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Integral options in models with jumps∗

PavelV. Gapeev

Dedicated to the memory of Heiner Zieschang.

We present an explicit solution to the formulated in [17] optimal stop-
ping problem for a geometric compound Poisson process with exponential
jumps. The method of proof is based on reducing the initial problem to
an integro-differential free-boundary problem where the smooth fit may
break down and then be replaced by the continuous fit. The result can be
interpreted as pricing perpetual integral options in a model with jumps.

1. Introduction

The main aim of this paper is to present an explicit solution to the optimal stopping problem
(2.3) for the process S defined in (2.1)-(2.2). This problem is related to the option pricing theory
in mathematical insurance, where the process S can describe the risk process of an insurance
company (see, e.g., [12] and [30; Chapter I, Section 3c]). In that case, the value (2.3) can be
formally interpreted as a fair price of a perpetual integral option of American type in a jump
market model.

It is known that the change-of-measure theorem allows to reduce the dimension of optimal
stopping problems and thereby helps to derive explicit solutions in some particular cases. In
the article [27], by means of introducing the so-called dual martingale measure, the Russian
option problem was reduced to an optimal stopping problem for a one-dimensional Markov
reflected diffusion process. By using similar arguments, the perpetual integral option problem
in [17] and the early exercise Asian option problem in [26] were reduced to optimal stopping
problems for the one-dimensional Markov process called Shiryaev’s process, which appears by
solving ’disorder’ problems (see, e.g., [28]-[29], [14], [22] or [9]). These problems were solved
by reducing them to the corresponding free-boundary problems for differential operators and
applying the smooth-fit condition. Following the same methodology, in the present paper we
solve the problem (2.3) being a discounted optimal stopping problem for an integral of a jump
process under some relationships on the parameters of the process S defined in (2.1)-(2.2).
We consider the both cases when the process S can have positive or negative jumps, and
aiming at closed form expressions, we let the jumps be exponentially distributed. Some other
optimal stopping problems for jump processes related to financial and insurance mathematics
were earlier considered in the articles [10], [19]-[21], [15]-[16], [3]-[4], and [7]-[8].

∗This research was supported by Deutsche Forschungsgemeinschaft through the SFB 649 Economic Risk.
Mathematics Subject Classification 2000. Primary 60G40, 34K10, 91B70. Secondary 60J60, 60J75, 91B28.
Key words and phrases: Jump process, stochastic differential equation, optimal stopping problem, integral

American option, compound Poisson process, Shiryaev’s process, Girsanov’s theorem, Itô’s formula, integro-
differential free-boundary problem, smooth and continuous fit, hypergeometric functions.
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The paper is organized as follows. In Section 2, using change-of-measure arguments, for
the initial problem (2.3) we construct the equivalent optimal stopping problem (2.10), where
the process X defined in (2.7) is an analogue of Shiryaev’s process for the jump model (2.1)-
(2.2). Analyzing the sample-path behavior of the process X , we give expressions for the
optimal stopping boundary under some relationships on the parameters of the model. In
Section 3, we formulate the corresponding integro-differential free-boundary problem for the
infinitesimal operator of the process X and derive the solution, which is expressed by Gauss’
and Kummer’s hypergeometric functions and thus admits a representation in closed form. In
Section 4, we verify that the solution of the free-boundary problem turns out to be a solution of
the initial optimal stopping problem and comment the structure of the solution under different
relationships on the parameters of the model.

2. Formulation of the problem

In this section we introduce the setting and notation of the optimal stopping problem which
is related to the pricing integral option.

