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Abstract

State price density (SPD) contains important information concerning market expectations. In existing

literature, a constrained estimator of the SPD is found by nonlinear least squares in a suitable Sobolev

space. We improve the behavior of this estimator by implementing a covariance structure taking into

account the time of the trade and by considering simultaneously both the observed Put and Call option

prices.

Keywords and Phrases: isotonic regression, Sobolev spaces, monotonicity, multiple observations, covariance

structure, option price

JEL classification: C10, C13, C14, C20, C88, G13

Let Yt(K,T ) denote the price of a European Call with strike price K on day t and with expiry date T .

The payoff at time T is given by (ST −K)+ = max(ST −K, 0), where ST denotes the price of the underlying

asset at time T . The price of such an option may be expressed as the expected value of the payoff

Yt(K,T ) = exp{−r(T − t)}
+∞∫

0

(ST −K)+f(ST )dST , (1)

discounted by the known risk-free interest rate r. The expectation in (1) is evaluated with respect to the

so-called State Price Density (SPD) f(.). The SPD contains important information on the expectations of

the market and its estimation is a statistical task of great practical interest (Jackwerth, 1999).

Similarly, we can express the price Zt(K,T ) of the European Put with payoff (K − ST )+ as:

Zt(K,T ) = exp{−r(T − t)}
+∞∫

0

(K − ST )+f(ST )dST . (2)

In the following, the symbol Z denotes the vector of all Put option prices corresponding to a fixed date of

expiry T observed on a given day t. Similarly, Y denotes a vector containing all Call option prices. The

corresponding vectors of the strike prices for the Call and Put options are denoted by xα and xβ , respectively.

Calculating the second derivative of (1) and (2) with respect to the strike price K, we can express the

SPD as the second derivative of the European Call and Put option prices (Breeden and Litzenberger, 1978):

f(K) = exp{r(T − t)}∂
2Yt(K,T )

∂K2
= exp{r(T − t)}∂

2Zt(K,T )

∂K2
. (3)

Both parametric and nonparametric approaches to SPD estimation are described in Jackwerth (1999). Non-

parametric estimates of the SPD based on (3) are considered, among others, in Aı̈t-Sahalia and Lo (2000);
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Aı̈t-Sahalia et al. (2001); Yatchew and Härdle (2005); Härdle and Hlávka (2006).

In this paper, we will generalize the nonlinear least squares method suggested in Yatchew and Härdle

(2005) by including the covariance of the observed option prices suggested in Härdle and Hlávka (2006).

The estimation of the SPD will be further improved by considering simultaneously both Put and Call option

prices.

The investigation will be based on constrained (isotonic and convex) regression in pseudo-Sobolev spaces

(Yatchew and Bos, 1997; Yatchew and Härdle, 2005). In Sections 1 and 2, we will describe the mathematical

foundation of the method. In Section 3, we will discuss problems arising in the real life application on the

observed option prices. The covariance structure suggested in Härdle and Hlávka (2006) is explained in

Section 4. Finally, the SPD estimated from option prices on DAX are calculated in Section 5. The proofs of

all theorems are given in Appendix B.

1 Pseudo-Sobolev Spaces

In this section, we give a brief overview on basic results of the theory of the Pseudo-Sobolev spaces. We

assemble and prove necessary preliminaries and theorems for statistical regression in these spaces. The crux

of this section lies in Theorem 1.2 (Representors in Pseudo-Sobolev Space) from Yatchew and Bos (1997).

We have continued in examining representors’ properties and proved Theorem 1.3, which provides the way

of construction of the representors and their exact form.

We consider function f : Ω → R and denote by

Dαf(x) :=
∂|α|1f(x)

∂xα1
1 . . . ∂x

αq
q

(4)

its partial derivatives of order |α|1 for x ∈ int(Ω)(≡ Ω◦ := Ω\∂Ω), where α = (α1, . . . , αq)
⊤ ∈ N

q
0 is a

multiindex of the modulus |α|1 =
∑q

i=1 αi.

Definition 1.1 (Sobolev Norm). Let f ∈ Cm(Ω) ∩ Lp(Ω) (see Definitions A.2 and A.3). We introduce a

Sobolev norm ‖·‖p,Sob,m:

‖f‖p,Sob,m :=





∑

|α|
∞

≤m

∫

Ω

∣∣∣Dαf(x)
∣∣∣
p

dx



1/p

. (5)

We can write ‖·‖p,∞,Sob,m since the multiindex of modulus |α|∞ = maxi=1,...,q αi is taken with respect

to maximum-norm.

Definition 1.2 (Pseudo-Sobolev Space). A Pseudo-Sobolev space of rank m, Wm
p (Ω), is the completion

of intersection of space Cm(Ω) and space Lp(Ω) with respect to the Sobolev norm ‖·‖p,Sob,m.
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Remark 1.1. Cm(Ω) ∩ Lp(Ω) is dense in Wm
p (Ω) according to ‖·‖p,Sob,m.

Definition 1.3 (Sobolev Inner Product). Let f, g ∈ Wm
2 (Ω). The Sobolev inner product 〈·, ·〉Sob,m is

defined as:

〈f, g〉Sob,m :=
∑

|α|
∞

≤m

∫

Ω

Dαf(x)Dαg(x)dx. (6)

We denote the Sobolev norm ‖·‖2,Sob,m := ‖·‖Sob,m for simplicity. The correctness of Definition 1.3 is

guaranteed by the denseness of the space Cm(Ω) ∩ L2(Ω) in Wm
2 (Ω) (see Remark 1.1). The Sobolev inner

product 〈·, ·〉Sob,m induces in space Wm
2 (Ω) the Sobolev norm ‖·‖2,Sob,m. We denote the Pseudo-Sobolev

space Hm(Ω) := Wm
2 (Ω).

Theorem 1.1 (Hilbert Space). Hm(Ω) is a Hilbert space.

The theory of the Sobolev spaces is vast and more general than we could have presented in this short

introduction. However, our simplified theory of the Sobolev spaces is sufficient for our statistical needs. For

more detailed information on Sobolev spaces we refer to Adams (1975).

1.1 Construction of Representors in Pseudo-Sobolev Space

The space Hm(Ω) is a Hilbert space. Hence, Hm(Ω) can be expressed as a direct sum of subspaces that

are orthogonal to each other and we can take projections of the elements of Hm(Ω) into its subspaces. This

property is very important in the regression.

In the following Theorem 1.2 we quote a representation theorem for Pseudo-Sobolev spaces derived in

Yatchew and Bos (1997)—analogous to well-known Riesz Representation Theorem A.2. From now on, let

us suppose that m ∈ N. The symbol Qq denotes closed unit cube in R
q.

Theorem 1.2 (Representors in Pseudo-Sobolev Space). For all f ∈ Hm(Qq), a ∈ Qq and w ∈ N
q
0,

|w|∞ ≤ m− 1, there exists a function ψwa (x) ∈ Hm(Qq), s.t.

〈
ψwa , f〉

Sob,m
= Dwf(a). (7)

ψwa is called a representor at the point a with the rank w. Furthermore,

ψwa (x) =

q∏

i=1

ψwi
ai

(xi) (8)

for all x ∈ Qq, where ψwi
ai

(·) is the representor in the Pseudo-Sobolev space of functions of one variable on
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Q1 with inner product

∂wif(a)

∂xwi

i

=
〈
ψwi

ai
, f(x1, . . . , xi−1, ·, xi+1, . . . , xq)

〉
Sob,m

=
m∑

α=0

∫

Q1

dαψwi
ai

(xi)

dxα
i

dαf(x)

dxα
i

dxi. (9)

The proof given in Appendix B is using the idea of Yatchew and Bos (1997). In addition, we derive the

exact form of the representor for Pseudo-Sobolev spaces Wm
p (Ω) of both odd and even rank m.

In order to calculate the representor ψa ≡ ψ0
a of the function f ∈ Hm [0, 1] (see (79)), we start with

functions La and Ra defined in (96) and (97) where a ∈ (0, 1). The existence and uniqueness of the

coefficients γk(a) of the representor is demonstrated in the proof of Theorem 1.2. The coefficients γk(a) are

obtained as a solution of a system linear equations corresponding to the boundary conditions (85)–(89) of

the differential equation (84).

Theorem 1.3 (Obtaining Coefficients γk(a)). The coefficients γk(a) of the representor ψa are the unique

solution of the following 4m× 4m system of linear equations:

m∑

k=0
k 6=κ

γk(a)
(
ϕ

(m−j)
k (0) + (−1)jϕ

(m+j)
k (0)

)

+
m∑

k=0
k 6=κ

γm+1+k(a)
(
ϕ

(m−j)
m+1+k(0) + (−1)jϕ

(m+j)
m+1+k(0)

)
= 0, j = 0, . . . ,m− 1;

(10)

m∑

k=0
k 6=κ

γ2m+2+k(a)
(
ϕ

(m−j)
k (1) + (−1)jϕ

(m+j)
k (1)

)

+
m∑

k=0
k 6=κ

γ3m+3+k(a)
(
ϕ

(m−j)
m+1+k(1) + (−1)jϕ

(m+j)
m+1+k(1)

)
= 0, j = 0, . . . ,m− 1;

(11)

m∑

k=0
k 6=κ

(γk(a) − γ2m+2+k(a))ϕ
(j)
k (a)

+

m∑

k=0
k 6=κ

(γm+1+k(a) − γ3m+3+k(a))ϕ
(j)
m+1+k(a) = 0, j = 0, . . . , 2m− 2;

(12)

m∑

k=0
k 6=κ

(γk(a) − γ2m+2+k(a))ϕ
(2m−1)
k (a)

+

m∑

k=0
k 6=κ

(γm+1+k(a) − γ3m+3+k(a))ϕ
(2m−1)
m+1+k(a) = (−1)m−1;

(13)

5



where

κ :=





m
2 , m even,

m+1
2 , m odd

(14)

and ϕk are defined in (94a)–(95d).

The square system of the above system of 4m linear equations (10)–(13) can be written in a more

illustrative way using matrix notation:




ϕ
(m−j)
k

(0)

+(−1)jϕ
(m+j)
k

(0)
∅

∅ ϕ
(m−j)
k

(1)

+(−1)jϕ
(m+j)
k

(1)

ϕ
(j)
k

(a) −ϕ
(j)
k

(a)

ϕ
(2m−1)
k

(a) −ϕ
(2m−1)
k

(a)




︸ ︷︷ ︸
{Γj,k(a)}




γ0(a)

...

