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Abstract

This paper explores the optimal risk sharing arrangement between
generations in an overlapping generations model with endogenous growth.
We allow for nonseparable preferences, paying particular attention to
the risk aversion of the old as well as overall “life-cycle” risk aversion.
We provide a fairly tractable model, which can serve as a starting
point to explore these issues in models with a larger number of pe-
riods of life, and show how it can be solved. We provide a general
risk sharing condition, and discuss its implications. We explore the
properties of the model quantitatively. Among the key findings are
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the following. First and for reasonable parameters, the old typically
bear a larger burden of the risk in productivity surprises, if old-age
risk-aversion is smaller than life risk aversion, and vice versa. Thus,
it is not necessarily the case that the young ensure smooth consump-
tion of the old. Second, consumption of the young and the old always
move in the same direction, even for population growth shocks. This
result is in contrast to the result of a fully-funded decentralized system
without risk-sharing between generations. Third, persistent increases
in longevity will lead to lower total consumption of the old (and thus
certainly lower per-period consumption of the old) as well as the young
as well as higher work effort of the young. The additional resources
are instead used to increase growth and future output, resulting in
higher consumption of future generations.

Keywords: social optimum, pension systems, risk sharing, overlapping

generations.
JEL codes: E21, E61, E62, O40, H21, H55



1 Introduction

One can distinguish pension system along three dimensions (see Lindbeck
and Persson (2003)): defined benefit versus defined contribution; funded ver-
sus pay as you go; and actuarial versus non-actuarial. The first dimension
involves intergenerational risk sharing: how are macro-economic risks dis-
tributed over various generations? In particular, in defined-benefit systems,
the retired generations are shielded from macro-economic risks. In defined-
contribution systems, in contrast, these generations are bearing some of the
investment risk. The second dimension relates to intergenerational redistri-
bution: are there predictable transfers from the young, working generations
to the retired generations? The third dimension, finally, involves the link
between contributions and benefits on an individual level. A system is actu-
arially fair if the individual premium paid corresponds to the actuarial value
of the additional pension benefits that are being accumulated.

This paper explores the first two dimensions of an optimal pension system.
In exploring optimal pension systems, we distinguish between predictable in-
tergenerational transfers and optimal risk sharing. Hence, in contrast to Mer-
ton (1983) and Krueger and Kubler (2002, 2005), we allow the government
to enhance intergenerational risk sharing without necessarily implementing a
pay-as-you-go system. Indeed, defined-benefit funded pension systems that
link benefits to wage rates and absorb financial-market shocks by adjusting
pension premia paid by the young can help to trade risks between the young
who are long on human capital and the old who are long on financial capital.
In contrast to defined-benefit pay-as-you-go systems, these funded systems
enhance risk sharing without crowding out capital formation. We in effect
analyze the optimal mix between defined-benefit and defined-contribution
pensions as part of the optimal risk sharing scheme while at the same time
determining the optimal mix between funded and pay-as-you-go financing as
part of optimal redistribution between the old, young and future generations.

To investigate optimal intergenerational redistribution and optimal in-
tergenerational risk sharing in a general equilibrium setting, we develop a
stochastic overlapping generations model of a closed economy featuring en-
dogenous growth. Optimal risk sharing under an ex-ante welfare criterion has
been explored in a partial-equilibrium setting by Gordon and Varian (1988),
Shiller (1999), and De Menil, Murtin and Sheshinski (2005). Our analysis
builds on the general equilibrium model of Bohn (1998, 1999, 2003, 2005),



who investigates optimal risk sharing under an ex-ante welfare criterion be-
tween overlapping generations in an exogenous growth model with capital
accumulation. Regarding related contributions on this issue, see also Olovs-
son (2004), for optimal risk sharing under an ex-post criterion, see Blanchard
and Weil (2001), Demange (2002) and Barbie, Hagedorn, and Kaul (2003,
2004) while for the role of agent heterogeneity, see e.g. Conessa and Krueger
(1999). We extend Bohn’s analysis by incorporating endogenous growth so
that we can also explore the optimal response of long-term growth to various
productivity and demographic shocks. Moreover, we integrate various ele-
ments that Bohn has studied in separate papers, such as endogenous labor
supply (see Bohn (1998)), productivity shocks (in labor productivity, factor
productivity, and depreciation, see Bohn (1998)) and demographic shocks
(fertility and longevity, see Bohn (1999)). We explore also how government
transfers between the generations should optimally respond to various shocks
and clearly distinguish between predictable intergenerational transfers and
optimal risk sharing.

Key to studying issues of risk sharing is the issue of risk aversion. For that
reason, we pay particular attention to the distinction between intertemporal
substitution and risk aversion, as formulated by Epstein and Zin (1989) or
Weil (1990). In fact, as in Bohn (1998), we also allow for risk aversion
of the young agents, which one may either read as a desire of the social
planner towards insuring the yet-unborn or life-risk aversion of young agents
before they are able to participate in market activities. The life risk aversion
parameter will play a crucial role.

As in the classic overlapping-generations model of Diamond (1965), at
any point in time two generations are alive. Only the older generation par-
ticipates in the capital market and is thus subject to capital-market risks.
The younger generations works and is subject to labor-income risks. These
two overlapping generations can not trade risks in the capital market because
the young cannot participate in the capital market before the shocks occur
and thus cannot insure against the realization of uncertainty at their birth.
An alternative interpretation is that the young cannot borrow against their
human capital to invest in the capital market. The young who are long on hu-
man capital and the old who are long on physical capital thus have to rely on
government intervention to trade and diversify risks. To illustrate, through
the pension system, the government in effect can create new non-tradable as-
sets that are not traded in financial markets and give the old a claim on labor
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income and the young a claim on capital income. By endowing the various
generations with net positions in these assets, the government can in princi-
ple create an insurance equilibrium that would emerge if agents could freely
trade ex ante. The government can trade not only risks between these two
overlapping generations but also shift risks between current generations and
future generations through capital accumulation. In this way, the govern-
ment can engineer also implicit trades between non-overlapping generations.
We thus consider risk sharing both within periods between overlapping gen-
erations and across time between non-overlapping generations.

We consider a social planning problem and characterize some necessary
properties of optimal risk sharing arrangements across generations. Our econ-
omy features three imperfections calling for government intervention. First,
the endogenous growth feature implies an externality in capital formation,
which calls for an investment subsidy. Second, the intergenerational distri-
bution may not be optimal from the point of view of a social planner, who
thus may want to engage in intergenerational redistribution. Third, ex-ante
trading in risks between generations is not possible because generations can
participate in capital markets only after they are born and most shocks have
already materialized. Shifting risks to the groups who can best bear them
can thus create an ex-ante Pareto improvement and maintains incentives for
risk-taking in general equilibrium. Improved risk sharing generates a Pareto
improvement only in an ex-ante sense and not in an ex-post sense. Indeed,
thinking about risk sharing before shocks actually hit helps to avoid divisive
battles about intergenerational redistribution after the shocks have in fact
materialized.

The rest of the paper is structured as follows. After Section 2 formulates
the model, section 3 sets up the social planners problem and interprets the
conditions for optimal intergenerational risk sharing. Section 4 solves the so-
cial planners problem. It investigates the solution to the steady state, show-
ing that the calculation of the equilibrium boils down to solving one equation
in labor supply. For the dynamics, it relies on using log-linearization tech-
niques rather than projection algorithms as in Krueger and Kubler (2004) in
order to derive insights into the linearized behaviour around the steady state.
In particular, it is shown that the dynamics of the model is characterized by
a single, endogenous state vector, which combines ex-ante utilities as well as
the current capital stock. We thus provide a flexible framework that can be
used and calibrated as a workhorse for exploring intergenerational risk shar-
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ing with endogenous growth. Section 5 explores how the social optimum can
be decentralized through a pension system. Section 6 provides some quan-
titative explorations of the model and investigates the factors determining
optimal intergenerational distribution and risk sharing. Section 7 concludes.

We obtain the following key results.

