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Implications of Aggregation Uncertainty 
in DEA 
Emil Heesche1, Mette Asmild2 

Abstract 
Researchers and practitioners who use Data Envelopment Analysis often want to incorporate several inputs 

and outputs in their model to consider as much relevant information as possible. However, too many inputs 

and outputs can result in the well-known dimensionality problem referred to as the “curse of 

dimensionality”. Several studies suggest how to solve, or at least reduce, this problem. One solution is to 

aggregate the inputs and outputs before using them in the model. 

This paper examines the implications when the methods used to aggregate the inputs and outputs contain 

uncertainty. The uncertainty can, for example, be price uncertainty if we use input and/or output prices for 

the aggregation. 

We show that the implications for a unit under analysis depend entirely on its input and output mixes 

relative to those of its peers, and that the implications are higher the more heterogeneous the sector is. As 

an example, we use the Danish benchmarking regulation of the waste water companies. We find that 

uncertainty in the regulator's aggregation scheme does not, on average, influence the companies' efficiency 

scores a lot. Still, individual companies can be greatly affected by this uncertainty. 
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1 Introduction 
Utility providers are often subject to economic regulation because they are local monopolies. The 

regulation is intended to reduce consumer prices and increase quality by imitating the economic incentives 

found in more competitive markets. 

Several different regulation schemes exist, many of which (at least in Europe) are based on the so-called 

revenue cap regulation. In this type of regulation, the regulator decides the companies’ maximum allowed 

revenue, and it is hereafter up to the companies to reduce their costs accordingly to maximize their profit. 

To set a revenue cap, the regulators can, for example, use benchmarking models such as Data Envelopment 

Analysis (Charnes, Cooper, & Rhodes, 1978) and Stochastic Frontier Analysis (Meeusen & Broeck (1977), 

Aigner, Lovell, & Schmidt (1977)). These models are used to force the most inefficient companies to catch 

up with the more efficient companies by setting the revenue caps such that they are equal3 to the efficient 

companies’ costs. In that way, the regulator introduces pseudo competition, which gives the companies 

incentives to reduce their costs, to maximize their profit. In more advanced regulatory schemes, the 

benchmarking model can also account for the quality of the product by allowing a higher revenue cap if the 

quality is high and vice versa. This paper focuses on the Data Envelopment Analysis (DEA) approach as 

currently used in the regulation of the Danish waste water companies. 

The importance of benchmarking in utility regulations has been discussed in several papers, e.g. Agrell & 

Bogetoft (2018), Agrell & Bogetoft (2017), Banker, Førsund, & Zhang (2017), Bjørner & Jakobsen (2021), 

Goh & See (2021), Heesche & Asmild (2020), Heesche & Bogetoft (2021) and Thanassoulis (2000). 

In Data Envelopment Analysis, it is standard practice to aggregate input and output measures due to the so-

called “curse of dimensionality” (Kneip, Simar, & Wilson (2016)), Dyson, et al. (2001), Simar & Zelenyuk 

(2018)). While these aggregations can solve the dimensionality problem, they have important implications. 

These implications often depend on the specific context, how the aggregations are done, and the purpose 

of the analysis. In this paper, we examine some of the more general implications and look at the empirical 

implications in the model used in the Danish waste water regulation. 

Zelenyuk (2020) describe three methods to aggregate inputs and outputs: The index number approach, the 

correlation-based approach and the price-based approach. 

The index number approach covers many different methods spanning from axiomatic statistical techniques 

to more economic theories. For example, one can use a productivity index to proxy the aggregation 

function. See Zelenyuk (2020) and the references therein for a detailed discussion. 

In the correlation-based approach, the aggregations are based on the correlations between the variables. 

The intuition is that if two or more variables are highly correlated, only one of these is needed. More 

formally, Principal Component Analysis (PCA) can be used to transform the correlated variables into new 

variables, based on their correlations, to minimize the number of needed variables without losing too much 

information. This method requires that the variables are highly correlated and that one will only aggregate 

a few of them – as the number of variables to be aggregated increases, the information loss will also 
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increase. The information loss will be lower for highly correlated variables but still increasing. Another 

problem with the correlation-based approach is that it is hard to interpret the results because the 

companies cannot identify their raw data after it is transformed into principal components. They can, 

therefore, not as quickly understand the comparisons between themselves and their peers nor interpret 

the dual multipliers. 

Lastly, the price-based approach aggregates input variables by using input prices and output variables using 

output prices. The aggregated inputs measure the companies’ total costs, and the aggregated outputs 

measure the total revenue.4 Zelenyuk (2020) shows that a DEA model using these aggregations calculate 

the companies’ total inefficiency, which is defined as the sum of the technical inefficiency and allocative 

efficiency. In this paper, we focus on the price-based approach. 

In the regulation of the Danish waste water companies, the regulator (DWRA), amongst other things, uses a 

DEA model to benchmark the companies. They use the companies’ total controllable cost (hereafter costs) 

as input and the so-called OPEX and CAPEX net volumes as outputs. The net volumes are aggregations of 

several cost drivers. This can, for example, be the number of customers, the length and size of their pipes 

or the volume of waste water the companies treat. DWRA argues that there are too many cost drivers to be 

handled as individual outputs, so they should be aggregated. The OPEX net volume aggregates the 

operational cost drivers, and the CAPEX net volume aggregates the cost drivers for the companies' capacity. 

DWRA uses 26 OPEX cost drivers and 380 CAPEX cost drivers. 

Using the companies’ total controllable cost as a single input instead of considering multiple inputs, follows 

the price-based approach for input aggregation. This means that DWRA calculates the companies' total 

input inefficiency. It can be argued that this is preferable in the waste water regulation, rather than only 

calculating the technical inefficiency, because the goal of the regulation is to minimize the waste water 

prices through lower industry costs. It is, therefore, important that the companies focus on reducing their 

costs concerning both the technical and allocative input efficiency (the total inefficiency).5 

However, on the output side, it is not necessarily meaningful to use the price-based approach. If all the 

outputs are fixed, the companies cannot influence their allocative efficiency, so this should not enter into 

the regulation. DWRA should, therefore, not use the price-based approach to aggregate the fixed outputs. 

Another reason is a political desire for the waste water companies not to gain any profit. In fact, all profit 

needs to be paid back to the consumers over time. Therefore, the companies should not have any 

incentives based on output prices that represent revenue. If, instead, the output prices represented the 

society's value of the outputs, it could be relevant for the regulator to use that information.  

In addition, the output prices in the waste water sector are unknown. For example, there is no market for 

installed waste water pipes; the companies do not sell their pipes, but they make the pipes available for the 

consumers, and indirectly incorporate this into the waste water prices. Otherwise, the consumers would 

have to buy the pipes first and hereafter buy the right to have a quantity of waste water running through 

                                                           
4 This requires, of course, that all inputs (outputs) are taken into consideration. 
5 Note that Zelenyuk (2020) uses "the law of one pricing" to argue that it is acceptable to use a standard input price 
across all companies. However, in the Danish waste water sector, the regulator uses the companies' realized costs and 
does, therefore, not need any assumption of "the law of one pricing". 



the pipes. Because the output prices are unknown, it is not be possible to use these, even if it is 

advantageous.  

Therefore, DWRA uses another method to aggregate the cost drivers, which is based on the price approach, 

but without the complications above. DWRA aggregate the cost drivers by using standardized input prices 

instead of output prices. The model interpretation is, thus, how much the companies actually spend 

compared to the expected costs. We describe and use DWRA’s method in section 5. Until then, the details 

of how the aggregation prices are calculated are not relevant as we for now examine the price approach 

more generally. 

