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Real-time nowcasting with sparse factor models

Philipp Hauber

Julius-Maximilians-Universität Würzburg, Kiel Insitute for the World Economy

Abstract

Factor models feature prominently in the macroeconomic nowcasting literature, yet no

clear consensus has emerged regarding the question of how many and which variables

to select in such applications. Examples of both large-scale models, estimated with data

sets consisting of over 100 time series as well as small-scale models based on only a

few, pre-selected variables can be found in the literature. To adress the issue of vari-

able selection in factor models, in this paper we employ sparse priors on the loadings

matrix. These priors concentrate more mass at zero than those conventionally used

in the literature while retaining fat tails to capture signals. As a result, variable selec-

tion and estimation can be performed simultaneously in a Bayesian framework. Using

large data sets consisting of over 100 variables, we evaluate the performance of sparse

factor models in real-time for US and German GDP point and density nowcasts. We

find that sparse priors lead to relatively small gains in nowcast accuracy compared to

a benchmark Normal prior. Moreover, different types of sparse priors discussed in the

literature yield very similar results. Our findings are compatible with the hypothesis

that large macroeconomic data sets typically used in now- or forecasting applications

are not sparse but dense.
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1 Introduction

Professional forecasters and policy-makers require timely assessements of the current state

of the macroeconomy. However, short-term forecasting or nowcasting of the gross domestic

product (GDP) - arguably the best single indicator of macroeconomic developments and

central in guiding economic policy decisions - faces numerous challenges. The GDP is subject

to a considerable publication delay, with a first estimate usually provided roughly four weeks

after the end of the respective quarter. At the same time, the information from a large

number of potentially informative indicators is available that can be exploited in a more

timely manner to improve estimates of current macroeconomic conditions. Often, however,

such series are published in an asynchronous manner giving rise to an unbalanced panel

or "ragged edge". For example, survey-based sentiment indicators are typically released

much sooner after (or even within) the reference period than "hard" indicators such as

industrial production or retail sales. Moreover, these time series are usually sampled at

higher frequencies than the target variable GDP, e.g. monthly or daily. Nowcasts that reflect

on the latest available information need to be able to handle this data flow in real-time,

mixing information from different frequencies.

Factor models feature prominently in the nowcasting literature as they can address all

the aforementioned issues in a unified modelling framework. Furthermore, they have a

proven track record in terms of nowcasting GDP (Giannone et al., 2008; Schumacher and

Breitung, 2008; Camacho and Perez-Quiros, 2010; Banbura and Rünstler, 2011; Kuzin et al.,

2011; Aastveit et al., 2014, 2018; Marcellino et al., 2016). Notwithstanding this extensive

literature, there is no firm consensus about how many and which variables to select when

nowcasting GDP. From an asymptotic point of view a larger cross-section should lead to more

precise estimates of the underlying factors and, hence, more accurate nowcasts. Boivin and

Ng (2006), however, find both in simulations and a real-time forecasting excercise that

factors extracted from smaller data sets perform as well or even better than those extracted

from a much larger panel. In line with these findings, Bai and Ng (2008) advocate penalized

regressions to identify a subset of variables that is closely related to the target series prior

to factor extraction ("targeted predictors"). Schumacher (2010) demonstrates that such

targeted predictors can improve nowcasts of German GDP when considering a large panel

of international data. Similarly, Caggiano et al. (2011) provide evidence for a number of

countries that pre-selection of variables can substantially improve forecast performance. In

contrast, Alvarez et al. (2016) find no clear benefit from using aggregate headline series

representing different economic categories as opposed to a large disaggregated data set in

a forecasting excercise for the United States. Rünstler (2016) adresses the issue of variable

selection by focusing on the prediction weights inherent in a factor model. Selecting those

variables with the largest marginal predictive gains for GDP growth, he finds only moderate

gains in forecasting accuracy for short horizons.

As a result of this on-going debate, examples of both approaches can be found in the

literature: "large-scale"" factor models comprised of around 70 to 80 time series or more
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(Giannone et al., 2008; Banbura and Rünstler, 2011; Kuzin et al., 2011; Aastveit et al.,

2014, 2018) or "small-scale " models with up to 10 or 20 variables, pre-selected by expert

judgement, statistical procedures or a combination thereof (Camacho and Perez-Quiros,

2010; Marcellino et al., 2016; Bok et al., 2018).

In this paper, the issue of variable selection is adressed by exploring the role sparsity

plays in factor models. We investigate to what extent the Bayesian estimation of factor

models with sparse priors on the loadings matrix can serve as an alternative to pre-selection

of variables. Compared to Normal priors commonly used in the literatur, sparse priors place

considerably more mass near zero while still allowing for fat tails to capture signals. Based

on the work by George and McCulloch (1993, 1997) on variable selection priors in a mul-

tiple regression framework, West (2003) proposes mixtures of Normal distributions and a

point mass at zero to induce sparsity in factor models. Employing these priors in a macroe-

conomic application, Kaufmann and Schumacher (2017) identifiy relevant variables in large

panels of international GDP growth rates and disaggregate US CPI data. Global-local shrink-

age priors have been proposed as a continuous approximation to discrete variable selection

priors (Polson and Scott, 2010) and have been widely used in macroeconomic forecasting

applications with Bayesian vector autoregressions (BVAR), e.g. Kastner and Huber (2020),

Huber and Feldkircher (2019), Cross et al. (2020) or Chan (2021) in combination with

conventional Minnesota-type shrinkage priors.

To assess the performance of sparse factor models, we conduct a real-time evaluation of

point and density nowcasts for US and German GDP. Our contribution to the literature can

be viewed in two ways: from the methodological side, we perform variable selection and

estimation simultaneously in a real-time factor model setting. As such, it follows the recent

contributions of Kristensen (2017) and Thorsrud (2020). The former estimates factors non-

parametrically via sparse principal components and finds gains in forecasting performance

while the latter induces time-varying sparsity in a Bayesian factor model using a latent

threshold mechanism (Nakajima and West, 2013). A further novel aspect of our paper is

a comparsion of different sparse priors that have been proposed in the literature, with a

particular focus on their performance in nowcasting applications. On a conceptual level,

we contribute to the current debate about the degree of sparsity in macroeconomic data

and its implications for now- and forecasting (Giannone et al., 2018).

The real-time evaluation of nowcasts for US and German GDP suggests that while the

factor models outperform autoregressive benchmarks, sparse priors lead to relatively small

gains in nowcast accuracy compared to our benchmark Normal prior. Moreover, different

types of sparse priors discussed in the literature yield very similar results. Our findings

are thus compatible with the hypothesis that large macroeconomic data sets typically used

in now- or forecasting applications are not sparse but dense. The remainder of this paper

is structured as follows: Section 2 discusses the different sparse priors and lays out their

conditional posterior distributions. The results from the real-time nowcast evaluation for

US and German GDP along with a number of robustness checks are presented in Section 4.

Section 5 concludes.
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Notation: Let z1:T = [z1, . . . , zT ]
′ refer to the T×N matrix where zt is an N×1 vector, and

zi,1:T = [zi1, . . . , ziT ]
′ to the vector of length T corresponding to the i-th column of z1:T . Fi-

nally, let 0k (Ik) denote a zero column vector (identity matrix) of dimension k. Furthermore,

let Ai j refer to the element in the i-th row and j-th column of matrix A. Conversely, Ai· and

A· j denote the i-th row and j-th column, respectively. Additionally, we denote by N
�

µ,σ2
�

the Normal distribution with mean µ and variance σ2. Furthermore, let N
�

x;µ,σ2
�

denote

the value of the probability density function (pdf) of N
�

µ,σ2
�

evaluated at x . We denote

by U(a, b) the continuous uniform distribution on the interval a to b and by G (u, U) the

Gamma distribution with shape and rate parameters u and U , respectively. Its pdf is given

by

G (x; u, U) =
Uu

Γ (u)
xu−1 exp (−U x) .

Similarly, let G−1 (u, U) denote the Inverse Gamma distribution with pdf

G−1 (x; u, U) =
Uu

Γ (u)
x−u−1 exp

�

−
U
x

�

.

B (a, b) denotes the Beta distribution with pdf

B (x; a, b) =
Γ (a+ b)
Γ (a) Γ (b)

x a−1 (1− x)b−1 .

Also, let C+ (µ,γ) denote the half-Cauchy distribution with location and scale parameters,

µ and γ, respectively and pdf equal to

C+ (x;µ,γ) = 2
�

πγ
�

1+ ((x −µ)γ)2
��−1

.

2 Sparse factor models

2.1 Factor model

Let x t denote an N × 1 vector of time series observed at time t = 1, . . . , T . The idea of a

factor model is that x t can be expressed as the sum of two orthogonal elements: a common

and an idiosyncratic component, i.e.

x t = λ ft + εt , εt ∼N (0,Σε) (1)

Ψ(L) ft = ηt , ηt ∼N
�

0,Ση
�

(2)

where λ is the N×R loadings matrix linking the R×1 vector of factors, ft to the observables

in x t . The product of loadings and factors constitutes the common component of the model

while εt captures variable-specific, idiosyncratic developments. The dynamics of the factors

are given by stationary vector autoregressions of order P. Σε is a diagonal matrix, implying

that the idiosyncratic components are independent of each other and we denote by σ2
i the
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element corresponding to the i-th variable. Furthermore, the innovations to the common

factors and the idiosyncratic components are uncorrelated, i.e. E
�

ηtε
′
t

�

= 0. Lastly, to

identify the scale of the factors we set Ση = IR.