1. We provide a general characterization of the optimal risk sharing condi-
tion, see in particular propositions 1, 2 and 3. A detailed interpretation
is provided subsequently to proposition 3.

2. An endogenous growth model is provided, which is fairly tractable, de-
spite featuring endogenous labor supply, a number of different shocks
and nonseparable preferences. In passing, we provide the conditions
necessary for balanced growth under Epstein-Zin preferences, see sec-
tion 3.2.1 and appendix A.2. In special cases, it is possible to charac-
terize the steady state completely, while it generally requires solving
a one-dimensional equation characterizing steady state labor supply,
see section 4 and in particular equation (62) and appendices A.4.5 and
A.4.7.

3. We use log-linearization techniques to characterize the response to
shocks, see propositions 2 and 3 as well as appendices A.1 and A.4.8,
including implications for risk premia, see appendix A.3. It should be
understood that this is a “small-shock” approximation or an approx-
imation to shocks with bounded support, see Samuelson (1970) and
the discussion in Judd and Guu (2001). Despite the limitations of log-
linear approximations, this provides a useful starting point for further
explorations of risk-sharing with higher-order numerical techniques, or,
alternatively, for searching for interesting special cases, which can be
solved analytically.

4. The endogenous dynamics can be shown to solve a third-degree poly-
nomial in a single state variable, with typically only one stationary
solution. This is shown explicitely in appendix A.5. Thus, the model is
suitable for exploring a rich set of features while keeping the amount of
analytics moderate, providing a starting point and intuition for models
featuring a larger number of periods of life.
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5. A number of interesting insights emerge from the quantitative explo-
ration of the model (see section 6). The usual caveat, that these state-
ments are strictly valid only for the parameter ranges investigated (and
should not be read as globally valid theorems) applies.

(a) At a benchmark parameterization, the old bear a smaller bur-
den of the risk in productivity surprises, if old-age risk-aversion
is larger than life risk aversion, but a larger one, if the old-age
risk aversion is smaller, see equation (53) and section 6.5 . Thus,
whether young agents should insure the old agents against the
random returns on stock markets due to the uncertainty in tech-
nological progress depends on how one views the risk aversion of
old people versus the desire to ensure the yet-unborn against their
“life-risk”. Note how a fully-funded defined-contribution system,
where the old save for retirement by holding equity, would lead
to an equal sharing of the productivity risk between young and
old in the case of full depreciation, while a defined-benefit system
would impose the entire risk on the young. Neither solution is
typically optimal from a social planners perspective, although the
defined contribution private capital system seems to be optimal
in some special circumstances with respect to productivity shocks
that equally affect labor and capital income.

(b) Consumption of the young and the old always move in the same
direction, even for a population growth shock, where the size of
the new young generation is larger than expected, see section 6.6
. This result is in contrast to the result of a fully-funded decen-
tralized system without risk-sharing between generations: there,
the old would receive higher consumption (due to the increase in
return to capital), while the young would receive lower consump-
tion (due to decreasing marginal returns in labor from the larger
working population).

(c) Persistent increases in longevity will lead to lower total consump-
tion of the old (and thus certainly lower per-period consumption of
the old) and the young as well as higher work effort of the young.
The additional resources are used to increase growth and future
output, resulting in higher consumption of future generations, see
6.7 . Thus, increases in life-expectancy require old agents not only
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to get by with less per period but also with less in total, in contrast
to what a defined benefit system or standard insurance contracts
might offer.

2 The model

2.1 Motivation and Overview

We aim at providing a model in which the key features can be studied, while
remaining tractable. As a starting point, we follow Uhlig and Yanagawa
(1996) and construct an overlapping generations model with capital and en-
dogenous growth, effectively delivering an AK model. This eliminates capital
as a state variable, thus simplifying the analysis. Since we want to study
both risk aversion and intertemporal substitution, we keep them separate
using Epstein-Zin preferences. As sources of risks, we allow for variations in
factor productivities, depreciation, longevity, and population growth.

2.2 The environment

Consider a discrete time overlapping generations model with t = 1, 2, . . . in
which all agents live for two periods, and where random shocks occur at the
beginning of each period. For convenience, tables 1 and 2 summarize the
symbols. Let ct,y, ct+1,o denote the per-capita consumption of the represen-
tative agent born at the beginning of period t when young and when old,
respectively. Agents work only during the first period of their lives. nt de-
notes labor supply of the generation born in period t. ̟t+1 stands for be
the fraction of the second period during which the old are actually alive to
enjoy consumption. ̟t+1 is an exogenous variable known at the beginning
of period t+1. It measures the remaining expected life-time of the old given
the medical and demographic knowledge at the beginning of period t + 1 .
We define ct+1,o as total consumption of the old in the second period, so that
ct+1,o/̟t+1 represents consumption of the old per unit of time. Given some
utility q(·) for old-age consumption per unit of time, total utility when old is

Ut,t+1 = ̟t+1q

(

ct+1,o

̟t+1

)

(1)
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We wish to distinguish intertemporal elasticity of substitution from risk aver-
sion. We therefore use some concave and differentiable function x(·) to in-
crease the curvature of Ut,t+1 before taking expectations and undoing this
curvature again. Furthermore, we allow for risk aversion to life-time risk (or,
alternatively, for a preference of the social planner towards equality across
generations). Overall preferences of the generation born at the beginning of
time t (conditional on the information that is available during that period)
are assumed to be given by

Ut,t = U(ct,y, nt, ct+1,o;̟t+1)

= z
(

u (ct,y, nt) + βx−1 (Et [x (Ut,t+1)])
)

(2)

= z

(

u (ct,y, nt) + βx−1

(

Et

[

x

(

̟t+1q

(

ct+1,o

̟t+1

))]))

, (3)

where u(·, ·) is an instantaneous utility function in consumption and work
effort during the first period of life, and z(·), x(·) and q(·) are strictly in-
creasing and continuously differentiable functions such that U(.) is strictly
concave in ct,y, nt and ct+1,o.

As an important special case, consider

Ut,t =

(

(ct,yv(n))1−η + β
(

Et

[

(

̟η
t+1c

1−η
t+1,o

)

1−ν
1−η

])

1−η
1−ν

)
1−ξ
1−η

1 − ξ
. (4)

where ξ ≥ 0 and ν ≥ η ≥ 0, see also equation (44). This specification and
its consequences are discussed in greater detail in section 3.3.

For the generation which is old at the beginning of the planning period,
U0,1 are the preferences at the start of period 1, see equation (1), and

U0,0 = z(u0 + βx−1 (E0 [x (U0,1)]) (5)

= z

(

u0 + βx−1

(

E0

[

x

(

̟1q

(

c1,o
̟1

))]))

,

for some parameter u0 are the preferences of the initially old, when consid-
ering them ex ante, i.e. behind the veil of ignorance before the uncertainty
about the first period is resolved. We have incorporated z(·) and u0 as a nor-
malization in order to compare utilities of the initially old and agents living
in two periods in the same units, when studying the social planners problem.
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Let the population of the young at date t be Πt, and denote the growth
factor of the young population as

πt =
Πt

Πt−1

. (6)

We use capital letters to denote aggregate variables, so that Ct,y = Πtct,y,
and so on. With kt−1, we denote the capital stock available for production
per old person at date t. Thus, Kt−1 = Πt−1kt−1 represents the aggregate
capital stock in period t.

The aggregate production function is given by

Yt = AtKt−1f(Ztnt), (7)

for some positive, concave, strictly increasing and strictly concave function
f(·). Here, At stands for a total factor productivity parameter and Zt rep-
resents a labor-specific productivity parameter. Aggregate production Yt is
proportional to the aggregate capital stock. We are thus essentially assuming
an AK model. Note that labor per young person nt rather than aggregate
labor Πtnt appears as an argument of the function f(·). This aggregate AK
production function can arise from a decentralized production economy with
a production externality that is proportional to the capital stock per young
person, Kt−1/Πt, see section 5.