γκ−1(a)

γκ+1(a)

...

γm(a)

γm+1(a)

...

γm+κ(a)

γm+2+κ(a)

...

γ2m+1(a)

γ2m+2(a)

...

γ2m+1+κ(a)

γ2m+3+κ(a)

...

γ3m+2(a)

γ3m+3(a)

...

γ3m+2+κ(a)

γ3m+4+κ(a)

...

γ4m+3(a)




︸ ︷︷ ︸
{γk(a)}

=




0

...

0

0

...

0

0

...

0

(−1)m−1




j=︷ ︸︸ ︷
0

...

m-1

0

...

m-1

0

...

2m-2

2m-1

. (15)
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Hence, the coefficients γk(a) are the solution of:

γ(a) = (−1)m−1
[
{Γ(a)}−1

]
•,4m

. (16)
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Figure 1: Representors in Pseudo-Sobolev space H4 [0, 1] for data points x =

(0.05, 0.27, 0.41, 0.53, 0.57, 0.75, 0.81, 0.83, 0.87, 0.9, 0.96)⊤—dashed vertical lines. Zoomed view in the
upper picture—interval [0, 1], reduced view in the lower picture—interval [−4.5,+5.5].

Theorem 1.4 (Embedding). The embedding Hm(Qq) →֒ Cm−1(Qq) is compact.
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2 General Least Squares

Connection of features of L2-spaces and Cm-spaces can yield an interesting background for the nonparamet-

ric regression. L2-spaces are special types of Hilbert spaces that facilitate the calculation of least square

projection. On the other hand, we regard Cm-spaces as one of the common classes of functions that we want

to approximate the data with.

Definition 2.1 (General Single Equation Model). The weighted single equation model is

Yi = f(xi) + εi, i = 1, . . . , n (17)

with these assumptions:

i) xi are q-dimensional non-stochastic design points (knots);

ii) εi are random variables so that

• Eεi = 0, ∀i,

• cov (εi, εj) =





σij , i 6= j,

σ2
i i = j;

iii) f ∈ F , where F is a family of functions in the Pseudo-Sobolev space Hm(Qq) from R
q to R

1, m > q
2 ,

F =
{
f ∈ Hm(Qq) : ‖f‖2

Sob,m ≤ L
}
.

Our setting is concerned with random variables {Yi}n
i=1, respectively {εi}n

i=1. It is common terminology

to refer to this setting as the fixed design model, which is concerned with controlled, non-stochastic variables

{xi}n
i=1.

From now on, we denote Hm ≡ Hm(Qq), where Qq is the unit cube in R
q. We define the variance matrix

Σ := (σij)
n,n
i,j=1, where σ2

i ≡ σii.

Our regression problem can be characterized by one of these ways:

a)

min
f∈Hm

1

n

n∑

i=1

[Yi − f(xi)]
2

s.t. ‖f‖2
Sob,m ≤ L, (18)

b)

min
f∈Hm

{
1

n

n∑

i=1

[Yi − f(xi)]
2 + χ ‖f‖2

Sob,m

}
. (19)

The Sobolev norm bound L and the smoothing parameter (bandwidth parameter) χ control the trade-off

between the infidelity to the data and the roughness of the estimator.
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Definition 2.2 (Penalizing Using General Least Squares). Optimizing using General Least Squares

is

min
f∈Hm

1

n
[Y − f(x)]

⊤
Σ−1 [Y − f(x)] + χ ‖f‖2

Sob,m (20)

where x is an n × 1 vector of q-dimensional vector data points x1, . . . ,xn, Σ is an n × n positive definite

and symmetric matrix, Y is an n × 1 vector of constants, f is a real function of a real value, f(x) =

(f(x1), . . . , f(xn))⊤ and χ > 0.

Definition 2.3 (Representor Matrix). Let ψx1 , . . . , ψxn
be the representors for function evaluation atx1, . . . ,xn respectively, i.e. 〈ψxi

, f〉Sob,m = f(xi) for all f ∈ Hm, i = 1, . . . , n. Let Ψ be the n×n representor

matrix whose columns (and rows) equal the representors evaluated at x1, . . . ,xn; i.e.

Ψi,j =
〈
ψxi

, ψxj

〉
Sob,m

= ψxi
(xj) = ψxj

(xi). (21)

Theorem 2.1 (Infinite to Finite). Let Y = (Y1, . . . , Yn)⊤, Σ an n × n positive definite and symmetric

matrix and define

σ̂2 = min
f∈Hm

1

n
[Y − f(x)]

⊤
Σ−1 [Y − f (x)] + χ ‖f‖2

Sob,m , (22)

s2 = min∈Rn

1

n
[Y − Ψ]⊤ Σ−1 [Y − Ψ] + χ⊤Ψ (23)

where  is an n × 1 vector, f is declared in Definition 2.2 and Ψ is the representor matrix at x1, . . . ,xn.

Then σ̂2 = s2. Furthermore, there exists a solution to (22) of the form

f̂ =
n∑

i=1

ĉiψxi
(24)

where ̂ = (ĉ1, . . . , ĉn)⊤ solves (23). The estimator f̂ is unique a.e.

Theorem 2.1 transforms the infinite dimensional problem into a finite dimensional quadratic optimization

problem. A similar theorem in Yatchew and Bos (1997) uses different penalization.

Corollary 2.2 (Form of the Regression Function Estimator). The regression function estimator from

9



Theorem 2.1 in one-dimensional case is:

f̂(x) =





n∑

i=1

ĉiLxi
(x), 0 ≤ x ≤ x1,

...
...

n∑

i=j+1

ĉiLxi
(x) +

j∑

i=1

ĉiRxi
(x), xj < x ≤ xj+1, j = 1, . . . , n− 1;

...
...

n∑

i=1

ĉiRxi
(x), xn < x ≤ 1,

(25)

where ̂ = (ĉ1, . . . , ĉn)⊤ solves (23) and the functions Lxi
(x) and Rxi

(x) are defined in (79).

Remark 2.1. Corollary 2.2 can be easily extended for a q-dimensional vector variable x if we recall how

the representor ψa is produced in the proof of Theorem 1.2. We apply (79) on the form of each factor

ψa of the product of representors ψa in (98). The only difference in (25) will be the number of cases.

We will obtain (n + 1)q decision conditions (vector x has q components) instead of actual number n + 1

(0 ≤ x ≤ x1, . . . , xj < x ≤ xj+1, . . . , xn < x).

The form of the regression function estimator can be written alternatively:

f̂(x) =

n∑

j=1

ĉj

2m∑

k=1

exp
[
ℜ

(
eiθk

)
x
] {

I[x≤xj]γk(xj) cos
[
ℑ

(
eiθk

)
x
]
+ I[x>xj ]γ2m+k(xj) sin

[
ℑ

(
eiθk

)
x
] }

. (26)

Note that f̂ is not estimated using goniometric splines neither kernel functions!

Lemma 2.3 (Symmetry of Representor Matrix). Representor Matrix is symmetric.

Theorem 2.4 (Positive Definiteness of Representor Matrix). Representor Matrix is positive definite.

In the linear model, the unknown coefficients are estimated using Least Squares. Gauss-Markov Theorem

(Anděl, 2002) says that the estimate of these coefficients is the best linear unbiased estimate and underlies

so-called “normal equations”. The analogy can be found in our model.

Theorem 2.5 (Normal Equation for ̂). Assume General Single Equation Model 2.1. Let Ψ be a

representor matrix. Then the vector ̂ of coeficients of the unique minimizer f̂ from (24) is the unique

solution with respect to  = (c1, . . . , cn)
⊤

of the equation system

(
ΨΣ−1Ψ + nχΨ

)  = ΨΣ−1Y (27)

for response vector Y = (Y1, . . . , Yn)
⊤
.
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Remark 2.2 (Hat Matrix). We know that Ŷ = f̂(x) = Ψ̂ (28)

and from previous Normal Equation for ̂ Theorem 2.5 we easily obtain the form of the projection “hat”

matrix

Λ := Ψ
(
ΨΣ−1Ψ + nχΨ

)−1
ΨΣ−1 (29)

such that Ŷ = ΛY. (30)

If the variance matrix Σ has full rank, its inverse matrix has also full rank and it can be decomposed

using its square root matrix Ξ (formally proceeded by spectral decomposition).

Σ−1 = Ξ⊤Ξ. (31)

Notice that this square root matrix Ξ has full rank.

According to the Infinite to Finite Theorem 2.1 and Lagrange Multiplier Theorem it can be easily seen

that there is a correspondence between Sobolev bound L and and smoothing parameter χ. It would be only

a technical exercise to prove the 1–1 mapping between these two parameters (Pešta, 2006).

Theorem 2.6 (1–1 Mapping of Smoothing Parameters). Let L > 0, Σ is positive definite and sym-

metric matrix and

f∗ = arg min
f∈Hm

1

n
[Y − f(x)]

⊤
Σ−1 [Y − f (x)] s.t. ‖f‖2

Sob,m ≤ L (32)

then there exists a unique χ ≥ 0 such that

f∗ = arg min
f∈Hm

1

n
[Y − f(x)]

⊤
Σ−1 [Y − f(x)] + χ ‖f‖2

Sob,m . (33)

Hence, there exists a 1–1 mapping Z : R
+ → R

+ : L 7→ χ.

Theorem 2.7 (Bijection Between the Smoothing Parameters). Let χ > 0, Σ is positive definite and

symmetric matrix and

f∗ = arg min
f∈Hm

1

n
[Y − f(x)]

⊤
Σ−1 [Y − f(x)] + χ ‖f‖2

Sob,m (34)
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then there exists a unique L > 0 such that

f∗ = arg min
f∈Hm

1

n
[Y − f (x)]⊤ Σ−1 [Y − f(x)] s.t. ‖f‖2

Sob,m = L. (35)

If ∗⊤Ψ∗ < L, then we are talking about the interpolation not the approximation because Y = Ψ∗.
This is very unusual case for a real statistical situation and our problem, too.

Theorem 2.8 (Asymptotic Behavior). Suppose ε̃ := Ξε is n× 1 vector of i.i.d. random variables. Then

1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
= OP

(
n− 2m

2m+q

)
, n→ ∞. (36)

2.1 Choice of the Smoothing Parameter

The smoothing parameter χ corresponds to the diameter of the set of functions over which the estimation

takes place. Heuristically, for large bounds (≡ smaller χ), we obtain consistent but less efficient estimator.