2.2 Sparse priors

From a Bayesian perspective, there are two main sparse prior alternatives: discrete mixtures

and pure shrinkage priors. The former prior combines a point mass at zero or a continuous

distribution with small variance and an absolutely continuous prior providing tail mass,

whereas the latter is solely based on a continuous prior providing shrinkage towards zero

(Carvalho et al., 2009).

A standard example for a discrete-mixtures prior is the variable selection prior for mul-

tiple regression proposed by George and McCulloch (1993) and George and McCulloch

(1997). This prior was adopted and modified for factor models by West (2003) and has the

following form:

λir |ρ j,τr ∼ (1−ρr)δ0(λir) +ρrN (0,τr), (3)

ρr |r0s0 ∼ B(r0s0, r0(1− s0)) (4)

τr |a0, b0 ∼ G−1(a0, b0). (5)

The unit point mass at zero is denoted as δ0(·), and nonzero loadings on factor j are drawn

from a Normal prior with variance τr . Following the applications in Kaufmann and Schu-

macher (2017) and Kaufmann and Schumacher (2019), the probability of non-zero loading

ρr is factor-specific as well as the variance τr . ρr is the probability of non-zero loading and

follows a Beta distribution, and scale τr an inverse Gamma. An extension to element-wise

ρir is discussed in Carvalho et al. (2008). However, simulation results in Kaufmann and

Schumacher (2017) do not show huge differences in practice. From here on, we call the

prior (3) the point-mass normal mixture prior, or PMNM prior in brief.

Global-local shrinkage priors are typically normal distributions, with a global and a local

variance component (Polson and Scott, 2010). The idea is that global shrinkage handles

the noise, whereas local variances act to detect the signals. Thus, the two components solve

the trade-off between shrinking the noise toward zero leaving the large signals unshrunk.

The literature on global-local shrinkage priors mainly focusses on the application for

multiple regression problems, not on factor models. An exception is the global-local prior

by Bhattacharya and Dunson (2011):

λir |φir ,κr ∼N (0,φ−1
ir κ

−1
r ), κr =

∏r

l=1
δl , (6)

δ1|a1 ∼ G(a1, 1) (7)

δl |a2 ∼ G(a2, 1) for l = 2, . . . , r, (8)

φir ∼ G(w/2, w/2). (9)
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In this prior, global shrinkage is governed factor-specific through κr . By the multiplicative

gamma structure with δ1, . . . ,δr , the κrs are stochastically increasing under the restriction

a2 > 1, which favours more shrinkage as the column index of the loading matrix increases.

Local shrinkage is governed by loading-specific φir , which follows a Gamma distribution.

From here on, we call this prior the multiplicative-gamma prior, or MG prior in brief.

The horseshoe prior proposed by Carvalho et al. (2009) and Carvalho et al. (2010) is

based on a standard half-Cauchy distribution for the local and the global scales. It has the

hierarchical representation

λir |ζ2
ir ,υ

2 ∼ N(0,ζ2
irυ

2) (10)

ζir ∼ C+(1), υ∼ C+(1). (11)

With respect to its shrinkage properties, the Cauchy tails in ζir allow strong signals to remain

large a posteriori. At the same time, its infinitely tall spike at the origin provides severe

shrinkage for the zero elements of λir . Note that the global variance parameter υ is applied

to the whole set of loadings, not to columns of the loading matrix, and also follows a half-

Cauchy distribution. Note that the horseshoe prior is free of user-chosen hyper parameters

(Carvalho et al., 2010). An extension to accommodate more sparsity is the horseshoe+ prior

by Bhadra et al. (2017). It is defined as (10) and (11) before, but with an augmented prior

for ζir according to ζir |χir ∼ C+(0,χir) and χir ∼ C+(0, 1). From here on, we abbreviate the

two priors as HS for horseshoe and HS+ for horseshoe+.

A natural benchmark to the sparse priors discussed above is a Normal prior on the ele-

ments of the loadings matrix, i.e. λir ∼ N (0, Vir). Uninformative priors - common in the

nowcasting literature with Bayesian factor models - are imposed by setting Vir to a large

value. A hierarchical alternative is to consider Vir = τr with τr ∼ G−1(g0, G0) ∀ r = 1, . . . , R
and ∀ i = 1, . . . , N . We will refer to the benchmark prior as Normal-Inverse Gamma (NIG).

Discussion of the alternative priors

In the literature, discrete mixture priors play a prominent role due to their theoretical prop-

erties. In particular, point-mass mixture priors are highly appealing by allowing for separate

control of the level of sparsity and the size of the signal coefficients (Bhattacharya et al.,

2015). In a multivariate normal mean model context, Castillo and van der Vaart (2012)

show that the point-mass mixture prior with an appropriate beta prior on the inclusion

probability and suitable tail conditions on the normal component leads to a optimal rate of

posterior contraction. The posterior of the location parameter concentrates most of its mass

on a ball around its true value. When inferring about sparsity on the true covariance matrix

implied by a factor model, Pati et al. (2014) show that the point-mass mixture prior on the

factor loadings leads to a consistent estimation of the covariance matrix when N > T .

In Polson and Scott (2010), the point-mass mixture prior serves as a benchmark to

compare alternative global-local shrinkage priors. Following Polson and Scott (2010), the

global-local shrinkage priors implying a weaker concept of sparsity than the point-mass
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mixture prior, since all of the entries are assumed to be nonzero, yet most of them small

compared to a few large signals. In addition, as argued in Polson and Scott (2010) and

Bhattacharya et al. (2015), the global-local shrinkage priors can offer computational sav-

ings over point-mass priors.

In practice, the question is which sparsity prior should be chosen. There is a huge and

growing literature on sparse priors with a number of proposals regarding new default priors

and different fields of applications. However, simulation results and empirical evidence

seems to be not fully conclusive. In the factor model context followed in this paper, we focus

on the comparison between the Normal Inverse-Gamma prior, which serves as a benchmark

in the factor models literature, on the one hand, and a range of prominent sparse priors on

the other hand to consider the variety of priors available in the recent literature.

In Figure 1, we compare the alternative priors by histograms obtained from sampling

from the priors. By looking at the central bin on the left panel of the Figure 1, we can see

how the sparse priors concentrate mass near zero compared to the normal prior. The PMNM

and HS+ concentrate considerably more mass than the MG near zero and the Normal prior.

The tail behaviour is shown in the right panel. The HS+ and HS have heavier tails than the

MG, the PMNM and the Normal prior. By construction, the PMNM converges to zero quicker

the Normal prior due to the mass at zero and the same specifications for the variance in the

Normal distribution.

2.3 Estimation and conditional posteriors

In order to estimate the model in (1) we need to derive the joint posterior distribution of

the parameters of the model and the factors. By assumption, the prior on the loadings and

the remaining parameters of the model, denoted by Θ =
�

Ψ,Ση,Σε
	

, are independent of

each other. The likelihood is given by

L (x1:T | f1:T ,λ,Θ) =
T
∏

t=1

p(x t | ft ,λ,Θ) (12)

p(x t | ft ,λ,Θ) =
1

(2π)N/2 |Σε|
1/2

exp

¨

−
1
2

N
∑

i=1

[(x i t −λ ft)]
2

σ2
i

«

. (13)

Combining the likelihood with the prior on the parameters (and implicitly the factors) yields

the joint posterior

p(λ,Θ, f1:T |x1:T , f1:T )∝ L (x1:T | f1:T ,λ,Θ) p( f1:T |λ,Θ) p(λ) p(Θ). (14)

Draws from it can be obtained using Gibbs Sampling techniques, i.e. sequentially sampling

the parameters conditional on the factors and then conditioning on the draw of the param-

eters to sample the latent factors. Specifically, at each iteration m the Gibbs Sampler cycles

through the following steps or blocks:

B1: draw f (k)1:T |x1:T ,Θ(k−1),λ(k−1)
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Figure 1: Alternative prior distributions
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Note: The Figure shows histograms of draws from the prior distributions for 2×106 draws. The width of each
bin is 0.04, the median bin is centered around zero. The frequency for each bin is shown on the vertical axis.
PMNM is the point mass normal mixture prior with hyper parameters r0 = 3, s0 = 0.25, a0 = 2, b0 = 0.5. HS
and HS+ denote the horseshoe and horseshoe+ priors, respectively. MG is the multiplicative gamma prior for
the first factor with hyper parameters a1 = 10, a2 = 2, and υ = 3. The Normal prior has mean zero and the
variance follows an inverse Gamma distribution with a0 = 2 and b0 = 0.5 as in the PMNM prior. Details on
the priors are provided in Section 2.2 of the main text.
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B2: draw Ψ(k)| f (k)1:T and Σ(k)
ε
|x1:T , f (k)1:T ,λ(k−1)

B3: draw λ(k)|x1:T , f (k)1:T ,Σ(k)
ε

B4: update the hyperparameters of the prior on λ

B1 and B2 are standard and draws from the respective posterior distributions easily ob-

tained. We leave the details of these blocks to the Appendix and focus here on the condi-

tional posterior distributions of the loadings matrix λ and the hyperparameters governing

the different priors (B3 and B4).

We start with the Normal-Inverse Gamma, Multiplicative Gamma and horseshoe(+) pri-

ors where standard Bayesian linear regression results can be employed, before turning the

point mass-Normal mixture which requires a different treatment. Under a (conditionally)

Normal prior, the posterior of λi· is given by (e.g. Kroese and Chan, 2013)

λi·|· ∼ N (mi, Mi) (15)

Mi =

�

Dp +
1
σ2

i

∑T

t=J+1
f ′t ft

�−1

(16)

mi = Mi

�

1
σ2

i

∑T

t=J+1
f ′t x i,t

�

(17)

where Dp is the prior precision matrix of λi· and depends on the hyperparameters of the

respective priors p = {N IG, MG, HS(+)}.
For example, under the Normal-Inverse Gamma prior DN IG = diag(τ−1

1 , . . . ,τ−1
R ). In turn,

conditional on a draw of the loadings we can update the hyperparameters by sampling from

their Inverse-Gamma posterior distribution, i.e.

