auctions when (i) marketable orders have price impact and (ii) multiple units can be
traded in an auction. The phenomenon resembles bid shading (or demand reduction)
which occurs when orders for some units have a potential impact on the price of
other units. This externality is priced in and equilibrium prices are excessive. Private
information thus has differential implications for CLOB and FBA. Unlike in the first
example where private information was absent, it is no longer obvious whether FBA
is still the dominant choice in terms of efficient liquidity provision and trading costs
for investors.7

2.3 Potential Solution for FBA with Informed Investors
The quoting inefficiency in FBA with informed traders arises because quotes for some
units can impact the price of other units. This externality disappears if price com-
petition is independent across units. One way to achieve this is to allow bidding
via price-quantity schedules, i.e. to allow quoting conditional on demand in an auc-
tion. This restores independent price competition for each unit, leading to the classic
Bertrand outcome with competitive prices for buyers. Continuing the previous ex-
ample, suppose the seller could submit ask quotes conditional on the number of buy
orders arriving as follows:

aone buy order = 1∆ = 1, atwo buy orders = 2∆ = 2.

7It should be mentioned that there does exist a unique, symmetric mixed-strategy equilibrium
with zero expected profits for the seller under FBA. An example thereof is provided in the online
appendix. The simple trading model hence indicates that FBA can induce inefficient stable prices
or efficient random prices. Either scenario might not be desirable. Since our focus is on strategic
behavior of HFTs and market makers as inspired by Budish et al. (2015), we continue to focus
on pure-strategy equilibria. Recent research on price dispersion (Jovanovic and Menkveld, 2021)
or flickering quotes and fleeting orders (Baruch and Glosten, 2013) makes specific use of stochastic
quoting behavior. Mixed-strategy equilibria can hence be particularly fruitful with seemingly random
patterns in (high-frequency) data.
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In other words, if one buy order arrives, the seller is willing to sell one unit at a price
of 1, whereas if two buy orders arrive, the seller is willing to sell two units at a price
of 2 each. This is efficient quoting and in fact the only equilibrium outcome – the
clearing price will always be equal to the expected value. Contrary to the previous
section, the seller can no longer profitably raise any quote. If the seller increased
any of her quotes, other firms would step in and undercut the quote – without any
downside. Perfect price competition is restored and buyers can transact at the best
possible prices.

3 General Setup of the Dynamic Trading Model
This section introduces the general building blocks of the trading model we use. Most
modeling assumptions are closely related to those in Budish et al. (2015) in order
to allow for an easier comparison of results. The key difference is that we augment
the financial market model by privately informed investors so that marketable orders
have price impact. Further details on the market microstructure are intentionally
left unspecified in this section since equilibrium analyses are conducted separately for
CLOB and FBA in the subsequent section.

3.1 Model Primitives and Basic Setup

Time: Time t runs continuously on [0, T ], where T > 0. We abstract from any
latency and assume that submitted orders arrive at the exchange instantaneously.

Asset: There is a single risky asset with time-varying fundamental value Vt which
evolves according to a Poisson jump process. For t ∈ (0, T ), Vt remains unobservable
to all agents. At each jump time, the fundamental value jumps up or down by a
constant jump size J > 0 with equal probability. Jump directions are stochastically
independent.8 While some of the jumps are observed publicly, others are only observed
privately. Further details will be explained below.

Prices: Prices can be any real number, i.e. the tick size is zero.

8The specific jump size distribution allows for closed-form solutions, but it should be generalizable
to arbitrary, symmetric distributions without affecting the qualitative results of this paper.
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Market: The asset is traded in an anonymous limit order market. Attention is
confined to limit orders and market orders. All orders must be for one single unit of
the asset.9

Traders: The model is populated by three types of traders, all of whom are risk-
neutral and do not discount future payoffs. They differ in their motivations to trade.

(i) There are infinitely many informed traders. According to an exogenous Pois-
son process with rate λi ≥ 0, one single informed trader arrives at the market,
privately observes a jump of size ±J , and issues a market buy or market sell
order for one unit of the asset accordingly. Upon order execution, the corre-
sponding trader exits the market forever.

(ii) There are infinitely many uninformed traders, also referred to as noise
traders, who trade for exogenous motivations such as rebalancing their port-
folios or for liquidity reasons. According to an exogenous Poisson process with
rate λn > 0, one single uninformed trader arrives at the market, randomly is-
sues a market buy or a market sell order for one unit of the asset, and exits
the model forever. Uninformed traders can be modeled as to have a private
valuation component Ũ and to value the asset at Vt + Ũ . Private valuation
components Ũ are equal to ±U (where U ≥ J)10 with equal probability and are
independent and identically distributed across investors. Due to the symmetric
distribution of Ũ , uninformed investors buy and sell with equal probability.

(iii) There are N ≥ 2 perfectly competitive trading firms who may submit limit
and market orders at any time. Trading firms can freely choose to act as either
market makers (MMs) or high-frequency traders (HFTs) and this choice is de-
termined by whatever role yields higher expected profits. All firms are assumed
to be infinitely fast, i.e. they can react instantaneously to any market event.

Market Events: The model features three types of stochastic market events. Their
arrival is governed by three independent Poisson processes. At public news events, the

9The single-unit restriction keeps the model tractable without departing too far from today’s
trading reality. For most liquid assets, individual order sizes are fairly small and mostly single-digit.
One reason for small order sizes is provided by Kyle (1985) and Back and Baruch (2007) who have
shown that large block orders should optimally be split into several smaller orders to avoid price
impact and to minimize effective transaction costs.

10U ≥ J is a technical restriction ensuring that noise traders are willing to transact at bid-ask
spreads.
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fundamental value jumps by ±J . They occur with Poisson intensity λj ≥ 0 and are
observed simultaneously by all agents. Informed trade occurs with Poisson intensity
λi and is characterized by privately observable jumps of size ±J in the fundamental
value. They are only observable to one informed investor who submits a market order
for one unit of the asset in the corresponding direction. Finally, noise trade occurs
with Poisson intensity λn. A noise trader arriving at the market randomly submits a
market buy or sell order for one unit of the asset with equal probability.

Information and Updating: Any trader arriving at the market at time t can ob-
serve the past history Ht of all prices, quotes, trades, and publicly observable jumps
in the fundamental value of the asset. Ht is also referred to as the public information
available at time t. All parameters of the model are common knowledge. Further-
more, the initial fundamental value v0 and the order flow are public information and
summarized by Ht at any point in time. Orders are anonymous, however, so informed
and uninformed trades cannot be distinguished and agents act in a game of imperfect
information. Market participants perform standard Bayesian updating to form an
unbiased expectation about the valuation of the asset.

Strategies: Informed and uninformed investors arrive at the market according to an
exogenous stochastic process, mechanically trade one unit at the best available price
and leave the market afterwards. Their behavior is not strategic. Strategic interaction
is limited to competition among trading firms. They are permanently active in the
market and may submit, modify and cancel orders at any time. Further details are
provided in Section 4 where equilibrium analyses are presented for each market design.

3.2 Discussion of the Model Setup
The model setup is closely related to Budish et al. (2015) in order to simplify a
comparison of results. The key distinction of our model is that we allow for traders
with private information as in Glosten and Milgrom (1985).11 The possibility of
informed trading causes an adverse selection problem for liquidity providers which is

11Augmenting the model of Budish et al. (2015) by privately informed investors has also been
done by Budish et al. (2020), however, with different modeling assumptions and focus. While their
paper considers stock exchange competition between multiple trading venues, our paper focuses on
competitive liquidity provision on a single exchange.
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accounted for by increased bid-ask spreads.12 Furthermore, informed trading causes
a rational Bayesian price impact corresponding to the expected informational content
of marketable orders. While privately informed trading has a long tradition in the
literature of financial markets (Treynor, 1981; Copeland and Galai, 1983; Glosten and
Milgrom, 1985; Kyle, 1985) it has been abstracted from in much of the recent literature
(with the notable exception of Baldauf and Mollner (2020), for example). Our model
provides a synthesis of Budish et al. (2015) and Glosten and Milgrom (1985). Without
informed trading (λi = 0), our model reduces to the original Budish-Cramton-Shim
model with constant jump size J . Without public news events (λj = 0), our model
corresponds to a continuous-time version of the Glosten-Milgrom model. Further
discussion is deferred to the Online Appendix.

Since one of our key objectives is to shed some light on yet undiscovered inefficiencies
of FBA as compared to CLOB, assumptions that leave room for ambiguity have
been made in the most conservative manner, i.e. in a way that is most favorable
for the FBA design. This concerns in particular the instantaneous reaction time
and the common speed technology. Assuming zero latency and equally fast trading
technologies eliminates sniping risk under FBA completely.13 Budish et al. (2015)
allow for different trading technologies (fast and slow) and show that even in this
case, frequent batch auctions can alleviate sniping risk considerably.14 In summary,
if we can find a situation where CLOB dominates FBA in terms of trading costs and
inefficiencies under the assumptions that we impose, then this will be especially true
when relaxing some of these assumptions.

12Easley et al. (1996) have shown empirically that the adverse selection risk associated with
informed trading is a major source of bid-ask spread.

13When all trading firms have access to a common no-latency speed technology, order cancellations
and adjustments will always arrive at the same time as sniping attempts within an auction interval.
Since all orders are batched at the end of an auction, only the MM’s adjusted quotes are relevant
and her stale quotes do not enter her supply schedule. This eliminates latency arbitrage.

14More precisely, they show that the proportion of an auction interval of length τ which allows for
latency arbitrage is δ

τ where δ := δslow − δfast is the difference in latency of the speed technologies.
By choosing the length of the auction interval long enough, sniping risk can be reduced considerably.
See Budish et al. (2015) Section VII.B and Figure VII for a more detailed exposition.
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4 Equilibrium Analysis
This section provides equilibrium analyses for the CLOB and the FBA market design.
First, we introduce necessary equilibrium notions. We then present optimal quoting
strategies of trading firms and compute the resulting equilibrium bid-ask spreads and
the distinct inefficiencies as represented by the expected markup flow.

4.1 Equilibrium Concepts
A natural solution concept for stochastic games in continuous time with imperfect
information is a pure-strategy, stationary Markov Perfect Equilibrium (MPE) (Maskin
and Tirole, 2001). While this equilibrium concept does apply to the CLOB design,
the discrete-time implementation of sealed-bid, frequent batch auctions together with
private information leads to non-existence problems under FBA. In their recent paper,
Budish et al. (2020) also augment a similar trading model by private information and
encounter analogous equilibrium existence issues. The authors suggest an alternative
solution concept, Order Book Equilibrium (OBE), which strictly weakens MPE but
still tries to capture the spirit of competitive liquidity provision à la Glosten and
Milgrom (1985). We will follow the authors and use the OBE notion under FBA.

Stationary Markov Perfect Equilibrium (in CLOB)
As the order book can be monitored continuously under CLOB, trading firms can
condition their strategies on its current state. Strategies hence constitute a complete
contingent plan of action: Whenever some trading firm deviates from equilibrium play
(which will be reflected in the order book configuration), other firms can instanta-
neously react and play their best responses against the deviation. If such reactions
render the deviation unprofitable, total profits earned from deviating are essentially
zero (and the deviation attempt should not be initiated in the first place). Continuous-
time trading and reactions that occur at the same instant make stationary Markov
Perfect Equilibria well-defined under CLOB. An MPE is a subgame perfect equilib-
rium in which players may only use time-independent Markov strategies, i.e. strategies
that depend on the current state only (Fudenberg and Tirole, 1991; Maskin and Ti-
role, 2001). In the present model, the payoff relevant state at time t is given by
St = {Pt, Jt, (bt, at)} where Pt = E[Vt|Ht] denotes the estimate of the fundamental
value given public information, Jt ∈ {0, −J, J} indicates whether there is a jump at
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time t, and (bt, at) summarizes the current bid and ask quotes in the order book. The
dynamic MPE constitutes a static Nash equilibrium at each point in time.