This paper examines the implications of aggregating output variables using the price-based approach. 

However, most of our results are also valid for any other aggregation scheme. First, we illustrate how the 

technology set changes with the aggregation of outputs. Hereafter, we introduce aggregation uncertainty. 

In a price-based setup, aggregation uncertainty means that the prices are uncertain. Aggregation of input 

and outputs have been examined in several studies, for example Zelenyuk (2020), Simar & Zelenyuk (2018), 

Färe & Grosskopf (1985), Färe, Grosskopf, & Zelenyuk (2004). However, to the best of our knowledge, no 

one have studied the implications of uncertainty in these aggregations. Finally, we examine how this 

uncertainty influences the efficiency scores in four different cases. 

In the first case, we calculate the changes in the efficiency scores in a general model with one input and 

two underlying cost-drivers, which are aggregated into one output. In the second case, we use the Danish 

waste water regulation to illustrate how aggregation uncertainty changes the efficiency scores empirically. 

In the third and fourth cases, we expand the empirical example to consider several variables with random 

noise in the underlying prices. We discuss whether the consumers or the companies should pay for the risk 

and modify the model based on this.  

Hereafter we go into detail with a regression-based output aggregation scheme used by many European 

regulators, including DWRA, and show how these kinds of aggregations transform DEA from a non-

parametric model to a more semi-parametric model, with close similarities to models such as Corrected 

Ordinary Least Square (COLS) and Stochastic Frontier Analysis (SFA). 

The rest of this paper is structured as follows: Section 2 describes the DEA methodology. Section 3 

introduces the implications of aggregating outputs and discuss the aggregation uncertainty. In section 4, we 

calculate and discuss the results from the Danish waste water regulation when we assume uncertainty in 

the aggregation scheme. Section 5 discusses a specific aggregation scheme based on regression analysis, 

and section 6 concludes the paper. 

2 DEA methodology 
DEA efficiency scores are estimated using linear optimization programs which can be interpreted in either 

the envelopment formulation or its dual multiplier formulation. The input orientated envelopment 

formulation with constant return to scale is given in (1)-(4). 

 

 



𝑚𝑖𝑛   𝜃    (1) 

𝑠. 𝑡. ∑ 𝜆𝑖𝑌𝑖

𝐼

𝑖=1

 ≥ 𝑌0  (2) 

 ∑ 𝜆𝑖𝑋𝑖

𝐼

𝑖=1

 ≤ 𝜃𝑋0  (3) 

 𝜆𝑖 ≥ 0 ∀ 𝑖 (4) 

The program minimizes the efficiency score, 𝜃 for the company under evaluation. 𝑌𝑖  is the output vector for 

company i, and 𝑋𝑖  is the input vector. The index 𝑖 = 0 indicates the company under evaluation. 𝜆𝑖 is a non-

negative free variable used to calculate a convex combination of the peer companies. 

The program in (1)-(4) has a dual formulation, called the multiplier formulation, shown in (5)-(8).  

𝑚𝑎𝑥   𝑢𝑌0    (5) 

𝑠. 𝑡. 𝑣𝑋0 = 1  (6) 

 −𝑣𝑋𝑖 + 𝑢𝑌𝑖 ≤ 0 ∀ 𝑖 (7) 

 𝑣, 𝑢 ≥ 0  (8) 

In this program, we maximize the total value of the output for the company under evaluation, where 𝑢 is a 

vector of output shadow prices (output multipliers) and 𝑣 is a vector of input shadow prices (input 

multipliers). The efficiency score is the solution to the objective function, 𝑢𝑌0. 

The two formulations yield the same efficiency score between 0 and 1, where 1 indicates a fully efficient 

company. 

3 Implications of aggregation uncertainty in a general case 
We can interpret output aggregations in DEA in two ways: In the envelopment formulation, the aggregation 

can be thought of as a fixed trade-off between the aggregated outputs. In the multiplier formulation, the 

aggregation can be interpreted as the total value of the aggregated outputs, where each output is valued 

equally across all the companies. 

We illustrate an aggregation scheme in the envelopment formulation in Figure 1. We have four companies 

of which A, B, C are efficient, and D is inefficient, as indicated by the DEA frontier (black lines). The DEA 

frontier, in this example, consists of four facets. Each facet corresponds to a specific trade-off between the 

two outputs. In the multiplier formulation, each facet corresponds to a different set of output multipliers. 

This is, in fact, an aggregation being done inside DEA. 

Now assume that the trade-offs/output multipliers (hereafter trade-offs) are incorrect. This can, for 

example, arise from the curse of dimensionality, because DEA gives the companies the benefit of the 

doubt, the implications of which gets more extreme as the dimensionality increases. In order to solve the 

problem, we can aggregate the two outputs prior to the DEA analysis, for example, based on the price 

approach. The green, red, and blue facets show three different aggregations, each using different prices. 

For a given set of prices, the corresponding facet now replaces the DEA technology set. We thereby go from 



four different trade-offs to assuming that all companies, in any given location within the technology set, 

have the same trade-offs between these two outputs.  

 

 

Figure 1 – DEA with four different aggregation schemes  

Figure 1 shows how different aggregation schemes, with different sets of prices, influence the companies. 

We denote this as aggregation uncertainty. We observe that companies left of the purple line prefer the 

aggregation given by the blue facet and that companies on the right-hand side of the purple line prefer the 

aggregation of the green facet (disregarding the standard DEA frontier, which will always be preferable).  

We will now show how this aggregation uncertainty influences the companies. For simplicity, we use only 

one input and two underlying cost-drivers, which we aggregate into one single output. 

The input orientated multiplier DEA program with constant return to scale, one input (x), two outputs 

(𝑦1, 𝑦2) and corresponding known output prices 𝑝1, 𝑝2, which we use to aggregate the outputs, is given in 

(9)-(12). v is the input multiplier, and u is the multiplier on the aggregated output.  

𝑚𝑎𝑥   𝑢(𝑝1𝑦1
0 + 𝑝2𝑦2

0)    (9) 

𝑠. 𝑡. 𝑣𝑥0 = 1  (10) 

 −𝑣𝑥𝑖 + 𝑢(𝑝1𝑦1
𝑖 + 𝑝2𝑦2

𝑖 ) ≤ 0 ∀ 𝑖 ∈ 𝐼 (11) 

 𝑣, 𝑢 ≥ 0  (12) 

 



If we know company 0’s peer6, we can rewrite the DEA program as shown in (13), where 𝑓0 is the 

efficiency score and superscript 𝑖∗ is the peer. Note that we can multiply by 𝑥0 to calculate the efficient 

costs instead of the efficiency score.  

𝑓0 =
𝑥𝑖∗

𝑥0
⋅

𝑝1𝑦1
0 + 𝑝2𝑦2

0

𝑝1𝑦1
𝑖∗

+ 𝑝2𝑦2
𝑖∗  (13) 

 

The fraction 
𝑝1𝑦1

0+𝑝2𝑦2
0

𝑝1𝑦1
𝑖∗

+𝑝2𝑦2
𝑖∗ expresses the aggregated outputs for company 0 against company 𝑖∗. In other 

words, how much aggregated output one company produces compared to the other. It then also reflects 

the proportion of input needed for company 0. So, for example, 
𝑝1𝑦1

0+𝑝2𝑦2
0

𝑝1𝑦1
𝑖∗

+𝑝2𝑦2
𝑖∗ = 0.5 means that company 0 

produces half the output of company 𝑖∗ and that it, therefore, should only use half the amount of input as 

well. 