On the other hand, for smaller bounds, i.e., large χ, we obtain more efficient but inconsistent estimators.

Well-known selection method is minimization of the cross-validation criterion

CV(L) =
1

n

[y − f̂∗(x)
]⊤

Σ−1
[y − f̂∗(x)

]
(37)

where f̂∗ =
(
f̂−1, . . . , f̂−n

)⊤

is obtained by solving

f̂−i = arg min
f∈Hm

1

n− 1

n∑

j=1
j 6=i

[Ξj,•y − Ξj,•f(x)]2 + χ ‖f‖2
Sob,m , i = 1, . . . , n, (38)

where Ξ is the square root of the inverse of matrix Σ defined in (31).

The idea of selection of the smoothing parameter by Cross-Validation is based on its ability to predict

outside the sample. We omit the i-th observation from the estimation when the i-th observation is being

predicted. Then we use the minimum of the Cross-Validation function CV to estimate the smoothing pa-

rameter χ (which correspodents to appropriate Sobolev bound L). Relationship between the data-fit and

the smoothness of estimator is shown in Figure 2.

We can also use weighted version of cross-validation, called generalized cross-validation

GCV(L) =

[y − f̂ (x)
]⊤

Σ−1
[y − f̂(x)

]

tr (I − Λ)
2 . (39)
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Figure 2: Left—changing monotone curve in H2 depending upon smoothing parameter. Right—optimal
value of smoothing parameter according to Cross-Validation.

Detailed information concerning a choice of the smoothing parameter χ can be found in Eubank (1999).

Cross-Validation is a commonly used Leave-One-Out method for choosing a smoothing parameter in

the nonparametric regression. However, there are many different methods based on penalizing functions or

plug-in selectors. Specific types of “smoothing choosers”—such as Akaike’s Information Criterion, Finite

Prediction Error, Shibata’s model selector or Rice’s bandwidth selector—can be found in Härdle (1990).

3 Application to Option Prices

In the regression in Pseudo-Sobolev spaces we have demanded only smoothness constraint on the regres-

sion function f ∈ F =
{
f ∈ Hm(Qq) : ‖f‖2

Sob,m ≤ L
}
. Now, the estimators should underlie additional

constraints. We focus on the imposition of additional constraint—such as isotonia—on the nonparametric

regression estimator.

We estimate f ∈ F̃ ⊆ F where F̃ combines smoothness with further functional properties. We consider

properties such as monotonicity of particular derivatives of the function, i.e., monotonicity, convexity, etc.

The following discussion concerns only the one-dimensional case. From now on, we assume that q = 1.

Definition 3.1 (Derivative of Representor Matrix). Let ψx1 , . . . , ψxn
be the representors for function

evaluation at x1, . . . , xn, i.e. 〈ψxi
, f〉Sob,m = f(xi) for all f ∈ Hm(Q1), i = 1, . . . , n. Let Ψ(k) be the k-th

13



derivative of n × n representor matrix whose columns are equal to the k-th derivatives of the representors

evaluated at x1, . . . , xn; i.e.

Ψ
(k)
i,j = ψ(k)

xj
(xi), i, j = 1, . . . , n. (40)

It is very important that the k-th derivative of the representor matrix is defined in a “column” way. In

spite of Theorem 2.3, derivative of representor matrix needn’t to be a symmetric one.

Definition 3.2 (Estimate of the Derivative). Define the estimate of the regression function derivative

as the derivative of the regression function estimate, i.e.

f̂ (s) := f̂ (s), s ∈ N. (41)

Theorem 3.1 (Consistency of Estimator). Suppose ε̃ := Ξε is n× 1 vector of i.i.d. random variables,

the design points are equidistantly distributed on interval [a, b] such that a = x1 < . . . < xn = b and Σ is

positive definite covariance matrix of ε with its largest eigenvalue less or equal to a positive constant ϑ > 0

for all n ∈ N. Then for s = 0, . . . ,m− 2

sup
x∈[a,b]

∣∣∣f̂ (s)(x) − f (s)(x)
∣∣∣ P−−−−→

n→∞
0. (42)

Now we can show the relationship between the operator of derivative of the representor matrix and the

isotonia, especially in the application to the Call and Put option properties.

3.1 Call and Put options

Let’s have multiple Call and Put option prices for some strike prices. Suppose that the Call and the Put

option prices are repeated observations at distinct fixed design points ̟i, i = 1, . . . , ω, called the strike price

knots. The Call option prices represents ni ∈ N0 responses Yik
for their strike prices xik

∈ {̟1, . . . , ̟ω} in

each strike price knot ̟i where k = 1, . . . , ni, xi1 = . . . = xini
, ∀i,

ω∑

i=1

I[ni≥1] = ωY , (43)

ω∑

i=1

niI[ni≥1] = n. (44)
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Similarly the Put option prices represents mj ∈ N0 responses Zjl
for their strike prices xjl

∈ {̟1, . . . , ̟ω}

in each strike price knot ̟j where l = 1, . . . , nj, xj1 = . . . = xjmj
, ∀j,

ω∑

j=1

I[mj≥1] = ωZ , (45)

ω∑

j=1

mjI[mj≥1] = m. (46)

Let ∆ be the connectivity n× ωY matrix for Call option strike prices such that

∆ij :=





1 if xi = ̟j ,

0 otherwise
(47)

for

i ∈ {ι | 1 ≤ ι ≤ n&nι ≥ 1} , (48)

j ∈ {ς | 1 ≤ ς ≤ ω&nς ≥ 1} (49)

and also let Θ be the connectivity m× ωZ matrix for Put option strike prices such that

Θij :=





1 if xi = ̟j ,

0 otherwise
(50)

for

i ∈ {ι | 1 ≤ ι ≤ m&mι ≥ 1} , (51)

j ∈ {ς | 1 ≤ ς ≤ ω&mς ≥ 1} . (52)

Similar matrix has been already defined in Yatchew and Härdle (2005).

Definition 3.3 (Call and Put Option Model). Invoke the notation from the beginning of this section

3. The Call and Put option model is

Yik
= f(xik

) + εik
, k = 1, . . . , n, {i1, . . . , in} ⊆ {1, . . . , ν} , (53)

Zjl
= g(xjl

) + ǫjl
, l = 1, . . . ,m, {j1, . . . , jm} ⊆ {1, . . . , ν} (54)

with these assumptions:
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i) {xi}ν
i=1 are non-stochastic design points such that xi ∈ {̟1, . . . , ̟ω} , ∀i;

ii) εik
and ǫjl

are random variables so that

• Eεik
= 0, ∀k,

• Eǫjl
= 0, ∀l,

• cov (εik
, εil

) =





ξik ,il
, k 6= l,

ξ2ik
k = l;

• cov (ǫjl
, ǫjk

) =





ζjl,jk
, l 6= k,

ζ2
jl

l = k;

• cov (εik
, ǫjl

) = σik,jl
, ∀k, l;

iii) f, g ∈ F , where F is a family of functions in the Pseudo-Sobolev space Hp(Qq) from R
q to R

1, p > q
2 ,

F =
{
h ∈ Hp(Qq) : ‖f‖2

Sob,p ≤ L
}
.

The second derivatives of functions f and g have to be the same SPD. Hence, Infinite to Finite Theorem

2.1 provides a key to determining how to handle multiple (repeated) observations for our set-up in option

prices model 3.3.

Theorem 3.2 (Call and Put Option Optimizing). Invoke the assumptions from Call and Put Option

Model 3.3. Define

σ̂2 = min
f∈Hp,g∈Hp






YZ 

 −




∆ 0

0 Θ







f (xα)

g (xβ)







⊤

Σ−1






YZ 

 −




∆ 0

0 Θ







f (xα)

g (xβ)







+ χ ‖f‖2
Sob,p + θ ‖g‖2

Sob,p

(55)

subject to

−1 ≤ f ′ (xα) ≤ 0, (56a)

0 ≤ g′ (xβ) ≤ 1, (56b)

f ′′ (xα) ≥ 0, (56c)

g′′ (xβ) ≥ 0, (56d)

f ′′ (xγ) = g′′ (xγ) (56e)
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and

s2 = min∈R
ωY ,d∈R

ωZ






YZ 

 −




∆ 0

0 Θ







Ψ 0

0 Φ







d 





⊤

Σ−1






YZ 

 −




∆ 0

0 Θ







Ψ 0

0 Φ







d 





+ χ⊤Ψ+ θd⊤Φd (57)

subject to

−1 ≤ Ψ(1) ≤ 0, (58a)

0 ≤ Φ(1)d ≤ 1, (58b)

Ψ(2) ≥ 0, (58c)

Φ(2)d ≥ 0, (58d)

Ψ(2)γ = Φ(2)dγ (58e)

where χ > 0, θ > 0, Σ is the (n+m)× (n+m) positive definite and symmetric matrix, ∆ is the connectivity

n × ωY matrix from (47), Θ is the connectivity m × ωZ matrix from (50), Ψ is the ωY × ωY representor

matrix at (xι)
⊤
ι∈{ι |nι≥1}, Φ is the ωZ × ωZ representor matrix at (xι)

⊤
ι∈{ι |mι≥1}, Y = (Y1, . . . , Yn)

⊤
, Z =

(Z1, . . . , Zm)
⊤
, f(xα) = (f(xι))

⊤
ι∈{ι |nι≥1}, g(xβ) = (g(xι))

⊤
ι∈{ι |mι≥1} and γ := α∩β = (ι |nι ≥ 1 &mι ≥ 1)

⊤

is the vector of indices in increasing order. Then σ̂2 = s2. Furthermore, there exists a solution to (55) with

respect to (56) of the form

f̂ =
∑

{i |ni≥1}

ĉiψxi
, (59)

ĝ =
∑

{j |mj≥1}

d̂jφxj
(60)

where ̂ = (ĉi)
⊤
i∈{i |ni≥1} and d̂ = (d̂j)

⊤
j∈{j |mj≥1} solves (57), ψxi

is the representor at xi for vector

(xι)
⊤
ι∈{ι |nι≥1} and φxj

is the representor at xj for vector (xι)
⊤
ι∈{ι |mι≥1}. The estimators f̂ and ĝ are unique

a.e.