Order Book Equilibrium (in FBA)
The introductory example with private information in Section 2 showed that a market
maker under FBA can charge additional markups and thus make positive profits.
Other firms cannot undercut these quotes as they would incur losses. But given that no
one undercuts her quotes, the market maker has incentives to increase markups even
further. Therefore, stationary MPEs do not exist under FBA and a weaker solution
concept is required. Note, however, that once the market maker deviates by increasing
the markups, other firms will have an incentive to undercut these higher quotes which
renders the deviation unprofitable.15 In order to enhance the comparability of our
results to Budish et al. (2015) and Budish et al. (2020), we follow the latter authors
and use their alternative solution concept of an Order book Equilibrium (OBE) in the
FBA setup. We briefly outline the main intuition in the following – a more detailed
treatment can be found in the last-mentioned authors’ paper or theory appendix and
in our Online Appendix. Whereas an MPE requires that no player has a profitable
deviation at any point in time, OBE allows for profitable deviations to exist as long
as they are rendered unprofitable by specific reactions of some other player.16 An
OBE is a set of orders of the high-frequency trading firms that captures the idea
of a ”rest point” of the order book (Budish et al., 2020): First, there do not exist
strictly profitable safe price improvements. These are deviations that improve prices
of existing quotes. More specifically, new quotes constitute a price improvement over
older ones when it is weakly cheaper trading against liquidity-providing limit orders in
the new set of quotes and there exists some limit order for which it is strictly cheaper.
A strictly profitable price improvement is safe if it remains strictly profitable, even
if some other trading firm profitably withdraws liquidity (i.e. takes out limit order(s)
from the book) in response to firm i’s deviation.17 Second, there do not exist robust

15Such reactions can only happen at the end of an auction as this is when supply and demand
schedules are released and the deviation becomes visible. Any possible equilibrium under FBA hence
cannot capture the idea of instantaneous reactions within a given auction.

16Profitable deviations can hence only be sustained for short time periods, i.e. an auction interval.
17Note that a price improvement can never withdraw liquidity itself as it would otherwise no

longer be weakly cheaper to trade against all liquidity-providing limit orders in the new set of quotes.
Further note that liquidity withdrawals can never render another quote or deviation unprofitable in
our FBA setup and any profitable price improvement is hence automatically safe: In case of excess
demand, for instance, fewer quotes in the order book due to a liquidity withdrawal can only mean
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deviations. These are strictly profitable deviations (other than price improvements)
of any firm that remain strictly profitable even if another firm profitably reacts to
this deviation by safe profitable price improvements or liquidity withdrawals (Budish
et al., 2020). We follow the latter authors and term the following solution concept an
Order Book Equilibrium (OBE).

Definition 1 (Order Book Equilibrium).
Given the state St = {Pt, Jt, (bt, at)} at time t, an Order Book Equilibrium at
time t of the strategic interaction between the high-frequency trading firms is a set of
orders such that the following conditions hold for all firms:

1. There do not exist strictly profitable safe price improvements.

2. There do not exist strictly profitable robust deviations.

OBE captures the idea that likely anticipated reactions by rival trading firms to an
existing profitable deviation can discipline a given firm not to pursue the deviation
in the first place (Budish et al., 2020). They can hence uphold equilibrium quote
levels and no trading firm has an incentive to add or withdraw liquidity-providing
quotes from the order book. Firstly, there do not exist any strictly profitable price
improvements: It cannot be possible in an OBE that some firm can still profitably
improve quotes. Secondly, there do not exist strictly profitable robust deviations:
It cannot be possible in an OBE to worsen quotes without triggering underbidding
incentives of other firms that would render the initial deviation unprofitable.

In market designs that feature continuous order processing (e.g. CLOB), the stronger
concept of a MPE coincides with that of an OBE: Trading firms can condition their
actions on the order book which is observed at every instant. Hence, in a MPE, there
do not even exist any profitable deviations given the strategies of the other firms.
Summing up, we will solve for pure-strategy, stationary Markov Perfect Equilibria
under CLOB and for pure-strategy, Order Book Equilibria under FBA.18

(weakly) higher trading prices as supply and demand would intersect at (weakly) higher ask quotes.
This would – if anything – increase an incumbent market maker’s profits.

18Reverting to the example from Section 2.2, the suggested equilibrium in which the market maker
charges markups under FBA does not constitute an MPE but it fulfills all properties of an OBE.
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4.2 The Continuous Limit Order Book Market Design
We derive the equilibrium in the CLOB market design in the following. In other words,
we present optimal strategies of trading firms and compute the resulting equilibrium
bid-ask spreads of the market maker and the resulting expected markup flows. Equi-
librium actions of trading firms given informational events are straightforward: At
public news events, the liquidity provider sends a message to adjust her quotes by ±J

while arbitrageurs simultaneously submit market orders to snipe the stale quotes.19

At other trading times (i.e. upon arrival of either informed or uninformed investors),
the liquidity provider renews her quotes by the rational price impact ∆ of any single
order according to Bayesian updating. There are hence two sources of adverse selec-
tion risk for the market maker in this model. First, she potentially trades against
informed traders who possess superior private information. Second, upon publicly
observable jumps in the fundamental value, she trades against other HFTs who pick
up her quotes that have become stale. The liquidity provider will incur expected
losses in both cases. To compensate for these losses, she will quote a strictly positive
bid-ask spread which yields expected profits when trading with uninformed investors.
By allowing for instantaneous modifications of limit orders, trading firms providing
liquidity stand in perfect competition. If one firm posts a limit order with a limit price
that promises strictly positive expected profits, other trading firms will immediately
undercut this order until prices are low enough to yield zero expected profits. The
following theorem establishes existence and a characterization of a stationary Markov
Perfect Equilibrium in pure strategies in the CLOB market design.

Theorem 1 (CLOB Equilibrium).
There exists a pure-strategy, stationary Markov Perfect Equilibrium of the continuous
limit order book market model. The equilibrium is unique up to permutation of trading
firms.

Bid and ask prices in equilibrium satisfy

bt = E[Vt|Ht, sell] = Pt − sCLOB

2 and at = E[Vt|Ht, buy] = Pt + sCLOB

2 ,

where Pt = E[Vt|Ht] denotes the asset’s expected value at time t conditional on infor-
mation Ht available up to time t, E[Vt|Ht, sell] and E[Vt|Ht, buy] denote the expected

19When assuming infinitely many trading firms (i.e. N → ∞), the market maker’s stale quotes
will be sniped with probability one upon publicly observable news events.
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fundamental value of the asset, conditional on a market sell order and market buy
order arriving, respectively, and sCLOB denotes the spread given by

sCLOB = 2J
λi + λj

λi + λj + λn

. (4.1)

After a non-arbitrage buy and sell trade, the asset’s conditional expected value jumps
to Pt = Pt− + ∆ and Pt = Pt− − ∆, respectively, where the price impact ∆ is given by

∆ = J
λi

λi + λn

. (4.2)

Trading costs for investors are equal to sCLOB
2 for every trade and can be decomposed

into

CCLOB = sCLOB

2 = ∆ + xCLOB = ∆ + J
λjλn

(λi + λj + λn)(λi + λn) ,

where xCLOB denotes the markup component that is due to the risk of stale-quote
arbitrage.

The ”expected markup flow” for investors captures expected markups per unit of time.
It is given by

E[xf
CLOB] = xCLOB (λi + λn) = J

λjλn

(λi + λj + λn) . (4.3)

Proof: See Appendix A.1.

Proof idea:
Optimality and uniqueness (up to permutation) follow from profit maximization and per-
fect competition among trading firms. The equilibrium bid-ask spread results from an
equal-profit condition for all trading firms. Since informed and uninformed trade cannot be
distinguished, the rational price impact ∆ derives from a manipulation of E[Vt|Ht, buy, i∨n].

The liquidity provider quotes bid and ask prices symmetrically around the mid-price.
Positive spreads follow from the twofold asymmetric information problem that the
market maker faces, resulting from (i) adverse selection risk from informed traders
(∆) and (ii) sniping risk from arbitrageurs (xCLOB). Both of these risks are subsumed
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in the half-spread sCLOB
2 which represents the total trading costs for every trade in this

model.20 More informative in the lights of a comparison of the distinct inefficiencies
between the continuous CLOB design and the discrete FBA setup are what we call
”expected markup flows”.21 These are the markups which investors expect to pay to
the market maker per unit of time – in addition to the rational price impact of orders
– and serve as our foremost measure of inefficiency of a particular market design. The
price impact ∆ from informed trading captures the rational component of trading costs
and reflects an ”efficient” protection of market makers against adverse selection risk.
It will always be the same, irrespective of the specific market microstructure. The
distinct inefficiency of the CLOB design is hence given by E[xf

CLOB] and is attributable
to the conjunction of continuous-time trading and serial order processing. It will be
the key determinant when examining conditions under which either market design is
welfare-dominant. Figure 1 below illustrates an exemplary path of equilibrium prices
and quotes under CLOB.

4.3 The Frequent Batch Auction Market Design
Budish et al. (2015) propose frequent batch auctions as an alternative market design
to CLOB. Under FBA, the trading day is divided into discrete, sealed-bid auction
intervals, each of length τ . At the end of an interval, the exchange batches all out-
standing orders and computes aggregate demand and supply schedules and a uniform
market clearing price. The order history of the current interval is made public by the
exchange thereafter.

Before equilibrium strategies and resulting quotes in the FBA setup are discussed,
some important differences to the CLOB design should be recapitulated. First,
discrete-time uniform price auctions eliminate latency arbitrage. Second, continuous-
time trading and independent Poisson arrival rates made it sufficient for liquidity
providers under CLOB to quote prices at unit depth on either market side. The
FBA market design, by contrast, leads to a deeper order book. Trading volume of

20We abstract from other explicit or implicit trading costs, such as inventory costs or order
commissions.

21Under CLOB, we could also consider ”expected trading cost flows”, i.e. E[Cf
CLOB] = CCLOB(λi+

λn), capturing total trading costs per unit of time. However, it includes the rational price impact
which is not a distinct market design inefficiency. We therefore consider E[xf

CLOB] to be our key
inefficiency measure.
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v0 − sCLOB
2
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t1

∆
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J

Figure 1: At time t = 0, bid b0 = v0 − sCLOB
2 and ask a0 = v0 + sCLOB

2 lie symmetrically
around the asset’s initial fundamental value v0. From then on, the expected fundamental
value Pt = E[Vt|Ht] evolves as a jump process. At time t1, a buy trade occurs and induces
price impact of ∆. At time t2, a public news event (fundamental value jumps by +J) leads
to an arbitrage trade at the old ask price based on information before the event.