2.1. For a precise formulation of the problem let us consider a probability space (Ω,F , P )
with a jump process J = (Jt)t≥0 defined by Jt =

∑Nt

i=1 Yi , where N = (Nt)t≥0 is a Poisson
process of the intensity λ > 0, and (Yi)i∈N is a sequence of independent random variables
exponentially distributed with parameter 1 (N and (Yi)i∈N are supposed to be independent). It
is assumed that the risk process of an insurance company is described by the process S = (St)t≥0

defined by:

St = s exp
((

r − λθ/(1− θ)
)
t + θ Jt

)
(2.1)

and hence solving the stochastic differential equation:

dSt = rSt− dt + St−

∫ ∞

0

(
eθy − 1

)
(µ(dt, dy)− ν(dt, dy)) (S0 = s) (2.2)

where µ(dt, dy) is the measure of jumps of the process J with the compensator ν(dt, dy) =
λdtI(y > 0)e−ydy , and s > 0 is given and fixed. We recall that here r > 0 is the interest
rate of a banking account and θ < 1, θ 6= 0 is the volatility coefficient of the jump part of the
process S . Note that the assumption θ < 1 guarantees that the jumps of S are integrable and
that is not a restriction. The main purpose of the present paper is to find an explicit solution
to the integral option problem which consists of computing the value:

V∗ = sup
τ

E

[
e−(r+δ)τ

( ∫ τ

0

Su du + x
)]

(2.3)

for some δ > 0 and x ≥ 0 given and fixed, where the supremum is taken over all finite stopping
times τ of the process S (i.e., stopping times with respect to (FS

t )t≥0 denoting the natural
filtration of S : FS

t = σ{Su | 0 ≤ u ≤ t} , t ≥ 0), as well as to determine the finite stopping
time τ∗ at which the supremum in (2.3) is attained. From the structure of the reward in (2.3)
it follows that without loss of generality we can further assume that s = 1. Since the initial
measure P is a martingale measure for the given jump model (see, e.g., [30; Chapter VII,
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Section 3g]), the value (2.3) may be interpreted as a rational (fair) price of the integral option
in the given model. For the case when S was a geometric Brownian motion the problem (2.3)
was formulated and explicitly solved in the paper [17].

2.2. By means of the same arguments as in [31; Section 7], [27; Section 2] and [17; Section 1],

it can be shown that there exists a measure P̃ being locally equivalent to P with respect to
the filtration (FS

t )t≥0 and such that its density process is given by:

dP̃ |FS
t

dP |FS
t

= exp
(
θ Jt −

(
λθ/(1− θ)

)
t
)

(2.4)

for all t ≥ 0. In this case, by virtue of Girsanov’s theorem for semimartingales (see e.g. [13;
Chapter III, Theorem 5.34] or [18; Chapter IV, Theorem 5.3]), we may conclude that the process

J = (Jt)t≥0 has the compensator ν̃(dt, dy) = λdtI(y > 0)e−(1−θ)ydy under the measure P̃ .
Observe that, by using the explicit expression (2.1) as well as the assumption s = 1, from

(2.4) we obtain:

dP̃ |FS
τ

dP |FS
τ

= e−rτ Sτ (2.5)

for all finite stopping times τ of S . It therefore follows that the value (2.3) takes the form:

V∗ = sup
τ

Ẽ
[
e−δτ Xτ

]
(2.6)

where the process X = (Xt)t≥0 is given by:

Xt =
1

St

( ∫ t

0

Su du + x
)

(2.7)

and hence, by virtue of Itô’s formula for semimartingales (see e.g. [13; Chapter I, Theorem 4.57]
or [18; Chapter II, Theorem 6.1]), it solves the stochastic differential equation:

dXt = (1− rXt−) dt−Xt−

∫ ∞

0

(
1− e−θy

)
(µ(dt, dy)− ν̃(dt, dy)) (X0 = x) (2.8)

with ν̃(dt, dy) defined above. It can be easily verified that X is a time-homogeneous (strong)

Markov process under P̃ with respect to its natural filtration which clearly coincides with
(FS

t )t≥0 . Therefore, the supremum in (2.6) can equivalently be taken over all finite stopping
times of the process X playing the role of sufficient statistic in the given optimal stopping
problem. We also note that if θ < 1, θ 6= 0 and, in addition, 0 < λθ/(1− θ) < r holds, then