With yt, we denote aggregate production, divided by the population of
the old (i.e. yt = Yt/Πt−1)

yt = Atkt−1f(Ztnt). (8)

Aggregate feasibility requires that

Ct,y + Ct,o +Kt = Yt + (1 − δt)Kt−1, (9)

where we allow for time-variation in the depreciation rate δt. Expressed
relative to the older population, this equation reads (after substituting (8)
to eliminate yt)

ct,yπt + ct,o + ktπt = (Atf(Ztnt) + 1 − δt) kt−1. (10)

The vector (Zt, At, δt, πt, ̟t) ∈ S is stochastic and iid, and where S =
IR5

++. k0 and Π0 are given and non-random, and we normalize Π0 = 1 .

ht = ((Zt, At, δt, πt, ̟t), . . . , (Z1, A1, δ1, π1, ̟1)) (11)
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denotes the history up to and including t. Let Ht = {ht | all ht} = St ⊆ IR5t

denote the set of all histories up to and including t and let H =
⋃∞
t=1 Ht

denote their union.
Let some initial level of capital k∗−1 be given.

Definition 1 A feasible allocation is a mapping from the set of all histo-
ries into a vector of positive real numbers, Φ : H → IR5

+, such that k−1 = k∗−1

and the vector (ct,y, ct,o, nt, kt) = Φ(ht) satisfies (10) for all histories ht ∈ H.

Associated with a feasible allocation are ex-post utilities Ut,t = Ut(ht),
U0,1 = U0(h1).

3 The social planners problem

The social planner maximizes the utility of the agents (2) subject to the feasi-
bility constraint (10) given the exogenous stochastic process (Zt, At, δt, πt, ̟t).
In this connection, one needs to take a stand on whether agents born at the
same time but with different histories are different agents or not. If they
are different, then “insurance” of young agents against shocks during their
period of birth (i.e. redistributing from young agents born in “good” times
to young agents born in “bad” times) will typically not constitute a Pareto-
improvement. Indeed, this would be a redistribution from good-state agents
to bad-state agents.

Definition 2 [PO 1] A non-insurance Pareto optimum is a feasible
allocation with associated “ex post” utilities Ut,t (i.e. (2)) and U0,1, see (1),
such that no other feasible allocation exists that attains equally large utilities
for all histories and generations and a strictly larger utility for at least one
history and generation.

When contemplating insurance, the social planner compares states with
different population sizes. In particular, the social planner treats all agents
born at the same date and under the same history in the same way and thus
assigns the same weight per person across different states of nature. Hence,
the “ex-ante” preferences of the social planner for generation t > 0 at the
beginning of time amount to

Ut,0 = E0 [ΠtUt,t] . (12)
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The “ex-ante” preferences of the social planner for the initial old are given
by U0,0 stated in (5) in view of our normalization Π0 = 1.

Definition 3 [PO 2] A Pareto optimum with insurance is a feasible
allocation with associated “ex ante” utilities U0,0 (see (5)) and Ut,0 ((12 )),
such that no other feasible allocation exists attaining equally large ex-ante
utilities for all generations and strictly larger ex-ante utility for at least one
generation.

Clearly, any Pareto optimum with insurance is also a non-insurance Pareto
optimum, but not vice versa. As an example, suppose that in some allocation
A, a particular generation receives consumption c − µ if times are bad and
c + µ if times are good, for some µ > 0. Suppose that bad times and good
times are equally likely. Suppose finally that some alternative allocation B
exists, equivalent in all aspects, except that this generation then receives
consumption c in both eventualities. In view of the concavity of the pref-
erences, allocation A could not be a Pareto optimum with insurance, since
allocation B provides insurance ex ante. However, allocation A might well
be a non-insurance Pareto optimum, since the generation born in good times
is considered to be different from the generation born in bad times. Thus,
conditions necessary for a non-insurance Pareto optimum are also necessary
for a Pareto optimum with insurance. Voluntary schemes can implement
non-insurance Pareto optima (see e.g. Blanchard and Weil (2001) and Bar-
bie, Hagedorn and Kaul (2003, 2004)). Insurance optima, in contrast, require
compulsory participation to commit generations to the ex-post redistribution
that is implied by ex-ante insurance.

Pareto optima with insurance are more interesting for our purposes be-
cause the issue of intergenerational risk sharing among the yet-unborn is at
the heart of our analysis. One should bear in mind, however, that our anal-
ysis involves a choice regarding the welfare weights assigned to agents of the
same period born under different histories: their relative weights correspond
to the relative probabilities of their specific histories.

To provide a single objective for the social planner, we follow Bohn (2003)
in formulating a weighted sum of the ex-ante utilities of the various genera-
tions with (ωt)

∞
t=0 as a sequence of (nonstochastic) welfare weights.
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Definition 4 (SP) A social optimum for welfare weights (ωt)
∞
t=0 is a fea-

sible allocation solving

max
{Φ|Φ feas. alloc.}

∞
∑

t=0

ωtUt,0. (13)

This social optimum implements a particular Pareto optimum with in-
surance. Using (12), we can write the social objective function as

max
{Φ|Φ feas. alloc.}

(

ω0U0,0 + E0

[

∞
∑

t=1

ωtΠtUt,t

])

.

To focus on stationary solutions, we implement exponential discounting
so that ωt = ωt.

3.1 First-order conditions

Consider the problem of finding a social optimum for welfare weights ωt = ωt.
Let ωtλt be the Lagrange multiplier on the aggregate feasibility equation (9)
so that Πt−1ω

tλt is the Lagrange multiplier on the feasibility constraint (10).
For ease of notation, assume that random variables can only take one of
finitely many values, each with positive probability given any history. Let
Ht be the set of all histories up to and including t, and let Prob(ht) be its
unconditional probability. The Lagrangian then amounts to

max
{Φ|Φ feas. all.}

{ω0U0,0 +
∞
∑

t=1

∑

ht∈H⊔

Prob(ht)ω
t [ΠtUt,t(ht) (14)

−λt(ht)Πt−1 (ct,yπt + ct,o + ktπt − (Atf(Ztnt) + 1 − δt) kt−1)]},

We have made the dependence of only λt and Ut,t on ht explicit. In fact, the
population, their growth rates and all economic choices at date t, like ct,y or
kt, are similarly functions of ht.

Dropping the argument ht, the first-order conditions are

(

∂

∂ct,y
:

)

λt =
∂Ut,t
∂ct,y

, (15)
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(

∂

∂ct,o
:

)

λt Prob (ht | ht−1) =
1

ω

∂Ut−1,t−1

∂ct,o
, (16)

(

∂

∂nt
:

)

λtAtkt−1f
′(Ztnt)Zt = −πt

∂Ut,t
∂nt

, (17)

(

∂

∂kt
:

)

λt = ωEt [λt+1 (At+1f(Zt+1nt+1) + 1 − δt+1)] . (18)

In equation (16) we have been a bit more formal than usual. A more gen-
eral treatment would involve treating this equation as an equality between
measures or their Radon-Nikodym derivatives. The right hand side of that
equation involves taking the derivative of a conditional expectation with re-
spect to one of its arguments. To be more explicit (and after cancellations
of the conditional probability terms on both sides of the equation), (16) can
be rewritten as

λt =
β

ω
dtq

′

(

ct,o
̟t

)

(19)

where

dt = z′(at−1)
(

x−1
)′
(

Et−1

[

x

(

̟tq

(

ct,o
̟t

))])

x′
(

̟tq

(

ct,o
̟t

))

(20)

is a “discounting correction” due to the separation of intertemporal substi-
tution and risk aversion as well as allowing for life risk aversion: for the
definition of z′(at−1), see equation (28) below.

Define wt to be the marginal social productivity per unit of labor:

wt ≡ Atkt−1f
′(Ztnt)

Zt
πt
. (21)

The first and third first-order condition together imply

∂u(ct,y, nt)

∂ct,y
wt = −

∂u(ct,y, nt)

∂nt
, (22)

which is the familiar condition that the marginal rate of substitution between
consumption and leisure should equal its social opportunity costs, i.e. the
aggregate marginal rate of transformation.