HTFs is determined by the excess demand (or order imbalance) Zτ , defined as the
total number of buy orders, Dτ , minus the total number of sell orders, Sτ , in any
auction interval. Since upward and downward jumps in the fundamental value occur
with equal probability, the distribution of Zτ will be symmetric around zero. As do
Budish et al. (2015), we assume that excess demand is bounded, i.e. |Zτ | ≤ Q + 1,
where Q is a large integer.22 In each auction interval, liquidity providers must offer
at least Q + 1 units on each side of the market. Due to the presence of informed
traders, these supply schedules are staggered. The qth best ask quote, a(τ)

q , has to
account for a rational price impact of q · ∆. Third, trading under CLOB is organized
by a liquidity provider who quotes bid and ask prices and hence enables trade for all
other market participants. Under FBA, buy and sell orders of market participants
are matched with each other and quotes of the market maker are only needed to clear
excess demand or supply. From a more technical perspective, the aforementioned
differences make the derivation of equilibria under FBA substantially more involved.
This has two main reasons: First, we want to allow for an arbitrarily deep order book

22This boundedness assumption is innocuous for a sufficiently large Q. We will analyze equilibrium
quotes for an infinitely deep order book (Q → ∞) below and show that these quotes converge quickly.
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whose configuration is not further restricted. More precisely, we wish to allow for the
possibility that a given trading firm can own none, one, several, or even all quotes in
the order book. Second, although the notion of an Order Book Equilibrium narrows
down the possible reactions to a given deviation, the strategy space of trading firms
is still infinitely large. They can add or shift quotes to any desired price level and
the profitability of doing so does depend on the precise actions they take and on the
configuration of the order book (i.e. on which other quotes they already own). In
order to account for this fact in the proofs of the following theorems, we let ωq ≥ 0
denote the number of active quotes which a given firm of interest owns in the order
book at or below the qth best quote, and ω = (ω1, ..., ωQ+1). Note that we naturally
have 0 ≤ ω1 ≤ · · · ≤ ωQ+1 ≤ Q+1. If excess demand in an auction interval is Zτ = q,
all quotes up to and including the qth quote will execute at the same uniform clearing
price, i.e. the qth best ask quote a(τ)

q . The revenue of a given trading firm is hence
given by ωq a(τ)

q while expected profits depend on the possibility to charge markups
under FBA. We will show in the following that liquidity providers can charge addi-
tional markups and earn positive expected profits – even in a perfectly competitive
market. Remarkably, such an inefficient quoting outcome turns out to be the unique
OBE and there does not exist any efficient equilibrium with zero markups as the
following theorem shows.

Theorem 2 (No Zero Markups in FBA).
The FBA quoting schedule (up to permutation of trading firms for each quote) with
zero markups for any unit, i.e. bid and ask schedules of the form

b(τ)
q = Pτ − q∆ q = 1, ..., Q + 1

a(τ)
q = Pτ + q∆ q = 1, ..., Q + 1

(4.4)

is not an Order Book Equilibrium. It is also neither a pure-strategy Nash equilibrium
in the finitely-repeated game, nor in the discounted infinitely-repeated game.

Proof: See Appendix A.2.

Proof idea:
OBE : Consider, for instance, the liquidity provider who submits the lowest ask quote a

(τ)
1

and show that she has a strictly profitable deviation that cannot be rendered unprofitable
with reactions covered by the OBE notion.
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Nash-Equilibrium: Given the zero-markup schedule, there always exists a strictly profitable
unilateral deviation by some liquidity provider.

Theorem 2 shows that any pure-strategy equilibrium under FBA (should it exist) can-
not be efficient. The following theorem establishes existence of the Order Book Equi-
librium under FBA. It provides a closed-form representation of the unique markups
that liquidity providers can charge and characterizes the inefficiencies that arise.

Theorem 3 (FBA Equilibrium).
There exists an Order Book Equilibrium in pure strategies of the FBA market model.
If excess demand in an auction is truncated to Q + 1, i.e. |Zτ | ≤ Q + 1, supply and
demand schedules in equilibrium satisfy

b(τ)
q = Pτ − q∆ − xq, q = 1, . . . , Q + 1

a(τ)
q = Pτ + q∆ + xq, q = 1, . . . , Q + 1

where ∆ = J λi

λi+λn
is the usual expected price impact of an order and xq represents the

additional markup that the liquidity provider can charge in the qth best quote. These
markups are given by xQ+1 = 0 and

xq = ∆
Q−q∑
k=0

Q−q∏
s=k

αQ−s, q = 1, ..., Q, (4.5)

where αq := pq+1

pq + pq+1
and pq := P(Zτ = q | |Zτ | ≤ Q+1).

Equilibrium markups are unique up to permutation of trading firms for each submitted
quote. The order imbalance measure Zτ follows a symmetric truncated Skellam dis-
tribution with parameter 1

2τ(λi + λn). The total expected markup flow that investors
expect to pay to liquidity providers per unit of time is given by

E[xf
FBA] = 2

τ

Q∑
k=1

k pk xk (4.6)

Proof: See Appendix A.3.
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Proof idea:
Markups: Arise from a zero-profit condition for underbidding attempts of other firms.
OBE Existence and Uniqueness: Show by induction that the markup xq, q = 1, ..., Q + 1,
as given by (4.5) does neither allow for strictly profitable safe price improvements nor for
strictly profitable robust deviations while any markup x̃q different from (4.5) does so.
Probability distribution of excess demand: Zτ := Dτ − Sτ is the difference between two
independent Poisson random variables and thus follows a truncated Skellam distribution.

Theorem 3 quantifies the inefficiencies that result in the FBA market design, once aug-
mented by privately informed investors. The equilibrium in the FBA market design
is remarkable in that perfectly competitive liquidity providers can charge additional
markups over and above what is necessary to account for informed trade and no other
firm can prevent them from doing so. We will show that all markups x1, ..., xQ are
strictly positive, and so is the resulting expected markup flow E[xf

FBA]. Therefore,
equilibrium prices under FBA are excessive. Figure 2 illustrates equilibrium quotes
under FBA with an order book depth of Q + 1 = 4 and highlights the inefficiency.
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Figure 2: Left: The zero-markup schedule (only accounting for the price impact ∆) does
not reflect equilibrium quotes under FBA. The arrows indicate that ask (bid) quotes can be
increased (decreased) – even in case of perfect competition and under risk neutrality. Right:
FBA equilibrium quotes. The liquidity provider has an incentives to shade all bids except
for the quotes of the last unit.
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Intuitively, equilibrium markups under FBA with informed trade can be upheld –
despite perfect competition among trading firms – because quoted units are not ”in-
dependent”. Suppose some previously inactive tradding firm underbids a given ask
quote, say a(τ)

q = q ∆ + xq, by some small amount ε > 0. Then this undercutting
attempt influences the trading price if excess demand turns out to be Zτ ≥ q. More
precisely, the underbidding firm would benefit if Zτ = q since she now offers the qth

best quote and earns profits in the amount of xq − ε. But she would incur losses if
Zτ > q. This is because the old previously qth best quote at markup xq becomes the
new (q+1)th best quote, and similarly, all quotes above the new undercutting quote
shift positions by one. As a consequence, each quote above the new undercutting
quote accounts too little for the price impact of informed trade and hence results
in expected losses.23 This trade-off allows market makers to charge strictly positive
markups xq for q = 1, ..., Q that cannot be undercut by other firms. For the last unit
in the order book, liquidity providers cannot charge a positive markup, i.e. xQ+1 = 0.
This is because excess demand is assumed to be bounded by Q + 1 and this unit can
hence be undercut at no risk.

The resulting equilibrium in the FBA market design is asymmetric: Liquidity providers
earn positive expected profits while other trading firms earn zero profits. As equilib-
rium markups sizes vary between different quotes, liquidity providers will not make
equal profits in equilibrium – but none has an incentive to deviate. This emphasizes
the fact that equilibrium outcomes are determinable up to permutation of trading firms
for each quote. The closed-form representation (4.5) shows that equilibrium markups
depend on the probability distribution of the order imbalance measure Zτ = Dτ − Sτ .
Buy and sell orders are independent and equally likely as they are both generated
from informed and uninformed investors arriving at the market with known Pois-
son intensities λi and λn, respectively. Therefore, Zτ is the difference between two
statistically independent Poisson-distributed random variables and hence follows a
truncated Skellam distribution.24 The closed-form solution of the markups and the

23For instance, the old previously qth best quote a
(τ)
q = q ∆ + xq accounts for a rational price

impact of q ∆. However, due to the undercutting attempt, it now determines the uniform trading
price if Zτ = q+1 in which case the rational price impact to be accounted for should be (q+1) ∆.
The undercutting firm hence incurs losses in the amount of ∆ − xq. Analogous reasoning applies for
any Zτ > q+1.

24Further details of the order imbalance measure Zτ and the Skellam distribution, including its
probability mass function, are provided by Lemma A.4 in the Appendix. In general, the Skellam
distribution is characterized by two parameters, namely the expected values (or arrival rates) of the
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distribution of Zτ allow us to derive important properties of the individual markups.
These properties emphasize the characteristic of the quoting inefficiency under FBA
and are summarized in the following proposition.

Proposition 1 (Properties of the FBA Markups).
Suppose λi > 0 (existence of informed investors). Then markups in the FBA design,
as given by (4.5), fulfill the following properties for Q ∈ N and q = 1, ..., Q:

(1) xQ+1 = 0 (no markup on last unit)

(2) 0 < xq < ∆ (positivity and boundedness)

(3) xq > xq+1 (monotonically decreasing)

(4) xq(Q + 1) > xq(Q) (increasing in order book depth)

(5) lim
Q→∞

(
xq(Q + 1) − xq(Q)

)
= 0 (convergence in order book depth)

Proof: See Appendix A.4.

These markup characteristics are appealing, both from a mathematical and from
an economic standpoint: First, all markups - except for the last unit - are strictly
positive in the presence of informed trade, with markups on ”early units” being largest.
Since Skellam probabilities for these units are also largest, this can translate into
considerable quoting inefficiencies in the FBA market design.25 Second, although the
markups do depend on the depth of the limit order book, this dependence diminishes
and disappears as Q → ∞. In other words, all markups converge. Finally, markup
sizes are well-behaved and markups do not ”explode”: They are all smaller than the
price impact ∆ = J λi

λi+λn
. Figure 3 below shows an exemplary simulation of the FBA

markups for an order book depth of Q + 1 = 150.

Theorem 3 which established the FBA equilibrium still rests on the assumption that
excess demand is bounded, i.e. |Zτ | ≤ Q + 1 where Q is a large integer. The resulting
equilibrium markups in (4.5) and hence the markup inefficiency in (4.6) do depend
on this exogenous bound. The last property of Proposition 1 indicates that the
boundedness assumption is innocuous. The following proposition substantiates this

two underlying Poisson processes (here, Dτ and Sτ ). Since these arrival rates are identical in our
symmetric case, we can characterize the Skellam distribution by a single parameter.

25For the symmetric Skellam distribution, it holds that P(|Zτ | = i) > P(|Zτ | = j) for i < j (see
Lemma A.4 in the Appendix for details).
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Figure 3: FBA markups for order book depth Q+1 = 150 (τ = J = λi = λn = λj = 1).

point and analyzes equilibrium quotes for an infinitely deep order book.

Proposition 2 (FBA Quotes with an Infinitely Deep Order Book).
FBA markups and hence equilibrium supply and demand schedules a

(τ)
1 , ..., a(τ)

q , ... and
b

(τ)
1 , ..., b(τ)

q , ... with

b(τ)
q = Pτ − q∆ − xq, q = 1, 2, . . .

a(τ)
q = Pτ + q∆ + xq, q = 1, 2, . . .

converge for fixed q and Q → ∞. Markups xq are given by (4.5) for any q ∈ N and
excess demand Zτ follows a (now untruncated) symmetric Skellam distribution. The
total expected markup flow remains finite, i.e.

