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Abstract

In an information cascade experiment participants are confronted with arti-

ficial predecessors predicting in line with the BHW model (Bikchandani et al.,

1992). Using the BDM (Becker et al., 1964) mechanism we study participants’

probability perceptions based on maximum prices for participating in the

prediction game. We find increasing maximum prices the more coinciding

predictions of predecessors are observed, regardless of whether additional

information is revealed by these predictions. Individual price patterns of

more than two thirds of the participants indicate that cascade behavior of

predecessors is not recognized.

JEL classification: C91, D81, D82

Keywords: information cascades, Bayes’ Rule, decision under risk and un-

certainty, experimental economics



1 introduction

Information cascades as modelled by Bikchandani et al. (1992), henceforth

BHW, have become a popular approach to explain herding behavior.1 The

BHW model offers explanations for many economic and social phenomena,

such as fashion trends and conformity in consumption or investment de-

cisions. BHW explain herding within a rational choice approach assuming

that agents update beliefs according to Bayes’ rule. The model shows that

in a choice situation under incomplete information it may be rational to fol-

low predecessors and to disregard one’s own private information. Hence a

cascade starts and no further information is aggregated in the observable

decisions. Agents may follow wrong decisions of predecessors even though

the aggregated private information would suggest the opposite. Individual

rationality may thus lead to market inefficiencies.

The BHW model implicitly assumes that agents recognize cascade behavior

of others. If not, perceived probabilities of making a good decision increase

with the length of the cascade even if no further information is aggregated.

Thus, boundedly rational behavior of agents would result in an overvalua-

tion of public information and thereby cause further economic distortions.

Consumers, for instance, might misinterpret the number of previous sales

of a specific product as a signal for quality. This could unreasonably in-

crease their willingness to pay for best-sellers compared to similar compet-

ing products. Promotion instruments that refer to the number of sales, e.g.

best-seller lists, could then be used for increasing demand or for selling at

higher prices.

Cascade phenomena have been the subject of numerous experimental stud-

ies. The predictions of the BHW model were confirmed in first experimen-

tal tests by Anderson and Holt (1997), henceforth AH. Following AH, most

studies investigate cascade behavior by varying the structure of available in-

formation or by selling costly private information.2 Conclusions are drawn

from subjects’ predictions and buying decisions. The results suggest that

individuals, if confronted with more complex decision tasks than in the orig-

inal AH experiment, tend to overestimate private information and thus to

deviate from the rational cascade pattern. Kübler and Weizsäcker (2004)

have observed that acquisition rates of costly signals are generally higher

than optimal, but decrease in ongoing cascades. Their results suggest that

subjects overestimate the error rates of their predecessors and that their

depth of reasoning is limited.3 The authors conclude that “... subjects learn

1For a survey of theoretical and empirical studies on information cascades see Bikchan-

dani et al. (1996).
2See, e.g., Willinger and Ziegelmeyer (1998), Kraemer et al. (2006), Kraemer and Weber

(2001), Nöth and Weber (2003), Çelen and Kariv (2004), or Kübler and Weizsäcker (2004).
3Kübler and Weizsäcker (2004) use a quantal response model for their analysis. The ex-

amination of errors by using quantal response models (McKelvey and Palfrey, 1995, 1998),

has become increasingly popular for explaining deviations from standard BHW model. For

other applications of quantal response equilibria to information cascade models see, e.g.,

Anderson and Holt (1997), Anderson (2001).
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from observing their predecessors’ decisions, but ... fail to realize that other

subjects also learn from observing their respective predecessors.”

Oberhammer and Stiehler (2002) investigate whether behavior in cascades

reflects Bayesian updating. In their simple symmetric design, even counting

leads to correct urn predictions if predecessors behave rationally.4 Using

the BDM procedure (Becker et al., 1964), they asked subjects to submit max-

imum prices they are willing to pay for participating in the prediction game.

These maximum prices are used as indicators of subjects’ probability per-

ceptions. This procedure allows testing the explanatory power of the stan-

dard BHW model as well as of cascade models in which errors of predeces-

sors are included in subjects’ updating process. The authors report prices

that increase in the number of predecessors. This price increase also occurs

in positions where rational predecessors would have ignored their private

signals, i.e., in which their decisions should not reveal additional informa-

tion. By including the assumption that subjects incorporate erroneous play

of predecessors, error models can account for the observed price increases.