Define the stochastic discount factor of the social planner as

mt+1 =
ωλt+1

λt
, (23)
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and the social rate of return as

Rt = Atf(Ztnt) + 1 − δt. (24)

We can then write the fourth first-order condition as a familiar asset price
equation

1 = Et[mt+1Rt+1].

Substitute λt from (15), λt+1 from (19), and Atf(Ztnt) + 1 − δt from (24)
into (18) to obtain

z′(at)
∂u

∂ct,y
= βEt

[

dt+1q
′

(

ct+1,o

̟t+1

)

Rt+1

]

(25)

or explicitely

∂u(ct,y, nt)

∂ct,y
= β

(

x−1
)′
(

Et

[

x

(

̟t+1q

(

ct+1,o

̟t+1

))])

·

Et

[

x′
(

̟t+1q

(

ct+1,o

̟t+1

))

q′
(

ct+1,o

̟t+1

)

Rt+1

]

. (26)

(25) is the familiar asset pricing equation in terms of marginal utilities of gen-
eration t, adjusted with the discounting-correction term dt+1 and longevity
risk ̟t+1.

3.2 Risk sharing

The first two first-order conditions imply

λtProb (ht | ht−1) =
∂Ut,t
∂ct,y

Prob (ht | ht−1) =
1

ω

∂Ut−1,t−1

∂ct,o
, (27)

which is a risk sharing or complete markets condition: young and old agents
alive at the same time should evaluate risk using the same stochastic discount
factor. Let at be the argument of the z(·)-function in the specification of the
utility function (2), i.e.

at = u (ct,y, nt) + βx−1

(

Et

[

x

(

̟t+1q

(

ct+1,o

̟t+1

))])

(28)

One can then write the risk sharing condition (27) as follows.

13



Proposition 1 [The risk-sharing condition.] At the social planner op-
timum with constant discounting of the welfare of future generations,

z′ (at)
∂u(ct,ynt)

∂ct,y
= z′ (at−1)

β

ω
dtq

′

(

ct,o
̟t

)

(29)

where dt is defined in (20) and at is defined in equation (28).

Proof: Direct. •

In the special case of a linear z(·), the terms z′(at) and z′(at−1) drop out
and one obtains the familiar condition, equating marginal utility of consump-
tion for the young to a constant factor times marginal utility of consumption
for the old “state by state”, and adjusted with the risk curvature term.

In the general case, log-linearization helps to deliver further insights. For
the variables in (29), denote with an upper bar some benchmark value for
each parameter, which we assume to be known as of date t − 1 or possibly
earlier, and which together satisfy equation (29). We use an inverted hat to
denote the logarithmic deviation of a variable from this benchmark. Thus,
for example,

ct,y = c̄t,y exp (čt,y)

For any twice differentiable function y = f(x), define the logarithmic
derivative

ℓf =
f ′(x)x

f(x)
=
∂ log(f(exp(log(x))))

∂ log(x)

with the latter equation valid only if x > 0 and y > 0. Further, define the
negative logarithmic derivative of its first derivative per

µf = −
f ′′(x)x

f ′(x)

For example, if f(x) = cxα, then ℓf = α and µf = 1− α. Often, µf arises as
an elasticity.

We shall keep a subindex t to denote the period for which the approxi-
mation applies. By assumption, the approximation is around a point known
at t− 1 or earlier. For functions with two arguments, we shall also note the
argument(s) with respect to which the derivative is taken. For example, for
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some given utility function u, the intertemporal elasticity of substitution is
given by the inverse of µuc,c,t, whereas the cross-partial is given by

µuc,n,t = −
unc(c̄t,y, n̄t)n̄t
uc(c̄t,y, n̄t)

.

Furthermore, define the argument share

αt =
u(c̄t,y, n̄t)

āt
. (30)

A complete, explicit list of all logarithmic derivatives can be found at the
beginning of appendix A.1.

Proposition 2 [The loglinear risk-sharing condition.] Optimal inter-
generational risk sharing implies the following first-order approximation to
(29) in log-deviations around the chosen benchmark,

µz,tǎt + µuc,c,tčt,y + µuc,n,tňt (31)

= µz,t−1ǎt−1 + ďt + µq,t (čt,o − ˇ̟ t)

where

ǎt = αt (ℓu,c,tčt,y + ℓu,n,tňt) (32)

+(1 − αt) ((1 − ℓq,t+1)Et[ ˇ̟ t+1] + ℓq,t+1Et[čt+1,o])

ďt = µx,t ((1 − ℓq,t) ( ˇ̟ t − Et−1[ ˇ̟ t]) + ℓq,t (čt,o − Et−1[čt,o])) (33)

Proof: Calculate or follow the calculations in appendix A.1. •

Consider the standard case in which both z(·) and x(·) are linear (so that
µx,t = µz,t = µz,t−1 = 0) and in which old and young agents feature the
same risk aversion in consumption, i.e. µq,t = µuc,c,t). If additionally, labor
is assumed to be constant (i.e. ňt = 0) or u(c, n) is assumed to be separable
in c and n (i.e. µuc,n,t = 0), one obtains

čt,y = čt,o − ˇ̟ t, (34)

In that case, the percentage changes of the consumption of the young as well
as of the old per unit of time should be exactly the same. One may want
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to consider this as a natural benchmark for risk sharing between young and
old.

If labor is not assumed to be constant and u(c, n) is not separable, equa-
tion (31) becomes instead

čt,y +
µuc,n,t
µuc,c,t

ňt = čt,o − ˇ̟ t, (35)

where one should note that µuc,n,t can have either sign. Consider the case
where consumption and leisure are substitutes and hence, µuc,n,t < 0. If
circumstances are such that the social planner commands more work from
the young, ňt > 0, the associated decline in leisure enjoyed by the young will
make a marginal unit of consumption for the young relatively more valuable.
In order to keep the total increase in marginal utility from consumption the
same for both generations, the relative consumption decrease of the young
should be smaller than the relative consumption decrease of the old per
unit of time (i.e. čt,y > čt,o − ˇ̟ t) . The direction reverses if leisure and
consumption are complements, µu,t,nc > 0. Then, changes in leisure of the
young (i.e. −ňt) are associated with changes in relative consumption of the
young vis-a-vis the old, čt,y − (čt,o − ˇ̟ t), which are of the the same sign.
With complementarity between leisure and consumption, changes in leisure
are associated with changes in consumption that further increase the impact
of leisure on the overall utility level of the young. Intuitively, decreases in
leisure reduce the marginal utility of the young so that the young not only
obtain less leisure but also get less consumption relative to the old.

3.2.1 Scale Invariance and Balanced Growth

We wish to avoid effects from rescaling the units in which e.g. capital is
measured. An alternative interpretation is that we seek a solution delivering
a balanced growth path. Thus,

Definition 5 Let the allocation

Φ(ht) = (ct,y, ct,o, nt, yt, kt)

be a solution to the social planners problem, given initial capital k∗−1. Let
αt(ht) be the implied argument share, see equation (30). The preference
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specification1 is said to be scale invariant, if for all scalars φ > 0, Φ̃ is
a solution to the planners problem with initial capital φk∗−1, where

Φ̃(ht) = (φct,y, φct,o, nt, φyt, φkt)

and if additionally the implied argument share α̃t is unchanged (i.e. α̃t(ht) =
αt(ht)) for all histories ht.

Scale invariance yields a number of implications (see the appendix):

ℓu,c,t
ℓu,n,t

= −
ct,y
wtnt

, (36)

0 = −µuc,c,t + µuc,n,t
ℓu,c,t
ℓu,n,t

+ 1, (37)

µuc,c,t = µq,t+1, (38)

ℓu,c,t = ℓq,t+1. (39)

If in addition we impose that µuc,c,t is constant over time (i.e. η ≡ µuc,c,t),
we can derive a semi-closed form for the utility function u(c, n), as is well-
known from the literature, see e.g. King and Plosser (1989):

u(ct,y, nt) =
(v(nt)ct,y)

1−η

1 − η
(40)

up to a constant, if η 6= 1 and

u(ct,y, nt) = log ct,y + v(nt) (41)

for η = 1.