E[xf
FBA] = 2

τ

∞∑
k=1

k P(Zτ = k) xk < ∞.

Proof: See Appendix A.5.
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5 A Comparison of Efficiency and Trading Costs
Our equilibrium analyses have shown that CLOB and FBA suffer from different in-
efficiencies. Continuous trading and serial order processing give rise to stale quote
arbitrage by HFTs. Discrete trading in auctions and processing orders in batches
eliminates these arbitrage opportunities but allows liquidity providers to charge pos-
itive markups that cannot be competed away. In both cases, the inefficiencies induce
higher trading costs that are mainly borne by investors. Budish et al. (2015) illustrate
that in the absence of informed trading, FBA dominates the CLOB market design
in terms of trading costs. Our equilibrium characterizations indicate that this result
does no longer need to hold in the presence of privately informed investors. It is hence
not clear a priori which market design is welfare dominant. In our setup, determin-
ing the more efficient design reduced to a comparison of the expected markup flows
E[xf

FBA] and E[xf
CLOB] under FBA and CLOB, respectively. We will demonstrate that

there exist model parameters such that CLOB is strictly preferable over FBA. The
following lemma indicates that the Poisson arrival rates of the different market events
will play an important role in this regard.

Lemma 1 (Expected Markup Flow).
The following holds for the expected markup flows under CLOB and FBA, respectively:

(i) ∂

∂λj

(
E[xf

CLOB]
)

= J
λn(λi + λn)

(λi + λj + λn)2 > 0 and ∂

∂λj

(
E[xf

FBA]
)

= 0.

(ii) E[xf
CLOB]

∣∣∣∣
λj=0

= 0 and lim
λj→∞

E[xf
CLOB] = J λn.

Proof: See Appendix A.6.

The first part of Lemma 1 shows that the inefficiencies under CLOB are increas-
ing in the frequency of publicly observable jumps in the fundamental value. Since
FBA eliminates stale quote arbitrage, its inefficiencies are independent of these jump
events. The second part of Lemma 1 quantifies the markup inefficiencies under CLOB
for extreme cases of public news events. These insights allow us to state the main
theorem of this paper in the following. It highlights that none of the market designs is
unambiguously superior and that a comparison of markup inefficiencies has to depend
on model parameters, especially on the frequencies of different market events.
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Theorem 4 (Inefficiency Comparison).
Consider any given parameter constellation (J, Q, τ, λi, λn) with λn > 0.

(i) Without private information, expected markup flow under FBA is zero and
strictly lower than under CLOB:

0 = E[xf
FBA] < E[xf

CLOB] for λi = 0, λj > 0

(ii) Without public news events, expected markup flow under CLOB is zero and
strictly lower than under FBA:

0 = E[xf
CLOB] < E[xf

FBA] for λj = 0, λi > 0

Proof: See Appendix A.7.

The intuition behind Theorem 4 is straightforward: When λi = 0, there is no in-
formed trade and orders do not have price impact, i.e. ∆ = 0. As the closed-form
representation in (4.5) shows, all markups under FBA – and hence expected markup
flow E[xf

FBA] – will be zero. By contrast, the risk of stale quote sniping is still present
under CLOB, so expected markup flow will be strictly positive. Conversely, when
λj = 0, sniping risk is zero and the markup inefficiency under CLOB disappears. Un-
der FBA, by contrast, liquidity providers can still charge additional markups in their
quotes. This results in higher markup inefficiencies under FBA. Theorem 4 induces
an important corollary which we state in the following. It provides a characterization
of the possible situations that can arise when comparing the markup inefficiencies in
both market designs and shows that there will always exist model parameters such
that CLOB is more favorable than FBA in terms of expected markup flows.

Corollary 1 (Markup Flow Boundary).
Consider any given parameter constellation (J, Q, τ, λi, λn) with λn > 0 and λi > 0.
Then, two cases can arise for expected markup flows:

Case 1: (CLOB unambiguously preferred over FBA)

∄λj s.t. E[xf
CLOB] ≥ E[xf

FBA]. This is the case whenever

E[xf
CLOB] λj→∞−−−−→ J λn <

2
τ

Q∑
k=1

k xk pk = E[xf
FBA], (5.1)
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and therefore E[xf
CLOB] < E[xf

FBA] ∀λj ≥ 0.

Case 2: (Superiority depends on frequency of public news events)

∃ λj s.t. E[xf
CLOB] ≥ E[xf

FBA]. This is the case whenever

E[xf
CLOB] λj→∞−−−−→ J λn ≥ 2

τ

Q∑
k=1

k xk pk = E[xf
FBA]. (5.2)

In this case, there exist a unique λ∗
j = λj(λi, λn, τ, Q, J) given by

λ∗
j =

E[xf
FBA]

(
λi + λn

)
Jλn − E[xf

FBA]
(5.3)

that induces equality between the expected markup flows under CLOB and FBA, i.e.
E[xf

CLOB] = E[xf
FBA]. For λj < λ∗

j , we have E[xf
CLOB] < E[xf

FBA], and vice versa.

Proof: See Appendix A.8.

Proof idea:
λj → ∞ puts CLOB in the least favorable position as sniping risk is maximal. If expected
markup flow is still smaller than under FBA, then CLOB is unambiguously preferred (Case
1). Otherwise, we can solve E[xf

CLOB] = E[xf
FBA] for a unique λ∗

j (Case 2).

Corollary 1 can be interpreted as to attenuate the advantageous position from Budish
et al. (2015) that FBA seems to have over CLOB. It shows that the interplay between
the Poisson arrival rates of public news events (λj) and informed trade (λi) are key
determinants for the relative inefficiencies in the different market designs. Two sce-
narios can arise for expected markup flows. In the first case, CLOB is unambiguously
welfare-dominant since it induces lower markups than FBA for any λj, i.e. no matter
how high the risk of stale-quote arbitrage is. In the second case, there exists a unique
λ∗

j > 0, given by (5.3), which induces a markup flow boundary between CLOB and
FBA. For any given level of uninformed trade, λ∗

j separates the λj − λi−parameter
space into two parts and each market design is welfare-dominant in one of them.26

26One could also fix a given level of informed trade, λi, and consider the λj −λn-parameter space.
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Corollary 1 allows us to make a precise prediction as to when each market design
is preferable in terms of expected markups per unit of time. Most importantly, it
shows that the dominant position of FBA without privately informed investors might
no longer hold in the presence of informed trade. Figure 4 shows the markup flow
boundary induced by λ∗

j for two different lengths τ of the auction interval.

2 4 6 8 10
j

2

4

6

8

10

i

CLOB  FBA

FBA  CLOB

n = J = 1, = 1

xf
CLOB vs. [xf

FBA]
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j

2

4

6

8

10

i

CLOB  FBA

FBA  CLOB

n = J = 1, = 100

xf
CLOB vs. [xf

FBA]

Figure 4: Markup flow boundary in the λj − λi−space induced by λ∗
j as given by (5.3).

The length of the auction interval τ is varied (left: τ = 1, right: τ = 100).

Longer auction intervals make arrivals of multiple investors - and hence higher re-
alizations of excess demand – more likely. While total expected markups within a
longer interval increase as a consequence, the rate of this increase is less than linear
in τ so that expected markups per unit of time decrease with τ . From a more intu-
itive perspective, longer intervals lead to more investor arrivals, on average. However,
trading firms only clear excess demand, so many of these investors are matched with
each other in an auction. Therefore, total markups paid to trading firms increase,
but only by a factor that is less than τ . To increase efficiency in frequent batch auc-
tions, longer intervals could be suggested but those might not be compatible with the
fast-changing environment of today’s financial markets in practice. A higher level of
informed trade, λi, exacerbates the inefficiency under FBA and makes this market
design less attractive. Figure 5 provides further intuition for the shape of the markup
flow boundary. It depicts comparative statics for markup flows under CLOB and FBA
of the auction interval length and the arrival rate of informed trade, respectively.

30

Electronic copy available at: https://ssrn.com/abstract=4065547



0 200 400 600 800 1000
 (auction interval length)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

[x
f FB

A
]  

an
d 

 
[x

f CL
O

B
]

i = n = J = 1, j = 0.1

[xf
FBA]

[xf
CLOB]

[xf
FBA] and [xf

CLOB] for varying  (interval length)

0 20 40 60 80 100
i (informed)

0

1

2

3

4

5

6

7

[x
f FB

A
]  

an
d 

 
[x

f CL
O

B
]

= 1

= 10

= 100

j = n = J = 1

[xf
FBA]

[xf
CLOB]

[xf
FBA] and [xf

CLOB] for varying i (informed)

Figure 5: Comparative statics of the auction interval length τ (left) and the arrival rate of
informed trade λi (right) on expected markup flows under CLOB and FBA.

Discussion of the Main Result
While FBA eliminates stale-quote arbitrage, it can lead to inefficient prices. When
abstracting from informed trade (λi = 0), our model’s implications are analogous to
those in Budish et al. (2015) in that FBA is welfare-dominant. Once there are pri-
vately informed traders in the market, however, this result does no longer hold.27 The
equilibrium that we have derived relies on several important assumptions, most of
which are common in the market microstructure literature. First, informed investors
and noise traders can only use market orders and strategic interaction is limited to
trading firms. Once informed investors could also use limit orders, further equilibria
in the FBA market design would exist, one of which is efficient and leads to zero
markups. Second, we have shown that there exist parameter constellations such that
CLOB is strictly preferred over FBA in terms of markup inefficiencies. Our result crit-
ically relied on the frequencies of different market events. In practice, it is notoriously
difficult to distinguish between informed and noise trade and to quantify publicly ob-
servable jumps in the fundamental value. Third, we have focused on informed trading
and risks from stale-quote arbitrage but have abstracted from other costs in both
market designs. Fourth, equilibrium outcomes were unique only up to permutation of
trading firms and quotes. Therefore, it is undetermined how trading firms sort into
HFTs and liquidity providers and how a certain equilibrium is reached. Finally, in
order to obtain closed-form results, we have assumed a very simple process for the

27This is true although we have made modeling assumptions as conservatively (i.e. as unfavorable)
as possible for trading costs under CLOB.
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fundamental asset value. Nonetheless, we have shown that the seemingly dominant
position of FBA over CLOB is itself contingent on several crucial assumptions - first
and foremost, the abstraction from informed trade. Well-known results from auction
theory mitigate the efficiency of frequent batch auctions and can lead to externalities
that outweigh the costs from stale-quote arbitrage under CLOB.

6 A Possible FBA Adjustment
Although the underlying motive for introducing FBA (i.e. eliminating stale-quote ar-
bitrage and a socially wasteful arms race for speed) is noble, we have shown that this
market design does not come without unintended drawbacks. Nonetheless, the fun-
damental contributions of Budish et al. (2015) should not be devalued. Their seminal
work has laid the foundation for a critical re-evaluation of existing microstructures
and has shed light on important inefficiencies that can be reduced by clever market
design alternatives.28 Furthermore, the inefficiencies under FBA that we highlight
can be eliminated with relatively straightforward adjustments as we show in this sec-
tion. The main reason why liquidity providers can charge markups under FBA is that
price competition for different quotes is not “independent”. In an auction with excess
demand Zτ = k, the clearing price is determined by the kth best quote. Suppose some
trading firm underbids the kth ask quote ak, this undercutting affects the trading
price if excess demand turns out to be Zτ ≥ k. The undercutting firm would benefit
if Zτ = k but would incur losses if Zτ > k. This trade-off allows market makers to
charge strictly positive markups that cannot be undercut by other firms. In order to
prevent the inefficiency, an adjustment should make price competition independent
for each quote for every possible realization of excess demand.