τr |λ ∼ G−1
�

g0 + 0.5N , G0 + 0.5
∑N

i=1
λ2

ir

�

(18)

for all r = 1, . . . , R.

In the case of the MG prior, the prior precision consists of an additional term reflecting

the variable-specific, local shrinkage component. Thus, DMG = diag(κ1φi1, . . . ,κRφiR) and

updating the hyperparameters requires draws from the conditional posterior distributions

given by

φir |λ,κ ∼ G
�

w+ 1
2

,
w+ κrλ

2
ir

2

�

∀ i = 1, . . . , N , r = 1, . . . , R (19)

δ1|λ,κ,φ ∼ G
�

a1 +
NR
2

,1+
1
2

∑R

l=1
κ
(1)
l

∑N

i=1
φilλ

2
il

�

(20)

δr |λ,κ,φ ∼ G
�

a2 +
N
2
(R− r + 1), 1+

1
2

∑R

l=1
κ
(r)
l

∑N

i=1
φilλ

2
il

�

∀ r > 1, (21)

where κ(r)l =
∑l

k=1,k 6=r δk ∀ r = 1, . . . , R.
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Recall that for both the horseshoe and the horseshoe+ prior, DHS(+) = υ2diag(ζ2
i1, . . . ,ζ2

iR).
To update the hyperparameters, we follow Makalic and Schmidt (2016), who exploit a

scale-mixture representation of the half-Cauchy distribution: if x2|a ∼ G−1(1/2,1/a), a ∼
G−1(1/2, 1/A2) then x ∼ C+(0, A) (Wand et al., 2011). Therefore, by introducing the auxil-

iary variables βζ,βυ we can rewrite the prior in (11) as

ζ2
ir |β

ζ
ir ∼ G−1(1/2, 1/βζir)

υ2|βυ ∼ G−1(1/2, 1/βυ)

β
ζ
11, . . . ,βζNR,βυ ∼ G−1(1/2, 1).

This leads to convenient posterior distributions for the hyperparameters of the form:

ζ2
ir |λ,βζir ∼ G−1

�

1 ,
1

β
ζ
ir

+
λ2

ir

2υ2

�

(22)

υ2|λ,βυ ∼ G−1

�

NR+ 1
2

,
1
βυ
+

1
2

R
∑

r=1

N
∑

i=1

λ2
ir

ζ2
ir

�

. (23)

Similarly, the conditional posteriors of the auxiliary variables βυ and βζ are also Inverse-

Gamma and given by

β
ζ
ir |ζir ∼ G−1

�

1 , 1+
1
ζ2

ir

�

∀ i = 1, . . . , N , r = 1, . . . , R (24)

βυ|κ ∼ G−1
�

1 , 1+
1
κ2

�

. (25)

For the HS+ prior, the formula for each βζir needs to be adjusted to reflect the additional

half-Cauchy prior on χir , which in turn governs the prior on ζir . To this end, we introduce

another set of G−1(1/2, 1) auxiliary variables, βχ . In this case, the conditional posterior

distribution for ζ2
ir remains unchanged as we are still only conditioning on βζir . However,

the rate parameter of the latter’s conditional Inverse-Gamma posterior now also depends

on χir , i.e.

β
ζ
ir |ζir ,χir ∼ G−1

�

1 ,
1
χ2

ir

+
1
ζ2

ir

�

∀ i = 1, . . . , N , r = 1, . . . , R (26)

while χ2
ir itself and the corresponding auxiliary variables can be updated at each iteration
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of the Gibbs Sampler as follows:

χ2
ir |β

χ

ir ∼ G−1

�

1,
1
β
χ

ir

+
1

β
ζ
ir

�

(27)

β
χ

ir |χ
2
ir ∼ G−1

�

1,1+
1
χ2

ir

�

, (28)

again for all i = 1, . . . , N , r = 1, . . . , R.

The conditional posterior under the PMNM is more involved due to the mixture in (33).

We start by defining the transformed observation x∗i t = x i,t −
∑R

l=1,l 6=r λil fl,t = λir fr,t + εi t

which isolates the impacts of the factors other than r and the corresponding observation

density p
�

x∗i t |·
�

= N
�

λir fr t ,σ
2
i

�

. Then, combining the marginal prior on λir with the like-

lihood yields

p(λir |·) =
T
∏

t=J+1:T

p(x∗i t |·) {(1−ρr)δ0(λir +ρrN (0,τr)} (29)

= P (λir = 0|·)δ0 (λir) + P (λir 6= 0|·)N (mir , Mir) (30)

with

Mir =

�

τ−1 +
1
σ2

i

∑T

t=J+1
f ′r,t fr,t

�−1

(31)

mir = Mir

�

1
σ2

i

∑T

t=J+1
f ′r,t x

∗
i,t)

�

. (32)

In order to sample from this distribution, we need to evaluate the posterior odds ratio of a

non-zero loading, i.e.

POir =
P (λir 6= 0|·)
P (λir = 0|·)

=
p (λir) |λir=0

p (λir |·) |λir=0

ρr

1−ρr
=

N (0;0,τr)
N (0; mir , Mir)

ρr

1−ρr
(33)

A draw of λir is then obtained by sampling from N (mir , Mir) and keeping the draw if u ≤
POir/(1+ POir), where u is a draw from U (0, 1). Otherwise, we set λir = 0.

3 Empirical application: nowcasting GDP

In this section, we use the sparse factor models outlined above to nowcast the quarterly

gross domestic product (GDP) in the United States (US) and Germany. We first give an

overview of the monthly indicators that are included in the dataset along with the GDP

(Section 3.1). Next, in Section 3.2 we highlight how the factor model can be estimated

while accouting for mixed frequency data. The real-time evaluation set-up and results are
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discussed in Section 3.3 and 3.4, respectively. Lastly, we provide robustness checks to our

results for different model specifications such as the transformation of survey variables or

the estimation window in Section 3.5.

3.1 Data

To nowcast the US GDP, we use the monthly real-time data set provided by McCracken

and Ng (2016) of more than 100 time series covering a broad spectrum of macroeconomic

activity and mostly ranging back until January 1959. Vintages for this dataset are available

from November 1999 onwards. For the German economy we construct a dataset based

on vintages from the Deutsche Bundesbank’s Real-Time Database, covering series such as

production, orders, turnover, prices and the labor market. These vintages are available on

a broad basis from the end of 2005 onwards. To these, we add financial market indicators

also sourced from the Deutsche Bundesbank. For both countries, we augment the monthly

datasets with survey-based sentiment indicators which have proven useful in nowcasting

applications due to their timely release.

The estimation samples for the United States and Germany start in January 1985 and

1992, respectively, and are recursively expanded. While the two datasets are similar in terms

of economic categories, there are some differences regarding the importance of individual

groups. For example, in the German data there is more detailed coverage of production,

orders and turnover of the industrial sector, while FRED-MD contains more disaggregated

labor market series. A detailed description of the variables we use and the transformations

applied to the series prior to estimation can be found in Appendix 7.

3.2 Bayesian estimation of mixed-frequency factor models

In order to combine the monthly indicators with our quarterly target variable - quarter-on-

quarter GDP growth - we need to adjust the model in (1) to account for mixed frequencies.

This is done by formulating the model at the highest frequency, i.e. monthly, and treating

quarterly variables as monthly time series with occasionally missing observations. Thus,

we essentially convert the mixed-frequency problem into a missing-value problem which

can easily be handled by state space methods. Appendix 5 documents the mixed-frequency

factor model and the resulting state space representation. Draws from the predictive density

of GDP growth can be obtained from a Gibbs Sampler which alternately draws from the

posterior distribution of the factors conditional on the parameters and then updates the

parameters given the sampled factors (see Appendix 6 for details). We iteratively draw

from the conditional posterior distributions 15000 times, discarding the first 5000 draws as

a burn-in. The rest of the Markov chain is thinned by storing every 10-th iteration, yielding

a total of G= 1000 draws for posterior inference.1

1By and large, our Gibbs Sampler shows no signs of poor mixing or non-convergence. See Appendix 9 for
detailed MCMC diagnostics.
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In terms of model specification, we estimate the models for all R = 1 : 10; the number

of lags in the factor VAR is set to one, i.e. P = 1. Furthermore, for each prior we combine

the ten individual densities into an equally-weighted pool (denoted as "pool" below).

To benchmark the performance of the different priors, we estimate a simple univariate

Bayesian autoregressive model of order 1, estimated with loose priors on the autocovariance

coefficient - N (0,3) - and the residual variance - G−1(1,0.01). This model is subsequently

denoted as B-AR(1). Additionally, we also consider the factor model with a Normal prior

on the loadings that features a relatively high and fixed variance, e.g. Amisano and Geweke

(2017) and Marcellino et al. (2016). In the notation of Section 2, the prior precision Dp is

given by 1
c IR where c is some large number, independent of any hyperparameters. We set

c = 10 and label this "diffuse" prior in what follows as Nd.

The hyperparameters of the remaing priors are as follows: The variance of the loadings

in the Normal-Inverse Gamma (NIG) is parametrized as G−1(2,1). For the Multiplicative-

Gamma (MG) prior we choose a1 = 5, a2 = 2 and w = 3. In the case of the point mass-

Normal mixture (PMNM) we set r0 = 5, s0 = 0.5, while the prior on τr is given by G−1(2, 1).
As discussed above, the horseshoe prior (HS+) requires no hyperparameters.