Now assume that we have an alternative set of prices, �̃� and corresponding efficiency scores, 𝑓. We can 

describe the aggregation uncertainty as the ratio between the efficiency scores from the two models: 

𝑓0

𝑓0
=

(
𝑥𝑖∗

𝑥0 ⋅
𝑝1𝑦1

0 + 𝑝2𝑦2
0

𝑝1𝑦1
𝑖∗

+ 𝑝2𝑦2
𝑖∗)

(
𝑥𝑖∗

𝑥0 ⋅
�̃�1𝑦1

0 + �̃�2𝑦2
0

�̃�1𝑦1
𝑖∗

+ �̃�2𝑦2
𝑖∗)

=

(1 +
𝑦1

0

𝑦2
0 ⋅

𝑝1
𝑝2

) (1 +
𝑦1

𝑖∗

𝑦2
𝑖∗ ⋅  

�̃�1
�̃�2

)

(1 +
𝑦1

𝑖∗

𝑦2
𝑖∗ ⋅  

𝑝1
𝑝2

) (1 +
𝑦1

0

𝑦2
0 ⋅

�̃�1
�̃�2

)

  (14) 

 

This result gives us two insights: 

1) The ratio between the efficiency scores in the two models is exclusively influenced by the 

company’s output mix compared to that of its peer and the direction of the price ratio change. 

Therefore, it is not influenced by the company’s input, level of output or efficiency. 

2) If 
𝑦1

0

𝑦2
0 <

𝑦1
𝑖∗

𝑦2
𝑖∗, company 0 will prefer that 

𝑝1

𝑝2
<

�̃�1

�̃�2
 as this gives them a higher efficiency score, as 

evident from 
𝑓0

�̃�0 > 1. If 
𝑦1

0

𝑦2
0 >

𝑦1
𝑖∗

𝑦2
𝑖∗ the company will instead prefer 

𝑝1

𝑝2
>

�̃�1

�̃�2
 as that will too result in 

𝑓0

�̃�0 > 1. This corresponds to the intuition discussed in Figure 1. 

It is not trivial to deduce from equation (14) how much the efficiency scores change given a change in the 

prices, as it depends on how different the companies are in terms of their output mixes. If the companies 

operate with very similar output mixes, the prices do not matter and, therefore, the aggregation 

uncertainty can be ignored. However, if the companies operate with considerable differences in the output 

mixes, the aggregation uncertainty gets very important. 

To better understand these results, we calculate and discuss the size of 
𝑓0

�̃�0 for the Danish waste water 

regulation in the next section. 

                                                           
6 Note that there only is one peer in a DEA model with one input, one output and constant return to scale. 



4 Example – The Danish waste water regulation 
To illustrate the implications of aggregating two outputs, we use the benchmarking model from the Danish 

waste water regulation as an example. DWRA uses costs as input and OPEX and CAPEX net volumes as 

outputs in this model. The model is input orientated, and DWRA assumes CRS. We illustrate the model in 

Figure 2. where the solid black line indicates the standard DEA frontier. 

If we examine the facet structure in this model, applying the convex hull algorithm of Petersen & Olesen 

(2015), we identify the three efficient facets given by the normal vectors in Table 4.1. These correspond to 

marginal rates of substitution (MRS) between OPEX and CAPEX of 0, 2.75 and Infinity, respectively, for the 

three facets. Because both OPEX and CAPEX are measured in DKK, one could argue that the MRSs should be 

1.7 

Table 4.1 – Normal vectors and marginal rates of substitution. Note that the offsets to the normal vectors are omitted because they 
are all zero in crs 

 Costs OPEX CAPEX 𝜕𝑂𝑃𝐸𝑋/𝜕𝐶𝐴𝑃𝐸𝑋 

Facet 1 -0.7242737 0.0000000 0.6895125 0 

Facet 2 -0.5719557 0.7710187 0.2799944 2.753694 

Facet 3 -0.5085658 0.8610231 0.0000000 Infinity 

  

If we force the model to have MRSs between OPEX and CAPEX equal to one, this corresponds to 

aggregating the two outputs with equal prices. We illustrate this with the green facet in Figure 2. Ignoring 

the standard DEA frontier and using this green facet as the new frontier instead results in lower efficiency 

scores for all companies, except for the companies positioned precisely on the purple line, which indicates 

the now only efficient company's output mix8. As we discussed in section 3, the further away from the 

purple line a company is, the bigger the changes in efficiency scores. 

                                                           
7 This requires that the companies have an actual trade-off between OPEX and CAPEX, but for now, we do not 
question this assumption. 
8 In this example, no other companies are positioned precisely here. 



 

Figure 2 – A standard DEA frontier and two alternative frontiers based on different aggregations of outputs 

Now assume, as is arguably the case in the Danish regulation, that this aggregation scheme is questionable 

because the two outputs are calculated using different techniques, by different consultants, and at 

different times. One OPEX DKK is therefore not necessarily the same as one CAPEX DKK. To examine the 

implications of this, we first calculate the efficiency scores using equal prices and hereafter the efficiency 

scores in a model where the price on CAPEX is 1.2 times higher than the price of OPEX. In other words, we 

examine an uncertainty on the CAPEX price at 20 % as an upper bound and 0 % as the lower bound. In 

Figure 2, this corresponds to using the red frontier as an upper bound and the green frontier as a lower 

bound. 

Figure 2 shows a clear difference in the technology when we go from the standard DEA model with two 

outputs to the one with equal prices between the two outputs. The changes will be relatively small for 

companies close to the purple line (indicating the peer unit’s output mix). For companies further away, the 

difference gets quite big. The difference between the technology with equal prices and the technology, 

where the price of CAPEX is 1.2 higher than the price of OPEX, is much smaller. We show how the efficiency 

scores change in Figure 3. 

Figure 3 shows the companies’ output mix, 
𝑂𝑃𝐸𝑋

𝐶𝐴𝑃𝐸𝑋
 on the horizontal axis and the efficiency score ratio 

between the two models, 
𝑓

�̃�
 on the vertical axis. We define 𝑓 as the efficiency scores calculated with the 

green facet in Figure 2 and 𝑓 as the efficiency scores calculated using the red facet. If 
𝑓

�̃�
= 1, the company 

gets identical efficiency scores in the two models, which in this case only happens for the one efficient 

company. We observe that most companies have an efficiency score ratio close to 1, meaning that the 

aggregation uncertainty is not severe for these companies. A few companies with a high output mix have a 

ratio around 0.95 and are therefore more dependent on the prices chosen to aggregate the outputs.  



We will argue that the companies in the Danish waste water sector have so similar output mixes that an 

aggregation uncertainty of 20 % does not have extreme consequences. However, in a regulatory context, 

even a slight decrease in the efficiency score will still be costly for the companies, and it is, therefore, 

essential for the regulator to minimize this uncertainty.  

 

Figure 3 – Relationship between the companies output mix and their efficiency score ratio between the two models 

In the most extreme cases, if a company has only one of the two outputs, the efficiency score ratio will be 

1.045 for an output mix of 
𝑂𝑃𝐸𝑋

𝐶𝐴𝑃𝐸𝑋
= 0 and 0.870 for 

𝐶𝐴𝑃𝐸𝑋

𝑂𝑃𝐸𝑋
= 0. If such companies existed, the precise 

aggregation scheme would be more critical depending entirely on the efficient company’s output mix. 