One possible approach to restore independent price competition across units is to allow
market makers to submit quotes conditional on excess demand in an auction. Let most
rules of the current FBA implementation remain intact. In particular, discrete-time
auction intervals still eliminate stale-quote arbitrage, given common trading tech-
nologies. But suppose that, instead of submitting “unconditional” quotes, liquidity

28Another interesting approach, opposite to discretization, is due to Kyle and Lee (2017). They
propose to make trading fully continuous by letting traders submit trade rates over time instead of
quantities. Trade rates would allow to perfectly smooth larger trades over time, eliminating tempo-
rary price impact and thus limiting sniping opportunities for HFTs. While theoretically appealing,
this suggestion seems more drastic and less practicable than variations of the FBA design.
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providers can submit price-quantity schedules for every realization of excess demand.
More precisely, each liquidity provider i = 1, ..., N can submit an ask schedule (and
an analogous bid schedule) of the form

 {
(ai

1,j, ni
1,j)

}qi
1

j=1
,

{
(ai

2,j, ni
2,j)

}qi
2

j=1
, ... ,

{
(ai

Q+1,j, ni
Q+1,j)

}qi
Q+1

j=1

 (6.1)

whereby (ai
k,j, ni

k,j) is the j’s price-quantity quote (out of qi
k in total) reflecting firm i’s

willingness to sell ni
k,j units (with ni

k,j ∈ N0) at price ai
k,j if excess demand is Zτ = k.

Since k is the maximum number of units that firm i could sell when Zτ = k, we
impose ∑qi

k
j=1 ni

k,j ≤ k. As ni
k,j = 0 for j = 1, ..., qi

k is permitted, liquidity providers
are not forced to submit quotes for every possible realization of excess demand.29

For each realization of excess demand Zτ = k with k = 1, ..., Q + 1, the uniform
trading price is determined by the kth best among all quotes that have been submitted
conditional on Zτ = k. More formally, let Mk denote the multiset of all quotes
submitted by the N trading firms, conditional on excess demand being Zτ = k.30

In other words, Mk contains all quotes a1
k,1, ..., a1

k,q1
k
, a2

k,1, ..., a2
k,q2

k
, ..., aN

k,1, ..., aN
k,qN

k

where each ai
k,j has multiplicity ni

k,j and hence |Mq| = ∑N
i=1

∑qi
k

j=1 ni
k,j. Furthermore,

let m(Mk, k) denote the kth smallest element of Mk. If excess demand is Zτ = k, then
the trading price in the adjusted FBA design is given by m(Mk, k). Note especially
that if the k lowest quotes in Mk are all identical (as will be the case in equilibrium),
the trading price is given by this common ask price. Finally, one has to specify
how the k units are allocated to those firms who submit quotes below or equal to
m(Mk, k). Price-priority should be upheld while, in case of ties, we suggest a pro-
rata-type rationing rule based on offered quantities. We denote by nlow

k (respectively
nequ

k ) the total number of quotes in Mk with ask prices strictly below (respectively
equal to) m(Mk, k) and by N low

k ⊆ {1, ..., N} (respectively N equ
k ⊆ {1, ..., N}) the

subset of firms who submit these ask quotes. Several cases must be considered. First,
if nlow

k + nequ
k = k, each liquidity provider i ∈ N low

k ∪ N equ
k is allowed to sell her

desired number of units. The same is true if nlow
k + nequ

k < k, although some units
of excess demand cannot be filled in this case.31 Finally, if nlow

k + nequ
k > k, the k

29In practice, simple rule-based algorithms should allow liquidity providers to submit their desired
quoting schedules with relative ease.

30Informally speaking, a multiset is a modification of the concept of a set which allows for multiple
instances of the same element.

31One could either carry this unfulfilled demand into the next auction interval, as Budish et al.
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units must be rationed. Due to price-priority, firms within N low
k can sell all their

desired quantities with ask prices below m(Mk, k) while the remaining units, k̃ :=
k − ∑

i∈N low
k

∑qi
k

j=1 ni
k,j 1{ai

k,j
< m(Mk,k)}, must be rationed among the firms within N equ

k .
With pro-rata rationing, the number of units allocated to each firm i ∈ N equ

k is
proportional to ni

k,equ, the total number of quotes submitted by firm i with an ask
price equal to m(Mk, k).32 Figure 6 illustrates how prices are determined and how
units are allocated under the proposed FBA adjustment. Proposition 3 shows that
markups can no longer be sustained in the adjusted FBA design and that the resulting
unique pure-strategy equilibrium is efficient.

Proposition 3 (Equilibrium in the Adjusted FBA Setup).
There exists a pure-strategy, stationary Markov Perfect Equilibrium in the adjusted
FBA market model. Equilibrium bid and ask schedules are given by

b(τ)
q = Pτ − q∆ q = 1, ..., Q + 1

a(τ)
q = Pτ + q∆ q = 1, ..., Q + 1,

(6.2)

where ∆ = J λi

λi+λn
denotes the price impact of an order. The equilibrium is efficient

and induces zero expected markups. The equilibrium is unique up to the subsets of
firms submitting the kth best quote on each market side for each value of excess demand
Zτ = k with k = 1, ..., Q+1.

Proof: The adjusted FBA setup gives rise to separate games of Bertrand competition
for each quote so that classical zero-profit equilibrium results apply. ■

The proposed FBA adjustment creates Q+1 separate games of Bertrand competition.
In each of these games, trading firms compete for price leadership for all possible values
of excess demand. Undercutting solely affect the trading price for this level of excess
demand and imposes no externality on other levels of excess demand. The classic
zero-profit result in Bertrand competition applies and equilibrium prices are efficient.

(2014) suggest, or cancel the respective market orders (similar to fill-or-kill orders). In any case,
nlow

k + nequ
k < k will never occur in equilibrium.

32More precisely, one possibility is to allow firm i ∈ N equ
k to sell ñi

k :=
⌊

ni
k,equ∑

j∈N equ
k

nj
k,equ

k̃

⌋
units

where ⌊·⌋ is the floor function. Should some units remain (which is the case when
∑

i∈N equ
k

ñi
k < k̃),

then those remaining units are allocated randomly among all firms within N equ
k that have been

assigned fewer units than desired by them (i.e. among those firms i ∈ N equ
k for which ñi

k < ni
k,equ).
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Figure 6: Price determination and quantity allocation in the proposed FBA adjustment.
Note that this figure does not depict equilibrium quoting behavior. Left: Three trading
firms, labeled 1 (black), 2 (blue), and 3 (gray) submit price-quantity-schedules as in (6.1),
where (ai

k,j , ni
k,j) denotes the j’s price-quantity quote of firm i, reflecting her willingness to

sell ni
k,j units at price ai

k,j if excess demand is Zτ = k. Right: Resulting prices m(Mk, k)
are determined by the kth best quote for excess demand of Zτ = k. If Zτ = 1 (Zτ = 2), firm
1 (firm 3) is the only seller of those units. If Zτ = 3, the quote a2

3,1 of firm 2 determines the
trading price. Firm 1 is allocated one unit since she was willing to sell below the trading
price. The remaining two units are allocated to firm 2.

As trading firms submit quotes without markups, investors only face costs arising
from the Bayesian price impact of orders due to the presence of informed traders.
Consequently, our measure of inefficiency – expected markup flow – is zero for the
adjusted FBA design.

7 Conclusion
The goal of this paper was to compare trading costs and (in)efficiencies under two dif-
ferent market designs: The continuous limit order book (CLOB) and frequent batch
auctions (FBA). In their seminal and pioneering work, Budish et al. (2015) highlight
that continuous trading and serial order processing can lead to distinct inefficiencies
which can be avoided using frequent batch auctions. We have shown that such multi-
unit auctions, in the presence of informed trading, induce other inefficiencies that
closely resemble bid-shading or demand reduction, well-known concepts in auction
theory. When some investors have superior private information and orders have price
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impact, liquidity providers under FBA can charge markups and earn profits in equilib-
rium which cannot be competed away – even in a perfectly competitive environment
and under risk-neutrality. Higher trading costs are mainly borne by investors who
suffer from excessive equilibrium prices.

The main result of this paper shows that there exist circumstances such that the inef-
ficiencies under CLOB are strictly lower than under FBA. Our inefficiency measure,
expected markup flow, quantifies expected markups per unit of time that informed
and uninformed investors have to pay under different market microstructures. Key
determinants for markups are the frequency of publicly observable jumps in the fun-
damental value and the frequency of informed trading. We have shown that CLOB
is either strictly preferable or there exists a critical level of public news events, λ∗

j ,
inducing a “markup-flow-boundary” between CLOB and FBA. In the latter case,
CLOB is still the preferable market design in terms of markup inefficiencies for all
public news frequencies smaller than λ∗

j , and FBA is preferable otherwise. Finally,
we have proposed a straightforward adjustment to the FBA market design that fixes
the aforementioned inefficiency and leads to a unique pure-strategy equilibrium with
zero markups.
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A Proofs
General remark: Proofs will be conducted for one side of the order book only; all
reasoning symmetrically applies to the respective other side as well.

A.1 Proof of Theorem 1 (CLOB Equilibrium)
Bid-ask spread. In equilibrium, the liquidity provider and HFTs must earn identical
expected profits since they are free to choose their role.

profit from uninformed︷ ︸︸ ︷
λn

sCLOB

2 −

loss from informed︷ ︸︸ ︷
λi(J − sCLOB

2 ) −

loss from arbitrageur︷ ︸︸ ︷
λj

N − 1
N

(J − sCLOB

2 )︸ ︷︷ ︸
profit for liquidity provider

!= λj
1
N

(J − sCLOB

2 )︸ ︷︷ ︸
profit for arbitrageur

Rearranging this equation yields the equilibrium bid-ask spread sCLOB = 2J λi+λj

λi+λj+λn
.

Price impact. The equilibrium price impact is given by the expected change in the
fundamental value upon a non-arbitrage trade.33 For a buy order, we have

E[Vt|Ht, buy, i ∨ n]

= E[Vt|Ht, buy, i] P(i|Ht, buy, i ∨ n) + E[Vt|Ht, buy, n] P(n|Ht, buy, i ∨ n)

=
(
E[Vt|Ht] + J

) P(i, buy|Ht, i ∨ n)
P(buy|Ht, i ∨ n) + E[Vt|Ht]

P(n, buy|Ht, i ∨ n)
P(buy|Ht, i ∨ n)

= E[Vt|Ht]︸ ︷︷ ︸
=Pt

+ J
λi

λi + λn︸ ︷︷ ︸
=:∆

which gives the price impact ∆ = λi

λi+λn
.