However, the pattern could also be caused by subjects whose depth of rea-

soning is limited and who thus do not recognize cascade behavior of others.

The authors were unable to distinguish between these alternative explana-

tions. Moreover, the decision situations in which individuals had to decide

were endogenously determined, so that observing complete individual price

patterns was impossible.

To fill these two gaps is the aim of this study. It focuses on individual updat-

ing behavior in a cascade design similar to Oberhammer and Stiehler (2002).

Subjects are confronted with the same information structure and the BDM

mechanism is used to elicit prices as indicators of subjects’ probability per-

ceptions. However, we incorporate artificial agents as predecessors, who

follow a simple counting rule, thus predict according to BHW, and – by defi-

nition – never err. Using the strategy method, we ask subjects to state their

predictions and maximum prices for all possible decision situations. This

results in observing complete individual price setting patterns. By excluding

error making of predecessors as an explanation for the observed decisions,

we are able to address the question whether individuals recognize cascade

behavior of others in isolation.

We find that in these rather simple decision tasks, most subjects predict

according to theory (and to simple counting) but many submit increasing

maximum prices the more coinciding predictions of predecessors they ob-

serve, regardless of whether additional information is revealed by these pre-

dictions. We conclude that the majority of participants do not recognize

cascade behavior of predecessors.

While we focus on the recognition of predecessors’ rational cascade behav-

ior, we do not negate that (assumed) erroneous play of human predecessors

4In the AH experiment, prediction errors increase up to 50 percent in asymmetric de-

cision situations where simple counting of predecessors’ predictions does not lead to a

correct urn prediction (Huck and Oechssler, 2000). In these situations the rule “follow

your own signal” offers better predictions than Bayesian updating. This result suggests

that subjects are not always able to apply Bayesian updating in complex decision tasks.
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also influenced subjects’ behavior in other experiments. As our artificial

agents never err, we most likely create beliefs about predecessors that are

different from those in experiments with human players. Therefore, it is

no surprise that the behavior observed in this experiment differs in some

aspects from behavior reported in other cascade studies.

The remainder of the paper is organized as follows. In Section 2 the exper-

imental design and procedures are described. In Section 3 hypotheses are

derived for both rational behavior as assumed in the BHW model and behav-

ior based on the assumption that subjects do not recognize cascade behavior

of others. The results are presented in Section 4. Section 5 concludes.

2 experimental design and procedure

2.1 Experimental scenario

There are two urns, A and B, with 5 balls each (3 black balls and 2 white

balls and vice versa). In each round of the game, one urn is randomly chosen

with equal probability at the beginning of the game. Participants predict the

randomly chosen urn. As participants’ private information a ball is drawn

from the urn and its color revealed. As public information, urn predictions

of predecessors (if any) are announced. Participants are credited 100 ECU

(Experimental Currency Units) for correct urn predictions and nothing oth-

erwise. Participants are further asked to submit maximum prices pmax they

are willing to pay to participate in the prediction game, i.e., to seize the op-

portunity of winning 100 ECU. As an incentive compatible mechanism to

elicit subjects’ maximum willingness to pay we implement the BDM mech-

anism (Becker et al., 1964): Subjects’ maximum prices are compared to a

random price pr , drawn from a uniform distribution in the interval [0,100].

If the random price exceeds the maximum price (pr > pmax), the partici-

pant earns nothing. If the random price is equal or lower than the maximum

price (pr ≤ pmax), the participant is credited the amount resulting from her

urn prediction minus the random price (see Table 1).

Correct urn prediction False urn prediction

pr ≤ pmax 100 ECU - pr 0 ECU - pr
pr > pmax 0 ECU 0 ECU

Table 1: Income calculation

If participants were risk neutral and maximized their income according

to standard expected utility theory, the submitted maximum prices would

perfectly reflect their winning probability perceptions. But these assump-

tions are hardly satisfied as many experimental studies on decision–making

show.5 However, we are not interested in absolute probability levels, but

5For surveys of experimental studies on individual decision making under risk and un-

certainty see ,e.g., Camerer (1995) or Hey (1991).
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only in qualitative results. Therefore, prices are a meaningful measure to

answer our research question if higher prices reflect higher probability per-

ceptions and vice versa. To check this, we do not only elicit maximum prices

but also ask subjects to submit subjective probabilities for the correctness

of their urn predictions.