3.3 Evaluation set-up

The evaluation period ranges from the first quarter of 2000 (2000Q1) to the fourth quarter

of 2018 (2018Q4) in the US. Reflecting the shorter estimation sample for Germany (and

lack of available real-time vintages earlier on), we begin to evaluate nowcasts starting in

2006Q1. In both cases, we focus on nowcasts made at the end of the first month of a given

quarter e.g. January for nowcasts of GDP growth in Q1. That is to say, the forecast horizon

in months is h= 2.

The accuracy of the different models/priors is assessed in terms of point and density

nowcasts. For the former, we compute the root mean squared forecast error (RMSFE) of

model/prior m= {B-AR(1),Nd, NIG,MG, PMNM,HS+} defined as

RMSFEm =

�

1
S

S
∑

s=1

(y f ,Q
m,T+s|Ωvs

− yQ
T+s)

2

�
1
2

for a sequence of S nowcasts, where y f ,Q
m,T+s|Ωvs

is the mean of the predictive density of GDP

growth at time T + s, conditional on the information set Ωvs
available in real-time at date vs

when the nowcast for period T +s was made. The corresponding realization of GDP growth

which we take to be the first release is denoted by yQ
T+s .2

Density nowcasts are evaluated by two scoring rules commonly used in the forecasting

literature: the log score (logS) and the continuous ranked probability score (CRPS). The

former is simply the predictive density of model m for period s evaluated at the realization

2Given that the mean absolute revision between first and second release are quite small for both countries,
our results are robust to using the latter as the realization. Results are available upon request.
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and then averaged over the evaluation period, i.e.

logSm =
1
S

S
∑

s=1

�

−log pm,T+s(y
Q
T+s)

�

where pm,T+s(yQ) is estimated from yQ(1)
m,T+s|Ωvs

, . . . , yQ(G)
m,T+s|Ωvs

using the theta kernel den-

sity estimator described in Botev et al. (2010). Furthermore, note that we flip the orien-

tation of the log score to bring its interpretation in line with the RMSFE and CRPS: After

premultiplying with −1, lower (higher) values of logS indicate a higher (lower) predictive

accuracy.

The CRPS is calculated as (see Krüger et al., 2016):

CRPSm =
1
S

S
∑

s=1

�

1
G

G
∑

i=1

�

�

�yQ(i)
m,T+s|Ωvs

− yQ
T+s

�

�

�−
G
∑

i=1

G
∑

j=1

�

�

�yQ(i)
m,T+s|Ωvs

− yQ( j)
m,T+s|Ωvs

�

�

�

�

3.4 Results

The results of the nowcast evaluation for US and Germany GDP are presented in Table 1.

For the sake of readability, we only show the results for a selected number of factors as

well as the pooled nowcasts.3 Overall, the factor models in both countries perform well

with root mean squared forecast errors relative to the benchmark B-AR(1) as low as 0.7

and 0.5 for US and German GDP, respectively. Density nowcasts yield similar relative gains

when evaluated in terms of the CRPS while they are generally even larger under the log

score. For the United States, the predictive accuracy generally increases in the number of

factors R - both in terms of point and density forecasts. For Germany, the models with

R = {5, 8} also perform much better than the model with only one factor but for R = 2

the performance is similar to the bigger models. Noteworthy is that in both countries the

equal-weight pool performs very well, often achieving relative gains almost as large as those

of the best individual specification.

Turning to the question of whether sparsity-inducing priors like the MG, PMNM or HS+
generate more accurate nowcasts than convential priors like the NIG or Nd, we find mixed

evidence across the two countries. For the United States, the sparse priors do not perform

better as the NIG prior. Indeed, for up to R= 5 there are virtually no differences between the

five priors we consider across both point and density nowcasts. For R= 8 we find that a) the

PMNM, HS and the NIG do perform slightly better than the Normal-diffuse prior in terms

of all three forecast accuracy measures and b) the MG prior’s performance deteriorates

markedly. This weaker performance carries over to the equal-weight pool where the MG

prior’s poor performance stands out in terms of the log score and CRPS. To some extent

these results hold for the case of Germany as well. There are also no differences between

the sparse prior and the NIG. They do, however, outperform the Normal-diffuse prior by

a larger amount when considering point and density nowcasts. In contrast to the findings

3The results for the remaining specifications are available upon request.
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Table 1: Nowcasting results for US (top) and German (bottom) GDP

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.45 0.64 0.25 0.32 0.50 0.19

R=1 Nd 0.85 0.79 0.89 1.11 0.98 1.07
NIG 0.85 0.79 0.89 1.10 0.96 1.06
MG 0.85 0.80 0.89 1.08 0.97 1.05
PMNM 0.86 0.79 0.89 1.10 0.97 1.06
HS+ 0.86 0.82 0.90 1.10 1.02 1.07

R=2 Nd 0.90 0.82 0.92 1.10 0.95 1.06
NIG 0.91 0.84 0.93 1.10 0.93 1.05
MG 0.86 0.81 0.89 1.08 0.95 1.04
PMNM 0.90 0.82 0.92 1.13 0.96 1.07
HS+ 0.85 0.78 0.89 1.11 0.91 1.05

R=5 Nd 0.82 0.72 0.85 1.03 0.80 0.99
NIG 0.81 0.69 0.83 0.94 0.72 0.92
MG 0.78 0.70 0.82 0.99 0.81 0.96
PMNM 0.79 0.68 0.82 0.99 0.76 0.95
HS+ 0.79 0.69 0.83 1.01 0.78 0.97

R=8 Nd 0.76 0.65 0.79 1.02 0.79 0.97
NIG 0.77 0.66 0.80 1.03 0.78 0.98
MG 0.88 0.78 0.88 0.99 0.85 0.97
PMNM 0.73 0.62 0.77 0.95 0.70 0.91
HS+ 0.74 0.60 0.77 0.93 0.67 0.90

pool Nd 0.76 0.68 0.80 0.96 0.80 0.95
NIG 0.77 0.68 0.80 0.92 0.77 0.91
MG 0.80 0.72 0.83 0.98 0.83 0.96
PMNM 0.75 0.68 0.79 0.92 0.79 0.92
HS+ 0.76 0.66 0.79 0.94 0.74 0.92

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.86 1.73 0.41 0.49 0.89 0.29

R=1 Nd 0.86 0.90 0.89 0.86 0.95 0.93
NIG 0.86 0.89 0.89 0.85 0.94 0.93
MG 0.88 0.81 0.91 0.90 0.97 0.97
PMNM 0.89 0.97 0.91 0.88 0.96 0.95
HS+ 0.89 1.00 0.92 0.90 0.97 0.97

R=2 Nd 0.57 0.40 0.65 0.79 0.62 0.78
NIG 0.52 0.36 0.61 0.76 0.59 0.75
MG 0.52 0.37 0.61 0.75 0.60 0.75
PMNM 0.54 0.37 0.62 0.78 0.58 0.77
HS+ 0.54 0.38 0.63 0.77 0.62 0.77

R=5 Nd 0.65 0.46 0.74 0.90 0.75 0.89
NIG 0.55 0.38 0.63 0.73 0.59 0.74
MG 0.64 0.41 0.69 0.71 0.61 0.73
PMNM 0.55 0.37 0.62 0.72 0.58 0.73
HS+ 0.53 0.37 0.61 0.68 0.57 0.70

R=8 Nd 0.56 0.42 0.66 0.85 0.73 0.85
NIG 0.51 0.37 0.59 0.71 0.62 0.73
MG 0.56 0.39 0.64 0.74 0.63 0.76
PMNM 0.49 0.35 0.57 0.68 0.57 0.71
HS+ 0.49 0.33 0.57 0.67 0.54 0.69

pool Nd 0.51 0.42 0.62 0.73 0.74 0.79
NIG 0.47 0.37 0.57 0.63 0.64 0.71
MG 0.54 0.37 0.61 0.67 0.63 0.72
PMNM 0.48 0.36 0.56 0.62 0.61 0.69
HS+ 0.47 0.35 0.55 0.59 0.59 0.67

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and continuous ranked probability
score. All entries for the factor models are relative to the B-AR benchmark (see text for details) and negatively orientated
so that a value in the table below 1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. For the US (Germany) the full sample period is 2000Q1 (2006Q1)-2018Q4. In both cases the post-crisis sample
starts in 2010Q1 and ends in 2018Q4.
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for US GDP, we do see that the nowcasts from the sparse model perform better than those

from the NIG when evaluated in terms of the RMSFE and the log score or CRPS. Similar to

the US, however, between the PMNM and HS+ priors there are virtually no differences in

predictive accuracy while the MG’s poorer performance stands out for larger R.

Lastly, we find that when excluding the Global Financial Crisis (GFC) from the evalua-

tion the gains in predictive accuracy relative to the B-AR(1) are less pronounced for most

factor models - for the United States some of the models do not outperform the autoregres-

sive benchmark in terms of point nowcast accuracy. Our main findings with regard to the

question whether sparsity matters for nowcasting, however, are unaltered. Focusing only

on the post-crisis sample the sparse priors yield highly similar results in terms of all three

performance measures considered. In the US, we still find that there are also no large dif-

ferences between the sparse priors and the NIG or Nd in terms of predictive accuracy, while

for German GDP the PMNM and HS+ priors continue to produce much better nowcasts than

the Nd and somewhat better nowcasts than the NIG for R= 8 and the equal-weight pool.

3.5 Robustness analysis

The results discussed above were obtained under specific modelling/specifications choices.

In our application, these concern the transformation applied to the survey indicators or the

choice of estimation window. We find, however, that alternative specifications in this regard

- such as not first-differencing the survey indicators or estimating the models with a rolling

window - do not have a material impact on the results neither in quantitative nor qualitative

terms. We discuss these choices and briefly comment on the results below. Details and tables

similar to Table 1 for the different robustness checks can be found in Appendix 8.