Markup. In the CLOB market, the half-spread on every transaction can be decom-
posed into the rational price impact and an additional markup as follows:

sCLOB

2 = ∆ + xCLOB

Rearranging yields equilibrium markup xCLOB = J λjλn

(λi+λj+λn)(λi+λn) .
33Note that the liquidity provider can distinguish between arbitrage trades (any order upon a

public news event) and non-arbitrage trades: With independent Poisson arrivals in continuous time,
the probability that a public news event occurs at exactly the same time as a trader arrival is zero.
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Expected markup flow per unit of time is given by E[xf
CLOB] = (λi + λn) xCLOB. ■

A.2 Proof of Theorem 2 (No Zero Markups in FBA)
Consider the liquidity provider LP of the first ask quote. We show that the deviation
of LP from a1 = ∆ to ã1 = ∆ + y1 with y1 ∈

(
0, p2

p1+p2
∆

)
constitutes a strictly

profitable robust deviation. The deviation is clearly profitable for LP as it increases
expected profits. It remains to be shown that there does not exist a strictly profitable
underbidding reaction of any other trading firm TF in response to LP ’s deviation.

Let ω = (ω1, ..., ωQ+1) where ωq denotes TF ’s number of active quotes at or below aq

(before reacting to LP ’s deviation). Since LP owns a1, we have ω1 = 0. Furthermore,
it is most profitable for TF to underbid to ã1 − ε for some small ε > 0. Two cases of
underbidding need to be considered.

(A) TF inserts an additional quote.

ΠT F
(A)(ω) = p1(ω1+1)[y1−ε] + p2(ω1+1)[y1−∆] −

Q+1∑
k=3

pk(ωk−1+1)∆

The incentive of TF to underbid the deviation of LP is highest if TF was pre-
viously inactive, i.e. for ω∗ := arg max ΠT F

(A)(ω) = (0, ..., 0). But even then, we
have

ΠT F
(A)(ω∗) = y1(p1+p2) − ∆

Q+1∑
k=2

pk < 0 for y1 <
∆

p1+p2

Q+1∑
k=2

pk

(B) TF shifts down the kth best existing quote.

ΠT F
(B)(ω) = p1(ω1+1)[y1−ε] + p2(ω1+1)[y1−∆] −

k∑
j=3

pj(ωj−1+1)∆

The incentive of TF to underbid the deviation of LP is highest if TF shifts down
the second best quote, i.e. if k = 2 and ω2 = 1. But even then, we have

ΠT F
(B)(ω) = y1(p1+p2) − p2∆ < 0 for y1 <

p2

p1+p2
∆

In sum, underbidding LP ’s deviation is not profitable for any trading firm and hence
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the zero-markup schedule cannot constitute an OBE in the one-shot auction game.

Likewise, in the finitely or infinitely repeated (with discounting) version of the auction
game, zero-markup quoting does not constitute a Nash equilibrium. Given the zero-
markup schedule, any liquidity provider has a strictly profitable one-shot deviation:
In some period t, increase the quote by some small enough ε > 0 and remain inactive
thereafter. Thereby, the liquidity provider makes strictly positive expected profits in
t while making zero expected profits in all other periods – a strict improvement. ■

A.3 Proof of Theorem 3 (FBA Equilibrium)
In preparation of the main proof, we first establish several lemmas.

Lemma A.1 (FBA Markups and No-Entry Condition).
Let excess demand in an auction be truncated to |Zτ | ≤ Q + 1 for some Q ∈ N.
Then the markups {xq}q=1,...,Q+1 as defined in (4.5) are the largest markups such that
inactive trading firms have no incentive to enter the book and undercut existing quotes.
If some markup xq is larger than given in (4.5), then there exists a strict incentive to
undercut the corresponding quote.

Proof:
Consider a liquidity provider offering the qth best ask quote at a(τ)

q = Pτ + q∆ + xq as
specified in (4.4). We consider the incentive of an inactive trading firm to enter the
book and undercut the ask. The proof proceeds by induction over q.

Base case (q = Q + 1): In order to have an incentive to undercut the (Q+1)th ask by
some sufficiently small ε > 0 to markup xQ+1 − ε, an inactive trading firm must earn
higher expected profits from undercutting compared to remaining inactive.

pQ+1(xQ+1 − ε)︸ ︷︷ ︸
undercutting

!
≥ 0︸︷︷︸

inactive

⇔ xQ+1 ≥ ε > 0

Clearly, xQ+1 = 0 is the largest markup such that an inactive trading firm has no
incentive to enter the book and undercut while, if xQ+1 > 0, there exists a strict
incentive to undercut by some sufficiently small ε > 0.

Induction Step (q + 1 ⇒ q): Suppose xq+1, ..., xQ+1 satisfy (4.5).
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Again, we consider the incentive of an inactive trading firm to undercut the qth quote
by some sufficiently small ε > 0 to markup xq − ε. In case of undercutting, the new
quote at markup xq − ε becomes the qth best quote, the old previously qth best quote
at markup xq becomes the new (q+1)th best quote, and so on. That means all quotes
above the new undercutting quote shift positions by one; the undercutting firm profits
if the order balance is Zτ = q but incurs expected losses when Zτ = q+1, ..., Q+1.

pq(xq − ε) +
Q+1∑

k=q+1
pk(xk−1 − ∆)

︸ ︷︷ ︸
undercutting

!
≥ 0︸︷︷︸

inactive

⇔ xq(pq + pq+1) − pq ε +
Q∑

k=q+1
xkpk+1 ≥ ∆

Q+1∑
k=q+1

pk

Clearly, the incentive to undercut increases with xq. To find the largest xq such that
there is no incentive to undercut, we let ε → 0 and consider the equality

xq(pq + pq+1) +
Q∑

k=q+1
xkpk+1 = ∆

Q+1∑
k=q+1

pk (A.1)

It remains to be shown that xq in (A.1) satisfies (4.5) as well: Consider (A.1) for xq

and xq+1. Subtracting the equation for xq+1 from the one for xq and rearranging gives

xq = pq+1

pq + pq+1︸ ︷︷ ︸
=:αq

(∆ + xq+1) = αq∆ + αqxq+1 (A.2)

Finally, inserting the induction hypothesis (4.5) for xq+1 into (A.2) yields

xq = αq∆ + αqxq+1
(4.5)= αq∆ + αq

∆
Q−(q+1)∑

k=0

Q−(q+1)∏
s=k

αQ−s


= ∆

αq + αq

[
αq+1 + αq+1αq+2 + αq+1αq+2αq+3 + · · · + αq+1 · · · αQ

]
= ∆

αq + αqαq+1 + αqαq+1αq+2 + αqαq+1αq+2αq+3 + · · · + αqαq+1 · · · αQ


= ∆

Q−q∑
k=0

Q−q∏
s=k

αQ−s
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proving that xq satisfies (4.5). ■

Corollary A.1 (FBA Markups and Recursive Relations).
The FBA markups defined in (4.5) satisfy the following recursive relations

xq = αq(∆ + xq+1) (A.3)

xq(pq + pq+1) = pq+1(∆ + xq+1) (A.4)

pq+1(xq − ∆) = xq+1pq+1 − xqpq (A.5)

Lemma A.2 (FBA Markups and Competitive Pressure).
Let excess demand in an auction be truncated to |Zτ | ≤ Q+1 for some Q ∈ N and
let markups xq+1, ..., xQ+1 be given as in (4.5). Then inactive trading firms have the
(weakly) strongest incentive to enter the book and undercut the qth quote, i.e. exert
the highest competitive pressure on markup xq.

Proof:
Let markups xq+1, ..., xQ+1 be given by (4.5) (Proposition 1 will show that these are
strictly smaller than ∆) while x̃1, ..., x̃q do not necessarily satisfy (4.5). We consider
expected profits from undercutting the qth quote, i.e. from offering a quote at markup
x̃q − ε for some small ε > 0. Three cases of undercutting need to be considered.

(A) Inactive trading firm adding a new quote.

E[πinactive before] = 0

E[πinactive adding] = pq(x̃q −ε) + pq+1(x̃q −∆) + pq+2(xq+1−∆) + · · · + pQ+1(xQ−∆)

⇒ E[∆πinactive adding] = E[πinactive adding] − E[πinactive before]
(A.5)= pq(x̃q −ε) + pq+1(x̃q −∆) + pq+2 xq+2 − pq+1 xq+1 ± · · · + pQ+1 xQ+1︸ ︷︷ ︸

=0

−pQxQ

= x̃q(pq +pq+1) − pq+1(∆+xq+1) − pqε
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To specify profits of active trading firms, let ωq ≥ 0 denote the number of active
quotes (before undercutting) at or below the qth quote, and ω = (ω1, ..., ωQ+1). For
a trading firm to be active, it must own some quote in the book, say at least the kth

quote, i.e. ωk = ωk−1+1 and ωk+l ≥ 1 for all l ≥ 0. Furthermore, for undercutting to
be meaningful, the firm must not own the qth quote, i.e. ωq = ωq−1.

(B) Active trading firm adding a new quote.

E[πactive before(ω)] = p1ω1x̃1 + · · · + pq−1 ωq−1 x̃q−1 + pqωqx̃q

+ pq+1 ωq+1 xq+1 + · · · + pk−1 ωk−1 xk−1 + pk ωk︸︷︷︸
=ωk−1+1

xk + · · · + pQ+1 ωQ+1︸ ︷︷ ︸
≥1

xQ+1

E[πactive adding(ω)] = p1ω1x̃1 + · · · + pq−1 ωq−1 x̃q−1 + pq (ωq−1+1)︸ ︷︷ ︸
=ωq+1

(x̃q −ε)

+ pq+1(ωq +1)(x̃q −∆) + · · · + pQ+1(ωQ+1)(xQ−∆)

⇒ E[∆πactive adding(ω)] = pqx̃q − pq(ωq +1)ε + pq+1(ωq +1)(x̃q −∆)

+ pq+2(ωq+1+1) (xq+1−∆)︸ ︷︷ ︸
<0

+ · · · + pQ+1(ωQ+1) (xQ−∆)︸ ︷︷ ︸
<0

− pq+1 ωq+1 xq+1 − · · · − pQ+1 ωQ+1 xQ+1

(C) Active trading firm shifting downward an existing quote.

E[πactive shifting(ω)] = p1ω1x̃1 + · · · + pq−1 ωq−1 x̃q−1 + pq (ωq−1+1)︸ ︷︷ ︸
=ωq+1

(x̃q −ε)

+ pq+1(ωq +1)(x̃q −∆) + · · · + pk(ωk−1+1)(xk−1−∆)

+ pk+1 ωk+1 xk+1 + · · · + pQ+1 ωQ+1 xQ+1

⇒ E[∆πactive shifting(ω)] = pqx̃q − pq(ωq +1)ε + pq+1(ωq +1)(x̃q −∆)

+ pq+2(ωq+1+1) (xq+1−∆)︸ ︷︷ ︸
<0

+ · · · + pk(ωk−1+1) (xk−1−∆)︸ ︷︷ ︸
<0

− pq+1 ωq+1 xq+1 − · · · − pkωkxk
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We show that the incentive to undercut is (weakly) maximal in case (A), which follows
in three steps.

Step 1: Case (C) dominates case (B): For active firms, undercutting by shifting an
existing quote is strictly more profitable than undercutting by adding a new quote.

We clearly have E[∆πactive shifting(ω)] > E[∆πactive adding(ω)] as the latter is largely
identical but contains additional strictly negative terms (xk − ∆ < 0 due to Proposi-
tion 1).

Step 2: Maximal incentive in case (C): The incentive for an active firm to undercut by
shifting is maximal if the firm owns only one single quote, the kth quote to be shifted.