2.2 Implementation of artificial agents

In this cascade experiment a subject’s predecessors are artificial agents,

whose predictions are clearly defined by simple counting, i.e., agents pre-

dict according to the majority of (public and private) signals in favor of urn

A or B. Consequently, errors of predecessors are excluded by definition.

Note that in the applied symmetrical information structure simple counting

leads to the same urn predictions as Bayesian updating (Anderson and Holt,

1997). Thus, urn predictions of artificial agents are in line with BHW. In case

of a tie-break, i.e., an equal number of signals in favor of urn A and B, arti-

ficial agents decide according to their private signal. This tie-breaking rule

simplifies the updating process compared to a randomization between urn

A and B, as assumed by BHW.

One may object that we influenced participants’ decisions by incorporating

artificial agents who followed a simple counting heuristic. Admittedly, we

taught participants to predict according to the BHW model. But note that

we are interested in price setting behavior rather than in urn predictions.

By the precise explanation of the artificial agents’ decision rule, we intended

to make it as easy as possible for subjects to recognize cascade behavior of

predecessors.

2.3 Use of the strategy method

Participants are asked to state their decisions for all situations that may

arise from the decisions made by up to 5 artificial predecessors. Depending

on

• the subject’s own position (1 to 6),

• the color of the privately drawn ball (black or white), and

• the history regarding predecessors’ predictions,

there are in total 74 decision situations (see Section 3.2) for which partici-

pants have to submit their urn predictions, maximum prices and subjective

probabilities. One of these 74 situations is determined to be payoff–relevant

as follows:

1. One urn (A or B) is randomly chosen.

2. Subjects’ position (1 to 6) is randomly determined.
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3. For each artificial agent a ball is drawn from the chosen urn. The agent

predicts according to the defined decision rules. This prediction is

publicly announced.

4. At the (real) subject’s position a ball is drawn and the color announced.

Then the random price is drawn from all integers between 0 and 100. Now

the payoffs from the experiment can be calculated according to the rules

summarized in Table 1. The implementation of the strategy method has

two major advantages: First, it allows observing complete individual price

patterns. Second, the strategy method causes “cold”, i.e., less emotional

responses than spontaneous play and thus helps us to focus on the partici-

pants’ ability to recognize cascade behavior of others.6

2.4 Procedure

At the start of a session participants were provided with written instructions

as well as with a supplementary sheet on the working of the BDM mecha-

nism demonstrating that strategic behavior does not pay.7 Questions were

answered privately during the experiment.

After reading the instructions it was demonstrated how the payoff–relevant

situation would be determined. While all decisions had to be submitted via

the computer, the choice of the payoff–relevant situation and the draw of the

random price were done by one of the participants by hand, using real urns

(opaque blue bags), balls (table tennis balls), dice, and chips with numbers

from 1 to 100.

Prior to the experiment participants answered some control questions about

the decision rules of artificial predecessors and the working of the price

mechanism. Subjects who answered all questions correctly in the first go

were credited 5e. Participants were not allowed to proceed to the experi-

ment before all questions were answered correctly.

In the experiment participants submitted their decisions for all 74 situa-

tions which were displayed on the computer screen in random order. After

the decisions were taken the payment relevant situation was determined,

the price was randomly chosen, and subjects were paid according to their

decisions.

By using real urns and balls and by the execution of random choices by par-

ticipants, by demonstrating the choice of the payment–relevant situation be-

fore the sessions started and by using pre-experimental control questions

we made sure that the structure of the experiment, the decision rules of arti-

ficial agents as well as the working of the BDM mechanism were understood

by the participants.

6For experimental studies on presentation effects see, e.g., Brandts and Charness (2000)

or Schotter et al. (1994).
7Instructions and control questions may be downloaded at http://www.hu-

berlin.de/wt1/papers.
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The computerized experiment (using the software toolkit z-Tree, Fischbacher,

1999), was conducted at Humboldt University at Berlin. We ran 4 sessions

with 9, 12, 7, and 11 participants. The 39 subjects, mainly business and

economics students, were randomly recruited from a pool of potential par-

ticipants. In order to avoid losses a show-up fee of 100 ECU was paid. The

experiment lasted about 80 minutes. 100 ECU were equivalent to e10. Av-

erage earnings amounted to approximately e17 on average.