First, in our baseline specification we included survey indicators in first differences.

While this brings their time series behavior more in line with the rest of the dataset, an

alternative is to keep the series in levels, as these indicators are by construction stationary.

Examples of both approaches can be found in the literature. In our application we find that

the nowcast performance overall deteriorates uniformly across models when the surveys are

not first-differenced. However, the main findings are unaltered: the differences between the

sparse priors and the NIG are very small. In the case of Germany the sparse priors and the

NIG perform much better than the Normal-diffuse prior which for large R fails to beat the

autoregressive benchmark when the surveys enter the models in levels. Second, while a

recursively expanded estimation window leads to lower estimation uncertainty, a rolling es-

timation window might guard against structural instabilities in the forecasting models and

therefore generate better nowcasts. However, there is no indication that these instabilities

play a large role in our application as the nowcast performance only improves marginally in

some cases for the United States, in particular for the smaller models, i.e. R≤ 2; in addition

the MG prior performs much better under a rolling window. But the performance of the

equal-weight pool, for example, is virtually identical. For Germany, with the exception of

R = 1 the accuracy of point and density nowcasts is somewhat higher when the models’
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parameters are estimated with a recursively expanding window. For both countries, the

choice of estimation window does not have an impact on the performance of the sparse

priors relative to the Normal alternatives.

4 Conclusion

In this paper, we have explored the role that sparsity plays in factor models. In a real-time

nowcasting evaluation we find that estimating the model with sparse priors on the loadings

matrix in a Bayesian framework does not lead to large gains in nowcast accuracy. Fur-

thermore, we found very similar results for different sparse priors that have been proposed

in the literature. This suggests that the practice in parts of the literature of considering

large cross sections when nowcasting GDP is justified. Our findings are compatible with the

hypothesis that large macroeconomic data sets typically used in now- or forecasting appli-

cations are not sparse but dense. However, we caution against generalising our findings too

far, as sparsity has been shown to play a role in other macroeconomic settings (Kaufmann

and Schumacher, 2017). Moreover, the recent Covid-19 pandemic has accelated a trend

in macroeconomic forecasting applications of considering new, unconvential data originat-

ing from newspapers, social media, mobile phones or internet search queries. These data

sources typically provide vast numbers of time series ("big data"). We leave it to future re-

search to address the issue of variable selection and the role that sparsity plays in such an

environment.

Appendix

5 Mixed-frequency factor model

In the following, we outline the mixed-frequency factor model used in the nowcasting ap-

plication. For the reader’s convenience we begin by restating the original model

x t = λ ft + εt , εt ∼N (0,Σε) (34)

Ψ(L) ft = ηt , ηt ∼N
�

0,Ση
�

where we now make it explicit that x t is a vector of NM stationary monthly variables. To

combine the monthly time series with quarterly GDP growth, yQ
t , we formulate the model

at the highest frequency, e.g. monthly. However, we only observe yQ
t every third period,

e.g. at the last month of each quarter. Let T be the number of observations for which at

least one monthly variable is available. Assuming for the sake of expostion that the sample

starts in the first month a quarter and ends in the third, say January and December, we thus

have yQ
1:T =

�

NaN,NaN, yQ
3 ,NaN, NaN, yQ

6 , . . . ,NaN, NaN, yQ
T

�

.
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Furthermore, we assume that yt , the unobserved monthly analogue of yQ
t , adheres to the

same factor structure as x t . That is to say, we assume that (unobserved) month-on-month

GDP growth can be expressed as

yt = λ
y ft + ε

y
t , ε y

t ∼N (0,Σε y ) . (35)

The unobserved yt are linked to the quarterly observations yQ
t via the following time aggre-

gation rule (Mariano and Murasawa, 2003):

yQ
t ≈

1
3

yt +
2
3

yt−1 +
3
3

yt−2 +
2
3

yt−3 +
1
3

yt−4 ,∀ t= 3, 6,9, . . . , T. (36)

By putting together (34), (35) and (36), the model can be cast into state space form with

measurement equation
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and transition equation
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When running the Kalman filter or smoother, missing observations can easily be dealt

with by either i) removing the missings elements from the vector of observations and ad-
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justing the dimensions of Z and H or ii) replacing them with arbitrary values, say 0, and

setting the corresponding element in H to a very large number. We found the former to be

numerically more stable in our application.

6 Gibbs Sampler

The model is estimated by a Gibbs Sampler which alternately draws from the conditional

posterior distribution of the parameters given the factors and the factors given the param-

eters. Draws from the predictive density of any variable of interest - in our application,

quarterly GDP growth - can then be obtained conditional on these values. Let λ denote the

N × R matrix of factor loadings belonging to the monthly variables while λy is the load-

ing of unobserved monthly GDP. The remaining parameters of the model are collected in

Θ = {Ψ,Σε,Σε y}. Furthermore, let ϕ denote the prior hyperparameters. x1:T is the N × T
matrix of monthly observations - some of which may be missing due different publication

delays or because a series has only been collected over part of the estimation sample - where

T is the maximum number of periods for which at least one observation is available. Fur-

thermore, yQ
1:T denotes quarterly GDP growth at the monthly frequency, where we follow

the convention in the literature and assume that the quarterly observations are available in

the last month of each quarter, otherwise, yQ
t = NaN; the monthly analogue of quarterly

GDP growth is denoted as y1:T (see Appendix 5 for more details on the temporal aggrega-

tion). The forecast horizon in months is denoted by H, i.e. T + h corresponds to the third

month of the quarter that is being nowcasted.

The Gibbs Sampler then cycles through the following steps or blocks to draw from the

predictive density p(yQ
T+h|x1:T , yQ

1:T ):

Step 1: p( f1:T , y1:T |λ,λy ,Θ, x1:T , yQ
1:T )

Conditional on the observed monthly and quarterly data, x1:T and yQ
1:T , and a draw of the

parameters, we can sample from the conditional posterior distribution of f1:T using the state

space model described in (37) and (38) and the simulation smoother in Durbin and Koop-

man (2002). As a by-product of the sampled state vector, we also obtain a draw of the

monthly analogues of the quarterly time series.

Step 2: p(x+1:T | f1:T ,λ,Σε)
As some of the elements of x1:T may be missing, we also sample them conditional on the

factors. This yields a complete data set x+1:T which is then used in the subsequent steps.

Given the normality of observations and states, the posterior distribution of a generic miss-

ing observation x i,t conditional on the factor is also Normal with mean λi ft . Furthermore,

its variance does not depend on the realizations of the conditioning arguments and is simply

given by the i-th diagonal element of Σε.
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Step 3: p(Ψ| f1:T )
Conditional on a draw of the factors, we can sample the parameters of the factor VAR. De-

note byψ∗ = vec( [ψ1, . . . ,ψR] ) the vectorized matrix of coefficients. Then, given a Normal

prior

p(ψ∗)∝ det
�

¯
Vψ∗
�− 1

2 exp
§

−
1
2
(ψ∗ −

¯
bψ∗)

′

¯
V−1
ψ∗
(ψ∗ −

¯
bψ∗)

ª

the (conditional) posterior is Normal with variance and mean given by

V̄ψ∗ =
�

¯
V−1
ψ∗
+ IR ⊗ X ′X

�−1
, b̄ψ∗ = V̄ψ∗

¦

¯
V−1
ψ∗ ¯

bψ∗ + IR ⊗ X ′X bOLS

©

where X = [ fP:T−1, . . . , f1:T−P], y = fP+1:T and bOLS = vec
�

(X ′X )−1X ′ y
�

. We follow the

literature on Bayesian VAR and impose a Minnesota type prior on ψ∗. That is to say, the

prior mean is set equal to 0 and the prior variance depends on the lag length. Specifically,

for p = 1 : P, we have

Var(ψr,i j) =

(

π0
r2 , if i = j
π0π1

r2 , otherwise.

Common values in the literature are π0 = 0.2 and π1 = 0.1, thus shrinking coefficients on

the lags of other factors stronger towards 0.

Step 4a: p(λ,λy | f1:T , x+1:T , y1:T ,Σε,Σε y ,ϕ)
Conditional on the factors, data, parameters and hyperparameters we can sample the load-

ings from their conditional posterior distribution. See Section 2 of the main text for details.

Step 4b: p(ϕ|λ,λy)
Conditional on a draw of the loadings, we can update the hyperparameters of the different

priors that govern the degree of sparsity. We again refer to the main text for the conditional

posterior distributions.

Step 5: p(Σε,Σε y |λ,λy , f1:T , x+1:T , y1:T )
Conditional on the idiosyncratic components εi,1:T we can sample the diagonal elements of

the covariance matrix Σε by drawing from

σ2
i ∼ G−1

 

u+ T
2

,
U +

∑T
t=1 ε

2
i,t

2

!

where u and U are the prior shape and rate. In an analogous manner, we can sample Σε y

given εy
1:T . We set u = 2 and U = 1 so that the prior is centered around one but relatively

diffuse.

Step 6: p(yQ
T+h|x1:T , yQ

1:T )
Draws from the h-step ahead predictive density of yQ are obtained by iterating forward (34)
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Table 2: List of US survey indicators

mnemonic description transformation
gacdna current general activity diff
gafdna future general activity diff
nocdna current new orders diff
nofdna future new orders diff
shcdna current shipments diff
shfdna future shipments diff
dtcdna current delivery time diff
dtfdna future delivery time diff
ivcdna current inventories diff
ivfdna future inventories diff
uocdna current unfilled orders diff
uofdna future unfilled orders diff
ppcdna current prices paid diff
ppfdna future prices paid diff
prcdna current prices received diff
prfdna future prices received diff
necdna current employment diff
nefdna future employment diff
awcdna current workhours diff
awfdna future workhours diff
cefdfna future capital expenditures diff

Notes: The table lists the survey indicators from the
Federal Reserve Bank of Philadelphia’s Manufacturing
Business Outlook Survey that are used in nowcasting
US GDP growth. For the historical data and further in-
formation, see https://www.philadelphiafed.
org/research-and-data/regional-economy/
business-outlook-survey/historical-data.

and using (35) and (36) to compute yQ
T+h (Del Negro and Schorfheide, 2013).