The structure of the (n+m)× (n+m) covariance matrix Σ of the random errors (ε1, . . . , εn, ǫ1, . . . , ǫm)
⊤

will be investigated in Section 4. The minimization problem (57) under the constraints (58) can be imple-

mented using GNU–R statistical software with function pcls() in the library mgcv.
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4 Covariance Structure

Let us denote the vector of the true SPD in the ω distinct observed strike prices ̟1, . . . , ̟ω as f (2) =

(f (2)(̟1), . . . , f
(2)(̟ω))⊤. Assume that the expected values of the option prices given in (1) and (2) can be

approximated by a linear combination of this discretized version of the SPD, i.e., we assume a linear model

Yi = α(xi)
⊤f (2) + εi (61)

for the Call option prices and

Zj = β(xj)
⊤f (2) + εj (62)

for the Put option prices, i = 1, . . . , n, j = 1, . . . ,m. We assume that the vectors of the coefficients α(x)

and β(x) depend only on the strike price x and can be interpreted as rows of a design matrices Xα and Xβ ,

respectively. In the following, the state price density f (2) may depend on the time of the observation and

the symbol f
(2)
i = (f

(2)
i (̟1), . . . , f

(2)
i (̟ω))⊤ will denote the true value of the SPD at the time of the i-th

trade, i = 1, . . . , n+m.

4.1 Constant SPD

Assuming that the random errors ε = (ε1, . . . , εn+m)⊤ in the linear model



YZ

 =



Xα

Xβ


 f (2) + ε, (63)

are independent and identically distributed, the model (63) for the i-th observation, corresponding to the

strike price xi, can be written as

Yi = α(xi)
⊤f

(2)
i + εi

f
(2)
i = f (2)

if the ik-th observation is a Call option price or

Zi = β(xi)
⊤f

(2)
i + εi

f
(2)
i = f (2)
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if the i-th observations is a Put option price. Here, the estimated parameter (SPD) does not change during

the observation period (one day).

This simplified model has been estimated in Yatchew and Härdle (2005) only for Call option prices.

4.2 Dependencies due to the time of the trade

Let us now assume that the observations are sorted according to the time of the trade ti ∈ (0, 1) and denote

by δi = ti − ti−1 > 0 the time between the (i− 1)-st and the i-th trade.

The model described in Subsection 4.1 can now be generalized by moving the iid random errors εi to the

SPD f
(2)
i rather than to the observed call option price:

Yi = α(xi)
⊤f

(2)
i ,

f
(2)
i = f

(2)
i−1 + δ

1/2
i εi.

Expressing all observations in terms of the parameter f
(2)
n+1, corresponding to the “end of the day”, it follows

that the covariance of any two observed call option prices depends only on the time of the trade and their

strike prices:

Cov{Yi−u, Yi−v} = Cov(α(xi−u)⊤f
(2)
i−u, α(xi−v)⊤f

(2)
i−v)

= σ2α(xi−u)⊤α(xi−v)

min(u,v)∑

m=1

δi+1−m. (64)

Similarly, we obtain the covariances between the observed Put option prices:

Cov{Zi−u, Zi−v} = Cov(β(xi−u)⊤f
(2)
i−u, β(xi−v)⊤f

(2)
i−v(k))

= σ2β(xi−u)⊤β(xi−v)

min(u,v)∑

l=1

δi+1−l. (65)

and the covariance between the observed Put and Call option prices is:

Cov{Yi−u, Zi−v} = Cov(α⊤
xi−u

f
(2)
i−u, β(xi−v)⊤f

(2)
i−v(k))

= σ2

min(u,v)∑

l=1

δi+1−l

p−1∑

k=2

α⊤
xi−u

β(xi−v). (66)

Hence, the knowledge of the time of the trades allows us to estimate the covariance matrix of the observed

option prices. Note that with this covariance structure we can estimate arbitrary future value of the SPD. It
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is natural that more recent observations are more important for the construction of the estimator and that

observations corresponding to the same strike price and taken at approximately same time will be highly

correlated.

5 DAX Option Prices

In this section, the theory developed in the previous sections is applied on real data set containing intra day

Call and Put DAX option prices in year 1995. The data set, Eurex Deutsche Börse, was provided by the

Financial and Economic Data Center (FEDC) at Humboldt-Universität zu Berlin in the framework of the

SFB 649 Guest Researcher Program for Young Researchers.

In Figures 3 and 4, we present the analysis for the first two trading days in January 1995. On the first

trading day, the time to expiry was T − t = 0.05 years, i.e., 18 days. Naturally, on the second trading day,

the time to expiry was 17 days.

In both figures, the first two plots contain the fitted Put and Call option prices and the estimated SPD.

Both smoothing parameters were chosen as 2 × 10−5 leading to a reasonably smooth SPD estimate in the

upper right plot in Figures 3 and 4. Smaller values of the smoothing parameters would lead to a more

variable and less smooth SPD estimates that would be difficult to interpret.

The second two plots in Figures 3 and 4 show ordinary residual plots separately for the observed Put and

Call option prices. The size of each plotting symbol denotes the number of residuals lying in the respective

area. The shape of the plotting symbols corresponds to the time of the trade, circles occurred in the morning,

squares around the noon and the stars in the afternoon. We observe a strong heteroscedasticity and strong

dependencies due to the time of the trade.

In the last two plots in Figures 3 and 4, we plot the same residuals transformed by Mahalanobis transfor-

mation, i.e., multiplied by the inverse square root of their assumed covariance matrix, see Section 4.2. This

transformation removes most of the dependencies caused by the time of the trade. However, some outlying

observations have now appeared. For example, for the Call options on the second day, plotted in Figure 4,

we can see a very large positive and a very large negative residual at the same strike price 2050.

The outlying observations can be explained if we have a closer look at the original data set. In Table 1, we

show the Call option prices, times of the trades, and the transformed residuals for all trades with the strike

price K = 2050. The two observations with larg residuals, 358.7 and −342.2, occurred at approximately the

same time, the time difference between them is approximately 0.13 hours, i.e., approximately five minutes.

Simultaneously, the price difference of these two observations is quite large. Hence, the large correlation of

these two very different prices leads to the large (suspicious) residuals appearing in the residual plot.
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Figure 3: Estimates and residual plots on the 1st trading day in 1995 (January 2nd). The first plot shows
fitted Call and Put option prices, the estimated SPD is plotted in the second plot. The remaining four
graphics contain respectively residual plots for Call and Put option prices on the left and right hand side.
The residuals plotted in the last two plots were corrected by the inverse square root of the covariance matrix.
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Figure 4: Estimates and residual plots on 2nd trading day in 1995 (January 3rd). The first plot shows
fitted Call and Put option prices, the estimated SPD is plotted in the second plot. The remaining four
graphics contain respectively residual plots for Call and Put option prices on the left and right hand side.
The residuals plotted in the last two plots were corrected by the inverse square root of the covariance matrix.
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Call price (K = 2050) time (in hours) transformed residual
50.62296 9.690 337.4
51.12417 9.702 73.2
50.62296 9.785 33.8
50.02150 9.807 6.5
48.11687 9.826 −10.3
46.61322 9.864 −11.5
47.31492 10.121 −6.9
48.11687 10.171 26.5
49.01906 10.306 24.3
49.01906 10.361 26.3
50.32223 10.534 358.7
46.61322 10.666 −342.2
47.61565 10.672 32.8
45.00932 11.187 −62.2
48.11687 11.690 28.2
45.10957 12.100 −72.6
48.11687 12.647 53.9
48.11687 12.766 13.3
48.11687 13.170 28.3
47.51541 14.205 11.2
44.10713 14.791 −4.8
42.10226 15.137 −34.1
42.10226 15.138 −93.4
40.99958 15.232 −32.4
41.60104 15.250 −14.2
42.10226 15.283 −2.4
42.10226 15.288 −87.6
40.69885 15.638 −31.2
41.60104 15.658 −48.9
42.60348 15.711 −46.6
42.10226 15.715 6.7
41.60104 15.796 −39.2
42.10226 15.914 −49.5

Table 1: Subset of observed prices of Call options on 2nd trading day in 1995 for strike price K = 2050, time
of the trade in hours and residuals transformed by the Mahalanobis transformation. The fitted value for the
strike price K = 2050 is f̂ (2)(2050) = 42.37. This value can be interpreted as an estimate corresponding to
16:00 o’clock.
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Figure 5: Estimates and residual plots on the 1st trading day in 2002 (January 2nd). The first plot shows
fitted Call and Put option prices, the estimated SPD is plotted in the second plot. The remaining four
graphics contain respectively residual plots for Call and Put option prices on the left and right hand side.
The residuals plotted in the last two plots were corrected by the inverse square root of the covariance matrix.
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An example of a more recent data set is plotted in Figure 5. In year 2002, the range of the traded strike

prices was much wider than in 1995. The estimated SPD is plotted in the upper right plot. The estimate

could be described as a unimodal probability density function with the right tail cut off. It seems that,

especially on the right hand side, the traded strike prices do not cover the support of the SPD entirely.

The residual plots in Figure 5 look very similar to the residual plots in Figures 3 and 4. The residual

analysis suggests that the simple model for the covariance structure presented in Section 4 is more appropriate

for this estimation problem than the unrealistic iid assumptions. In practice, the traded strike prices do not

cover the entire support of the SPD. Hence, our estimators recover only the central part of the SPD in

Figures 3 and 4 or the left hand part of the SPD in Figure 5. Unfortunately, this implies that we cannot

impose any conditions on the expected value of the SPD without additional distributional assumptions.

6 Conclusion

The mathematical foundation of the constrained regression in pseudo-Sobolev spaces is explained in Section 1,

see also Yatchew and Bos (1997); Yatchew and Härdle (2005). In Section 2, we generalize the method to

dependent observations and introduce the constrained general regression in pseudo-Sobolev spaces. The

application of the method to the observed option prices is developed in Section 3. The resulting algorithm,

using the covariance structure given in Section 4, see also Härdle and Hlávka (2006), is applied on a real

data set in Section 5.

The main achievement of this paper is the simultaneous estimation of the SPD from both Put and Call

option prices and the incorporation of the covariance structure in the nonparametric estimator that has been

previously considered in Yatchew and Härdle (2005). The constrained general regression in pseudo-Sobolev

spaces will certainly be very useful in various practical problems.
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A Used definitions and theorems

A.1 Definitions

Definition A.1 (Domain). A connected Lebesgue-measurable (open or closed) bounded subset Ω of an

Euclidean space R
q with non-empty interior is called a domain.

Definition A.2 (Lebesgue Space). Consider a measurable real-valued function on a given Lebesgue-

measurable domain. Simply f : Ω → R, Ω ∈ Mq(λq). The Lebesgue integral of function f is
∫
Ω
f(x)dλq(x) ≡

∫
Ω
f(x)dx. Let

‖f‖Lp(Ω) :=





(∫
Ω f

p(x)dx)1/p

for 1 ≤ p <∞,

inf
{
C ≥ 0 : |f | ≤ C a.e.