3 theory, notation, and hypotheses

3.1 Bayes’ rule

In a symmetric cascade structure in which predecessors update information

in line with Bayes’ rule and predict according to their private signal in case of

a tie, posterior probabilities just depend on the number of signals in favor

of urns A and B. According to Anderson and Holt (1997), for the applied

design, these probabilities can be derived to be as follows:

Pr{A|d} =
1

1+
(

2
3

)d
and Pr{B|d} =

1

1+
(

2
3

)−d
(1)

Thereby, d is defined as the difference between the number of A and B sig-

nals. Posterior probabilities increase with an increasing difference in favor

of the respective urn. Thus, rational subjects would recognize that they

should ignore their own signal once a difference of d = 2(−2) can be in-

ferred from the predecessors’ predictions. From then on subsequent play-

ers would always predict according to the ongoing cascade even if their

private signal does not match the cascade, diminishing the difference to

d = 1(−1). Therefore, no further information can be inferred from their

predictions. Posterior probabilities for all further situations remain stable

at Pr{A|d = 3} = 0.77 if confronted with a signal in accordance with the

ongoing cascade or at Pr{A|d = 1} = 0.60 if confronted with an opposed

signal.

3.2 Notation

To describe and classify the different situations a subject may be confronted

with, we first introduce some notation. All possible situations in the decision

sequences will be characterized as follows: Predecessors’ predictions are

denoted by capital letters (A or B), private signals by small letters (a = black

ball and b = white ball). For example, ABb refers to a situation in which

a subject acts third in the sequence, sees a white ball as her private signal,

and observes that one of her predecessors (the first agent) has predicted “A,”

and one (the second agent) has predicted “B.” We denote these situations as

“decision situations.”
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We refer to private signals as either pro or contra signals. The naming is

based on what a rational player would do after observing the respective

signal: After observing a pro signal, the player predicts the urn suggested

by the signal (or is indifferent which urn to choose); after observing a contra

signal, she rationally predicts against it. Therefore, as long as no cascade

has started, all signals are pro signals, because no player rationally ignores

her signal.

We classify decision situations where no cascade has started yet as cascade

positions −3, −2, and −1. Cascade position −3 refers to a “balanced sam-

ple.” This means that predecessors’ decisions together with the private sig-

nal reveal a probability of 0.5 for each urn. Thus, either prediction is in line

with rational behavior. Cascade position −2 refers to decision situations in

which equally many predecessors have predicted either urn. This means that

predecessors’ decisions together with the private signal reveal a probability

of 0.6 for the urn indicated by the private signal. Finally, at cascade position

−1, among the predecessors, there is already a one–prediction majority for

one of the urns among the predecessors and the private signal matches that

majority. Hence, the probability for predicting correctly is 0.69.

We refer to a player’s position at which a cascade starts as cascade position

0. This means that a rational player at cascade position 0 is the first to ignore

her signal and predict in line with the majority of predecessors in any case.

Despite the fact that the optimal decision is unaffected by the private signal,

the probability of predicting correctly depends on whether she has observed

a pro or a contra signal.

Positions within the cascade are referred to as cascade positions 1, 2, and

3. This means that 1, 2, or 3 predecessors have already ignored their pri-

vate signal and have predicted according to the majority of predictions they

observed. Therefore there is no additional information revealed by their

predictions. Thus, the probabilities of predicting correctly after receiving a

pro or a contra signal at cascade positions 1, 2, or 3 equal those at cascade

position 0.

In total there are thus seven cascade positions. Remember that cascade

positions are not equivalent to the position in the decision sequence at which

a player acts. As an example, consider decision situations AAb and BAAAb

which both belong to cascade position 0.

In Table 2, all cascade positions and the corresponding decision situations

are summarized.

3.3 Hypotheses

Figure 1 shows a representation of posterior probabilities for all cascade

positions given pro or contra signals according to the BHW model.

As derived in Section 3.1, posterior probabilities of predicting correctly in-

crease between cascade positions −3 and −1. With the prediction of the

agent at cascade position 0, the cascade starts. From then on, probabilities

7



Private Casc. Decision Situations Number

Signal Pos.