7 Data

This section describes the data sets used in the empirical nowcasting application. The US

data set (Section 7.A) is based on FRED-MD. Real-time vintages for Germany (Section 7.B)

are compiled from the Deutsche Bundesbank’s Real-Time Database. Both datasets are aug-

mented with survey-based sentiment indicators; to guarantee the real-time nature of the

evaluation, the raw, unadjusted series are seasonally adjusted in real-time using X11-ARIMA.

Furthermore, while the datasets are broadly stable in terms of available series, there are

some changes as vintages for some series are added or removed over the period of the eval-

uation sample. Additionally, for the estimation of the models we require that every variable

is available for at least half of the estimation sample. As such, the exact composition of the

data sets varies slightly over time. The individual series used in each vintage are available

upon request.
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7.A United States

Real-time vintages of GDP growth are obtained from ALFRED. Besides the target variable,

our data set includes a large number of monthly time series covering various aspects of

economic activity. Specifically, we use the large, monthly, real-time data set constructed by

McCracken and Ng (2016) and regularly updated by the Federal Reserve Bank of St. Louis.4

It includes series from categories such as output and income, prices, labor markets, housing

and financial markets. Vintages of the "FRED-MD" data set are available from December

1999 onwards, reflecting the information available at the end of the respective month. Re-

garding transformations prior to estimation, we mainly follow the suggestions in McCracken

and Ng (2016). However, given that our sample starts in 1985, some modifications are in

order to reflect the shorter span of the time series. For example, in the original FRED-MD

dataset some price series and average hourly earnings indicators are included in second

(log) differences to achieve stationarity. Over our shorter, "Great Moderation" sample, the

means and variances of the log differences are constant so that we do not need to differ-

ence these series twice. In contrast, housing starts and permits are included in log levels

in the original dataset. Over the shorter sample used in the estimation of the nowcasting

models, the log of the series exhibits large and persistent swings around the long-run mean.

We therefore consider it more appropriate to difference the series to achvieve stationarity.

These modifications bring our dataset more in line with the recent literature on nowcasting

US GDP growth, e.g. Aastveit et al. (2018).

As the nowcasting literature has emphasized the importance of "soft", survey-based sen-

timent indicators, we supplement the McCracken and Ng (2016)-dataset with the Federal

Reserve Bank of Philadelphia’s Manufacturing Business Outlook Survey. While regional in

nature, these indicators are available over a long period of time and provide potentially use-

ful information for the gross domestic product as they are published very timely, usually in

the middle of the reference month. We include all 20 series covering e.g. firms’ assessement

of current and future activity, orders, etc (Table 2). All in all, this yields a monthly real-time

data set containing roughly 130 variables, though as mentioned above the exact number

varies slightly over the course of the evaluation period.

7.B Germany

Nowcasts of German GDP growth are based on a real-time dataset comprised of over 100

monthly variables similar to that employed by Schumacher (2007). Vintages are compiled

from the Deutsche Bundesbank Real-Time Database and augmented with financial market

and the survey-based ifo indicators. Real-time vintages for a sufficiently large number of

variables are available as of November 2005. For others, these become available over the

course of the evaluation period. As a result, the size of the dataset increases somewhat from

167 monthly variables in the January 2006 vintage to 172 series as of December 2017. The

4All vintages can be downloaded from https://research.stlouisfed.org/econ/mccracken/
fred-databases/.
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Table 3: Real-time data, Germany: production

variable/sector adj. trafo 1st obs. 1st vintage
industrial production p,s,c 3 Jan 1991 6.2.1995
industrial production and construction p,s,c 3 Jan 1991 6.2.1995
total construction p,s,c 3 Jan 2010 3.8.2013
main construction industry p,s,c 3 Jan 1991 6.2.1995
finishing trade p,s,c 3 Jan 2010 3.8.2013
building construction p,s,c 3 Jan 1991 7.11.2005
civil engineering p,s,c 3 Jan 1991 7.11.2005
industry p,s,c 3 Jan 1991 6.2.1995
intermediate goods p,s,c 3 Jan 1991 6.2.1995
investment goods p,s,c 3 Jan 1991 6.2.1995
consumption goods p,s,c 3 Jan 1991 6.2.1995
durable goods p,s,c 3 Jan 1991 6.2.1995
non-durable goods p,s,c 3 Jan 1991 6.2.1995
energy p,s,c 3 Jan 1991 6.2.1995

Source: Deutsche Bundesbank.

Table 4: Real-time data, Germany: orders

variable/sector adj. trafo 1st obs. 1st vintage
industry p,s,c 3 Jan 1991 6.9.2001
industry (domestic) p,s,c 3 Jan 1991 6.9.2001
industry (abroad) p,s,c 3 Jan 1991 6.9.2001
intermediate goods p,s,c 3 Jan 1991 8.6.1995
intermediate goods (domestic) p,s,c 3 Jan 1991 8.6.1995
intermediate goods (abroad) p,s,c 3 Jan 1991 8.6.1995
investment goods p,s,c 3 Jan 1991 8.6.1995
investment goods (domestic) p,s,c 3 Jan 1991 8.6.1995
investment goods (abroad) p,s,c 3 Jan 1991 8.6.1995
consumption goods p,s,c 3 Jan 1991 8.6.1995
consumption goods (domestic) p,s,c 3 Jan 1991 8.6.1995
consumption goods (abroad) p,s,c 3 Jan 1991 8.6.1995
building construction p,s,c 3 Jan 1991 22.11.2005
civil engineering p,s,c 3 Jan 1991 22.11.2005
residential construction p,s,c 3 Jan 1991 22.11.2005
construction industry (private) p,s,c 3 Jan 1991 22.11.2005
construction industry (public) p,s,c 3 Jan 1991 22.11.2005

Source: Deutsche Bundesbank.

starting point of our sample is January 1992.

Below we list the time-series comprising the seven groups of our dataset. The second

column refers to the type of adjustment that have been applied to the time series (price-

adjusted, seasonally adjusted, calendar adjusted) while the third columns lists how each

series is transformed to achieve stationarity (3 = difference of logarithm, 2 = difference, 1

= level). Furthermore, we also highlight if a series has a later starting point than January

1991 or if the vintages do not go back as far as November 2005 to indicate that the variable

is only included in part of the evaluation period.
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Table 5: Real-time data, Germany: turnover

variable/sector adj. trafo 1st obs. 1st vintage
industry s,c 3 Jan 1991 4.11.2005
industry (domestic) s,c 3 Jan 1991 4.11.2005
industry (abroad) s,c 3 Jan 1991 4.11.2005
intermediate goods s,c 3 Jan 1991 4.11.2005
intermediate goods (domestic) s,c 3 Jan 1991 4.11.2005
intermediate goods (abroad) s,c 3 Jan 1991 4.11.2005
investment goods s,c 3 Jan 1991 4.11.2005
investment goods (domestic) s,c 3 Jan 1991 4.11.2005
investment goods (abroad) s,c 3 Jan 1991 4.11.2005
consumption goods s,c 3 Jan 1991 4.11.2005
consumption goods (domestic) s,c 3 Jan 1991 4.11.2005
consumption goods (abroad) s,c 3 Jan 1991 4.11.2005
durable goods s,c 3 Jan 1991 4.11.2005
non-durable goods s,c 3 Jan 1991 4.11.2005
residential construction s,c 3 Jan 1991 22.11.2005
construction industry (private) s,c 3 Jan 1991 20.11.2005
construction (public) s,c 3 Jan 1991 4.11.2005
retail sales p,s,c 3 Jan 1994 17.11.2005
retail sales excluding cars p,s,c 3 Jan 1994 17.11.2005
retail sales: cars p,s,c 3 Jan 1994 17.11.2005

Source: Deutsche Bundesbank.

Table 6: Real-time data, Germany: prices

variable/sector adj. trafo 1st obs. 1st vintage
consumper price index (CPI) s,c 3 Jan 1991 28.11.1995
CPI excl. energy s 3 Jan 1991 28.1.1999
CPI excl. energy and food s 3 Jan 1995 13.4.2017
CPI: food s 3 Jan 1991 28.1.1999
CPI: other non-durables and durables s 3 Jan 1995 14.11.2003
CPI: energy s,c 3 Jan 1991 29.2.2008
CPI: services s,c 3 Jan 2010 13.4.2017
CPI: services (excluding rents) s 3 Jan 2000 14.11.2003
CPI: rents s 3 Jan 1991 11.11.2005
CPI: rents excl. ancillary costs s 3 Jan 1995 16.4.2008
produer price index (PPI): industrial products s 3 Jan 1991 18.11.2005
PPI: industrial products excl. energy s 3 Jan 1994 18.11.2005
PPI: agricultural products s 3 Jan 1968 7.11.2005
export price index s 3 Jan 1970 24.11.2005
import price index s 3 Jan 1970 24.11.2005

Source: Deutsche Bundesbank.