As mentioned in section 3, the efficient company’s output mix is essential for the efficiency score ratio 

between the two models. Therefore, we simulate new output mixes for the efficient company and in Figure 

4 show each iteration's efficiency score ratio function (equation (14)). We let the output mix for the 

efficient company (
𝑂𝑃𝐸𝑋𝑖∗

𝐶𝐴𝑃𝐸𝑋𝑖∗) vary between 0.1 and 1 with increments of 0.1. Note that the efficient 

company's output mix lies where the efficiency score ratio equals 1.  

We observe that the function is offset towards the northeast when the output mix for the efficient 

company increases. Otherwise, the tendency is the same; companies with similar output mixes are not 

exposed to aggregation uncertainty, while companies with an output mix fare from that of the efficient 

company experience big changes in the efficiency score due to new aggregation prices. 



 

Figure 4 - Relationship between the companies’ output mixes and their efficiency score ratio between the two models for 10 
different output mixes for the efficient company. For example, the fourth lowest line shows the relationship when the efficient 
company’s output mix is 0.5, indicated by the red dot 

We use a permutation test to examine whether the aggregation uncertainty significantly influences the 

results (Asmild, Kronborg, & Rønn-Nielsen, 2018). We describe the test in appendix A. The test is divided 

into two parts. First, we test whether the frontier gets significantly better (the technology set is expanded) 

when we increase CAPEX prices by 20 %, corresponding to the red frontier in Figure 2. We find that the 

frontier gets significantly better. However, this is no surprise because an increase in one output price, while 

holding everything else equal, results in an upward parallel shift of the frontier. 

Second, the permutation test examines if the distribution of the efficiency scores changes. We do not find 

evidence for a significant change in the distribution. This result occurs because the losses/gains in the 

efficiency scores approximately cancel out between the companies. We do not test if there is a significant 

change in the efficiency score for the individual companies. 

We have shown how the aggregation of two outputs influences the efficiency scores in the Danish waste 

water regulation. The following sections examine three different aggregation scenarios – all for the same 

data. First, in section 4.1, we split the CAPEX into two parts to examine the aggregation between two 

outputs when we have three outputs. Then, in section 4.2, we disaggregate CAPEX into all its underlying 

cost-drivers and simulate the CAPEX aggregations introducing random noise on the prices. Lastly, in section 

4.3, we use weight restrictions on the underlying cost-drivers for CAPEX to give the companies the benefit 

of the doubt regarding the aggregation uncertainty. 

 



4.1 Aggregation of a subset of the outputs 
Standard DEA models often have more than two outputs, making it more complicated to generally 

interpret 
𝑓0

�̃�0 which no longer only depends on the output mixes but also the dual multipliers. In this section 

and sections 4.2 and 4.3 below, we split the CAPEX net volume into multiple outputs to examine the 

changes in the efficiency scores in models with several outputs. In this section, we split CAPEX into the 

distribution and production processes, where the production process is cleaning and disposing of the waste 

water. Doing so, we can examine the consequences if the prices in the distribution process are 

over/underestimated compared to those of the production process. 

In addition, we no longer assume that OPEX and CAPEX can be aggregated. We, therefore, have three 

outputs (OPEX, CAPEX distribution and CAPEX production) where we want to aggregate the two CAPEX 

measures introducing uncertainty of 20 % following the logic in section 3. 

Note that the changes in the efficiency scores still mainly depend on the companies’ output ratios, but now 

we also need to consider the dual multipliers. If, for example, the multiplier for OPEX is 0, the changes in 

the efficiency scores still only depend on the output mix for the two aggregated outputs. However, as the 

multiplier for OPEX increases, the changes in the efficiency scores decrease. In other words, the 

aggregation uncertainty between two outputs is only relevant if the two outputs are actually used in the 

benchmark (have positive multipliers), and the higher the multipliers on these outputs, the more important 

is the uncertainty. 

The results are shown in Figure 5. We observe that the changes in the efficiency scores are smaller than in 

the model with only two outputs. This is expected because the aggregation uncertainty only is relevant for 

a subset of the variables, and we thereby implicitly assume that there is no aggregation uncertainty on the 

last variable(s). In addition, we observe a single company with a low ratio of 0.954, meaning that they are 

sensitive to the aggregation uncertainty. This is because this company has almost zero CAPEX distribution9, 

which differs a lot from its peers. 

                                                           
9 It has almost zero CAPEX distribution because it is collaborating with its neighbouring waste water companies such 
that the other companies are in charge of the distribution, and this company is in charge of the production. 



 

 

Figure 5 – Efficiency score ratio between the models with different underlying aggregation prices 

Following the logic from section 4 above, we test whether the aggregation uncertainty significantly 

influences the results, using the method described in appendix A. First, we find that the frontier gets 

significantly better. The argumentation is the same as in section 4: an increase in one price while holding 

everything else equal results in an upward parallel shift of the frontier. 

Second, we do not find evidence for a significant change in the distribution of the efficiency scores. Again, 

the argumentation is the same as in section 4; the losses/gains in the efficiency scores approximately 

cancels out among the companies. 

To conclude this section, we find that the Danish waste water companies are relatively homogenous 

concerning their output mix, so the aggregation uncertainty does not matter a lot in this setup. 

4.2 Risk as random variation among underlying cost drivers 
In this section, we examine the aggregation uncertainty for each of the underlying prices of CAPEX10 by 

creating new CAPEX net volumes with random noise around the current prices. We thereby have two 

outputs; OPEX and a modified CAPEX.  

We use the following iterative process: 

1) We change the prices, P, separately using a random risk factor, r, from a normal distribution with a 

standard deviation of 0.1: �̂�𝑖 = 𝑃𝑖 ⋅ 𝑟[0,0.1], ∀ 𝑖 ∈ [𝐶𝐴𝑃𝐸𝑋𝐼] where 𝐶𝐴𝑃𝐸𝑋𝐼 is a vector of all the 

underlying CAPEX cost-drivers  

                                                           
10 A portion of the underlying CAPEX outputs has a non-linear price structure, which we for simplicity do not change 
here 



2) We create the new CAPEX net volume based on the estimated prices: �̂� = 𝐶𝐴𝑃𝐸𝑋𝐼 ⋅ �̂�𝐼 

3) We run DEA where the new net volume �̂� replace CAPEX and report back the results 

We repeat step 1:3 10,000 times. The results are shown in Figure 6. The figure shows the companies’ 

efficiency scores for each iteration. We observe that there are two efficient companies (in the upper right 

corner), which are efficient in all iterations. Following equation (14), the range and density of the efficiency 

scores for each company follow their output mixes compared to those of the two efficient companies11. 

However, some companies have a high multiplier weight on OPEX, which means that their efficiency range 

is small even with a different output mix. On the right-hand side of Figure 6, we observe three companies 

with no range (in addition to the two efficient companies), meaning that they have no multiplier weights on 

CAPEX and that the aggregation uncertainty within the simulated interval is not relevant12. 

The companies have an average efficiency range of 0.068. In the most extreme case, a specific company’s 

efficiency range is 0.166. 