−3 Ab;Ba;ABAb;ABBa;BAAb;BABa;ABABAb 14

ABABBa;ABBAAb;ABBABa;BABAAb

pro BABABa;BAABAb;BAABBa

−2 a;b;ABb;ABa;BAb;BAa;ABABb;ABABa;ABBAb 14

ABBAa;BAABb;BAABa;BABAb;BABAa

−1 Aa;Bb;ABAa;ABBb;BAAa;BABb;ABABAa;ABABBb 14

ABBAAa;ABBABb;BABAAa;BABABb;BAABAa;BAABBb

0 AAa;BBb;ABAAa;ABBBb;BAAAa;BABBb 6

pro 1 AAAa;BBBb;ABAAAa;BABBBb;ABBBBb;BAAAAa 6

2 AAAAa;BBBBb 2

3 AAAAAa;BBBBBb 2

0 AAb;BBa;ABAAb;ABBBa;BAAAb;BABBa 6

contra 1 AAAb;BBBa;ABAAAb;ABBBBa;BAAAAb;BABBBa 6

2 AAAAb;BBBBa 2

3 AAAAAb;BBBBBa 2

Total 74

Table 2: Decision situations

-3 -2 -1 0 1 2 3

Cascade Position
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Figure 1: Probability pattern according to the BHW model.
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Figure 2: Probability pattern according to the behavioral hypothesis.

remain constant. As for 38 out of 39 subjects (97.4%) we observe highly sig-

nificant positive correlations between maximum prices and subjective prob-

abilities,8 we are confident in using the submitted maximum prices to test

our hypotheses.9

Hypothesis according to the BHW model: Individuals update information

according to Bayes’ rule and take cascade behavior of others into account.

Price setting behavior at cascade positions −3 to 0 is as follows:

a) p
−3pro
max < p

−2pro
max < p

−1pro
max < p

0pro
max .

Price setting behavior at cascade positions 0 to 3 is as follows:

b) p
0pro
max = p

1pro
max = p

2pro
max = p

3pro
max ,

c) p0con
max = p

1con
max = p

2con
max = p

3con
max .

Thereby, e.g., we refer to p0con
max as the willingness to pay of a subject at

cascade position 0, who is confronted with a contra signal.

There are many studies indicating that individuals’ depth of reasoning is

limited.10 We thus conjecture that even though there is no uncertainty about

others’ decision–making, individuals do not recognize cascade behavior of

predecessors in our simple setting. If subjects ignore the formation of a

cascade, subjective probabilities increase the longer a cascade continues, as

illustrated in Figure 2. From this, we derive our alternative hypothesis.

8The Pearson correlation coefficient is significant on the 1%-level for all but one subjects.

All significant coefficients are between 0.44 and 0.96, with a median of 0.85. Thus, a

majority of subjects exhibit a nearly linear correlation. The non-parametric Spearman’s

rank-order correlation coefficient is significant on the 1%-level for all 39 subjects.
9This correlation does neither need to be perfect nor linear. If, e.g., subjects are risk

averse, it may be expected that the correlation exhibits a non-linear pattern.
10For depth of reasoning analyses in normal form games see, e.g., Ho et al. (1998) or

Nagel (1995). For information cascades, Kübler and Weizsäcker (2004) have shown that

subjects’ depth of reasoning is limited. See our discussion in Section 1.
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Behavioral Hypothesis: Individuals update information according to Bayes’

rule, but do not recognize cascade behavior of others.

Price setting behavior at cascade positions -3 to 0 is as follows:

a) p
−3pro
max < p

−2pro
max < p

−1pro
max < p

0pro
max

Price setting behavior at cascade positions 0 to 3 is as follows:

b) p
0pro
max < p

1pro
max < p

2pro
max < p

3pro
max

c) p0con
max < p

1con
max < p

2con
max < p

3con
max

Both the BHW and the behavioral hypothesis predict increasing maximum

prices from cascade position −3 to cascade position 0. But they differ in the

predicted price patterns from cascade position 0 to 3.