}
for p = ∞.

(67)

We define a Lebesgue space by Lp(Ω) :=
{
f : ‖f‖Lp(Ω) <∞

}
, 1 ≤ p ≤ ∞.

Definition A.3 (Spaces of Continuously Differentiable Functions). Let m ∈ N0. We define Cm(Ω)

space of m-times continuously differentiable scalar functions upon bounded domain Ω. Simply

Cm(Ω) :=
{
f : Ω → R

∣∣Dαf ∈ C0(Ω), |α|∞ ≤ m
}
, (68)

where C0(Ω) ≡
{
f : Ω → R

∣∣f continuous on Ω
}

and |α|∞ = maxi=1,...,q |αi|.

Definition A.4 (General Definition of Sobolev Space). A Sobolev space can be also defined in more

general way:

Wm
p (Ω) := {f ∈ Lp(Ω)|Dα

wf ∈ Lp(Ω), |α|∞ ≤ m} (69)

where Dw denotes an operator of the weak derivative (Maz’ja, 1985).

A.2 Theorems

Theorem A.1 (Lp Complete). Lp(Ω), 1 ≤ p ≤ ∞ is a Banach space.

Theorem A.2 (Riesz Representation Theorem). For every continuous linear functional f on a Hilbert

space H, there is a unique u ∈ H such that f(x) = 〈x, u〉 for all x ∈ H.

Theorem A.3 (Kolmogorov-Tihomirov). Let F be a compact non-empty subset of a metric space. Then

for all δ > 0 exists A > 0 and 0 < ζ < 1 such that metric entropy

H(δ; F ) < Aδ−2ζ . (70)
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Theorem A.4 (Schur Decomposition). Eigenvalues λ1, . . . , λn of symmetric matrix An×n are always

real. Without losing of generality suppose that λ1 ≥ . . . ≥ λn. Let Wn×n = diag {λ1, . . . , λn}. Then there

exists an orthogonal matrix Un×n such that

An×n = Un×nWn×nU⊤
n×n, (71)

In×n = U⊤
n×nUn×n = Un×nU⊤

n×n. (72)

Theorem A.5 (Cauchy-Schwartz Inequality). If f ∈ L2(Ω) and f ∈ L2(Ω), then fg ∈ L1(Ω) and

∫

Ω

|f(x)g(x)| dx ≤ ‖f‖L2(Ω) ‖g‖L2(Ω) . (73)

Lemma A.6. Suppose (fn)
∞
n=1 are non-negative Lipschitz functions on interval [a, b] with a constant T > 0

for all n ∈ N. If

fn
L1−−−−→

n→∞
0 (74)

then

‖fn‖∞,[a,b] := sup
x∈[a,b]

|fn(x)| −−−−→
n→∞

0. (75)
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B Proofs

Correctness of Definition 1.1. Let f, g ∈ Cm(Ω) ∩ Lp(Ω), the triangle inequality for the p-norms on Lp(Ω)

and lp ({α : |α|∞ ≤ m}) implies

‖f + g‖p,Sob,m =





∑

|α|
∞

≤m

‖Dαf +Dαg‖p
Lp(Ω)





1/p

≤





∑

|α|
∞

≤m

[
‖Dαf‖p

Lp(Ω) + ‖Dαg‖p
Lp(Ω)

]




1/p

≤





∑

|α|
∞

≤m

‖Dαf‖p
Lp(Ω)





1/p

+





∑

|α|
∞

≤m

‖Dαg‖p
Lp(Ω)





1/p

= ‖f‖p,Sob,m + ‖g‖p,Sob,m .

(76)

Proof of Theorem 1.1. It is straightforward to verify that Hm(Ω) is a normed linear space. It is also complete

by construction, so it is a Banach space. The inner product 〈·, ·〉Sob,m has been defined on Hm(Ω), so it is a

Hilbert space.

Proof of Theorem 1.2. We divide the proof into two steps.

i) Construction of a representor ψa(≡ ψ0
a)

For simplicity, let’s set Q1 ≡ [0, 1]. We know that for functions of one variable we have

〈g, h〉Sob,m =
m∑

k=0

∫

Q1

g(k)(x)h(k)(x)dx, (77)

so all we need to do is to construct a representor

ψa ∈ Hm [0, 1] s.t. 〈ψa, f〉Sob,m = f(a) (78)

for all f ∈ Hm [0, 1]. It suffices to demonstrate the result for all f ∈ C2m because of the denseness of C2m

(see Remark 1.1), hence assume that f ∈ C2m. This representor will be of the form:

ψa(x) =





La(x) 0 ≤ x ≤ a,

Ra(x) a ≤ x ≤ 1,
(79)

where La(x) ∈ C2m [0, a] and Ra(x) ∈ C2m [a, 1]. As ψa ∈ Hm [0, 1], it suffices that L
(k)
a (a) = R

(k)
a (a),

0 ≤ k ≤ m− 1. We get:

f(a) = 〈ψa, f〉Sob,m =

∫ a

0

m∑

k=0

L(k)
a (x)f (k)(x)dx+

∫ 1

a

m∑

k=0

R(k)
a (x)f (k)(x)dx. (80)
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Integrating by parts, we have:

m∑

k=0

∫ a

0

L(k)
a (x)f (k)(x)dx =

m∑

k=0





k−1∑

j=0

(−1)
j
L(k+j)

a (x)f (k−j−1)(x)

∣∣∣∣∣

a

0

+ (−1)
k
∫ a

0

L(2k)
a (x)f(x)dx





=
m∑

k=0

k−1∑

j=0

(−1)j L(k+j)
a (x)f (k−j−1)(x)

∣∣∣∣∣

a

0

+

∫ a

0

{
m∑

k=0

(−1)k
L(2k)

a (x)

}
f(x)dx.

(81)

Let’s try to substitute i = k − j − 1 and rewrite it:

m∑

k=0

∫ a

0

L(k)
a (x)f (k)(x)dx =

m∑

k=1

k−1∑

i=0

(−1)
k−i−1

L(2k−i−1)
a (x)f (i)(x)

∣∣∣∣∣

a

0

+

∫ a

0

{
m∑

k=0

(−1)
k
L(2k)

a (x)

}
f(x)dx

=

m−1∑

i=0

m∑

k=i+1

(−1)
k−i−1

L(2k−i−1)
a (x)f (i)(x)

∣∣∣∣∣

a

0

+

∫ a

0

{
m∑

k=0

(−1)
k
L(2k)

a (x)

}
f(x)dx

=

m−1∑

i=0

f (i)(a)

{
m∑

k=i+1

(−1)
k−i−1

L(2k−i−1)
a (a)

}

−
m−1∑

i=0

f (i)(0)

{
m∑

k=i+1

(−1)k−i−1
L(2k−i−1)

a (0)

}

+

∫ a

0

{
m∑

k=0

(−1)
k
L(2k)

a (x)

}
f(x)dx.

(82)

Similarly:

m∑

k=0

∫ 1

a

R(k)
a (x)f (k)(x)dx =

m−1∑

i=0

f (i)(1)

{
m∑

k=i+1

(−1)
k−i−1

R(2k−i−1)
a (1)

}

−
m−1∑

i=0

f (i)(a)

{
m∑

k=i+1

(−1)
k−i−1

R(2k−i−1)
a (a)

}

+

∫ 1

a

{
m∑

k=0

(−1)
k
R(2k)

a (x)

}
f(x)dx.

(83)

These two results hold for all f(x) ∈ Cm [0, 1]. Thus we require that both La and Ra are the solutions of the

constant coefficient differential equation

m∑

k=0

(−1)k
ϕ(2k)(x) = 0. (84)

Boundary conditions are obtained by equality of the functional values of L
(i)
a (x) and R

(i)
a (x) at the point a
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and the coefficient comparison1 of f (i)(0), f (i)(1) and f (i)(a):

ra ∈ Hm [0, 1] ⇒ L(i)
a (a) = R(i)

a (a) . . . 0 ≤ i ≤ m− 1, (85)

f (i)(0) ⊲⊳ 0 ⇒
m∑

k=i+1

(−1)k−i−1
L(2k−i−1)

a (0) = 0 . . . 0 ≤ i ≤ m− 1, (86)

f (i)(1) ⊲⊳ 0 ⇒
m∑

k=i+1

(−1)
k−i−1

R(2k−i−1)
a (1) = 0 . . . 0 ≤ i ≤ m− 1, (87)

f (i)(a) ⊲⊳ 0 ⇒
m∑

k=i+1

(−1)k−i−1
{
L(2k−i−1)

a (a) −R(2k−i−1)
a (a)

}
= 0 . . . 1 ≤ i ≤ m− 1, (88)

f(a) ⊲⊳ 1 ⇒
m∑

k=1

(−1)
k−1

{
L(2k−1)

a (a) −R(2k−1)
a (a)

}
= 1; (89)

together m+m+m+(m−1)+1 = 4m boundary conditions. To obtain the general solution of this differential

equation we need to find the roots of its characteristic polynomial

Pm(λ) =
m∑

k=0

(−1)kλ2k. (90)

Hence it follows

(1 + λ2)Pm(λ) = 1 + (−1)mλ2m+2, λ 6= ±i. (91)

Solving the last equation (91), we get characteristic roots

λk = eiθk , (92)

where

θk ∈





(2k+1)π
2m+2 m even, k ∈ {0, 1, . . . , 2m+ 1} \

{
m
2 ,

3m+2
2

}
,

kπ
m+1 m odd, k ∈ {0, 1, . . . , 2m+ 1} \

{
m+1

2 , 3m+3
2

}
.

(93)

We have (2m+ 2) − 2 = 2m different complex roots together, but each has a pair that is conjugate with it.