3.3 Epstein-Zin Preferences

We now provide a particular parametric example, satisfying the general im-
plications listed in subsection 3.2.1. This parametric example is therefore
“special” only insofar the various elasticities and logarithmic derivatives have
been assumed to be constant.

1Note that the production side is already made “scale invariant” by construction, i.e.
our assumption about AK-type endogenous growth.
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We use the preference specification of (40), i.e.

u(c, n) =
(c v(n))1−η

1 − η
(42)

with η 6= 1. We restrict v(n) to be strictly positive and such that u(c, n) satis-
fies strict concavity and strict monotonicity. Define its logarithmic derivative,

ℓv(n) =
v′(n)n

v(n)
. (43)

Note that ℓv(n) < 0. As before, we let

ℓv,t = ℓv(n̄t),

where n̄t is some chosen benchmark.
The utility function is

Ut,t =

(

(ct,yv(nt))
1−η + β

(

Et

[

(

̟η
t+1c

1−η
t+1,o

)

1−ν
1−η

])

1−η
1−ν

)
1−ξ
1−η

1 − ξ
. (44)

In terms of our general specification,

q(c) =
c1−η

1 − η
, (45)

x(q) =
((1 − η)q)

1−ν
1−η

1 − ν
,

z(a) =
((1 − η)a)

1−ξ
1−η

1 − ξ
.

The argument share αt is given per

1

αt
= 1 + β ¯̟ η

t+1

(

c̄t+1,o

c̄t,yv(n̄t)

)1−η

.
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3.3.1 Preferences and the length of life.

If η < 1 and given a total amount ct+1,o of consumption when old, agents
prefer a longer life with a fairly small amount of consumption per unit of time
to a shorter life with a fairly large amount of consumption per unit of time.
This is not so, however, if η > 1 with the preference specification above, and
indeed, the utility function then even has the feature, that old agents strictly
prefer a shorter life to a longer life. Put differently, committing suicide is
optimal. This is obviously an undesirable feature. As a further consequence,
note that with the preferences as defined above, the limit for η → 1 is not
well defined.

There are at least three ways to resolve this conundrum. One possibility
is to modify preferences when old so as to generate strictly positive utility,
whenever the agent is alive. This can be done e.g. by modifying

q(c) =
(c+ c)1−η − c1−η

1 − η
, (46)

for some “baseline” level of consumption c > 0. With this, total utility while
old is

̟q
( c

̟

)

= ̟

(

(

c
̟

+ c
)1−η

− c1−η

1 − η

)

→ ̟

(

log

(

c

c̟
+ 1

))

(η → 1)

which exists and is always guaranteed to be positive, but has a nonconstant
elasticity in c as consumption grows (holding c constant).

The second possibility is to let agents compare utility of consumption c
while alive to some benchmark level of consumption c (possibly dependent
on the date t), while alive, and otherwise assign zero utility,

q(c) =
c1−η − c1−η

1 − η
(47)

so that the total utility for old agents is given by

̟q
( c

̟

)

= ̟

(

(

c
̟

)1−η
− c1−η

1 − η

)

→ ̟

(

log

(

c

c̟

))

(η → 1)
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which exists and has a constant elasticitiy as c grows, but may no longer be
guaranteed to be always positive.

The third possibility is to restrict η < 1 for the original preference speci-
fication. At the expense of generality but at the gain of some simplification
for the analytics, we shall proceed with this restriction.

In either of these scenarios, the social planner effectively contemplates
insurance against the utility loss (or gain!), when dead. Put differently, if
there is a longevity shock, the old are happier simply due to living longer.
Hence, the social planner may seek to redistribute the gains in utility of the
old also to the young.

These insurance motives, while present in this paper, merit deeper philosph-
ical thought. For suppose some medical treatment could be found, which
extends the life of the old, but is rather costly. How much should it be worth
to society and who should pay for it? This depends rather crucially on the
additional utility generated due to being alive. For the third possibility, i.e.
our original specification and with η < 1, the additional utility generated is
bounded.

With η > 1 and the specification (46), the utility gain is unbounded,
as c → 0, i.e., death can be made to be arbitrarily unattractive. In that
case, the cost limit ultimately is the entire GDP. To see this, suppose, total
average consumption of the old is given by c = c(̟), reflecting the cost of
improving longevity and the opportunity costs of transferring consumption
from the young to the old. The first-order condition with respect to ̟ is
given by

0 =

(

c(̟)
̟

)1−η

− c1−η

1 − η
−

(

c(̟)

̟

)1−η

(1 − ℓc) (48)

where

ℓc =
c′(̟)̟

c(̟)

For any value c(̟)/̟ > 0 and ℓc, there is some c > 0, so that this derivative
is positive, i.e., unless one obtains direction observations on choices involving
the length of life, there is always some specification for the “fear of death”, pa-
rameterized by c, which would justify additional spending on life-prolonging
measures, no matter how costly.

Ultimately, from an economic perspective, this raises the need for mea-
suring the aversion of agents against death in data, and using it to calibrate
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these preferences. There are a number of activities, where agents clearly
trade off the risk of dying against some utility-enhancing activity. For exam-
ple, driving cars at a higher speed entails a higher risk of dying, and smoking
causes people to die at an earlier age. By carefully measuring the utility gain
(and measuring marginal changes, e.g. due to the change in the price for
cigarettes or due to higher safety of cars), one may be able to calculate an
economic value for death. This provides appropriates limits for the amount
of resources which should be spent on extending lifes. The difficult discus-
sions, when economic reasoning of this sort combined with ethic and moral
judgements provide guidelines for the share of GDP to be spent on health
care or, more drastically, turning off life-support measures for a terminally ill
patient has only begun, and will surely intensify in the future, as the techno-
logical possibilities advance, see e.g. Murphy and Topel (2002) or Hall and
Jones (2004).

3.3.2 Optimal risk sharing

Proposition 3 [Risk-Sharing with Epstein-Zin preferences.] With
the preferences given by (42) and (44) and up to a first-order approximation
in the log-deviations around a chosen benchmark, optimal intergenerational
risk sharing implies

(ξ − η)ǎ∗t + ηčt,y − (1 − η)ℓv,tňt (49)

= (ξ − η)ǎ∗t−1 + ďt + η(čt,o − ˇ̟ t),

where

ǎ∗t = αt (čt,y + ℓv,tňt) + (1 − αt)

(

η

1 − η
Et[ ˇ̟ t+1] + Et[čt+1,o]

)

. (50)

ďt = (ν − η)

(

η

1 − η
( ˇ̟ t − Et−1[ ˇ̟ t]) + (čt,o − Et−1[čt,o])

)

(51)

where

ǎ∗t =

(

ǎt
1 − η

)

.

Proof: Note first, that for any function f(x) = xα, we have ℓf = α and
µf = 1 − α. Leaving away the time subscript t except for µuc,n,t, ℓu,n,t and
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ℓv,t, since everything else is now constant, calculate

µz =
ξ − η

1 − η
,

µuc,c = η,

µuc,n,t = −(1 − η)ℓv,t,

µx =
ν − η

1 − η
,

µq = η

and

ℓu,c = 1 − η,

ℓu,n,t = (1 − η)ℓv,t,

ℓx =
1 − ν

1 − η
,

ℓq = 1 − η.

Substitute into equation (31). •

Note that we assume η < 1, as discussed in section 3.3.1. Thus, leisure
and first-period consumption are complements and µu,nc,t < 0.

To provide some intution for the risk sharing condition, it may be useful
to consider the following six special cases.

1. Assume: no Epstein-Zin, constant labor. Result: Perfect correlation of
per-period consumption,

čt,y = čt,o − ˇ̟ t

2. Assume: additionally, endogenous labor. Result: Since η < 1, i.e.,
since leisure and consumption of the young are complements. leisure
moves in the same direction as consumption of the young relative to
per-period consumption of the old. To see this, rewrite

čt,y −
1 − η

η
ℓv,tňt = čt,o − ˇ̟ t
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as
1 − η

η
((−1) ∗ ℓv,t)((−1) ∗ ňt) = čt,y − (čt,o − ˇ̟ t)

The intuition was discussed subsequent to proposition 2.