4 results

4.1 Prediction behavior

The 39 subjects were independently asked to make decisions for 74 situa-

tions. The data file thus consists of 39× 74 = 2886 urn predictions, prices,

and subjective probabilities. 546 observations are from situations at cas-

cade position −3 where all predictions are consistent with BHW since the

posterior probability is 0.5. Of the remaining 2340 urn predictions 2268

(96.9%) are in line with BHW. 14 subjects (35.9%) predicted always in line

with the theory. The rate of seemingly rational predictors sharply increases

up to 82.1% (32 out of 39) if we include subjects who predicted in line with

the BHW in at least 95% of the relevant situations.11

As mentioned in Section 2, our experimental design and procedure indi-

rectly influence subjects to predict in line with BHW. Thus, the high rate of

predictions in line with Bayesian updating is not astonishing. Subjects fol-

lowed their own signal in 77.1% of all tie-breaking situations (with posterior

probabilities of 50%).12

At cascade positions 0 to 3 rational agents would follow their predecessors

even when confronted with a contra signal. However, the error rate in such

situations is essentially higher (6.7%) than in cases in which the signal co-

incides with the ongoing cascade (0.6%). In order to provide insight into

the structure of prediction errors in ongoing cascades, we compared error

rates at different cascade positions and summarized the results in Table 3.

When subjects are confronted with pro signals, error rates are similarly low

at cascade positions 0 to 3 (between 0.0% and 1.3%). When confronted with

11The remaining (incorrect) predictions do not seem to follow any systematic pattern. In

each of the relevant decision situations, one or two subjects made a mistake.
12This rate resembles the one in Oberhammer and Stiehler (2002) (79%), but is lower

than rates found in Anderson and Holt (1997) and Anderson (2001) (85.4% and 88.5%,

resp.). However, their design was different to Oberhammer and Stiehler’s and ours in a

number of characteristics, e.g., they conducted a pencil–and–paper experiment and used a

different signal precision.
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contra signals, the error rate at cascade position 0 is higher (12.8%) than at

later cascade positions.13

Subjects apparently overvalue their private information at early cascade po-

sitions but assign more weight to the sequence of predecessors’ predictions

the longer the cascade continues.

Cascade Number Number of errors [error rate] after...

position of cases pro signal contra signal

0 234 3 [1.3%] 30 [12.8%]

1 234 0 [0.0%] 11 [4.7%]

2 78 0 [0.0%] 0 [0.0%]

3 78 1 [1.3%] 1 [1.3%]

Total 626 4 [0.6%] 42 [6.7%]

Table 3: Prediction errors at different cascade positions

4.2 Price setting behavior and subjective probabilities

The question remains whether subjects who predict in line with BHW also

recognize that a cascade formation takes place. Thus, in the following, we

concentrate on predictions that were in line with BHW. For each of the 2812

correct predictions we have one maximum price for participating in the pre-

diction game and one subjective probability for making a correct prediction.

To give a first overview of price setting behavior for different cascade po-

sitions and private signals, we report average prices and probabilities for

each of the 11 different cascade position/signal combinations (7 cascade

positions with a pro signal and 4 with a contra signal).14 The aggregated

results are summarized in Table 4. Figure 3 illustrates the aggregated price

setting pattern.

As predicted by the BHW model and by our behavioral hypothesis, max-

imum prices increase from cascade position −3 to 0. When information

cascades form, the submitted prices at later cascade positions are higher

than at earlier positions. This is in line with our behavioral hypothesis. A

similar pattern can be observed for the subjective probabilities. At cascade

position 3, subjects’ average maximum prices and subjective probabilities

are higher than predicted by BHW.

As mentioned above, we observe that subjects associate higher probabilities

of predicting correctly with a higher willingness to pay for taking part in the

13This pattern of error rates is in line with the data of, e.g., Anderson and Holt (1997),

Anderson (2001), and Oberhammer and Stiehler (2002). However, the level of error rates

is higher in all those studies. This may be due to the fact that players distrust their human

predecessors and thus follow their own signal more often.
14For the analysis of price setting behavior we excluded observations of one subject

whose submitted maximum prices are apparently unsystematic and often on an invariantly

low level (85% of her maximum prices are below 10). However, including this observation

does not change our findings.
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Figure 3: Average prices for different cascade positions and private signals.