Thus if m is even then we have m complex conjugate roots with multiplicity one. We also have 2m base

elements alike complex roots:

m even

ϕk(x) = exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]
, k ∈ {0, 1, . . . ,m} \

{m
2

}
; (94a)

ϕm+1+k(x) = exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, k ∈ {0, 1, . . . ,m} \

{m
2

}
. (94b)

1̺ ⊲⊳ ς denotes that ̺ has a coefficient ς in a specific equation.
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On the other hand if m is odd then we have 2m− 2 different complex roots together (each has a pair that is

conjugate with it) and two real roots. Two real roots are ±1 and m− 1 complex conjugate roots have the

multiplicity one. We also have 2(m− 1) + 2 = 2m base elements alike all roots, too. So these base elements

are:

m odd

ϕ0(x) = exp {x} ; (95a)

ϕk(x) = exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]
, k ∈ {1, 2, . . . ,m} \

{
m+ 1

2

}
; (95b)

ϕm+1(x) = exp {−x} ; (95c)

ϕm+1+k(x) = exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, k ∈ {1, 2, . . . ,m} \

{
m+ 1

2

}
. (95d)

These vectors generate a subspace of Cm [0, 1] that is the space of solutions of the differential equation (84).

In this case, the general solution is given by the linear combination:

La(x)





=

m∑

k=0
k 6= m

2

γk(a) exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]

+

m∑

k=0
k 6= m

2

γm+1+k(a) exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, m even;

= γ0(a) exp {x} +

m∑

k=1
k 6= m+1

2

γk(a) exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]

+ γm+1(a) exp {−x} +

m∑

k=1
k 6= m+1

2

γm+1+k(a) exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, m odd;

(96)

Ra(x)





=

m∑

k=0
k 6= m

2

γ2m+2+k(a) exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]

+
m∑

k=0
k 6= m

2

γ3m+3+k(a) exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, m even;

= γ2m+2(a) exp {x} +

m∑

k=1
k 6= m+1

2

γ2m+2+k(a) exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]

+ γ3m+3(a) exp {−x} +

m∑

k=1
k 6= m+1

2

γ3m+3+k(a) exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, m odd;

(97)

where the coefficients γk(a) are arbitrary constants that satisfy the boundary conditions (85)–(89). It can
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be easily seen that we have obtained 4(m+ 1) − 4 = 4m coefficients γk(a), because the first index of γk(a)

is 0 and the last one is 4m+ 3. Thus we have 4m boundary conditions and 4m unknowns of γks that lead

us to the square 4m× 4m system of the linear equations. Does ψa exist and is it unique? To show this, it

suffices to prove that the only solution of the associated homogeneous system of linear equations is the zero

vector. Suppose La(x) and Ra(x) are functions corresponding to the solution of the homogeneous system,

because in linear system of equations (85)–(89) the right side has all zeros—coefficient of f(a) in the last

boundary condition is 0 instead of 1. Then, by the exactly the same integration by parts, it follows that

〈ψa, f〉Sob,m = 0 for all f ∈ Cm [0, 1]. Hence ψa(x), La(x) and Ra(x) are zero almost everywhere and thus

by the linear independence of base elements ϕk(x), so we have unique coefficients γk(a).

ii) Producing a representor ψwa
Let’s produce the representor ψwa by setting

ψwa (x) =

q∏

i=1

ψwi
ai

(xi) for all x ∈ Qq, (98)

where ψwi
ai

(xi) is the representor at ai in Hm
(
Q1

)
. We know that Cm is dense in Hm, so it is sufficient to

show the result for f ∈ Cm(Qq). For simplicity let’s suppose Qq ≡ [0, 1]
q
. After rewriting the inner product

and using Fubini theorem we have

〈
ψwa , f〉

Sob,m
=

〈 q∏

i=1

ψwi
ai
, f

〉

Sob,m

=
∑

|α|
∞

≤m

∫

Qq

∂α1ψw1
a1

(x1)

∂xα1
1

· · · ∂
αqψ

wq
aq (xq)

∂x
αq
q

Dαf(x)dx
=

∑

i1,...,iq=0,...,m

∫

Qq

∂i1ψw1
a1

(x1)

∂xi1
1

· · · ∂
iqψ

wq
aq (xq)

∂x
iq
q

∂i1,...,iqf(x)

∂xi1
1 . . . ∂x

iq
q

dx
=

m∑

i1=0

∫ 1

0

∂i1ψw1
a1

(x1)

∂xi1
1

[
· · ·

[
m∑

iq=0

∫ 1

0

∂iqψ
wq
aq (xq)

∂x
iq
q

.
∂i1,...,iqf(x)

∂xi1
1 . . . ∂x

iq
q

dxq

]
. . .

]
dx1.

(99)

According to Definition 1.3 and notation in (7) we can rewrite the centermost bracket

m∑

iq=0

∫ 1

0

∂iqψ
wq
aq (xq)

∂x
iq
q

.
∂i1,...,iqf(x)

∂xi1
1 . . . ∂x

iq
q

dxq =
〈
ψwq

aq
, D(i1,...,iq−1)f(x1, . . . , xi−1, ·)

〉
Sob,m

= D(i1,...,iq−1,wq)f(x−q, aq).

(100)

Chain proceeding in this way we obtain the value for the whole expression to be equal to Dwf(a).

Proof of Theorem 1.3. Existence and uniqueness of coefficients γk(a) has already been proved in the proof

of Theorem 1.2.
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Let’s define

Λ
(l)
a,I :=





L
(l)
a (0), for I = L;

R
(l)
a (1), for I = R;

L
(l)
a (a) −R

(a)
a (a), for I = D.

(101)

From (86)–(89) we easily see

m∑

k=i+1

(−1)k−i−1Λ
(2k−i−1)
a,I = 0, 0 ≤ i ≤ m− 1, I ∈ {L,R,D} , [i, I] 6= [0, D] ; (102)

m∑

k=1

(−1)k−1Λ
(2k−1)
a,D = 1. (103)

If m = 1 it directly follows from (102)–(103):

Λ
(1)
a,I = 0, I ∈ {L,R} , (104)

Λ
(1)
a,D = 1. (105)

If m = 2 it also directly follows from (102)–(103):

Λ
(2)
a,I = 0, ∀I, (106)

Λ
(1)
a,I − Λ

(3)
a,I = 0, I ∈ {L,R} , (107)

Λ
(1)
a,D − Λ

(3)
a,D = 1. (108)

Suppose m ≥ 3. We would like to prove this important step in our proof:

Λ
(m−j)
a,I + (−1)jΛ

(m+j)
a,I = 0, j = 0, . . . ,m− 2, ∀I, (109)

Λ
(1)
a,I + (−1)m−1Λ

(2m−1)
a,I = 0, I ∈ {L,R} , (110)

Λ
(1)
a,D + (−1)m−1Λ

(2m−1)
a,D = 1, (111)

where j := m− i− 1.

For j = 0 is i = m− 1 and from (102)–(103) we have straightforwardly

Λ
(m)
a,I = 0, ∀I, (112)

which is correct according to (109). Consider j = 1 and thus i = m − 2. In the same way we get a
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correspondent result to (109)

Λ
(m−1)
a,I − Λ

(m+1)
a,I = 0, ∀I. (113)

For j = 2 and thus i = m− 3 we have

Λ
(m−2)
a,I − Λ

(m)
a,I + Λ

(m+2)
a,I = 0, ∀I, (114)

so it forces us to apply (112) and for j = 3 and thus i = m− 4 we have

Λ
(m−3)
a,I − Λ

(m−1)
a,I + Λ

(m+1)
a,I − Λ

(m+3)
a,I = 0, ∀I, (115)

so we can apply (113). We could continue in this way finite times (formally we can proceed this by something

like a finite double induction). We finish when j = m− 1. The last step ensures the correctness of (110) in

case I ∈ {L,R}, eventually (111) in case I = D instead of (109).

To finish this proof all we need to do is not to forget to think of (85). From (85) we obtain

Λ
(j)
a,D = 0, j ∈ {0, . . . ,m− 1} . (116)

According to (109) for I = D and (111) we further see:

Λ
(j)
a,D = 0, j ∈ {m+ 1, . . . , 2m− 2} ; (117)

Λ
(2m−1)
a,D = (−1)m−1. (118)

Alltogether we have obtained these 4m linear equations

Λ
(m−j)
a,L + (−1)jΛ

(m+j)
a,L = 0, j = 0, . . . ,m− 1, (119)

Λ
(m−j)
a,R + (−1)jΛ

(m+j)
a,R = 0, j = 0, . . . ,m− 1, (120)

Λ
(j)
a,D = 0, j = 0, . . . , 2m− 2, (121)

Λ
(2m−1)
a,D = (−1)m−1, (122)

which after rewriting them using (101), (96)–(97) and (94a)–(95d) bring us to a close.

Proof of Theorem 1.4. See Yatchew and Bos (1997).
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Proof of Theorem 2.1. Let M = span {ψxi
: i = 1, . . . , n} and its orthogonal complement

M⊥ =
{
h ∈ Hm : 〈ψxi

, h〉Sob,m = 0, i = 1, . . . , n
}
. (123)

Representors exist by Theorem 1.2 and we can write the Pseudo-Sobolev space as a direct sum of its

orthogonal subspaces, i.e.Hm = M ⊕M⊥ since Hm is a Hilbert space. Functions h ∈ M⊥ take on the

value zero at x1, . . . ,xn. Each f ∈ Hm can be written in form

f =

n∑

j=1

cjψxj
+ h, h ∈M⊥. (124)

Then

[Y − f(x)]⊤ Σ−1 [Y − f (x)] + χ ‖f‖2
Sob,m

=


Y• −

〈
ψx•

,

n∑

j=1

cjψxj
+ h

〉

Sob,m



⊤

Σ−1


Y• −

〈
ψx•

,

n∑

j=1

cjψxj
+ h

〉

Sob,m


 + χ

∥∥∥∥∥∥

n∑

j=1

cjψxj
+ h

∥∥∥∥∥∥

2

Sob,m

=


Y• −

n∑

j=1

〈
ψx•

, cjψxj

〉
Sob,m



⊤

Σ−1


Y• −

n∑

j=1

〈
ψx•

, cjψxj

〉
Sob,m


 + χ

∥∥∥∥∥∥

n∑

j=1

cjψxj

∥∥∥∥∥∥

2

Sob,m

+ χ ‖h‖2
Sob,m

=


Y• −

n∑

j=1

cj
〈
ψx•

, ψxj

〉
Sob,m



⊤

Σ−1


Y• −

n∑

j=1

cj
〈
ψx•

, ψxj

〉
Sob,m




+ χ

〈
n∑

j=1

cjψxj
,

n∑

j=1

cjψxj

〉

Sob,m

+ χ ‖h‖2
Sob,m

=


Y• −

n∑

j=1

Ψ•,jcj



⊤

Σ−1


Y• −

n∑

j=1

Ψ•,jcj


 + χ

n∑

j=1

n∑

k=1

cj
〈
ψxj

, ψxk

〉
Sob,m

ck + χ ‖h‖2
Sob,m

= [Y − Ψ]⊤ Σ−1 [Y − Ψ] + χ⊤Ψ+ χ ‖h‖2
Sob,m

(125)

where for an arbitrary g ∈ Hm

〈ψx•
, g〉Sob,m =

(
〈ψx1 , g〉Sob,m , . . . , 〈ψxn

, g〉Sob,m

)⊤

. (126)

Hence, there exists a function f∗ minimizing the infinite dimensional optimizing problem that is a linear

combination of the representors. We note also that ‖f∗‖2
Sob,m = ⊤Ψ.