  

Figure 6 – Efficiency density for all companies when introducing aggregation uncertainty. The dark colours indicate a high density 

In Figure 7, we zoom in on a random company to better examine the efficiency density. Most companies 

have the same density structure. The red cross shows the initial efficiency score. We observe that the initial 

efficiency score is in the middle of the range and that the density seems normally distributed around this. In 

most scenarios, the company’s efficiency score will not change substantially, but we observe drastic 

changes in a few unlikely scenarios. 

                                                           
11 Some companies only have one peer. In that case, only that peer is relevant. 
12 If we increase the standard deviation, we could potentially observe that these companies, in some situations, would 
have a positive multiplier weight on CAPEX. 



This indicates that most combinations of prices around the original price do not notably change the 

efficiency score – an increase in some prices favours this company while a decrease in other prices does not 

and vice versa. However, in the extreme iterations, we find a random set of prices that is exclusively good 

for this individual company. In other words, we randomly change the prices for the underlying cost-drivers 

for which this company is unique compared to its nearest peers. 

 

Figure 7 – Efficiency density for a random but representative company 

On average, the efficiency scores across the iterations are very similar to the initial efficiency score for most 

companies. For the company with the biggest difference between the average efficiency score and the 

initial efficiency score, the average is only 0.2 % higher than the initial. The average efficiency score is 0.02 

% lower than the initial model for the company with the largest reduction.  

However, as we showed earlier, the prices in some iterations make considerate changes to the efficiency 

scores for individual companies if the chosen prices favour this specific company. If the chosen prices 

favour the efficient companies, it will lead to a general decrease in most inefficient companies' efficiency 

scores. If the chosen prices are unfavourable for the efficient companies, it will lead to a general increase 

instead. As a result, the models average efficiency score changes across the iterations with a maximum of 

+2.7 % and −2.5 % from the original average. 

To test whether the changes in the frontier and efficiency scores are significant, we continue using the 

statistical test described in appendix A. However, this requires a permutation test for each of the 10,000 

iterations used in this section, resulting in 10,000 p-values13. The p-values indicate whether the frontier 

shift and efficiency change between the initial model and the model for a given iteration is significant. We 

report the p-values in Figure 8. 

                                                           
13 Due to limited computing power, we reduce the number of iterations to 1,000 



The figure shows considerable differences between the iterations. The frontier shift is significant in a few 

iterations but insignificant in most. This means that the uncertainty in the aggregation prices can result in a 

significant frontier shift, but in most cases, it will not. 

The distribution of the efficiency change shows that most p-values are in one of the two tails. This is 

because the efficiency change depends a lot on the few efficient companies (we observe either one or two 

efficient companies in the iterations). Therefore, the results depend on how much the most relevant prices 

for the efficient companies change. 

 

Figure 8 - P-values from the permutation tests 

To conclude this section, we find that random changes in the prices do not substantially change the average 

companies' efficiency even while the changes are significant in some iterations. However, for individual 

companies, the price risk can be severe. Knowing this, the regulator needs to decide if it is fair (from the 

companies' point of view) that the companies are subject to such high risks solely based on model 

technicalities, which they cannot control themselves. Therefore, we transfer this aggregation risk from the 

companies to the consumers in section 4.3 below. 

4.3 Risk in a benefit of the doubt setup 
Section 4.2 above examined the companies' aggregation uncertainty concerning random noise in the 

underlying aggregation prices. The regulator's goal is to minimize consumer prices by setting efficiency 

requirements for the companies. However, random noise must not lead to these efficiency requirements 

being too high, as it in extreme consequence can lead to bankruptcy, which is not in anyone’s best interest. 

In the model from section 4.2, the consumers and companies split the risk, as we assumed a normally 

distributed noise term with a mean of zero. One can instead argue that the aggregation uncertainty should 



be paid solely by the consumers to minimize the risk of bankruptcy. This section uses weight restrictions 

based on the aggregation prices to do precisely this. 

We use the same basic model as the previous section with costs as input and OPEX and CAPEX as outputs. 

However, instead of simulating new CAPEX net volumes with a random noise term on the prices, we now 

include all the underlying CAPEX cost-drivers as individual output constraints with weight restrictions based 

on the prices.14 

For each underlying CAPEX cost-driver, we can add the weight restriction given in (15) where the 𝑝′𝑠 are 

the prices, 𝑢 is the output multipliers, and 𝑖 count the underlying cost-drivers in 𝐶𝐴𝑃𝐸𝑋𝐼 

𝑝𝑖

𝑝1
𝑢1 − 𝑢𝑖 = 0, ∀ 𝑖 ∈ [𝐶𝐴𝑃𝐸𝑋𝐼]  (15) 

 

Doing so yield the same results as using the net volumes. However, now we can manipulate the weight 

restrictions to contain risk. One way of doing so is changing the weight restriction to the following: 

(
𝑝𝑖

𝑝1
⋅ (1 ± 𝑟)) 𝑢1 − 𝑢𝑖 = 0, ∀ 𝑖 ∈ [𝐶𝐴𝑃𝐸𝑋𝐼]  (16) 

 

where 𝑟 = 0.2 is the maximum possible uncertainty in the ratio between the prices. We use 264 cost 

drivers, which gives 528 weight restrictions. 

Using these weight restrictions, we allow the companies to choose the prices (in a given interval around the 

default prices) that gives them the best outcome. In other words, we remove all the aggregation 

uncertainty from the companies. In the simple setup from Figure 2, this corresponds to using the red facet 

on the left side of the efficient unit and then switching to the green facet on the right side of the efficient 

unit. For a more detailed link between the multiplier and envelopment formulation see Podinovski (2004). 

We show the results in Figure 9.  

Figure 9 compares the companies' efficiency scores in the two models: DWRA’s original model with fixed 

net volumes and the new model with 20 % aggregation uncertainty measured with weight restrictions. The 

diagonal line indicates equal efficiency scores in the two models, which is only the case for a few inefficient 

companies besides, of course, the original efficient companies. We observe that all other companies are 

above this line, meaning that they get a higher efficiency score when we introduce aggregation uncertainty 

as weight restrictions. In addition, we observe quite large changes in the efficiency scores, with the most 

drastic increase being 0.26. The gains from the weight restrictions seem a bit lower for the most inefficient 

companies, but overall we do not observe any clear patterns. 

                                                           
14 A portion of the underlying CAPEX cost drivers has a non-linear price structure, which we, for simplicity, do not 
change with weight restrictions. Instead, these outputs are added together with their original prices, and the sum is 
hereafter included using the same principles as the remaining underlying cost-drivers. 



 

Figure 9 – Comparison of original efficiency and efficiency with 20 % aggregation uncertainty using weight restrictions 

We show the summary statistics for the efficiency scores in the two models in Table 4.2. The table shows 

that the companies, on average, get a 10 % increase in their efficiency scores in the new model. This gain is 

equally distributed across the quartiles, which is consistent with our discussion in equation (14), where we 

showed that the current level of efficiency did not influence the efficiency changes when the aggregation 

prices change. The number of efficient companies goes from 2 to 13. 

Table 4.2 – Summary statistics for the efficiency scores in the two models 

Model Min. 1st Qu. Median Mean 3rd Qu. Number of efficient 
companies 

Original 0.4848 0.6833 0.7622 0.7477 0.8209 2 

With weight restrictions 0.5422 0.7690 0.8613 0.8436 0.9358 13 

 

Lastly, Table 4.3 shows that most weight restrictions are binding. The table shows that 218 underlying 

CAPEX cost-drivers have zero companies with non-binding corresponding weight restrictions. In other 

words, all the companies set the prices at either the maximum or minimum allowed price for these 

outputs. Twenty-six outputs have a single company with non-binding weight restrictions, and finally, we 

observe that one specific output have 29 companies with a corresponding non-binding weight restriction. 