Private Casc. Individual avg. prices Subjective prob. (in %) Prob. according to...

signal pos. Mean Median SD Mean Median SD Behav. BHW

−3 32.9 35.6 18.6 46.2 49.6 8.0 50.0 50.0

pro −2 39.7 39.2 17.3 51.6 53.4 9.0 60.0 60.0

−1 53.1 53.9 17.9 61.8 62.9 9.3 69.2 69.2

0 59.5 60.4 20.2 67.8 68.3 11.1 77.1 77.1

pro 1 67.8 76.7 22.2 75.5 78.5 11.2 83.5 77.1

2 73.1 80.0 20.7 81.3 85.0 12.5 88.4 77.1

3 73.9 81.3 23.9 83.0 87.5 14.9 91.9 77.1

0 39.7 41.0 16.7 49.4 52.5 12.3 60.0 60.0

contra 1 50.8 50.8 20.5 60.1 61.2 12.9 69.2 60.0

2 55.5 58.3 23.6 65.9 67.5 15.6 77.1 60.0

3 63.8 70.3 25.9 74.9 77.5 16.7 83.5 60.0

Table 4: Price setting behavior and subjective probability statements
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prediction game. We also find that at each cascade position, average sub-

jective probabilities exceed average submitted maximum prices, indicating

that risk aversion plays a role. The difference between prices and subjec-

tive probabilities does not vary systematically over probability levels and

cascade positions.

In order to test our hypotheses, we ran nonparametric Friedman tests based

on individual average prices for each cascade position. Moreover, we used

the individual average prices to calculate the Spearman rank correlation co-

efficient for each of the three conjectured price/cascade position relation-

ships. The results are presented in Table 5.

Friedman test Spearman rank corr.

Hypothesis (H0) χ2 (sign.) ρ (sign. 2-tailed)

a) p
−3pro
max = p

−2pro
max = p

−1pro
max = p

0pro
max 91.02 (.000) .482 (.000)

b) p
0pro
max = p

1pro
max = p

2pro
max = p

3pro
max 42.86 (.000) .272 (.001)

c) p0con
max = p

1con
max = p

2con
max = p

3con
max 64.45 (.000) .374 (.000)

Table 5: Friedman–tests and Spearman rank correlations for maximum

prices and cascade positions

Both statistical measures confirm that subjects generally infer information

from predecessors’ urn predictions (see row a). The H0-hypothesis that

prices are constant from cascade position −3 to 0 is rejected. Instead, we

observe a significantly positive relation (Spearman’s ρ > 0 with p < 0.01)

between submitted maximum prices and the respective cascade positions.

This finding is in line with Bayesian updating. However, all other hypotheses

derived from the BHW model are rejected (see rows b and c). We observe – in

line with the alternative (behavioral) hypothesis – significantly positive cor-

relation coefficients at cascade positions 0 to 3 if confronted with pro, resp.

contra signals. Applying the same tests to subjective probabilities instead

of prices yields the same results.

Observation I Aggregate price pattern

1. In situations where no information cascade has formed yet, the average

willingness to pay positively depends on the cascade position (−3 to 0).

This is in line with both the BHW model and the behavioral hypothesis.

2. The aggregated price setting pattern within cascades is in line with the

behavioral hypothesis, i.e., the correlation coefficients between average

maximum prices and the cascade position (0 to 3, for both pro and

contra signals) are significantly positive.

One may object that the price pattern may be due to the behavior of some

subjects who did not understand the rules of the game and/or the decision

rules of artificial agents.

To check whether this objection is justified, we applied the same analysis

to the subsample of subjects who predicted in line with BHW in more than

13



95% of the cases and answered all questions about artificial predecessors

correctly at first go.15

Our findings turn out to be robust. We find a similar price pattern for the

considered subsample, i.e., the hypothesis according to BHW has to be re-

jected in favor of our behavioral hypothesis.

The use of the strategy method does not only allow to analyze aggregate

behavior, but also to obtain complete individual price setting patterns. We

calculate Spearman rank correlation coefficients between submitted maxi-

mum prices and the respective cascade positions for each single participant.

As before, we analyze:

1. maximum prices at cascade positions −3 to 0,

2. maximum prices at cascade positions 0 to 3 if confronted with pro

signals,

3. maximum prices at cascade positions 0 to 3 if confronted with contra

signals.