B̂ = 1
/(

r − λθ

1− θ

)
(2.9)

turns out to be a singularity point of equation (2.8) in the sense that the drift rate of the

continuous part of the process X is positive on the interval [0, B̂), negative on (B̂,∞), and

equal to zero at the point B̂ .
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2.3. In order to solve the problem (2.6), let us consider the following optimal stopping
problem for the Markov process X given by:

V∗(x) = sup
τ

Ẽx

[
e−ρτ Xτ

]
(2.10)

where P̃x is a probability measure under which the process X defined in (2.7)-(2.8) starts at
x ≥ 0, and the supremum in (2.10) is taken over all finite stopping times τ of X . We will
search for an optimal stopping time in the problem (2.10) of the following form:

τ∗ = inf{t ≥ 0 |Xt ≥ B∗} (2.11)

where B∗ is the smallest number from x ≥ 0 such that V∗(x) = x . The point B∗ is called an
optimal stopping boundary. Observe that, by applying Itô’s formula to e−δtXt and by using the
equation (2.8), it follows that:

e−δtXt = x +

∫ t

0

e−δu (1− (r + δ)Xu−) du + Ñt (2.12)

where (Ñt)t≥0 is a martingale under the measure P̃x with respect to (FS
t )t≥0 . Hence, by the

optional sampling theorem (see, e.g., [13; Chapter I, Theorem 1.39]), from (2.12) together with

(2.8) we obtain that Ẽx[Ñτ ] = 0, and thus the equality:

Ẽx

[
e−δτXτ

]
= x + Ẽx

[∫ τ

0

e−δu (1− (r + δ)Xu−) du

]
(2.13)

holds for any finite stopping time τ . It is seen from (2.13) that one should not stop the process
X in the interval [0, B) with

B =
1

r + δ
(2.14)

being a lower estimation for the optimal stopping boundary B∗ in the sense that 0 < B ≤ B∗ .

2.4. By using the schema of arguments from [24] and [7] and by analyzing the sample path
behavior of the process X , let us now make some conclusions on the optimal stopping boundary
B∗ under several relationships on the parameters of the model.

Remark 2.1. Observe that if θ < 0 then the process X can have only positive jumps, it
can leave [0, B̂) only by jumping and fluctuating in (B̂,∞) cannot enter [0, B̂). If X gets into

B̂ , then it is trapped there until the next jump of J occurs. Moreover, if X is located in [0, B̂)

or in (B̂,∞), then under the absence of jumps of J the process X will never reach B̂ , because

while it approaches to B̂ its local drift decreases to zero at the same time with linear order.
Hence, if 0 < −λθ/(1− θ) ≤ δ also holds, then we have B ≤ B̂ . Recalling that the process X

is monotone increasing on [0, B̂), from the representation (2.13) together with (2.14) we may
therefore conclude that one should not stop X on [0, B), but one should stop it immediately
after passing through B , because after leaving [0, B) the process X never returns back. In
other words, in this case for the optimal stopping boundary we have B∗ = B .

Remark 2.2. Note that if 0 < θ < 1 and the condition 0 < λθ/(1 − θ) < r holds, then

the process X can have only negative jumps, it is monotone decreasing on (B̂,∞), and by
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virtue of the structure of the value function (2.10), it follows that one should not stop X on

(B̂,∞). From the expression (2.13) it therefore follows that for the boundary B∗ we should

have B ≤ B∗ < B̂ , because otherwise it would not be optimal.

3. Solution of the free-boundary problem

In this section we derive a solution of the free-boundary problem associated with the initial
optimal stopping problem.