Uniqueness is clear, since ψxi
are the base elements of M , and adding a function that is orthogonal to

the spaces spanned by the representors will increase the norm.
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Proof of Corollary 2.2. Trivial. It can be directly seen from the definition of form (79) of the representor

and from (24).

Proof of Lemma 2.3. Trivial. The representor matrix is symmetric by Definition 2.3, because

Ψi,j =
〈
ψxi

, ψxj

〉
Sob,m

=
〈
ψxj

, ψxi

〉
Sob,m

= Ψj,i, (127)

i.e.Ψ = Ψ⊤.

Proof of Theorem 2.4. We proceed this proof only for one dimensional variable x. Extention into the multi-

variable case is clearly simple (see Remark 2.1). For an arbitrary  ∈ R
n we obtain⊤Ψ =

∑

i

ci
∑

j

Ψijcj =
∑

i

∑

j

ci
〈
ψxi

, ψxj

〉
Sob,m

cj =
∑

i

∑

j

〈
ciψxi

, cjψxj

〉
Sob,m

=

〈∑

i

ciψxi
,
∑

j

cjψxj

〉

Sob,m

=

∥∥∥∥∥
∑

i

ciψxi

∥∥∥∥∥

2

Sob,m

≥ 0.

(128)

Hence ⊤Ψ = 0 iff
∑

i ciψxi
= 0 a.e. According to (96)–(97), (94a)–(95d) and (16) we have2

ψxi
(x) = γ(xi)

⊤ϕ(x) = (−1)m−1
[
{Γ(xi)}−1

]⊤
•,4m

ϕ(x) (129)

where ϕ(x) is vector which elements are linear independent base elements of space of the differential equa-

tion’s (84) solutions, i.e.ϕk(x) (see (94a)–(95d)). Thus linear independence of ϕk(x) it follows that

∑

i

ciψxi
= (−1)m−1

∑

i

ci

[
{Γ(xi)}−1

]⊤
•,4m

ϕ

= (−1)m−1
∑

i

∑

k

ci

[
{Γ(xi)}−1

]
4m,k

ϕk = 0 a.e. (130)

m

ϕk = 0 a.e. k ∈ {0, 1, . . . , 2m+ 1} \





{
m
2 ,

3m+2
2

}
m even,

{
m+1

2 , 3m+3
2

}
m odd;

(131)

⇓

ψxi
= 0 a.e. i = 1, . . . , n. (132)

2If x > xi then γ(xi) = (γ0, . . . , γκ−1, γκ+1, . . . , γm+κ, γm+2+κ, . . . , γ2m+1)⊤ (xi) else γ(xi) =

(γ2m+2, . . . , γ2m+1+κ, γ2m+3+κ, . . . , γ3m+2+κ, γ3m+4+κ, . . . , γ4m+3)⊤ (xi). Similarly with elements of vector
h

{Γ(xi)}
−1

i

•,4m
.
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And ψxi
= 0 a.e. is a zero element of the space Hm.

Proof of Theorem 2.5. According to the Theorem 2.1, we want to find the minimum of function

L() :=
1

n
[Y − Ψ]⊤ Σ−1 [Y − Ψ] + χ⊤Ψ. (133)

Therefore the first partial derivatives of L() have to be equal zero at the minimum point ̂:
∂

∂ci
L() !

= 0, i = 1, . . . , n. (134)

If Σ−1 =: (φij)
n,n
i,j=1, we have

nL() = Y⊤Σ−1Y − 2Y⊤Σ−1Ψ+ ⊤ΨΣ−1Ψ+ nχ⊤Ψ
=

n∑

r=1

n∑

s=1

YrφrsYs − 2

n∑

r=1

n∑

s=1

n∑

t=1

YrφrsΨstct +

n∑

r=1

n∑

s=1

n∑

t=1

n∑

u=1

crΨrsφstΦtucu + nχ

n∑

r=1

n∑

s=1

crΨrscs

(135)

hence

0
!
= −2

n∑

r=1

n∑

s=1

YrφrsΨsi + 2

n∑

r=1
r 6=i

n∑

s=1

n∑

t=1

crΨrsφstΦti + 2

n∑

r=1

n∑

s=1

ciΨisφstΦti + 2nχ

n∑

r=1
r 6=i

crΨri + 2nχciΨii

= −2Y⊤Σ−1Ψ•,i + 2⊤ΨΣ−1Ψ•,i + 2nχ⊤Ψ•,i, i = 1, . . . , n.

(136)

Then we obtain our system of “normal” equations⊤ (
ΨΣ−1Ψ•,i + nχΨ•,i

)
= Y⊤Σ−1Ψ•,i, i = 1, . . . , n. (137)

Proof of Theorem 2.6. The solution of (32) always exists and is unique according to the proof of Theorem 2.1.

From the same proof of Theorem 2.1 follows that finding f∗—optimizing (32)—is the same as searching

optimal ∗ such that ∗ = arg min∈Rn

1

n
[y − Ψ]⊤ Σ−1 [y − Ψ] s.t. ⊤Ψ ≤ L (138)

and again from the proof of Theorem 2.1 the existence and the uniqueness of ∗ is guaranteed. Let’s fix L.
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If ∗⊤Ψ∗ = L, we can simply apply Lagrange Multiplier Theorem on our bond condition ⊤Ψ = L using

the Lagrange function

J (, λ) =
1

n
[y− Ψ]⊤ Σ−1 [y − Ψ] + λ

(⊤Ψ− L
)

(139)

and it provides us a unique Lagrange multiplier χ. We do not care about −χL because it does not depend

on .
Quadratic form J (·, λ) have to be positive definite according Lagrange Multiplier Theorem (we are

minimizing J ). That implies χ > 0.

If ∗⊤Ψ∗ < L, we just set χ = 0 and we are done.

Proof of Theorem 2.7. Trivial. Just apply Lagrange Multiplier Theorem.

Proof of Theorem 2.8. Let’s have fixed χ > 0. Hence we have obtained unique f̂ and also ̂ according to

Theorem 2.1. Theorems 2.1 and 2.7 say that there esists a unique L > 0 such that ̂ is also a unique solution

of optimizing problem ̂ = arg min∈Rn

1

n
[Y − Ψ]⊤ Σ−1 [Y − Ψ] s.t. ⊤Ψ = L. (140)

Let’s define

f̃(x) := Ξf(x), (141)Ỹ := ΞY, (142)

̂̃ := arg min
e∈Rn

1

n

[Ỹ − Ψ̃]⊤ Σ−1
[Ỹ − Ψ̃] s.t. ̃⊤ΨΞ−1Ψ−1Ξ−1Ψ̃ ≤ L. (143)

We can easily find out that

̂̃ = Ψ−1ΞΨ̂ (144)

and hence

̂̃
f(x) = Ξ̂̃. (145)

Finally, there must exists L̃ > 0 such that

̂̃ = arg min
e∈Rn

1

n

[Ỹ − Ψ̃]⊤ Σ−1
[Ỹ − Ψ̃] s.t. ̃⊤Ψ̃ = L̃ (146)
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and hence this exactly same ̂̃ have to be a unique solution of optimizing problem

̂̃ = arg min
e∈Rn

1

n

[Ỹ − Ψ̃]⊤ Σ−1
[Ỹ − Ψ̃] s.t. ̃⊤Ψ̃ ≤ L̃ (147)

because Ψ is positive definite matrix (̃⊤Ψ̃ is the volume of n-dimensional ellipsoid).

Now we think of model

Ỹi = f̃(xi) + ε̃i, ε̃i ∼ i.i.d., i = 1, . . . , n (148)

with least-squares estimator
̂̃
f . Using Kolmogorov-Tihomirov Theorem A.3 it can be shown that exists

A > 0 such that for δ > 0, we have logN(δ; F ) < Aδ−q/m. Consequently applying Lemma 3.5 from de Geer

(1990), we obtain that there exist positive constants C0,K0 such that for all K > K0

P


 sup
‖g‖2

Sob,m≤eL

√
n

∣∣∣− 2
n

∑n
i=1 ε̃i

(
f̃(xi) − g(xi)

)∣∣∣
(

1
n

∑n
i=1

(
f̃(xi) − g(xi)

)2
) 1

2−
q

4m

≥ KA1/2


 ≤ exp

{
−C0K

2
}
. (149)

Since f̃ ∈ F̃ =
{
g ∈ Hm(Qq) : ‖g‖2

Sob,m ≤ L̃
}

and
̂̃
f minimizes the sum of squared residuals over g ∈ F̃ ,

1

n

n∑

i=1

[
Ỹi − ̂̃

f(xi)

]2

≤ 1

n

n∑

i=1

[
Ỹi − g(xi)

]2

, g ∈ F̃ (150)

1

n

n∑

i=1

[(
f̃(xi) − ̂̃

f(xi)

)
+ ε̃i

]2

≤ 1

n

n∑

i=1

[(
f̃(xi) − g(xi)

)
+ ε̃i

]2

, g ∈ F̃

⇓ realize that f̃ ∈ F̃

1

n

n∑

i=1

(
f̃(xi) − ̂̃

f(xi)

)2

≤ − 2

n

n∑

i=1

ε̃i

(
f̃(xi) − ̂̃

f(xi)

)
. (151)

Now combine (149) and (151) to obtain the result that ∀K > K0

P

[
1

n

n∑

i=1

(
f̃(xi) − ̂̃

f(xi)

)2

≥
(
K2A

n

) 2m
2m+q

]
≤ exp

{
−C0K

2
}
. (152)

Thus

1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
=

1

n

n∑

i=1

(
f̃(xi) − ̂̃

f(xi)

)2

= OP

(
n− 2m

2m+q

)
, n→ ∞. (153)
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Proof of Lemma A.6. Reduction ad proof. Suppose that

∃ǫ > 0 ∀n0 ∈ N ∃n ≥ n0 ∃x ∈ [a, b] fn(x) ≥ ǫ. (154)

Then according to Lipschitz property of each fn ≥ 0 we have for fixed ǫ, n0, n and x ∈ [a, b] (drawing a

picture could be helpful)

‖fn‖L1[a,b] =

∫ b

a

fn(t)dt

≥ min

{
fn(x)

2
(x− a) +

fn(x)

2
(b− x),

fn(x)

2
(x− a) +

fn(x)

2

fn(x)

T
,

fn(x)

2

fn(x)

T
+
fn(x)

2
(b− x),

fn(x)

2

fn(x)

T
+
fn(x)

2

fn(x)

T

}

≥ min

{
ǫ

2
(b− a),

ǫ

2
(x− a) +

ǫ2

2T
,
ǫ2

2T
+
ǫ

2
(b − x),

ǫ2

T

}
=: K > 0.