Table 4.3 thus shows that the companies want to change most of the prices as much as possible in a 

specific direction inside the 20 % interval around the initial prices. This means that the companies are 

vulnerable to the aggregation prices chosen by the regulator and that it will be problematic for the sector 

to agree on a set of true prices. The frontier calculated in this model is thereby mostly calculated based on 

these prices and not the standard DEA axiom of convexity between the companies. In addition, if the return 

to scales is assumed anything but constant, these binding weight restrictions will somewhat overrule the 

assumption about the returns to scale and impose a constant return to scale-like assumption instead. 

Table 4.3 – Frequencies of non-binding weight restrictions  

Number of underlying CAPEX cost-drivers 218 26 6 4 1 3 3 1 1 1 

Number of companies with non-binding 
restrictions 

0 1 2 3 4 5 6 13 17 29 

 

As in the previous sections, we test whether there are significant differences between the two models. 

Because we no longer have two sets of inputs and outputs, we need a new statistical test. The new test is 

based on the work of Rønn-Nielsen, Kronborg, & Asmild (2019), which test if there is a significant difference 

between the CRS and VRS assumption in a model. We describe the test and how we modify it in Appendix 

B. 

Note that we can reformulate DWRA’s initial model by splitting up CAPEX and using weight restrictions 

corresponding to (15). By doing this, we assume that one monetary unit has the same value among all the 

cost-drivers. In the new model with aggregation uncertainty, we expand this assumption such that the 

value of one monetary unit can vary with ± 20 %, cf. equation (16). Therefore, the model with 

aggregation uncertainty is nested into the initial model. 

In the test described in Appendix B, we test the hypothesis that one monetary unit have the same value 

among all the cost-drivers within the assumptions of the nested model. 

The permutation test gives a p-value of 0.182. This indicates that we cannot reject the initial model used by 

the Danish waste water regulator. 

To conclude this section, we will argue that the companies are vulnerable to the aggregation prices chosen 

by the regulator, even while we cannot statistical reject the model. We observed considerable changes in 

efficiency when we removed all the risks from the companies and observed that most of the weight 

restrictions were binding. These extreme results shall, of course, be seen in the light of a relative high 

aggregation uncertainty of 20 %, and it is doubtful that the prices chosen by the individual companies, 

given the model specifications, are, in fact, the true prices. The companies chose the prices that yield the 

highest possible efficiency score, and the results need, therefore, to be interpreted as a precautionary 

measure for the benefit of the companies. 

There is a close relationship between the methods used in this section and section 4.2 above. In section 4.2, 

we let the prices vary randomly such that the companies, on average, did not change their efficiency score. 

This section took the most extreme set of prices possible, given an aggregation uncertainty of 20 %, for 



each company. These prices are, in other words, just an extreme draw from the method used in the 

previous section.15 

5 Regression-based output aggregations 
We have so far assumed that the aggregation prices are known - at least approximately within some 

interval. In this section, we examine how the Danish waste water regulator (DWRA) and many other 

European regulators actually calculate the prices. 

DWRA uses two different methods for OPEX and CAPEX. However, both methods are similar in that they 

calculate input prices instead of output prices – even while these are used for output aggregation. The 

model interpretation is, thus, how much the companies actually spend compared to the expected costs. 

This interpretation makes sense because the net volumes are assumed to be fixed - the companies can, for 

example, not change the number of customers or the demand. At the same time, DWRA assumes that the 

companies do not buy capacity that they do not need. Therefore, the model only examines if the 

companies are cost-efficient and not if they buy the correct assets (output). 

In this paper, we focus on the calculation of OPEX because the CAPEX prices are calculated by external 

consultants without much documentation. Therefore, we pretend that the consultants use the same 

method for CAPEX as the regulator does for OPEX. 

The prices are calculated using regression analysis in (17). However, due to the high number of cost 

drivers, DWRA in practice split the regression into several regressions and add the results afterwards, 

something which we ignore here. 

𝑥𝑖 = 𝑓𝑖(𝒒𝒊, 𝜷𝒊) + 𝜖𝑖, ∀ 𝑖 ∈ [𝑂𝑃𝐸𝑋, 𝐶𝐴𝑃𝐸𝑋] (17) 

 

Here 𝑥 is the costs, 𝜷 are the coefficients, 𝒒 are the underlying cost drivers, and 𝜖 is the error term. The 

index i indicates whether we calculate OPEX or CAPEX. The net volumes are then defined as the fitted 

values from (17): 

𝑦𝑖 = 𝑓𝑖(𝒒𝒊, 𝜷𝒊), ∀ 𝑖 ∈ [𝑂𝑃𝐸𝑋, 𝐶𝐴𝑃𝐸𝑋] (18) 

 

Here 𝑦𝑖  is the OPEX and CAPEX net volume, respectively. The only difference between the input (x) and 

outputs (y) is, thus, given by the error term. If we insert this in the DEA model, the companies are 

compared according to how big an error term they have compared to the companies with the smallest 

error term relative to their size. We can show this by rewriting 𝑦𝑖 = 𝑥𝑖 − 𝜖𝑖 and inserting this in the input 

orientated DEA multiplier program with a constant return to scale as follows: 

The standard DEA multiplier program is given in (11)-(12). 

                                                           
15 This requires that we censor the normally distributed risk factors such that they do not exceed ± 20% 



max
∑ 𝑣𝑖𝑦𝑖

02
𝑖=1

𝑢(∑ 𝑥𝑖
02

𝑖=1 )
 (19) 

∑ 𝑣𝑖𝑦𝑖
𝑘2

𝑖=1

𝑢(∑ 𝑥𝑖
𝑘2

𝑖=1 )
≤ 1, ∀ 𝑘 (20) 

  

Here 𝑢 is the multiplier for the output, 𝑣 is the multiplier for the input and the index k count the 

companies. 𝑘 = 0 is the company under evaluation. Note that the costs are added together to a single 

input cf. the discussion in section 0. We rewrite 𝑦𝑖 = 𝑥𝑖 − 𝜖𝑖 and insert in the DEA program: 

max
∑ 𝑢𝑖(𝑥𝑖

0 − 𝜖𝑖
0)2

𝑖=1

𝑣(∑ 𝑥𝑖
02

𝑖=1 )
 (21) 

∑ 𝑢𝑖(𝑥𝑖
𝑘 − 𝜖𝑖

𝑘)2
𝑖=1

𝑣(∑ 𝑥𝑖
𝑘2

𝑖=1 )
≤ 1, ∀ 𝑘 (22) 

 

We know that the condition will be binding for at least one k. We can, therefore, calculate the efficiency 

score in (23), where k indicates a company that is a peer for the company under evaluation. 