3.1. By means of standard arguments it is shown that the infinitesimal operator L of the
process X = (Xt)t≥0 acts on an arbitrary function F from the class C1 on [0,∞) according
to the rule:

(LF )(x) = (1− (r + ζ)x)F ′(x) +

∫ ∞

0

(
F

(
xe−θy

)− F (x)
)

λe−(1−θ)y dy (3.1)

for all x ≥ 0 with ζ = −λθ/(1− θ). In order to find explicit expressions for the unknown value
function V∗(x) from (2.10) and the boundary B∗ from (2.11), using results of the general theory
of optimal stopping problems for Markov processes (see, e.g., [11], [29; Chapter III, Section 8]
and [25]), we can formulate the following integro-differential free-boundary problem:

(LV )(x) = δV (x) for 0 < x < B (3.2)

V (B−) = B (continuous fit) (3.3)

V (x) = x for x > B (3.4)

V (x) > x for 0 ≤ x < B (3.5)

for some B ≥ B , where (3.3) plays the role of instantaneous-stopping condition. Note that by
virtue of the superharmonic characterization of the value function (see [6] and [29]) it follows
that V∗(x) is the smallest function satisfying the conditions (3.2)-(3.5). Moreover, we further
assume that the condition:

V ′(B−) = 1 (smooth fit) if 0 < θ < 1 and r + ζ ≥ 0 (3.6)

is satisfied for B ≥ B with ζ = −λθ/(1 − θ). The latter can be explained by the fact
that according to Remark 2.2, leaving the continuation region [0, B∗) the process X can pass
through the boundary B∗ continuously. This property was earlier observed and explained in
[23; Section 2] and [24] by solving some other optimal stopping problems for jump processes
(see also [2] for necessary and sufficient conditions for the occurrence of smooth-fit condition
and references to the related literature and [25] for an extensive overview).

3.2. By means of straightforward calculations we reduce the equation (3.2) to the form:

(1− (r + ζ)x)V ′(x) + (1− α)λxαG(x) =

(
δ − λ(1− α)

α

)
V (x) (3.7)
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with α = 1 − 1/θ and ζ = −λθ/(1 − θ), where taking into account conditions (3.3)-(3.4) we
set:

G(x) =−
∫ B

x

V (z)
dz

zα+1
+

B1−α

1− α
if α = 1− 1/θ > 1 (3.8)

G(x) =

∫ x

0

V (z)
dz

zα+1
if α = 1− 1/θ < 0 (3.9)

for all 0 < x < B . Then, from (3.7) and (3.8)-(3.9) it follows that the function G(x) solves
the following (second-order) ordinary differential equation:

x(1− (r + ζ)x)G′′(x) (3.10)

+

[
(α + 1)(1− (r + ζ)x)−

(
δ − λ(1− α)

α

)
x

]
G′(ψ) + (1− α)λG(x) = 0

for 0 < x < B . Observe that equation (3.7) as well as (3.10) has the singularity point

B̂ ≡ 1/(r + ζ) whenever r + ζ > 0.

3.3. Let us now assume that r + ζ > 0 with ζ = −λθ/(1− θ) holds. In this case, (3.10) is
a Gauss’ hypergeometric equation, which has the general solution:

G(x) = C1 A1(x) + C2 x−α A2(x) (3.11)

where C1 and C2 are some arbitrary constants and the functions A1(x) and A2(x) are defined
by:

A1(x) = F
(
γ1, γ2; α + 1; (r + ζ)x

)
(3.12)

A2(x) = F
(
γ1 − α, γ2 − α; 1− α; (r + ζ)x

)
(3.13)

for 0 ≤ x < B̂ , and γi is given by:

γi =

(
α(δ + λ)− 1

2α(r + ζ)
+

α

2

)
+ (−1)i

√(
α(δ + λ)− 1

2α(r + ζ)
+

α

2

)2

+
λ(1− α)

r + ζ
(3.14)

with α = 1 − 1/θ and ζ = −λθ/(1 − θ) for i = 1, 2. Here F (a, b; c; x) denotes Gauss’
hypergeometric function, which admits the integral representation:

F (a, b; c; x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tx)−a dt (3.15)

for c > b > 0 and has the series expansion:

F (a, b; c; x) = 1 +
∞∑

k=1

(a)k(b)k

(c)k

xk

k!
(3.16)

for c 6= 0,−1,−2, . . . and (c)k = c(c + 1) · · · (c + k − 1), k ∈ N , where Γ denotes Euler’s
Gamma function and the series converges under all |x| < 1 (see, e.g., [1; Chapter XV] and [5;
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Chapter II]). Therefore, differentiating both sides of the formulas (3.8)-(3.9), by using (3.11)
we obtain that in this case the integro-differential equation (3.7) has the general solution:

V (x) = C1 xα+1 A′
1(x) + C2 [x A′

2(x)− α A2(x)] (3.17)

for 0 ≤ x < B̂ . Hence, applying conditions (3.8), (3.3) and (3.6) to the functions (3.11) and
(3.17), respectively, we get that the following equalities:

C1 Bα A1(B) + C2 A2(B) =
B

1− α
(3.18)

C1 Bα+1 A′
1(B) + C2 [B A′

2(B)− α A2(B)] = B (3.19)

C1 Bα [B A′′
1(B) + (α + 1) A′

1(B)] + C2 [B A′′
2(B) + (1− α) A′

2(B)] = 1 (3.20)

hold for some B ≥ B , where condition (3.20) is satisfied when α = 1− 1/θ < 0.
Note that if, in addition, α = 1− 1/θ > 1 and 0 < −λθ/(1− θ) ≤ δ holds, then by Remark

2.1 we may conclude that for the optimal stopping boundary we have B∗ = B ≡ 1/(r + δ).
Hence, solving the system (3.18)-(3.19), by means of straightforward calculations we obtain
that the solution of the system (3.2)-(3.4) is given by:

V (x; B∗) =
B2−α
∗ A′

2(B∗)−B1−α
∗ A2(B∗)

(1− α)D(B∗)
x1+α A′

1(x) (3.21)

+
(1− α)B∗A1(B∗)−B2

∗A
′
1(B∗)

(1− α)D(B∗)
[xA′

2(x)− α A2(x)]

where the function D(x) is defined by:

D(x) = xA1(x) A′
2(x)− x A′

1(x) A2(x)− α A1(x) A2(x) (3.22)

for all 0 ≤ x < B∗ < B̂ , and under B∗ = B̂ in (3.21) we may set V (x; B∗) = V (x; B∗−). Here
the functions A′

1(x) and A′
2(x) are given by:

A′
1(x) =

γ1γ2(r + ζ)

α + 1
F

(
γ1 + 1, γ2 + 1; α + 2; (r + ζ)x

)
, (3.23)

A′
2(x) =

(γ1 − α)(γ2 − α)(r + ζ)

1− α
F

(
γ1 − α + 1, γ2 − α + 1; 2− α; (r + ζ)x

)
(3.24)

for 0 ≤ x < B̂ .
Observe that if, in addition, α = 1 − 1/θ < 0 holds, then we have C1 = 0 in (3.11) and

(3.17), since otherwise, from expression (3.7) it would follow that V ′(x) → ±∞ under x ↓ 0
that should be excluded by virtue of the easily proved fact that the value function V∗(x) from
(2.10) is convex and increasing on the interval [0,∞). Thus, solving the system (3.19)-(3.20)
with C1 = 0, by using straightforward calculations we obtain that the solution of the system
(3.2)-(3.4)+(3.6) is given by:

V (x; B∗) = B∗
xA′

2(x)− αA2(x)

B∗A′
2(B∗)− αA2(B∗)

(3.25)
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for all 0 ≤ x < B∗ < B̂ , where the boundary B∗ satisfies the equation:

B
BA′′

2(B) + (1− α)A′
2(B)

BA′
2(B)− αA2(B)

= 1. (3.26)

Here the function A′′
2(x) is given by:

A′′
2(x) =

(γ1 − α)(γ1 − α + 1)(γ2 − α)(γ2 − α + 1)(r + ζ)2

(1− α)(2− α)
(3.27)

× F
(
γ1 − α + 2, γ2 − α + 2; 3− α; (r + ζ)x

)

for 0 ≤ x < B̂ . By virtue of the properties of Gauss’ hypergeometric function F (a, b; c; x)
defined in (3.15)-(3.16), after some transformations we obtain that the left-hand side of the

equality (3.26) is strictly increasing in B on the interval [0, B̂), tends to zero under B ↓ 0, and

tends to infinity under B ↑ B̂ . We may therefore conclude that the equation (3.26) admits the

unique solution B∗ on [0, B̂).