Table 7: Real-time data, Germany: labor market

variable/sector adj. trafo 1st obs. 1st vintage
employment s 3 Jan 1991 8.8.1995
employment: manufacturing and mining s 3 Jan 1991 16.11.2005
employment: main construction industry s 3 Jan 1991 22.11.2005
hours worked s,c 3 Jan 1991 22.11.2005
hours worked: manufacturing and mining s,c 3 Jan 1991 16.11.2005
hours worked: main construction industry s,c 3 Jan 1991 22.11.2005
employees subject to social security contributions s 3 Jan 1991 30.3.2006
gross wages and salaries: manufacturing and mining s,c 3 Jan 1991 16.11.2005
gross wages and salaries: main construction industry s,c 3 Jan 1991 22.11.2005

Source: Deutsche Bundesbank.
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Table 8: Real-time data, Germany: financial markets

variable/sector adj. trafo 1st obs. 1st vintage
yields on debt securities issued by residents none 2 Jan 1991 -
yields: bank debt securities none 2 Jan 1991 -
yields: mortgage Pfandbriefe none 2 Jan 1991 -
yields: public Pfandbriefe securities none 2 Jan 1991 -
yields: special purpose credit institutions none 2 Jan 1991 -
yields: other bank debt securities none 2 Jan 1991 -
yields: corporate debt securities none 2 Jan 1991 -
yields: public debt securities none 2 Jan 1991 -
yields: state government securities none 2 Jan 1991 -
government bond yields: 6 month maturity none 2 Jan 1991 -
government bond yields: 1 year maturity none 2 Jan 1991 -
government bond yields: 2 year maturity none 2 Jan 1991 -
government bond yields: 3 year maturity none 2 Jan 1991 -
government bond yields: 4 year maturity none 2 Jan 1991 -
government bond yields: 5 year maturity none 2 Jan 1991 -
government bond yields: 6 year maturity none 2 Jan 1991 -
government bond yields: 7 year maturity none 2 Jan 1991 -
government bond yields: 8 year maturity none 2 Jan 1991 -
government bond yields: 9 year maturity none 2 Jan 1991 -
government bond yields: 10 year maturity none 2 Jan 1991 -
CDAX index none 3 Jan 1991 -
Nominal effective exchange rate (narrow) none 3 Jan 1991 -
Nominal effective exchange rate (broad) none 3 Jan 1991 -

Source: Deutsche Bundesbank.
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Table 9: Real-time data, Germany: survey indicators

variable/sector adj. trafo 1st obs. 1st vintage
ifo: manufacturing, current situation s 2 Jan 1991 -
ifo: manufacturing, climate s 2 Jan 1991 -
ifo: manufacturing, expectations s 2 Jan 1991 -
ifo: manufacturing, demand s 2 Jan 1991 -
ifo: manufacturing, prices s 2 Jan 1991 -
ifo: manufacturing, employment expectations s 2 Jan 1991 -
ifo: manufacturing, export expectations s 2 Jan 1991 -
ifo: manufacturing, orders from abroad s 2 Jan 1991 -
ifo: manufacturing, inventories s 2 Jan 1991 -
ifo: manufacturing, orders s 2 Jan 1991 -
ifo: manufacturing, production expecations s 2 Jan 1991 -
ifo: manufacturing, orders (m/m) s 2 Jan 1991 -
ifo: manufacturing, production (m/m) s 2 Jan 1991 -
ifo: manufacturing, price expectation s 2 Jan 1991 -
ifo: wholesale, current situation s 2 Jan 1991 -
ifo: wholesale, climate s 2 Jan 1991 -
ifo: wholesale, expectations s 2 Jan 1991 -
ifo: wholesale, employment expectations s 2 Jan 1991 -
ifo: wholesale, inventories s 2 Jan 1991 -
ifo: wholesale, order expectations s 2 Jan 1991 -
ifo: wholesale, price expectations s 2 Jan 1991 -
ifo: wholesale, inventories s 2 Jan 1991 -
ifo: wholesale, prices (m/m) s 2 Jan 1991 -
ifo: wholesale, turnover (m/m) s 2 Jan 1991 -
ifo: retail, current situation s 2 Jan 1991 -
ifo: retail, climate s 2 Jan 1991 -
ifo: retail, expectations s 2 Jan 1991 -
ifo: retail, employment expectations s 2 Jan 1991 -
ifo: retail, inventories s 2 Jan 1991 -
ifo: retail, order expectations s 2 Jan 1991 -
ifo: retail, price expectations s 2 Jan 1991 -
ifo: retail, inventories s 2 Jan 1991 -
ifo: retail, prices (m/m) s 2 Jan 1991 -
ifo: retail, turnover (m/m) s 2 Jan 1991 -
ifo: construction, current situation s 2 Jan 1991 -
ifo: construction, climate s 2 Jan 1991 -
ifo: construction, expectations s 2 Jan 1991 -
ifo: construction, prices s 2 Jan 1991 -
ifo: construction, capacity utilisation s 2 Jan 1991 -

All series are seasonally adjusted in real-time using X-11-ARIMA. Source: ifo-Institute.
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8 Additional results

This section presents the results of the nowcasting evaluation for several robustness checks

discussed in Section 3.5.

United States

surveys in first differences, rolling estimation sample, P=1, first release
surveys in levels, recursive estimation sample, P=1, first release
surveys in levels, rolling estimation sample, P=1, first release

Germany

surveys in first differences, rolling estimation sample, P=1, first release
surveys in levels, recursive estimation sample, P=1, first release
surveys in levels, rolling estimation sample, P=1, first release
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Table 10: Additional results: United States (first, diff, rolling)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.47 0.69 0.26 0.32 0.55 0.20

R=1 Nd 0.81 0.82 0.86 1.04 0.97 1.02
NIG 0.92 0.89 0.93 1.05 0.94 1.02
MG 0.84 0.82 0.88 1.09 0.97 1.05
PMNM 0.86 0.85 0.89 1.06 0.95 1.03
HS+ 0.84 0.83 0.88 1.03 0.99 1.03

R=2 Nd 0.86 0.83 0.89 0.96 0.89 0.96
NIG 0.89 0.85 0.91 0.99 0.87 0.98
MG 0.84 0.80 0.87 0.98 0.88 0.97
PMNM 0.84 0.81 0.88 1.05 0.93 1.02
HS+ 0.84 0.80 0.87 1.02 0.92 1.00

R=5 Nd 0.81 0.80 0.87 1.08 0.87 1.03
NIG 0.79 0.75 0.84 1.12 0.86 1.05
MG 0.79 0.72 0.83 1.12 0.85 1.04
PMNM 0.79 0.74 0.84 1.09 0.87 1.03
HS+ 0.79 0.73 0.84 1.10 0.84 1.03

R=8 Nd 0.84 0.88 0.89 1.04 0.97 1.03
NIG 0.80 0.75 0.83 1.05 0.82 1.00
MG 0.75 0.70 0.80 1.02 0.78 0.98
PMNM 0.72 0.66 0.77 0.87 0.66 0.87
HS+ 0.74 0.66 0.78 0.94 0.69 0.90

pool Nd 0.80 0.85 0.86 1.03 0.95 1.01
NIG 0.76 0.74 0.81 0.99 0.81 0.96
MG 0.75 0.71 0.80 1.00 0.82 0.97
PMNM 0.74 0.70 0.79 0.95 0.76 0.93
HS+ 0.77 0.70 0.81 1.01 0.77 0.96

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2000Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table 11: Additional results: United States (first, level, rec)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.45 0.64 0.25 0.32 0.50 0.19

R=1 Nd 1.04 1.13 1.05 0.99 1.07 1.03
NIG 1.04 1.08 1.04 0.97 1.08 1.01
MG 1.03 1.10 1.03 0.99 1.09 1.03
PMNM 1.02 1.09 1.02 0.92 1.04 0.98
HS+ 1.01 1.10 1.01 0.91 1.04 0.98

R=2 Nd 0.93 0.89 0.96 1.20 1.04 1.14
NIG 0.95 0.93 0.99 1.21 1.06 1.15
MG 0.94 0.93 0.98 1.19 1.05 1.13
PMNM 0.94 0.89 0.97 1.13 0.96 1.08
HS+ 0.93 0.88 0.96 1.15 0.98 1.09

R=5 Nd 0.83 0.75 0.86 1.07 0.86 1.01
NIG 0.87 0.80 0.90 1.19 0.98 1.11
MG 0.83 0.76 0.86 0.97 0.81 0.95
PMNM 0.87 0.79 0.90 1.19 1.00 1.13
HS+ 0.86 0.77 0.89 1.19 0.97 1.12

R=8 Nd 0.81 0.72 0.85 1.02 0.80 0.98
NIG 0.80 0.68 0.83 1.02 0.78 0.98
MG 0.91 0.85 0.93 1.04 0.91 1.00
PMNM 0.80 0.69 0.84 1.01 0.76 0.97
HS+ 0.78 0.67 0.82 1.03 0.78 0.98

pool Nd 0.80 0.75 0.84 1.02 0.88 0.99
NIG 0.81 0.76 0.85 1.03 0.87 1.00
MG 0.89 0.84 0.91 1.05 0.95 1.02
PMNM 0.80 0.75 0.85 1.02 0.86 0.99
HS+ 0.80 0.74 0.84 1.01 0.84 0.98

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2000Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table 12: Additional results: United States (first, level, rolling)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.47 0.69 0.26 0.32 0.55 0.20

R=1 Nd 0.88 0.97 0.93 0.87 1.05 0.98
NIG 0.87 0.96 0.92 0.87 1.07 0.99
MG 0.87 0.96 0.93 0.87 1.07 0.98
PMNM 1.00 1.06 1.02 0.90 1.10 1.00
HS+ 0.99 1.08 1.01 0.88 1.09 0.99