𝑓𝐷𝐸𝐴 =

∑ 𝑢𝑖(𝑥𝑖
0 − 𝜖𝑖

0)2
𝑖=1

𝑣(∑ 𝑥𝑖
02

𝑖=1 )

∑ 𝑢𝑖(𝑥𝑖
𝑘∗

− 𝜖𝑖
𝑘∗

)2
𝑖=1

𝑣(∑ 𝑥𝑖
𝑘∗2

𝑖=1 )

=
∑ 𝑥𝑖

𝑘∗2
𝑖=1

∑ 𝑥𝑖
02

𝑖=1

⋅
∑ 𝑢𝑖(𝑥𝑖

0 − 𝜖𝑖
0)2

𝑖=1

∑ 𝑢𝑖(𝑥𝑖
𝑘∗

− 𝜖𝑖
𝑘∗

)2
𝑖=1

, 𝑓𝑜𝑟 𝑘∗ = 𝑝𝑒𝑒𝑟 (23) 

Thus, the efficiency score is calculated as the relative error terms (𝑥𝑖
0 − 𝜖𝑖

0) compared to the peers’ relative 

error terms (𝑥𝑖
𝑘∗

− 𝜖𝑖
𝑘∗

) weighted together with the multipliers 𝑢𝑖. Therefore, the regulators' so-called non-

parametric DEA model is more parametric than first assumed. This is problematic because one of the main 

arguments for using DEA is precisely that it is non-parametric. The question is thus; why use DEA instead of, 

for example, COLS and SFA? 

To investigate this, we illustrate examples of the cost function in COLS, SFA and OLS in Figure 10. Note that 

the coefficients are the same in OLS and COLS because COLS is just a downwards offset of OLS. The figure 

illustrates SFA with the same coefficients as OLS and COLS. Empirically this is not necessarily correct 

because SFA considers noise and inefficiency when estimating the coefficients. For simplicity, we ignore this 

in the rest of the paper. SFA is thereby also a downwards offset of OLS or an upwards offset of COLS. 

As we showed in equation (23), the DEA models rely heavily on the error term from OLS regression models 

(OPEX regression and CAPEX regression). Using the same OLS error term, we can write the formula for the 

COLS efficiency score. However, in a COLS setup, OPEX and CAPEX should be calculated simultaneously in 

the same regression model instead of two separate models16. Therefore, we only have a single 𝑥 and a 

single 𝜖, which (in theory17) is the sum of the error terms for OPEX and CAPEX, respectively. 

                                                           
16 We could alternatively calculate two separate COLS models and add the results afterwards if we want the COLS 
method to follow the DEA method used by DWRA. 
17 In practice, the used solver will most likely find different results for the two methods 



𝑓𝐶𝑂𝐿𝑆 =
𝑥0 − 𝜖𝐶𝑂𝐿𝑆

0 + 𝜖𝐶𝑂𝐿𝑆
𝑘∗

𝑥0
, 𝑓𝑜𝑟 𝑘∗ = 𝑝𝑒𝑒𝑟 = min 𝜖𝐶𝑂𝐿𝑆

𝑘  (24) 

 

Equation (24) calculates the distance to the OLS cost function and offsets the value by the error term for 

the company with the lowest error (the most efficient company). We divide the formula with the costs to 

calculate the relative efficiency to compare the result with the DEA efficiency score. Note that 𝜖1
𝑘 is always 

negative. Therefore, the COLS efficiency score is defined as the absolute distance between the error term 

between the company under evaluation and its peer. 

Therefore, the DEA model in (23) and the COLS model in (24) are pretty similar as they both rely on 

error terms from a standard OLS model. The difference is that we in DEA use relative errors terms and 

COLS absolute error terms. In addition, DEA weight OPEX and CAPEX with the dual multipliers where 

COLS does it directly in the OLS model. 

In SFA, we need some more assumptions to calculate a similar formula. As previously mentioned, we 

assume that the coefficients are the same as in OLS. In addition, we assume that all companies have the 

same noise. These assumptions are, of course, not met in reality, but for the sake of this specific 

discussion, this does not matter. We write the equation for the SFA efficiency scores in (25) using these 

assumptions. 

𝑓𝑆𝐹𝐴 =
𝑥0 − 𝜖𝐶𝑂𝐿𝑆

0 + 𝜖𝐶𝑂𝐿𝑆
𝑘∗

+ 𝑣𝑆𝐹𝐴
0

𝑥0
, 𝑓𝑜𝑟 𝑘∗ = 𝑝𝑒𝑒𝑟 = min 𝜖𝐶𝑂𝐿𝑆

𝑘  (25) 

In this SFA setup, we use the same error terms as in COLS but split them into inefficiency and noise. By 

adding the noise term, 𝑣𝑆𝐹𝐴
0 , we offset the COLS cost function upwards, as illustrated in Figure 10. We 

have, therefore, shown that the DEA approach used by the regulator is similar to both COLS and SFA. 

 

Figure 10 – Illustrative example of the connection between COLS, SFA and OLS (which is used to create the net volumes)  



One advantage of using DEA is that it is non-parametric. However, the regulators DEA model relies heavily 

on parametric assumptions, which means this advantage diminished. At the same time, the model does not 

get the advantage of the noise term as in SFA. The DEA model is still non-parametric concerning the weight 

between OPEX and CAPEX, but this seems like the only real advantage left in this simple one-input and two-

output model. 

However, we have until now assumed that the regulator calculates prices every year. This is not true. In 

reality, the regulator uses the same prices every year until they decide that the prices are outdated. In this 

way, they save resources by not doing these calculations and more importantly, the companies save 

resources, as they only need to present their total costs for the regulator instead of splitting them up to 

each regression, cf. the discussion around equation (17). If the regulator wants to use the COLS or SFA 

approach above, they and the companies will, therefore, need to spend extra resources on collecting the 

underlying data and estimating the models. 

6 Conclusion 
In DEA, it is common to aggregate inputs and outputs due to the "curse of dimensionality". There are 

several methods for aggregating the inputs and outputs, each with advantages and disadvantages. A 

popular method is to use a price-based approach, which corresponds to calculating a combination of 

technical- and allocative efficiency. 

This paper introduced uncertainty into the aggregation method and examined how volatile the efficiency 

scores are to this uncertainty. We used the Danish waste water sector to show that the average efficiency 

scores were stable to aggregation uncertainty. However, the results show big changes in the efficiency 

scores for the individual companies if the aggregation methods contained uncertainty. In the most extreme 

cases, we showed, by using weight restrictions, that an aggregation uncertainty of 20 % in some cases 

would change an efficiency score with up to 26 percentage points from its initial value. 

In addition, we showed how the impact of aggregation uncertainty is influenced by the companies’ 

(dis)similarities. The more the companies differ, the more critical it is to reduce the uncertainty. In the 

Danish waste water sector, most companies are pretty similar. However, a few companies have a different 

output mix than the average companies, which means that they are highly volatile to aggregation 

uncertainty. 

Lastly, we showed how a specific aggregation scheme used by the Danish waste water regulator and many 

other European utility regulators converts the traditional non-parametric DEA model to a semi-parametric 

model with close ties to the COLS and SFA methods. We argue that these DEA models lose one of their 

main advantages, namely that they are non-parametric. 

Regulators and other DEA practitioners should closely consider how they aggregate inputs and outputs and 

how considerable the corresponding uncertainty is. The Danish waste water regulator should consider how 

big an uncertainty they are willing to transfer to the companies and maybe find an alternative model 

without as many aggregations as they currently use. 

For future research, we suggest comparing the utility regulators current models with simplified versions, 

where there is no need for these aggregations of hundreds of underlying outputs. If a change in the prices 



does not change the results much, perhaps there is no need to collect all this data with all its corresponding 

uncertainties. 

In addition, we suggest examining non-linear aggregations schemes in DEA. In this paper, we used linear 

aggregations in different settings to show how this influences the efficiency scores. In reality, some non-

linear aggregations might be better suited to describe the underlying cost-drivers to, for example, take into 

account different returns to scale. It is easy to aggregate the underlying cost-drivers prior to DEA using non-

linear aggregations. It is, however, more complicated to do this in a setup where the aggregations are 

created with weight restrictions, as this probably will require non-linear optimization programs. 