3.4. Let us finally assume that α = 1− 1/θ < 0 and r + ζ = 0 with ζ = −λθ/(1− θ) holds.
In this case, equation (3.10) turns out to be a confluent hypergeometric equation, which has
the general solution:

G(x) = C1 H1(x) + C2 H2(x) (3.28)

where C1 and C2 are some arbitrary constants and the functions H1(x) and H2(x) are defined
by:

H1(x) = U
(
− λ(1− α)/η, α + 1; ηx

)
(3.29)

H2(x) = M
(
λ(1− α)/η,−α− 1; ηx

)
(3.30)

for x ≥ 0 with α = 1 − 1/θ and η = δ + λ + λθ/(1 − θ). Here U(a, b; x) is the confluent
hypergeometric function, which admits the integral representation:

U(a, b; x) =
1

Γ(a)

∫ ∞

0

e−xt ta−1(1 + t)b−a−1 dt (3.31)

for a > 0, and M(a, b; x) is Kummer’s confluent hypergeometric function, which admits the
integral representation:

M(a, b; x) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ext ta−1(1− t)b−a−1 dt (3.32)

for b > a > 0 and has the series expansion:

M(a, b; x) = 1 +
∞∑

k=1

(a)k

(b)k

xk

k!
(3.33)

for b 6= 0,−1,−2, . . . and (b)k = b(b+1) · · · (b+k−1), k ∈ N , where the series converges under
all x > 0 (see, e.g., [1; Chapter XIII] and [5; Chapter VI] with a different parametrization).
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Therefore, differentiating both sides of the formula (3.9), by using (3.28) we get that in this

case B̂ = ∞ and the integro-differential equation (3.7) has the general solution:

V (x) = C1 xα+1 H ′
1(x) + C2 xα+1 H ′

2(x) (3.34)

for x ≥ 0. Hence, applying conditions (3.3) and (3.6) to the function (3.34), we get that the
following equalities:

C1 Bα+1 H ′
1(B) + C2 Bα+1 H ′

2(B) = B (3.35)

C1 Bα [(α + 1)H ′
1(B) + B H ′′

1 (B)] + C2 Bα [(α + 1)H ′
2(B) + B H ′′

2 (B)] = 1 (3.36)

hold for some B ≥ B .
It thus follows that in (3.28) and (3.34) we have C1 = 0, since otherwise V (x) → ±∞ as

x ↓ 0, which should be excluded due to the obvious fact that the value function (2.10) is bounded
under x ↓ 0. Therefore, solving the system (3.35)-(3.36) with C1 = 0, by using straightforward
calculations we obtain that in this case the solution of the system (3.2)-(3.4)+(3.6) is given by:

V (x; B∗) = B∗
xα+1H ′

2(x)

Bα+1∗ H ′
2(B∗)

(3.37)

for all 0 ≤ x < B∗ , where the boundary B∗ satisfies the equation:

B
H ′′

2 (B)

H ′
2(B)

= −α. (3.38)

Here the functions H ′
2(x) and H ′′

2 (x) are given by:

H ′
2(x) = −λ(1− α)

α + 1
M

(
1− λ(1− α)/η,−α; ηx

)
(3.39)

H ′′
2 (x) =

λ(1− α)(η + λ− λα)

α(α + 1)
M

(
2− λ(1− α)/η, 1− α; ηx

)
(3.40)

for x ≥ 0. By virtue of the properties of Kummer’s confluent hypergeometric function
M(a, b; x) defined in (3.32)-(3.33), after some transformations we obtain that the left-hand
side of the equality (3.38) is strictly increasing in B on the interval [0,∞), tends to zero under
B ↓ 0, and tends to infinity under B ↑ ∞ . We may therefore conclude that the equation (3.38)
admits the unique solution B∗ on [0,∞).