3. Assume: the old are risk-averse, ν > η, while there is no additional life
risk aversion, ξ = η > 0. Benchmark uses information up to t− 1.
Result: The old bear less of the risk. Longevity enters separately from
old-age consumption.

čt,y −
1 − η

η
ℓv,tňt =

ν
η
− 1

1 − η
ˇ̟ t +

ν

η
(čt,o − ˇ̟ t)

4. Assume: the old are risk-averse, ν > 0. The young are risk neutral,
ξ = ν = 0. Assume constant labor. Result: The young bear all the
risk,

0 = čt,o − Et−1[čt,o]

5. Assume: infinite elasticity of intertemporal substitution, η = 0, con-
stant labor, equal risk aversion of young and old, ν = ξ > 0. Evaluate
risk sharing based on information up to t − 1. Result: the life-time
consumption of young reacts as much as consumption of old,

αtčt,y + (1 − αt)Et[čt+1,o] = čt,o − Et−1[čt,o]

6. Assume: infinite elasticity of intertemporal substitution, no risk aver-
sion of the old η = ν = 0, constant labor, but risk aversion of young,
ξ > 0, Evaluate the risk sharing condition based on information up to
and including t− 1. Result: The old bear all the risk,

0 = αtčt,y + (1 − αt)Et[čt+1,o]

The parameter ξ is most sensibly interpreted as life risk aversion. Suppose
čt,o = Et−1[čt,o], i.e., old-age consumption changes are predictable when these
agents are young, and suppose that ˇ̟ t ≡ 0. Then, the right-hand side of
equation (49) can be written as

(ξ − η)αt−1 (čt−1,y + ℓv,tňt−1) + ((ξ − η)(1 − αt−1) + η) čt,o.
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The relevant scaling parameter on the rate of change for consumption of the
old čt,o is given by a combination of the curvature parameter η of the utility
of the young and life risk aversion ξ. The curvature parameter of the young
comes in because, with a foreseeable shock, the intertemporal elasticity of
substitution between the two periods of life rather than the post-birth old-
age risk aversion ν matters.

If relative consumption changes are the same, čs,o = čs−1,y, for s =
t and s = t − 1, and if labor stays constant, ňt = ňt−1 = 0. then ǎ∗s =
čs,y = čs+1,o for s = t and s = t − 1. and the risk-sharing condition (49) for
a foreseeable shock becomes

čt,y = čt,o. (52)

as in (34). I.e., young and old should share consumption risk equally (in
proportion to their benchmark level), when faced with a foreseeable shock.
Their relevant risk aversion is now the life risk aversion ξ, which is the same
for both generations.

With unanticipated changes, by contrast, i.e. if Et−1[čt,o] = čt,y = 0, and
assuming fixed employment and longevity, as well as čt,y = Et[čt+1,o], the
risk-sharing condition (49) becomes

ξčt,y = νčt,o. (53)

Whereas old-age risk aversion ν is relevant for consumption of the old in this
case, life risk aversion ξ applies to the young. Indeed, in contrast to the
young who can change all the arguments of their utility function, the old can
adjust only their old-age consumption in response to an unanticipated shock.
Eqation (53) is a version of one of the results announced in the introduction:
the old bear a proportionally larger share of the consumptions risk, iff their
risk-aversion is lower than the corresponding life risk aversion. In section ??
we shall see that this result continues to hold approximately for reasonable
parameters, when preferences towards leisure are introduced.

4 Solving the social planners problem and

parametric choices

Assume from now on that preferences are given by equation (44).
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To turn the endogenous variables into a stationary system, define

c̃t,y ≡
ct,y
kt−1

,

c̃t,o ≡
ct,o
kt−1

,

w̃t ≡
wt
kt−1

,

ỹt ≡
yt
kt−1

,

k̃t ≡
kt
kt−1

,

x̃t ≡
xt
kt−1

,

except that we do not detrend nt and that we define

ãt ≡
at

k1−η
t−1

,

s̃t ≡ stk
ν−ξ
t ,

where
st ≡ ((1 − η)at)

ξ−η
1−η xη−νt . (54)

The exponent of the normalization variable differs here in order to achieve
the appropriate scaling for these utility variables. Moreover note that we
scale st by kν−ξt rather than by kν−ξt−1 because that way, s̃t−1 (rather than s̃t−1

and k̃t−1) turns out to be the only remaining endogenous state variable.
One can then solve for a steady state in these detrended variables as well

calculate the dynamics around this steady state using loglinearization. The
details are available in the appendix. Here we shall highlight only some key
results.

4.1 Parametric choices

To explicitely calculate the steady state and provide quantitative results, we
introduce a number of parametric assumptions regarding preferences, tech-
nologies and shocks.
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For preferences regarding leisure, we assume specifically, that

v(n) = v̄
(1 − n)1−χ

1 − χ
, (55)

with 0 ≤ χ < 1. Consequently,

ℓv(n) = −(1 − χ)
n

1 − n
,

µv(n) = −χ
n

1 − n
.

For the production function f(x), we assume

f(x) =
(

θ + (1 − θ)x1− 1
ψ

)
1

1− 1
ψ , (56)

with 0 ≤ θ < 1 and ψ > 0 (where one should note that we usually use
x = Zn as argument), and thus

ℓf (x) =
(1 − θ)x1− 1

ψ

θ + (1 − θ)x1− 1
ψ

,

µf (x) =
1

ψ
(1 − ℓf (x)).

For ψ → 1, this becomes2

f(x) = x1−θ (57)

with

ℓf (x) = 1 − θ,

µf (x) = θ.

For the stochastic part, let

ζt =













̟t

At
Zt
πt
δt













2This is shown in the appendix.
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be the vector of exogenous parameters. We assume a steady state ζ̄ exists
and that

ζ̂t = log(ζt) − log(ζ̄)

follows an AR(1) process,
ζ̂t = Nζ̂t−1 + ǫt (58)

for some 5 × 5 matrix N with nonexplosive roots, where

ǫt =













ǫ̟,t
ǫA,t
ǫZ,t
ǫπ,t
ǫδ,t













is the vector of innovations for each exogenous parameter with

ǫt ∼ N (0,Σ).

4.2 The steady state

For general production functions and preferences, the steady state equations
yield the following relationships between the detrended variables,

π̄c̄y
ȳ

=
ℓf (Z̄n̄)

−ℓv(n̄)
, (59)

c̄o
π̄c̄y

= κ3k̄
ξ−η
η v(n̄)

η−1
η , (60)

k̄ξ = κ4R̄ = κ4

(

Āf(Z̄n̄) + 1 − δ̄
)

, (61)

where

κ3 =
1

π̄

(

β

ω

)
1
η

¯̟ exp

(

ν − η

η(1 − ν)
σ2
x/2

)

,

and
κ4 = ω exp

(

σ2
R−νc/2

)

,

where σ2
R−νc denotes the conditional variance of logRt+1 + ς log(̟t+1) −

ν log(ct+1,o) and σ2
x is the conditional variance of ς log̟t+1 + (1 − ν) log

ct+1,o where ς = η

1−η
(1−ν). These equations provide insight into the fraction
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of output spent on consumption of the young and the old, as well as the
endogenous growth factor k̄.

Substituting these equations into the equation on feasibility

π̄c̄y
ȳ

(

1 +
c̄o
π̄c̄y

)

= 1 +
1 − δ̄ − π̄k̄

Āf(Z̄n̄)

leads to a single nonlinear equation in n̄,

(

ℓf (Z̄n̄)

−ℓv(n)

)

(

1 + κ3

(

κ4

(

Āf(Z̄n̄) + 1 − δ̄
))

ξ−η
ξη v(n̄)

η−1
η

)

(62)

= 1 +
1 − δ̄ − π̄

(

κ4

(

Āf(Z̄n̄) + 1 − δ̄
))

1
ξ

Āf(Z̄n̄)
.