Finally, we suggest more research regarding significant tests between two models. This paper proposes to 

adjust the methods developed in Asmild, Kronborg, & Rønn-Nielsen (2018) and Rønn-Nielsen, Kronborg, & 

Asmild (2019) but has not considered the underlying statistical assumptions and properties. 
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A Test for significance in frontier shift and efficiency change 
We use a permutation test (Asmild, Kronborg, & Rønn-Nielsen, 2018) to test whether the differences in the 

models from section 4 are significant. The permutation test is a modification of the one developed for the 

Malmquist index and, in particular, its decomposition18 and examines if there is a significant difference 

between the results from two models. 

The test is divided into two parts. First, we test if there is a significant difference between the frontiers in 

the two models (corresponding to the frontier shift component). Hereafter, we test if there is a significant 

change in the distribution of the efficiency scores between the two models (corresponding to the efficiency 

change component). 

Following the notation of Asmild, Kronborg, & Rønn-Nielsen (2018), the frontier shift and efficiency change 

are given in (26)-(27). 

𝐹𝑆(𝑥, 𝑦) =
𝜃𝑡1

(𝑥, 𝑦)

𝜃𝑡2
(𝑥, 𝑦)

  (26) 

𝐸𝐶(𝑥𝑡1
, 𝑦𝑡1

, 𝑥𝑡2
, 𝑦𝑡2

) =
𝜃𝑡2

(𝑥𝑡2
, 𝑦𝑡2

)

𝜃𝑡1
(𝑥𝑡1

, 𝑦𝑡1
)
  (27) 

 

FS is the frontier shift, and EC is the efficiency change. 𝜃 is an efficiency score, where its subscript 𝑡1 or 𝑡2 

indicates the model used to estimate the frontier. Note that where 𝑡1 and 𝑡2 refer to two different periods 

in a standard Malmquist setup, they are here used to indicate different models. However, the 

interpretation is similar. x and y denote the input and output. The input is the same in the two models 

compared here, i.e. 𝑥𝑡1
= 𝑥𝑡2

 , whereas the output differs in terms of the aggregation used in the different 

models.  

We use the following procedure: 

1) We use the geometric mean of the frontier shift and of the efficiency change between the two 

models as the test statistic. 

2) With probability 0.5 for each company, we switch the inputs and outputs between 𝑡1 and 𝑡2 such 

that some of the companies keep their original aggregated outputs in both models and the rest 

switch the aggregation scheme between the models such that the first aggregation scheme is used 

in the second model and vice versa. 

3) We recalculate the geometric mean of the frontier shift and the efficiency change and compare 

them with the original calculations. 

4) We repeat steps 2 and 3 100,000 times to get a statistical distribution. 

Suppose the frontier shift and the efficiency change differ significantly between the initial and permutated 

calculations. In that case, we can conclude that the aggregation uncertainty is significantly essential for the 

efficiency scores.  

                                                           
18 Note that the Malmquist index usually compares the same model in two periods. In this paper, we have modified 
the test to compare two different models. 



B Test for significance between aggregations schemes 
Rønn-Nielsen, Kronborg, & Asmild (2019) have developed a test based on permutations to analyze whether 

there is a significant difference between the assumption of CRS and VRS for a given data set. The authors 

propose to use the geometric mean of the ratio between the efficiency scores from CRS and VRS 

respectively as a test statistic, cf. equation (28)-(29) below. 

𝐹𝑟𝑡𝑠(𝑥, 𝑦) =
𝜃𝐶𝑅𝑆(𝑥, 𝑦)

𝜃𝑉𝑅𝑆(𝑥, 𝑦)
  (28) 

𝑇𝑟𝑡𝑠 = ∏ 𝐹𝑟𝑡𝑠(𝑋𝑖, 𝑌𝑖)
1
𝑛

𝑛

𝑖=1

  (29) 

 𝜃𝐶𝑅𝑆 is the efficiency scores for CRS and 𝜃𝑉𝑅𝑆 is the efficiency scores for VRS. x denotes the inputs, y the 

outputs and n the number of observations. 

Under the assumption of CRS, it is possible to rescale the observations without changing the efficiency 

scores. If 𝐹𝑟𝑡𝑠 is close to one after rescaling the observations, it is safe to assume CRS. To get a distribution 

of the test statistic, 𝑇𝑟𝑡𝑠, the authors propose to use the permutation technique below. 

1) Calculate the length of the output vector for each observation, 𝑍𝑖 = ||𝑌𝑖|| and denote 𝑈𝑖 =
𝑋𝑖

𝑍𝑖
 and 

𝑉𝑖 =
𝑌𝑖

𝑍𝑖
 

2) Permutate the vector Z randomly and denote this �̅� 

3) Use �̅� to rescale the input and output vectors such that �̅�𝑖 = 𝑈𝑖 ⋅ �̅�𝑖  and �̅�𝑖 = 𝑉𝑖 ⋅ �̅�𝑖 

4) Calculate a new test statistic, 𝑇𝑟𝑡𝑠
𝑗

 using the new inputs and outputs 

5) Repeat step 2-4 N times, where N is a high number (in this paper 𝑁 = 1,000) 

The p-value is calculated in (30). 

�̂� =
1

𝑁
∑ 1

{𝑇𝑟𝑡𝑠
𝑗

≤𝑇𝑟𝑡𝑠}

𝑁

𝑗=1

  (30) 

 

We modify the method described above to test whether the model with weight restrictions in section 4.3 is 

significantly different from the initial model used in the Danish water regulation. 

First, we reformulate the initial model with OPEX and CAPEX as outputs by splitting up CAPEX into the 

underlying cost-drivers, multiplying the cost-drivers with their corresponding prices and using these 

adjusted cost-drivers as outputs together with weight restrictions stating that the output weights need to 

be equal to each other. 

Second, we do the same for the new model with aggregation uncertainty, but instead of using weight 

restrictions stating that all output weights need to be equal to each other, we allow the weights to vary 

with ± 20 %. 

By reformulating the models, all outputs now have the same unit of measurement, namely monetary. 

Therefore, we can substitute one output with another (change the output mix) in the initial model with 



equal multipliers without changing the results. However, in the second model with aggregation uncertainty, 

a change in the output mix will yield different results, cf. section 3. We can exploit this to calculate whether 

the difference between the models is significant, following the principles of the permutation procedure 

suggested by Rønn-Nielsen, Kronborg, & Asmild (2019) above. 

We modify the procedure to the following: 

1) Calculate the output mix for each company and denote these vectors 𝑀𝑖 

2) Permutate the vectors 𝑀𝑖 randomly and denote this �̅�𝑖 

3) Recalculate the outputs using �̅�𝑖 while holding the sum of the outputs of each company fixed: 

�̅�𝑖 = �̅�𝑖

∑ 𝑦𝑖

∑ �̅�𝑖

, ∀ 𝑖 

4) Calculate the test statistic, 𝑇𝑤𝑒𝑖
𝑗

 from (28)-(29) using the new outputs and with the relevant model 

specifications instead of VRS and CRS 

The p-value is calculated in (31). 

�̂� =
1

𝑁
∑ 1

{𝑇𝑤𝑒𝑖
𝑗

≤𝑇𝑤𝑒𝑖}

𝑁

𝑗=1

  (31) 
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