According to the significance of the rank correlation coefficients (at the 5%

level), we classify subjects in the following four groups:

• BHW subjects: Those who exhibit a significantly positive correlation

between cascade positions and maximum prices at cascade positions

−3 to 0, but, for both pro and contra signals, no significant correlation

at cascade positions 0 to 3.

• Subjects completely ignoring the cascade formation: Those who ex-

hibit significantly positive correlations at cascade positions −3 to 0

and, for both pro and contra signals, also at cascade positions 0 to 3.

• Subjects partly ignoring the cascade formation: Those who exhibit

a significantly positive correlation at cascade positions −3 to 0 and,

either for pro or contra signals, also at cascade positions 0 to 3.

• Others: Subjects who do not exhibit a significantly positive correlation

at cascade positions −3 to 0 or who exhibit a significantly negative

correlation between prices and cascade positions, whose behavior is

thus not in line with either hypothesis.

The results are summarized in Table 6. For 17 subjects (43.6%), all three

correlation coefficients are significantly positive, i.e., completely in line with

the behavioral hypothesis. For another 10 subjects (25.6%), the correlation

coefficient is significantly positive at cascade positions -3 to 0, and, either

for pro or for contra signals, also at cascade positions 0 to 3. This indicates

15Note that some of these control questions referred to situations at which artificial

predecessors showed cascade behavior, i.e., predicted against their private signals.
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Identified groups Number Identified patterns*

of subj. % a) b) c) Number of subj.

BHW subjects 7 17.9 + � � 7

Subj. completely ignoring 17 43.6 + + + 17

the cascade formation

Subj. partly ignoring 10 25.6 + + � 2

the cascade formation + � + 8

Others 5 12.8 � + + 1

� � + 1

� � � 2

+ − � 1

Total 39 100.0 39

*Identified price patterns at cascade positions −3 to 0 (column a) and at cascade

positions 0 to 3 when confronted with pro (column b), resp. contra signals (column c).

Significant positive (negative) correlations (p < 0.05, 2-tailed) between max. prices

and cascade positions are indicated by + (−), insignificant correlations by �.

Table 6: Individual price patterns

that cascade behavior of predecessors is not consistently recognized. Only

for 7 of the 39 subjects (17.9%), all three correlation coefficients are in line

with the standard BHW model, i.e., significantly positive at cascade positions

−3 to 0, but insignificant at cascade positions 0 to 3. Finally, 5 subjects

exhibit a price setting behavior that is not in line with either hypothesis: 4

subjects show no significant positive correlation at cascade positions −3 to

0. One subject showed a negative correlation between prices and cascade

positions when confronted with pro signals. Overall, price setting behavior

of more than two thirds of the subjects indicates that cascade formation

is not consistently recognized whereas less than 20% of the subjects show

price setting patterns in line with the standard BHW model.

Observation II Individual price setting patterns

1. At cascade positions −3 to 0, almost 90% of participants exhibit a sig-

nificantly positive correlation between submitted maximum prices and

cascade positions, indicating that information revealed by predecessors’

urn predictions is taken into account.

2. Only 17.9% of subjects exhibit a price setting pattern in line with the

standard BHW model, i.e., a significantly positive correlation at cascade

positions −3 to 0 and no significant correlations at cascade positions 0

to 3.

3. For 43.6% of the participants, price setting patterns are completely in

line with the behavioral hypothesis, i.e., all 3 considered correlation co-

efficients are significantly positive. For more than two thirds of the sub-

jects price setting behavior is at least partly in line with the behavioral

hypothesis, i.e., the correlations are significantly positive for either pro

or contra signals at cascade positions 0 to 3.

15



5 conclusion

We designed an experiment to test whether individuals recognize cascade

behavior of others. Our findings clearly support the alternative (behavioral)

hypothesis, that they do not. Although urn predictions are in line with BHW,

maximum prices increase the longer a cascade continues. More than two

thirds of the participants obviously ignore cascade behavior of predecessors.

In contrast, only 18% of participants set prices in line with the BHW model.

Participants in our experiment are informed about decision rules used by

artificial predecessors. Errors by predecessors are excluded. We are aware

that in real life there is uncertainty about behavior of others. Of course,

this may influence cascade behavior. But if individuals do not recognize

cascade behavior of others in our simple setting with artificial agents, then

it is unlikely that they do so when their predecessors are humans.
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