With the parametric choice for preferences (i.e. v(n) = v̄ (1−n)1−χ

1−χ
) and

the production function (i.e. f(x) =
(

θ + (1 − θ)x1− 1
ψ

)
1

1− 1
ψ ), the Appendix

analyzes a special case in which the steady-state solution for employment
can be calculated in closed form.

4.3 The dynamics

After detrending with kt−1, the model no longer contains a state variable,
except

s̃t = stk
ν−ξ
t .

This variable arises solely from the intertemporal optimization of the social
planner, and disappears if e.g. η = ξ, i.e., if life-time risk aversion equals the
inverse of the intertemporal elasticity of substitution. One can think of s̃t
as representing a utility promise to future generations, or as a device which
allows the social planner to share a risk across many generations, if there is
additional life-time risk aversion.

Using loglinearization and assuming a recursive law of motion, in which
ŝt−1 is the only state variable, one can show that the dynamics can be reduced
to solving a polynomial of third degree,

0 = θs + θs,sϕs,s + θs,ssϕ
2
s,s + θs,sssϕ

3
s,s (63)
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for some coefficients θs, θs,s, θs,ss and θs,sss. The explicit calculations can be
found in appendix A.5.

Equation (63) generally has three roots, ϕs,s,i, i = 1, 2, 3, and for which
closed-form solutions are available. If only one of these roots is stable, i.e.
less than one in absolute value, then this is the root we use. If more than one
stable root exists, then an additional state variable is needed as generally
would be necessary to solve the system. If there are no stable roots, the
system is explosive and our baseline assumption that there is a stationary
solution to the social planners problem in the detrended variables unjustified.

When computing results below, we use the “toolkit” implementation, see
Uhlig (1999), and allow for up to five rather than one endogenous state
variable mostly for accounting reasons, see the appendix.

5 Decentralization and generational account-

ing

The solution of the social planner can be implemented in a decentralized
economy using lump sum taxes and transfers on young and old agents and
possibly a return subsidy to old agents, when privately holding capital in
order to equate the social and the private rate of return.

We assume that production takes place by a competitive sector of firms,
renting capital and hiring labor from competitive households, and experienc-
ing an externality in production. More precisely, assume that production by
firm j is given by

Yt,j = AtKt−1,jf

(

Zt

(

Kt−1

Πt

)

Nt,j

Kt−1,j

)

(64)

where Nt,j is the amount of labor hired by firm j and Kt−1,j is the amount

of capital rented by firm j. The term
(

Kt−1

Πt

)

is an externality, enhancing

labor productivity in proportion to the capital available per young person.
Assuming that firms hire workers at their marginal product and rent capital
at its marginal product on competitive markets, one can easily show that
the capital-labor ratio across all firms is the same, and that the aggregrate
production function becomes (7).

29



The private rate of return to investing in capital is given by

R
priv
t = Rsoc

t − Atf
′(Ztnt)Ztnt (65)

where we recall the social rate of return from equation (24) as

Rsoc
t = Atf(Ztnt) + 1 − δt. (66)

Thus, the private rate of return is diminished by the externality in accumu-
lating capital, which is measured by the total wage payments per unit of
capital,

Atf
′(Ztnt)Ztnt =

wtΠtnt
Kt−1

=
wtπtnt
kt−1

Note that wages are given by (21),i.e.

wt = Atkt−1f
′(Ztnt)

Zt
πt
. (67)

We assume that the budget constraint of the individual household is given
by

ct,y + st + τt,y = wtnt (68)

ct+1,o + τt+1,o = (1 + σt+1)R
priv
t+1 st (69)

where st is private savings at date t, τt,y is a lump sum tax when young, τt+1,o

is a lump-sum tax, when old, and σt+1 is a return subsidy.
We shall focus on two extreme scenarios. In the first scenario - call it the

case of “private capital” - all capital is held privately and the government
budget balances period by period,

st = kt

Define the tax share

τt,priv =
τt,y
wtnt

= 1 −
ct,y
wtnt

−
kt
wtnt

(70)

in order to express the magnitude of the lump-sum taxes more intuitively
in proportion of the wage earnings of the young. One may want to view
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the average value of this share as reflecting the desire of the social planner
towards redistribution, while its fluctuations may be viewed as fluctuating
insurance payments of the young to the old in response to realizations of
macroeconomic risks.

In this scenario, it is necessary to subsidize the returns to capital in pro-
portion to capital held by the individual agent, so that the total proportional
subsidy amounts to giving the entire production including the capital stock
net of depreciation to the capital-holding old agents, and in turn lump-sum
taxing the old agents so that the government budget constraint balances,

σt+1,o =
Rsoc
t+1

R
priv
t+1

− 1

=
wt+1πt+1nt+1

R
priv
t+1 kt

τt+1,o = σt+1,oR
priv
t+1 kt − πt+1τt+1,y

= πt+1(ct+1,y + kt+1)

One interpretation of this last equation is that the generational account bal-
ances, i.e. the generational account of the old equals minus the generational
account of the young.

In the second scenario - call it the case of “public capital” - all capital is
held by pension funds,

st = 0

Thus, the lump sum taxes to be paid by the young are payments to pension
funds, which in turn finance old-age consumption. Note that this is a mixture
of a pay-as-you-go system and a fully funded system. In that case, the
payments by the young to the pension system are

τt,pub =
τt,y
wtnt

= 1 −
ct,y
wtnt

(71)

We examine both.
A “defined benefit” system can be viewed as a system, where the old do

not bear any of the risk (except perhaps longevity) whereas the old bear
the entire risk of random returns in a “defined contribution” system. The
analysis here instead considers the degree of optimal risk sharing between
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young and old. The relationship between the solution to the social planners
problem, as investigated here, and these more specific “real world” pension
system shall be investigated in future research.

6 Quantitative Results

This section explores the quantitative properties of the model and numeri-
cally calculates the reaction of the various quantities to the relevant shocks.
We use a “hat” on variables to denote the logarithmic deviation from the
expected balanced growth path with s̃t constant, see appendix A.4.8 for de-
tails.

6.1 Benchmark parameterization

As a benchmark parameterization, pick ω = β = 0.4, ψ = 1, η = 0.5, δ̄ = 1
and ξ = ν = 2. Set χ = .5, θ = 1/3, ¯̟ = 1, π̄ = 1, Z̄ = 1 and let Z̄ such
that there is no growth in steady state, k̄ = 1, requiring Ā = 2.825.

The resulting benchmark equilibrium has n̄ = 0.831, c̄y/ȳ = 0.27, c̄o/c̄y =
1.22, R̄ = 2.5, which corresponds to an annualized interest rate of 3.1%,
assuming that one period lasts 30 years.

The lump sum taxes relative to the wage bill of the young is τpriv =
−0.65%, i.e. in the case of privately held capital, the young agent would
receive a fairly neglible subsidy (financed out of a lump-sum tax on the ”rich
old”, who also finance their own return subsidy). The lump-sum payment
to the pension fund in case of “publicly held capital” is τpub = 59%, i.e. the
young would pay somewhat more than half of his wage earnings into the
fund.

For the exogenous parameters, we have assumed them to be iid, except
for longevity ̟t, which we assume to be a random walk. For the latter, it
seems plausible that medical progress is permanent. For the other variables,
note that e.g. TFP has a unit root due to the endogenous growth feature of
our model, even though the TFP parameter At (and the labor productivity
parameter Zt) is iid. Also, note that πt denotes population growth, so that
the log of population follows a random walk, if πt is iid.
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6.2 Comparative statics

The sensitivity of these results to three parameters, ξ, δ and ω = β can
be seen in table 3. The last row in that table lists the feedback coefficient
on the endogenous state ŝt for the dynamic solution. While the first three
columns have risk aversion of young and old the same, the last three columns
set the life risk aversion to the intertemporal elasticity of substitution of
the young, i.e., do not modify the ex-post utility of the young by a further
risk-transformation so that the social intertemporal substitution elasticity
coincides with the corresponding private elasticity. Note that the last three
columns are fairly similar to the first three columns except for this feedback
coefficient and a substantial change for τpriv in case of no depreciation.