4. Main result and proof

Taking into account the facts proved above, let us now formulate the main assertion of the
paper, which extends the result of the article [17] to the case of some jump processes.

Theorem 4.1. Suppose that in the model defined in (2.1)-(2.2) we have r ≥ λθ/(1 − θ).
Then the value function of the problem (2.10) takes the expression:

V∗(x) =

{
V (x; B∗), 0 ≤ x < B∗,

x, x ≥ B∗,
(4.1)
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and the optimal stopping time τ∗ has the structure by (2.11), where the function V (x; B∗) and
the optimal stopping boundary B∗ are specified as follows:

(i): if θ < 0 and 0 < −λθ/(1 − θ) < δ then the function V (x; B∗) is given by (3.21), and
B∗ = B ≡ 1/(r + δ);

(ii): if θ < 0 and δ = −λθ/(1 − θ) then the function V (x; B∗) = V (x; B∗−) is also given

by (3.21), and B∗ = B = B̂ ≡ 1/(r − λθ/(1− θ));
(iii): if 0 < θ < 1 and 0 < λθ/(1 − θ) < r then V (x; B∗) is given by (3.25) and B∗ is

uniquely determined from the equation (3.26);
(iv): if 0 < θ < 1 and r = λθ/(1− θ) then V (x; B∗) is given by (3.37) and B∗ is uniquely

determined from the equation (3.38).

Proof. (i)+(ii) Observe that in this case we have B ≤ B̂ . Hence, by Remark 2.1 we get
that B∗ coincides with B from (2.9), and by means of the existence and uniqueness theorem
for hypergeometric equations we may conclude that under the assumptions above the value
function (2.10) admits the unique representation (4.1) with V (x; B∗) given by (3.21).

(iii)+(iv) Let us show that the function (4.1) coincides with the value function (2.3) and
that the stopping time τ∗ from (2.11) with the boundary B∗ specified above is optimal in
(2.11). For this, let us denote by V (x) the right-hand side of the expression (4.1). In this
case, by means of straightforward calculations and by construction from the previous section
it follows that the function V (x) solves the system (3.2)-(3.4) as well as the condition (3.6) is
satisfied. Then, by applying Itô’s formula to e−δtV (Xt), we obtain:

e−δt V (Xt) = V (x) +

∫ t

0

e−δu (LV − δV )(Xu−) du + M̃t (4.2)

where the process (M̃t)t≥0 defined by:

M̃t =

∫ t

0

∫ ∞

0

e−δu
(
V

(
Xu−e−θy

)− V (Xu−)
)

(µ(du, dy)− ν̃(du, dy)) (4.3)

is a local martingale under the measure P̃x with respect to (FS
t )t≥0 . Observe that the time

spent by the process X at the boundary B∗ is of Lebesgue measure zero, that allows to extend
(LV − δV )(x) arbitrarily to x = B∗ .

By virtue of the arguments from the previous section we may conclude that (LV −δV )(x) ≤
0 for all x > 0. Moreover, by means of straightforward calculations, it can be shown that the
property (3.5) also holds, that together with (3.3)-(3.4) yields V (x) ≥ x for all x ≥ 0. From
the expression (4.2) it therefore follows that the inequalities:

e−δτ Xτ ≤ e−δτ V (Xτ ) ≤ V (x) + M̃τ (4.4)

hold for any finite stopping time τ of the process X started at x ≥ 0.
Let (σn)n∈N be an arbitrary localizing sequence of stopping times for the process (M̃t)t≥0 .