R=2 Nd 0.84 0.83 0.88 0.97 0.86 0.96
NIG 0.84 0.83 0.89 0.97 0.87 0.96
MG 0.84 0.83 0.88 0.97 0.88 0.97
PMNM 0.91 0.88 0.94 1.07 0.94 1.03
HS+ 0.87 0.83 0.90 1.01 0.87 0.98

R=5 Nd 0.80 0.76 0.85 0.92 0.70 0.90
NIG 0.74 0.68 0.79 0.91 0.69 0.89
MG 0.74 0.67 0.79 0.95 0.70 0.92
PMNM 0.86 0.78 0.89 1.04 0.80 0.99
HS+ 0.80 0.72 0.84 1.00 0.74 0.95

R=8 Nd 0.86 0.92 0.92 1.11 0.94 1.06
NIG 0.77 0.75 0.82 1.01 0.80 0.97
MG 0.74 0.71 0.80 1.01 0.77 0.96
PMNM 0.81 0.75 0.85 1.04 0.81 1.00
HS+ 0.74 0.66 0.79 0.96 0.73 0.93

pool Nd 0.75 0.84 0.83 0.92 0.88 0.95
NIG 0.75 0.76 0.81 0.90 0.79 0.91
MG 0.73 0.74 0.79 0.90 0.80 0.92
PMNM 0.80 0.78 0.85 0.97 0.86 0.96
HS+ 0.78 0.75 0.82 0.93 0.79 0.92

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2000Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table 13: Additional results: Germany (first, diff, rolling)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.91 1.35 0.45 0.52 1.04 0.32

R=1 Nd 0.73 0.69 0.78 0.96 0.68 0.88
NIG 0.72 0.69 0.77 0.92 0.66 0.85
MG 0.71 0.66 0.76 0.92 0.65 0.85
PMNM 0.73 0.76 0.78 0.93 0.66 0.86
HS+ 0.72 0.70 0.76 0.91 0.62 0.83

R=2 Nd 0.60 0.58 0.66 0.85 0.60 0.80
NIG 0.54 0.51 0.60 0.76 0.53 0.72
MG 0.55 0.51 0.61 0.78 0.54 0.73
PMNM 0.56 0.52 0.62 0.81 0.55 0.75
HS+ 0.56 0.54 0.63 0.81 0.57 0.75

R=5 Nd 0.77 0.64 0.78 0.97 0.71 0.89
NIG 0.58 0.50 0.61 0.69 0.50 0.66
MG 0.60 0.50 0.63 0.69 0.48 0.66
PMNM 0.59 0.53 0.63 0.73 0.53 0.70
HS+ 0.61 0.53 0.64 0.70 0.50 0.68

R=8 Nd 0.66 0.65 0.72 1.04 0.78 0.94
NIG 0.55 0.49 0.58 0.74 0.53 0.69
MG 0.58 0.49 0.60 0.72 0.50 0.68
PMNM 0.54 0.49 0.59 0.66 0.52 0.66
HS+ 0.62 0.52 0.63 0.67 0.50 0.65

pool Nd 0.59 0.59 0.65 0.82 0.67 0.79
NIG 0.54 0.49 0.58 0.68 0.52 0.66
MG 0.55 0.49 0.59 0.68 0.51 0.66
PMNM 0.57 0.52 0.61 0.71 0.55 0.69
HS+ 0.57 0.51 0.61 0.67 0.51 0.66

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2006Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table 14: Additional results: Germany (first, level, rec)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.86 1.73 0.41 0.49 0.89 0.29

R=1 Nd 0.88 0.66 0.98 1.10 1.01 1.09
NIG 0.88 0.70 0.98 1.10 1.01 1.10
MG 0.88 0.66 0.98 1.10 1.00 1.08
PMNM 0.88 0.66 0.97 1.09 1.01 1.08
HS+ 0.88 0.69 0.97 1.06 1.01 1.07

R=2 Nd 0.87 0.65 0.92 1.02 0.99 1.01
NIG 0.74 0.53 0.79 0.82 0.85 0.88
MG 0.70 0.51 0.75 0.81 0.84 0.87
PMNM 0.75 0.53 0.80 0.82 0.85 0.87
HS+ 0.76 0.53 0.80 0.81 0.85 0.87

R=5 Nd 1.01 0.86 1.14 1.18 0.96 1.08
NIG 0.74 0.53 0.82 0.92 0.74 0.87
MG 0.68 0.53 0.81 1.05 0.92 1.04
PMNM 0.74 0.53 0.82 0.82 0.69 0.80
HS+ 0.71 0.50 0.79 0.85 0.70 0.82

R=8 Nd 1.17 0.87 1.17 1.28 1.04 1.21
NIG 0.68 0.51 0.75 0.92 0.76 0.89
MG 0.73 0.52 0.80 0.86 0.80 0.88
PMNM 0.51 0.37 0.60 0.75 0.62 0.76
HS+ 0.51 0.36 0.59 0.72 0.59 0.73

pool Nd 0.69 0.55 0.82 0.85 0.88 0.90
NIG 0.55 0.45 0.66 0.73 0.76 0.80
MG 0.59 0.48 0.70 0.82 0.83 0.87
PMNM 0.51 0.44 0.63 0.61 0.70 0.72
HS+ 0.50 0.42 0.61 0.65 0.68 0.73

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2006Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table 15: Additional results: Germany (first, level, rolling)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.91 1.35 0.45 0.52 1.04 0.32

R=1 Nd 0.89 1.07 0.97 1.09 0.98 1.07
NIG 0.88 1.11 0.97 1.08 0.99 1.07
MG 0.89 1.12 0.96 1.07 0.96 1.04
PMNM 0.87 1.20 0.95 1.01 0.96 1.01
HS+ 0.87 1.20 0.94 1.01 0.95 1.01

R=2 Nd 0.76 0.77 0.83 0.99 0.76 0.93
NIG 0.65 0.68 0.71 0.89 0.76 0.87
MG 0.65 0.69 0.71 0.88 0.77 0.86
PMNM 0.73 0.73 0.79 0.94 0.77 0.90
HS+ 0.65 0.68 0.70 0.87 0.72 0.84

R=5 Nd 0.97 1.00 1.05 1.23 0.97 1.17
NIG 0.62 0.64 0.68 0.77 0.64 0.76
MG 0.60 0.61 0.66 0.73 0.62 0.73
PMNM 0.62 0.61 0.67 0.71 0.59 0.71
HS+ 0.58 0.63 0.65 0.70 0.61 0.71

R=8 Nd 0.87 0.85 0.96 1.39 1.08 1.32
NIG 0.58 0.55 0.64 0.82 0.63 0.78
MG 0.61 0.56 0.66 0.76 0.58 0.73
PMNM 0.57 0.55 0.62 0.70 0.55 0.69
HS+ 0.62 0.57 0.66 0.70 0.53 0.68

pool Nd 0.61 0.77 0.75 0.90 0.92 0.94
NIG 0.53 0.58 0.61 0.66 0.67 0.72
MG 0.56 0.60 0.63 0.67 0.65 0.71
PMNM 0.53 0.58 0.60 0.62 0.63 0.68
HS+ 0.55 0.59 0.62 0.63 0.61 0.68

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2006Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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9 MCMC diagnostics

To assess the performance of the Gibbs Sampler in terms of convergence and mixing, we calculate the

inefficiency factors of the draws from the predictive density in the nowcasting application in Section

3. The inefficiency factor is defined as (e.g. Chib, 2011):

Ineff(ĥG) =
Var(ĥG)

s2/G
(39)

where G is the length of the chain, s2 its sample variance and Var(ĥG) an estimate of the variance

of the simulation error taking into account autocorrelation in the Markov chain. For independent

draws from the posterior distribution the inefficiency factor is equal to 1; higher values of Ineff(ĥG)
thus signal autocorrelation in the chain as result of poor mixing or lack of convergence. An estimate

of the inefficiency factors is given by the sum of the autocorrelation coefficients ρ of the posterior

draws, i.e.

Ineff(ĥG) = 1+ 2
L
∑

l

ρl (40)

where L is some suitably chosen upper bound. Alternatively, the inefficiency factor can also be

expressed as

Ineff(ĥG) =
G

ESS(ĥG)
(41)

where ESS(ĥG) is the "effective sample size" of the Markov chain. The latter can readily be

computed using the R package coda (Plummer et al., 2006).

Figure 2 shows boxplots of the inefficiency factors for the predictive densities from the different

priors and model specifications. The majority of inefficiency factors of the predictive densities are

concentrated at the lower end of the scale, indicating close to independent draws from the posterior

distribution. There are a few outliers - defined as any observations that exceeds the median by

1.5 times the interquartile range and highlighted in the plot by a dot - for each specification, with

some inefficiency factors as high as 50 or even 100 in one case. But overall the chains appear to

mix well. An exception is the Multiplicative Gamma prior in the case of the United States where

the number of outliers is much larger. We note, however, that this is only the case for models with

P = 1, a recursive estimation sample and the survey indicators in levels. Furthermore, judging from

the tables presented in Appendix 8 this does not seem to have impacted the nowcasting performance

in a substantial way as the results are qualitatively and quantitatively similar to those obtained for

the other specifications where the inefficiency factors are smaller.
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Figure 2: Boxplots of inefficiency factors for different model specifications

diff level

rec
rolling

HS+ MG NIG Nd PMNM HS+ MG NIG Nd PMNM

50

100

50

100

GER US

Note: The figure shows the inefficiency factors for the different model specifications. rec/rolling: recursive or

rolling estimation window, level/diff : survey indicators in levels or first differences. The different priors are

denoted as follows: HS+ = horseshoe plus, MG = multiplicative Gamma, NIG = Normal Inverse Gamma, Nd

= Normal diffuse, PMNM = point mass normal mixture. The number of lags in the factor VAR equals P = 1.

For details, see the main text.
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