(155)

But K is a positive constant which does not depend on n. Hence this is an absurdum because it should hold

(according to the assumption of this lemma)

∀δ > 0 ∃n1 ∈ N ∀n ≥ n1 ‖fn‖L1[a,b] < δ. (156)

Proof of Theorem 3.1. We divide the proof into two steps.

i) s = 0

The covariance matrix Σ is symmetric and positive definite with equibounded eigenvalues for all n. Hence

it can be decomposed using Schur decomposition (Theorem A.4)

Σ = ΓΥΓ⊤ (157)

where Γ is orthogonal, Υ is diagonal (with eigenvalues on this diagonal) such that

0 < Υii ≤ ϑ i = 1, . . . , n, ∀n. (158)

Hence

Σ−1 = Γdiag
{
Υ−1

1 , . . . ,Υ−1
n

}
Γ⊤. (159)
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Then

1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
≥ 1

n

[
f̂(x) − f(x)

]⊤
Γϑ−1IΓ⊤

[
f̂ (x) − f(x)

]
=

1

nϑ

n∑

i=1

[
f̂(xi) − f(xi)

]2

(160)

Let’s define hn :=
∣∣f̂ − f

∣∣. We know
∥∥f̂

∥∥2

Sob,m
≤ L for all n and

∥∥f
∥∥2

Sob,m
≤ L. For every function

t ∈ Hm[a, b] with
∥∥t

∥∥2

Sob,m
≤ L holds

‖t′‖L2[a,b] ≤ ‖t‖Sob,1 ≤ ‖t‖Sob,m ≤
√
L. (161)

Then t has equibounded derivative and hence there exists a Lipschitz constant T > 0 such that

|t(ξ) − t(ζ)| < T |ξ − ζ| , ξ, ζ ∈ [a, b]. (162)

We easily see

|hn(ξ) − hn(ζ)|
|ξ − ζ| =

∣∣∣
∣∣f̂(ξ) − f(ξ)

∣∣ −
∣∣f̂(ζ) − f(ζ)

∣∣
∣∣∣

|ξ − ζ| ≤

∣∣∣
[
f̂(ξ) − f(ξ)

]
−

[
f̂(ζ) − f(ζ)

]∣∣∣
|ξ − ζ|

≤
∣∣f̂(ξ) − f̂(ζ)

∣∣ +
∣∣f(ξ) − f(ζ)

∣∣
|ξ − ζ| < 2T, ξ, ζ ∈ [a, b].

(163)

Since hn is T -Lipschitz function for all n and

‖hn‖L2[a,b] =
∥∥f̂ − f

∥∥
L2[a,b]

≤
∥∥f̂ − f

∥∥
Sob,1

≤
∥∥f̂ − f

∥∥
Sob,m

≤
∥∥f̂

∥∥
Sob,m

+
∥∥f

∥∥
Sob,m

≤ 2
√
L, ∀n, (164)

we obtain that hn is equibounded for all n with a positive constant M such that

‖hn‖∞,[a,b] ≤M > 0, ∀n. (165)

Hence h2
n is also a Lipschitz function for all n, because for ξ, ζ ∈ [a, b]

∣∣h2
n(ξ) − h2

n(ζ)
∣∣

|ξ − ζ| =
|hn(ξ) − hn(ζ)|

|ξ − ζ| [hn(ξ) + hn(ζ)] ≤ T × 2 ‖hn‖∞,[a,b] = 2MT =: U > 0, ∀n. (166)

Since h2
n is U -Lipschitz function for all n and design points (xi)

n
i=1 are equidistantly distributed on [a, b],
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we can write (drawing a picture could be helpful)

∫ b

a

h2
n(u)du ≤

n−1∑

i=1

xi+1 − xi

2

{
h2

n(xi) +
[
h2

n(xi) + U(xi+1 − xi)
]}

≤ 1

2n

[
2

n−1∑

i=1

h2
n(xi) + U(b− a)

]

≤ 1

n

n∑

i=1

h2
n(xi) +

U(b− a)

2n
.

(167)

According to Theorem 2.8

∀ǫ > 0 P

{
1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
> ǫ

}
−−−−→
n→∞

0, (168)

so it means

∀ǫ > 0 ∀δ > 0 ∃n0 ∈ N ∀n ≥ n0 P

{
1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
> ǫ

}
< δ. (169)

Let’s fix an arbitrary ǫ > 0 and δ > 0. Hence fix

n0 :=

⌈
U

ǫ2

⌉
(170)

and for all n ≥ n0 we can write

δ > P

{
1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
>
ǫ2(b− a)

2ϑ

}
by (169)

≥ P

{
1

n

n∑

i=1

[
f̂(xi) − f(xi)

]2

>
ǫ2(b− a)

2

}
by (160)

≥ P




‖hn‖2

L2[a,b] >
ǫ2(b − a)

2
+
U(b− a)

2n︸ ︷︷ ︸
ǫ̃





by (167)

≥ P

{
‖hn‖L1[a,b] >

√
ǫ̃

‖1‖L2[a,b]

}
by Cauchy-Schwarz A.5

≥ P

{
‖hn‖L1[a,b] > ǫ

}
by (170). (171)

Thus

‖hn‖L1[a,b]
P−−−−→

n→∞
0. (172)

According to Lemma A.6 and the fact that the almost sure convergence implies convergence in probability,
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we have

sup
x∈[a,b]

∣∣∣f̂(x) − f(x)
∣∣∣ P−−−−→

n→∞
0. (173)

ii) s ≥ 1

If m = 2, we are done. Let gn := f̂ − f . According to the assumptions of our model, gn ∈ Hm[a, b].

By Theorem 1.4 (Embedding), all the functions in the estimating set have derivatives up to order m − 1

uniformly bounded in supnorm. Then all the g′′n are also bounded in supnorm (m ≥ 3) and that implies the

uniform boundedness of g′′n:

∃M > 0 ∀n ∈ N ‖g′′n‖∞,[a,b] < M. (174)

Let’s have fixed M > 0. For any fixed ǫ > 0, define ǫ̃ := Mǫ and there exists n0 ∈ N, such that ∀n ≥ n0 :

[cn, dn] ⊂ [a, b] and

g′n(cn) = g′n(dn) = ǫ̃ & g′n(ξ) > ǫ̃, ξ ∈ (cn, dn) (175)

because g′n is continuous on [cn, dn] (drawing a picture is helpful). If there does not exist such [cn, dn], we

are done.

Figure 6: Uniform convergence of g′n.

Otherwise there exists n1 ≥ n0 such that ∀n ≥ n1 holds:

|ǫ̃(dn − cn)| ≤
∣∣∣∣∣

∫ dn

cn

g′n(ξ)dξ

∣∣∣∣∣ = |gn(dn) − gn(cn)| ≤ 2ǫ2 (176)

because gn
n→∞−−−−→ 0 uniformly in supnorm on interval [a, b]. Hence

|dn − cn| ≤
2ǫ

M
. (177)
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Uniform boundedness of g′′n implies Lipschitz property (see Figure 6):

|g′n(x)| ≤
∣∣∣∣ǫ̃+M

dn − cn

2

∣∣∣∣ ≤Mǫ+M
ǫ

M
≤ ǫ(M + 1). (178)

We could continue in this way finitely times (formally we can proceed this by something like a finite in-

duction). In fact, if (m − 1)-th derivatives are uniformly bounded (gn ∈ Hm[a, b]), then this ensures that

f̂ (s) for s ≤ m − 2 converges in supnorm. Finally, we have to realize that convergence almost sure implies

convergence in probability and each convergent sequence in probability has a convergent subsequence that

converges almost sure.

Proof of Theorem 3.2. The proof is very similar to the proof of Infinite to Finite Theorem 2.1. We use the

same argumentation. Each f, g ∈ Hm can be written in form

f =
∑

{i |ni≥1}

ciψxi
+ hf , hf ∈ {span {ψxi

: ni ≥ 1}}⊥ , (179)

g =
∑

{j |mj≥1}

djφxj
+ hg, hg ∈

{
span

{
φxj

: mj ≥ 1
}}⊥

. (180)

For 1 ≤ ι ≤ n, we easily note that






YZ 

 −




∆ 0

0 Θ







f (xα)

g (xβ)







ι

= Yι −





∑

{i |ni≥1}

∆ιif(xi) +
∑

{i |mi≥1}

Θιig(xi)





= Yι −
∑

{i |ni≥1}

∆ιi

〈
ψxi

,
∑

{j |nj≥1}

cjψxj
+ hf

〉

Sob,m

−
∑

{i |mi≥1}

Θιi

〈
φxi

,
∑

{j |mj≥1}

djφxj
+ hg

〉

Sob,m

= Yι −
∑

{i |ni≥1}

∆ιi

∑

{j |nj≥1}

Ψijcj −
∑

{i |mi≥1}

Θιi

∑

{j |mj≥1}

Φijdj

=






YZ 

 −




∆ 0

0 Θ







Ψ 0

0 Φ







d 





ι

.

(181)

Analogically for n < ι ≤ n+m.
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Finally, we have only to rewrite the constraints using (9) from Theorem 1.2:

f ′(xι) =

〈
ψxι

,
∑

{i |ni≥1}

ciψ
′
xi

+ hf

〉

Sob,m

=
[
Ψ(1)]

ι
∀ι : nι ≥ 1. (182)

We analogically obtain

g′(xι) =
[
Φ(1)d]

ι
∀ι : mι ≥ 1, (183)

f ′′(xι) =
[
Ψ(2)]

ι
∀ι : nι ≥ 1, (184)

g′′(xι) =
[
Φ(2)d]

ι
∀ι : mι ≥ 1. (185)
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