Since ωq+1, . . . , ωQ+1 only occur in negative terms, maximization of E[∆πactive shifting(ω)]
requires these to be minimal. The only other occurring weight, ωq, is now considered
separately. Recall that x̃q ≤ ∆ + xq+1, otherwise it would not be the qth markup.
Further recall that ωq is contained in all ωq+1, . . . , ωQ+1 or, in other words, increasing
ωq necessarily increases all subsequent weights. Therefore, we get

∂E[∆πactive shifting(ω)]
∂ωq

= −pq ε + pq+1 (x̃q −∆)︸ ︷︷ ︸
≤xq+1

+ pq+2(xq+1−∆) + · · · + pk(xk−1−∆) − pq+1 xq+1 − · · · − pkxk

(A.5)
≤ −pq ε + pq+1 xq+1 + pq+2 xq+2 − pq+1 xq+1 ± · · · + pkxk − pk−1 xk−1

− pq+1 xq+1 − · · · − pk−1 xk−1 − pkxk

= −pq ε − pq+1 xq+1 − · · · − pk−1 xk−1 < 0

which shows that maximization of E[∆πactive shifting(ω)] requires ωq to be minimal as
well. Overall, we have

arg max
0≤ω1≤···≤ωQ+1≤Q+1

E[∆πactive shifting(ω)] = ω∗

with ω∗
1 = · · · = ω∗

k−1 = 0 and ω∗
k = · · · = ω∗

Q+1 = 1.

Step 3: Incentive in case (A) is equal to the maximal incentive in case (C): To complete
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the proof, we now show that E[∆πinactive adding] = E[∆πactive shifting(ω∗)].

E[∆πactive shifting(ω∗)]

= pq(x̃q −ε) + pq+1(x̃q −∆) + pq+2(xq+1−∆) + · · · + pk(xk−1 − ∆) − pkxk

(A.5)= pqx̃q − pq ε + pq+1x̃q − pq+1∆ + pq+2 xq+2 − pq+1 xq+1

± · · · + pkxk − pk−1 xk−1 − pkxk

= x̃q(pq + pq+1) − pq+1(∆ + xq+1) − pqε = E[∆πinactive adding]

■

Lemma A.3 (FBA Markups and No Robust Deviation).
Let excess demand in an auction be truncated to |Zτ | ≤ Q+1 for some Q ∈ N. Let
markups xq, ..., xQ+1 be given by (4.5). Then, there does not exist a strictly profitable
robust deviation for the liquidity provider (LP) of the qth quote at markup xq.

Proof:
Let markups xq, ..., xQ+1 be given by (4.5) (Proposition 1 will show that these are
strictly smaller than ∆) while x̃1, ..., x̃q−1 do not necessarily satisfy (4.5). Let ωk

denote the number of active quotes that LP owns at or below the kth best ask quote.
We show that any (profitable) deviation of LP can be rendered unprofitable by a
strictly profitable safe price improvement of some previously inactive trading firm.
LP’s expected profits before deviating are:

E[πLP
before] = p1ω1x̃1 + · · · + pqωqxq + pq+1 ωq+1 xq+1 + · · · + pQ+1 ωQ+1 xQ+1

Now suppose LP increases his quote from aq = q · ∆ + aq to âk := k · ∆ + x̂k with
k ≥ q and x̂k ∈ (xk, ∆ + xk+1). In other words, LP shifts his quote upward s.t. he
offers the kth best ask quote post deviation. Any such deviation has the form:

E[πLP
deviate] = p1ω1x̃1 + · · · + pq−1 ωq−1 x̃q−1 + pq(ωq+1 − 1)(∆ + xq+1)

+ pq+1(ωq+2 − 1)(∆ + xq+2) + · · · + pk−1(ωk − 1)(∆ + xk)

+ pkωkx̂k + pk+1 ωk+1 xk+1 + · · · + pQ+1 ωQ+1 xQ+1

However, this deviation is not robust: Consider the reaction of a previously inactive
trading firm (TF) who enters the market and quotes a′

q = q · ∆ + x′
q with x′

q = xq.
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First, this price improvement is strictly profitable for TF : E[πTF
inactive] = 0 and

E[πTF
enter](x̂k) = pqx

′
q + pq+1xq+1 + pq+2xq+2 + · · · + pkxk + pk+1(x̂k − ∆)

+ pk+2(xk+1 − ∆) + · · · + pQ+1(xQ − ∆)

E[πTF
enter](x̂k) is increasing in x̂k. To show that the reaction of TF is profitable for any

x̂k ∈ (x̂min
k , x̂max

k ) = (xk, ∆ + xk+1), it is sufficient to consider x̂min
k = xk + ε:

E[πTF
enter](x̂min

k ) = pqxq + pq+1xq+1 + · · · + pk−1xk−1 + pkxk + pk+1(xk + ε − ∆)

+ pk+2(xk+1 − ∆) + · · · + pQ+1(xQ − ∆)

= pk+1ε + pqxq + pq+1xq+1 + · · · + pk−1xk−1 + pkxk

+ pk+1(xk − ∆) + pk+2(xk+1 − ∆) + · · · + pQ+1(xQ − ∆)︸ ︷︷ ︸
use (A.5) for these terms

= pk+1ε + pqxq + pq+1xq+1 + · · · + pk−1xk−1 + pQ+1xQ+1 > 0

Second, TF’s price improvement renders any initial deviation of LP to x̂k unprofitable:

Denoting by E[πLP
react](x̂k) the expected profits of LP after TF has reacted, we get:

E[πLP
react](x̂k) = p1ω1x̃1 + · · · + pq−1ωq−1x̃q−1 + pq(ωq − 1) x

′

q︸︷︷︸
= xq

+pq+1(ωq+1 − 1)xq+1

+ · · · + pk−1(ωk−1 − 1)xk−1 + pk(ωk − 1)xk + pk+1ωk(x̂k − ∆)

+ pk+2ωk+1(xk+1 − ∆) + · · · + pQ+1 ωQ(xQ − ∆)

E[πLP
react](x̂k) is increasing in x̂k. To show that the reaction of TF renders LP unprof-
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itable for any x̂k ∈ (xk, ∆ + xk+1), it is sufficient to consider x̂max
k = ∆ + xk+1 − ε:

E[πLP
react](x̂max

k ) = p1ω1x̃1 + · · · + pq−1 ωq−1 x̃q−1 + pq(ωq − 1)xq + pq+1(ωq+1 − 1)xq+1

+ · · · + pk−1(ωk−1 − 1)xk−1 + pk(ωk − 1)xk + pk+1ωk(xk+1 − ε)

+ pk+2ωk+1(xk+1 − ∆) + · · · + pQ+1ωQ(xQ − ∆)

= −pk+1ωk ε + p1ω1x̃1 + · · · + pq−1ωq−1x̃q−1 + pq(ωq − 1)xq + pq+1(ωq+1 − 1)xq+1

+ · · · + pk−1(ωk−1 − 1)xk−1 + pk(ωk − 1)xk + pk+1ωkxk+1

+ pk+2ωk+1(xk+1 − ∆) + · · · + pQ+1ωQ(xQ − ∆)

The profitability difference of LP is:

E[∆πLP
react] = E[πLP

react] − E[πLP
before]

= −pk+1ωkε + pq

[
(ωq − 1)xq − ωqxq︸ ︷︷ ︸

<0 since (ωq−1)<ωq

]
+ pq+1

[
(ωq+1 − 1) xq+1 − ωq+1 xq+1︸ ︷︷ ︸

<0

]

+ · · · + pk−1

[
(ωk−1 − 1) xk−1 − ωk−1 xk−1︸ ︷︷ ︸

<0

]
+ pk

[
(ωk − 1)xk − ωkxk︸ ︷︷ ︸

<0

]

+ pk+1

[
ωkxk+1 − ωk+1xk+1︸ ︷︷ ︸

≤0 since ωk≤ωk+1

]
+ pk+2

[
ωk+1 (xk+1 − ∆)︸ ︷︷ ︸

<0 by P roposition 1

− ωk+2xk+2

︸ ︷︷ ︸
<0

]

+ · · · + pQ

[
ωQ−1 (xQ−1 − ∆)︸ ︷︷ ︸

<0

− ωQxQ

︸ ︷︷ ︸
<0

]
+ pQ+1

[
ωQ (xQ − ∆)︸ ︷︷ ︸

<0

− ωQ+1xQ

︸ ︷︷ ︸
<0

]

< 0

The profitable reaction of TF hence renders any deviation of LP unprofitable. ■

Lemma A.4 (Probability Distribution of Excess Demand).
Let excess demand in an auction be truncated to |Zτ | ≤ Q+1 for some Q ∈ N. Then,
excess demand Zτ follows a truncated symmetric Skellam distribution with parameter

46

Electronic copy available at: https://ssrn.com/abstract=4065547



λ := 1
2τ(λi + λn). Its probability mass function {pk}k=−(Q+1),...,Q+1 is given by

pk := P(Zτ = k | |Zτ | ≤ Q+1) = P(Zτ = k)
P(Zτ ≤ Q+1) − P(Zτ ≤ −(Q+1)) (A.6)

where

P(Zτ = k) = e−2λ I|k|(2λ) (A.7)

and where I|k|( · ) denotes the modified Bessel function of the first kind. The probability
mass function is symmetric (pk = p−k) and maximized at k = 0. It holds that

pi > pj > 0 (A.8)

for any 0 ≤ i < j ≤ Q+1 and

lim
k→∞

pk = 0

at an exponential rate.

Proof:
Excess demand Zτ := Dτ − Sτ is the difference between total demand Dτ and total
supply Sτ in a given auction interval of length τ . In equilibrium, buy and sell orders
can stem from informed and uninformed investors arriving at Poisson intensities of λi

and λn per unit of time, respectively. Both types of investors issue buy and sell orders
with equal probability. Letting λD and λS denote the Poisson intensities of demand
and supply orders within a given auction interval, those intensities are given by

λD = λS = 1
2τ(λi + λn) =: λ

As Zτ is the difference between two statistically independent random variables, each
Poisson distributed with the same intensity λ, excess demand Zτ follows a symmetric
Skellam distribution (truncated, if Q+1 < ∞) with probability mass function

P(Zτ = k) = e−(λD+λS)
(

λD

λS

) k
2

I|k|
(
2

√
λD · λS

)
= e−2λ I|k|(2λ)

for k ∈ Z, where Ik(z) = ∑∞
v=0

1
v! Γ(v+k+1)

(
z
2

)2v+k
denotes the modified Bessel function
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of the first kind. It holds for the symmetric Skellam distribution that it is maximized
at Zτ = 0 and that P(|Zτ | = i) > P(|Zτ | = j) for any i, j ∈ N with i < j.

For small arguments 0 < z ≪
√

k + 1 and k ∈ N, the Bessel function has the following
asymptotic form

Ik(z) ≃ 1
Γ(k + 1)

(
z

2

)k

where Γ(m) is the Gamma function given by Γ(m) = (m − 1)! for any m ∈ N. Using
this asymptotic result of the Bessel function, we can approximate the symmetric
probability mass function of the Skellam distribution by

P(Zτ = k) = e−τ(λi+λn) I|k|
(
τ(λi + λn)

)
≃ e−τ(λi+λn) 1

|k|!

(
τ(λi + λn)

2

)|k|

Finally, Skellam probabilities tend to zero exponentially as k → ∞, i.e.

lim
k→∞

P(Zτ = k) ≃ lim
k→∞

e−τ(λi+λn) 1
k!