Then, taking in (4.4) expectation with respect to the measure P̃x , by means of the optional
sampling theorem, we get:

Ẽx

[
e−δ(τ∧σn) Xτ∧σn

] ≤ V (x) + Ẽx

[
M̃τ∧σn

]
= V (x) (4.5)
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for all x ≥ 0. Hence, letting n go to infinity and using Fatou’s lemma, we obtain that for any
finite stopping time τ the inequalities:

Ẽx

[
e−δτ Xτ

] ≤ Ẽx

[
e−δτ V (Xτ )

] ≤ V (x) (4.6)

are satisfied for all x ≥ 0.
In order to show that the equality in (4.6) is attained at τ∗ from (2.11), let us first prove

that the property P̃x[τ∗ < ∞] = 1 holds. For this, we observe that from (2.8) it follows that

the continuous part of the process X in the case (iii) is given by B̂ − B̂ exp(−t/B̂) and in
the case (iv) it is equal to t for all t ≥ 0. Then, under the absence of jumps, in the case (iii)

the process X started at x < B̂ will reach the boundary B̂ − ε by the time not greater than
ρ(ε) = −B̂ log(ε/B̂) for each sufficiently small ε > 0 given and fixed, and in the case (iv) the
process X started at x ≥ 0 will reach the boundary K by the time not greater than K for
any K > 0 given and fixed. Since from the sample path properties of Poisson processes, by
applying the Borel-Cantelli lemma, it follows that the P̃x -probability of the event that the time
between two jumps of the process N (and thus of J ) will never exceed ρ(ε) in the case (iii)

and K in the case (iv) are equal to zero, we may thus conclude that P̃x[τ∗ < ∞] = 1.
By virtue of the fact that the function V (x) together with the boundary B∗ satisfy the

system (3.2)-(3.5), by the structure of the stopping time τ∗ in (2.11) and by expression (4.2),
it follows that the equality:

e−δ(τ∗∧σn) V (Xτ∗∧σn) = V (x) + M̃τ∗∧σn (4.7)

holds. Then, using the expression (4.4), by virtue of the fact that the function V (x) is increas-
ing, we may conclude that the inequalities:

−V (x) ≤ M̃τ∗∧σn ≤ V (B∗ ∨ x)− V (x) (4.8)

are satisfied for all x ≥ 0, where (σn)n∈N is a localizing sequence for (M̃t)t≥0 . Hence, letting n
go to infinity in the expression (4.7) and using the conditions (3.3)-(3.4) as well as the proved

above properties V (B∗ ∨ x) < ∞ and P̃x[τ∗ < ∞] = 1, by means of the Lebesgue dominated
convergence theorem we obtain that the equality:

Ẽx

[
e−δτ∗ Xτ∗

]
= V (x) (4.9)

holds for all x ≥ 0, which together with (4.6) directly implies the desired assertion. ¤
Remark 4.1. By means of straightforward calculations, it can be verified that in the

conditions of the case (i) of Theorem 4.1 for the function V (x; B∗) from (3.21) we have the
equality V ′(B∗−; B∗) = 1, and by proving the assertions in the cases (iii)-(iv) we have used
the equalities (3.26) and (3.38), that means that the smooth-fit condition (3.6) is satisfied. As
in [23]-[24] (see also [2] and [25]), this property can be explained by the fact that in the given
cases leaving the continuation region [0, B∗) the process X may pass through the boundary
B∗ continuously.

Remark 4.2. On the other hand, in the conditions of the case (ii) of Theorem 4.1 it can
be shown that for the function V (x; B∗) from (3.21) the inequality V ′(B∗−; B∗) < 1 holds, so
that the smooth-fit condition (3.6) breaks down. As in [23]-[24], this property can be explained
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by the fact that in the given case leaving the continuation region [0, B∗) the process X may
pass through B∗ only by jumping. According to the results in [2] we may conclude that this
property appears because of finite intensity of jumps and exponential distribution of jump sizes
of the compound Poisson process J .
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