(
τ(λi + λn)

2

)k (⋆)= 0

where (⋆) follows from the standard analytical result that the factorial sequence will
asymptotically grow faster than any exponential function with constant base. This
immediately implies limk→∞ pk = 0 for the truncated Skellam probabilities. ■

Lemma A.5 (FBA Markup Flow).
Let excess demand in an auction be truncated to |Zτ | ≤ Q+1 for some Q ∈ N. For
batch auctions of length τ with markups {xk}k=1,...,Q+1 and probabilities {pk}k=1,...,Q+1

of excess demand, the expected markup flow for investors per unit of time is given by

E[xf
FBA] = 2

τ

Q∑
k=1

k pk xk < ∞.

For λi > 0 (existence of informed trade), we have E[xf
FBA] ∈ (0, ∞).

Proof:
Compute total expected markup payments to market makers within an auction in-
terval and scale by 1

τ
, the inverse of the auction interval. We exploit the symmetry
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xk = x−k of markups on the buy and sell side to get

E[xf
FBA] = 2 1

τ

∞∑
k=1

k pk xk = 2
τ

Q∑
k=1

k pk xk

Q is finite and pk ∈ (0, 1). Further, it holds that xk < ∆ for all k = 1, ..., Q which
will be shown in Proposition 1. Therefore, E[xf

FBA] < ∞. Finally, when λi > 0, it
holds that xk >0 for all k = 1, ..., Q which will also be shown in Proposition 1. Hence
E[xf

FBA] ∈ (0, ∞) in this case. ■

Proof of Theorem 3:
We show that if the provider of the qth ask quote deviates to a larger markup than the
one given in (4.5), then (a) some other trading firm can perform a strictly profitable
safe price improvement and (b) the price improvement renders the original deviation
to a larger markup unprofitable.34 We proceed by induction over q.

Base case (q = Q+1): For the last unit, no markup can be charged, i.e. xQ+1 = 0.

1. xQ+1 = 0 is an OBE markup. Suppose to the contrary that the corresponding
liquidity provider deviates to x̂Q+1 > 0. Then some other trading firm could
undercut and offer at x′

Q+1 = x̂Q+1 − ε > 0 for some small ε > 0 which constitutes
a price improvement.

(a) Undercutting is safe and profitable on expectation: For Zτ < Q+1, the last
unit is not traded, but for Zτ = Q+1, profit x′

Q+1 > 0 will be realized.

(b) Undercutting renders the original deviation to markup x̂Q+1 > 0 unprofitable:
The corresponding ask would become the (Q+2)th best ask quote and never
execute, thus yielding zero profit.

2. x̂Q+1 ̸= 0 cannot be an OBE markup.

(1) x̂Q+1 > 0 cannot be an OBE markup: By Lemma A.1, some inactive trad-
ing firm can undercut the markup which constitutes a safe profitable price
improvement.

34Note that in our setup, liquidity withdrawals lead to fewer quotes in the order book and can
hence only induce (weakly) larger clearing prices. Therefore, liquidity withdrawals can never render
deviations unprofitable and the ”safe” requirement of any safe profitable price improvement is always
fulfilled.

49

Electronic copy available at: https://ssrn.com/abstract=4065547



(2) x̂Q+1 < 0 cannot be an OBE markup: By Lemma A.1 and Lemma A.2, the
liquidity provider of this unit can increase her quote until xQ+1 = 0 which
constitutes a profitable robust deviation.

Induction Step (q+1 ⇒ q): Suppose xq+1, . . . , xQ+1 are given by (4.5). We show that
the unique OBE markup xq must also adhere to (4.5).

1. xq as in (4.5) is an OBE markup. First, by Lemma A.1 and Lemma A.2, there do
not exist profitable price improvements of other firms. Second, by Lemma A.3,
there does not exist a profitable robust deviation of the liquidity provider of the
qth quote.

2. x̂q ̸= xq cannot be an OBE markup.

(1) x̂q > xq cannot be an OBE markup by Lemma A.1.

(2) x̂q < xq cannot be an OBE markup by Lemma A.1 and Lemma A.2.

This completes the proof of Theorem 3. ■

A.4 Proof of Proposition 1 (Properties of FBA Markups)
(1) xQ+1 = 0 (no markup on last unit)

See Theorem 3.

(2) 0 < xq < ∆ (positivity and boundedness)

Note that ∆ > 0 and, for all q = 1, ..., Q, we have pq > pq+1 > 0 due to (A.8).
Thus

αq = pq+1

pq + pq+1
∈

(
0,

1
2

)

The proof proceeds by induction over q.

Base case (q = Q): We have xQ
(A.3)= αQ︸︷︷︸

∈(0, 1
2 )

∆ ∈ (0, ∆).
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Induction Step (q + 1 ⇒ q): Suppose xq+1 ∈ (0, ∆) holds for some q. Then

xq
(A.3)= αq︸︷︷︸

∈(0, 1
2 )

(∆ + xq+1)︸ ︷︷ ︸
∈(∆,2∆)

∈ (0, ∆)

(3) xq > xq+1 (monotonically decreasing)

We again use (A.3) and proceed by induction over q.

Base case (q = Q): We have xQ
(A.3)= αQ(∆ + xQ+1) > 0 = xQ+1.

Induction Step (q + 1 ⇒ q): Suppose xq+1 > xq+2 holds for some q. Then

xq

xq+1

(A.3)= αq

αq+1︸ ︷︷ ︸
>1 from (⋆)

(∆ + xq+1)
(∆ + xq+2)︸ ︷︷ ︸

>1

> 1

implying xq > xq+1.

(⋆): αq

αq+1
> 1 stems from the following considerations.

αq

αq+1
=

pq+1
pq+pq+1

pq+2
pq+1+pq+2

=
p2

q+1 + pq+1pq+2

pqpq+2 + pq+1pq+2

Since the second summand is the same in the numerator and denominator, it
follows that αq

αq+1
> 1 if and only if p2

q+1
pqpq+2

> 1. Looking at this term in isolation
and using the Skellam probability mass function from (A.7) yields

p2
q+1

pqpq+2
=

(
e−2λIq+1(2λ)

)2

e−2λIq(2λ) e−2λIq+2(2λ) =
I2

q+1(2λ)
Iq(2λ) Iq+2(2λ) > 1

where the last inequality follows from the Turán-type inequalities of the modified
Bessel function Ik(z) of the first kind (see Lorch, 1994, eqn. (5.1)).

(4) xq(Q+1) > xq(Q) (increasing in order book depth)

(5) lim
Q→∞

(
xq(Q+1) − xq(Q)

)
= 0 (convergence in order book depth)
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We show the last two properties jointly.

xq(Q+1) − xq(Q) (4.5)= ∆
Q+1−q∑

k=0

Q+1−q∏
s=k

αQ+1−s − ∆
Q−q∑
k=0

Q−q∏
s=k

αQ−s

= ∆
Q+1−q∏

s=0
αQ+1−s + ∆

Q+1−q∑
k=1

Q+1−q∏
s=k

αQ+1−s − ∆
Q−q∑
k=0

Q−q∏
s=k

αQ−s

= ∆
Q+1−q∏

s=0
αQ+1−s + ∆

Q−q∑
k=0

Q−q∏
s=k

αQ−s − ∆
Q−q∑
k=0

Q−q∏
s=k

αQ−s

= ∆
Q+1−q∏

s=0
αQ+1−s︸ ︷︷ ︸

∈(0, 1
2 )︸ ︷︷ ︸

>0

↘ 0 for Q → ∞

In the above calculation, we have used that αq does not depend on Q. To see this,
denote by P(Zτ = q) and pq the untruncated and truncated Skellam probabilities
of excess demand, respectively. It holds that

pq := P(Zτ = q | |Zτ | ≤ Q+1) (A.6)= P(Zτ = q)
P(Zτ ≤ Q+1) − P(Zτ ≤ −(Q+1))

= 1
2 P(Zτ ≤ Q+1) − 1︸ ︷︷ ︸

=:ηQ

P(Zτ = q)

It follows that αq is indeed independent of Q because

αq = pq+1

pq + pq+1
= ηQ P(Zτ = q+1)

ηQ P(Zτ = q) + ηQ P(Zτ = q+1) = P(Zτ = q+1)
P(Zτ = q) + P(Zτ = q+1)

■

A.5 Proof of Proposition 2 (FBA Quotes for Q → ∞)
Convergence of FBA markups, and hence of equilibrium supply and demand schedules,
follows from the last property of Proposition 1. As excess demand Zτ is no longer
bounded, its Skellam probability distribution is no longer truncated. Finally, the total
expected markup flow is finite since

E[xf
FBA] = 2

τ

∞∑
k=1

k P(Zτ = k) xk

(⋆)
≤ 2∆

τ

∞∑
k=1

k P(Zτ = k)
(⋆⋆)
< ∞

52

Electronic copy available at: https://ssrn.com/abstract=4065547



where (⋆) uses xk <∆ from Proposition 1 and (⋆⋆) uses the fact that Skellam proba-
bilities tend to zero exponentially by Lemma A.4. ■

A.6 Proof of Lemma 1 (Expected Markup Flow)

(i) First, we have ∂
∂λj

(
E[xf

CLOB]
)

= ∂
∂λj

(
λjλnJ

(λi+λj+λn)

)
= λn(λi+λn)J

(λi+λj+λn)2 > 0.

Second, since FBA markups are independent of public news, ∂
∂λj

(
E[xf

FBA]
)

= 0.

(ii) First, we have E[xf
CLOB]

∣∣∣∣
λj=0

= λjλnJ

(λi+λj+λn)

∣∣∣∣
λj=0

= 0.

Second, by L’Hospital’s Rule, we get lim
λj→∞

E[xf
CLOB] = lim

λj→∞
λjλnJ

(λi+λj+λn) = λnJ .

■

A.7 Proof of Theorem 4 (Inefficiency Comparison)
(i) λi = 0 implies ∆ = J λi

λi+λn
= 0, which leads to xq = ∆ ∑Q−q

k=0
∏Q−q

s=k αQ−s = 0 and
thus E[xf

FBA] = 0. Due to λj, λn > 0, we have

E[xf
CLOB] = J

λjλn

(λi + λj + λn) > 0 = E[xf
FBA]

(ii) λj = 0 implies E[xf
CLOB] = J λjλn

(λi+λj+λn) = 0. Since λi > 0, we have ∆ = J λi

λi+λn
>

0, which leads to xq = ∆ ∑Q−q
k=0

∏Q−q
s=k αQ−s > 0 and thus E[xf

FBA] > 0. Overall,

0 = E[xf
CLOB] < E[xf

FBA]

■

A.8 Proof of Corollary 1 (Markup Flow Boundary)
As shown in Lemma 1, the markup flow under CLOB increases in λj, becomes maximal
for λj → ∞ and approaches limλj→∞ E[xf

CLOB] = λnJ . On the other hand, the markup
flow under FBA are independent of λj.
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Case 1: If E[xf
FBA] ≥ λnJ , then E[xf

FBA] > E[xf
CLOB] for all λj ≥ 0.

Case 2: If E[xf
FBA] < λnJ , we can solve for the unique λ∗

j > 0 that induces equality.

E[xf
CLOB] = J

λ∗
jλn

(λi + λ∗
j + λn)

!= E[xf
FBA] ⇔ λ∗

j =
E[xf

FBA]
(
λi + λn

)
λnJ − E[xf

FBA]

For λj < λ∗
j , we have E[xf

CLOB] < E[xf
FBA], and vice versa. ■
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