Table 3 shows which factors determine optimal intergenerational distri-
bution. In particular, the sign of the variable τ̄priv indicates to what extent
the optimal pension system is funded. A positive value for τ̄priv indicates
that the pension system is in part pay-as-you-go financed. In that case, the
generational account for the young is negative (and for the old is positive) in
the absence of shocks. There is systematic redistribution from the young to
the old.

In the benchmark calculation, systematic redistribution is limited. The
benchmark social optimum thus calls for a small amount of systematic redis-
tribution from the old to the young in the decentralized economy.

The second column of Table 3 shows that the systematic redistribution
towards the young is increased if the current old become richer compared
to the young on account of a lower depreciation rate (more capital income
compared to labor income). Note also that the growth rate k̄ increases. The
higher return on capital (as a result of lower depreciation rate) allows for a
higher growth rate. The young save more because of two reasons: a higher
return (substitution effect) and higher income (since the old transfer more
income to the young). Another way of interpreting the increased systematic
redistribution from the old to the young (an inverse PAYG system) is that
the pension system is overfunded. Intuitively, funding increases because the
return on capital increases and the older generation becomes richer.

A comparison of the second and fifth column of table 3 shows that the
additional systematic redistribution in favor of the young due to a lower de-
preciation rate becomes more substantial if ex-ante risk aversion ξ decreases.
The reason is that there is a lower social preference for similar utility levels
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across generations. Hence, making the future generations better off com-
pared to the current generations (as a result of higher return on capital and
thus growth) becomes more attractive and systematic redistribution from the
old to the young is increased further. The old keep less of their additional
income as a result of higher capital income due to a lower depreciation rate.

Obviously, this systematic redistribution between young and old would
be heavily affected by letting the discount factor of the social planner ω and
the discount factor of the private agent β differ. As an alternative possibility
for comparing steady states, one could calibrate ω and β in such a way that
laissez faire in intergenerational distribution is optimal in the absence of
shocks, i.e. τpriv = 0. Then, the decentralized economy with private capital
yields the correct intergenerational distribution, assuming that the old pay
their own investment subsidy.

6.3 Endogenous dynamics

In table 3 and focussing on the last low in the last three columns, note
that there is no feedback on the endogenous state (i.e. ϕs,s), if the life-
time risk aversion ξ equals the intertemporal elasticity of substitution η, i.e.,
if the social intertemporal substitution elasticity coincides with the private
intertemporal substitution elasticity.

We are particularly interested in exploring the risk-sharing features as
the risk aversion of the old, ν, is varied vis-a-vis the life risk aversion of the
young, ξ. Figure 7 shows the dependence of the feedback coefficient ϕs,s
as these two risk-aversion parameters ν and ξ are varied between η = 0.5
and the value 4 at the upper end. As one can see, the endogenous dynamics
depends practically entirely on ξ alone within this two-dimensional variation.

The impact of the state variable ϕs,s is determined by the divergence
between ξ and η and the importance of endogenous labor supply (i.e. the size
of χ; if χ = 1, labor supply is exogenous). The more difficult it becomes to
substitute across generations compared to intertemporal substitution within
generations as measured η, the more shocks are spread out across various
generations as indicated by a larger feedback impact of the state variable.

Shifting risks between the old and the young when the shocks hit is suf-
ficient if ξ = η. In that case, the young affect their saving behavior in the
socially optimal way to redistribute between generations and the government
does not have to perform any additional redistribution next period.
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6.4 Intergenerational risk sharing

Table 4 contains the corresponding feedback coefficients to three shocks: total
factor productivity Z, longevity ̟ and population growth π. There, ϕgrowth,·
refers to the absolute change in the growth rate (rather than relative to the
growth factor k̄). If e.g. ϕgrowth,Z = 1.28, then this means that the capital
stock will grow by an additional 1.28%, if TFP increases by 1%. Likewise,
φτ,priv,Z = −0.35 says that the lump sum tax to be paid in case of privately
held capital is lowered by 0.35% of the current wage bill, in case TFP increases
by 1%.

To shed light on risk sharing, we have included three more quantities.
First and second, we have calculated the reaction coefficient for the total tax
collection from the young, normalized by the unchanged wage earnings, each
for the case of private as well as public capital. In the case of private capital,
this is

τpriv,tot =
πtτt,y
π̄w̄n̄

(72)

=
πt (wtnt − ct,y − kt)

π̄w̄n̄

and its percent change is given by

τ̂priv,tot = τ̂priv + τ̄priv(n̂+ ŵ + π̂)

Note that this coincides with the reaction coefficient for τ̂priv, if τ̄ = 0.
Likewise,

τpub,tot =
πt (wtnt − ct,y)

π̄w̄n̄
(73)

with
τ̂pub,tot = τ̂pub + τ̄pub(n̂+ ŵ + π̂)

The total τpriv,tot is the total contribution of the young to a pension sys-
tem, where capital is held privately. In particular, if it is identical to zero and
unaffected by shocks, then this means that the young do not contribute to
insuring the old, and that the old have to bear the entire risk to the returns
of their capital alone. Put differently, this number indicates additional inter-
generational risk sharing compared to a decentralized equilibrium in which
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the old can save only through capital market (and the old finance their own
investment subsidy). τpriv indicates how the government can in fact create
new assets to allow trade of risks between generations.

Third, we have also calculated the change in consumption of the old
relative to the total change in consumption, i.e., the feedback coefficient for
the (loglinearized) quantity

ratt =
co,t
ctot,t

=
co,t

co,t + πtcy,t
(74)

In log-deviations,

ˆratt =
1

1 + c̄o
π̄c̄y

(ĉo,t − ĉy,t − π̂t) (75)

If this quantity is unchanged, i.e., if the feedback is zero, then this means
that consumption of the old increases in proportion with overall consump-
tion resources. Generally, ˆrat > 0 in one of three cases. It happens, if both
consumptions rise, but ct,o rises relatively more. It happens, if both con-
sumptions fall, but ct,o falls relatively less. Finally, it happens if ct,o rises and
ct,y falls. These three cases ought to be kept in mind when evaluating the
results.

The dependence of the shock-reaction of these three quantities as well
as labor supply on the two risk aversion parameters ν and ξ are shown in
figures 8 to 11, both as a three-dimensional mesh as well as a two-dimensional
contour plot.

For the impulse responses, we have used the benchmark parameterization,
except for setting ξ = 1 rather than ξ = 2. This does not change the steady
state, but makes for a differential reaction of consumption of the young vis-a-
vis consumption of the old, see the discussion below, and therefore for more
differentiated impulse response figures. They are shown in figures 1 to 6.
The upper left corner shows the response of normalized consumption of the
young, old and the capital stock, whereas the lower left corner provides the
corresponding “level” variables, i.e. without dividing by aggregate capital.
The upper right corner shows the responses of labor, output (normalized)
and growth while the lower right corner shows the responses of the lump-
sum taxes to be paid by the young, expressed in percent of the steady state
wage bill. Likewise, the response of depreciation is expressed in percent of
the capital stock, not in percent of the steady state depreciation rate (which
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is assumed to be zero, anyways). All figures also show the response of the
“shocked” variable, i.e. longevity, TFP, labor productivity, population and
depreciation as well as the response of the state variable s, as one proceeds
from figure 1 to 6.

The lower-left corner pictures show the persistence effect of shocks, due
to the endogenous growth feature of the model. However, the effects are
usually not an instantaneous adjustment to some new level, but the response
is “smeared out” over a few generations, due to the endogenous dynamics of
the state variable st. The endogenous dynamics itself is plotted in figure 6.

The responses to a shock in TFP are practically the same (up to scaling)
to a shock to labor productivity, because we have essentially assumed a Cobb-
Douglas production function. For the benchmark calibration and in reaction,
the consumption of the young rises somewhat more than the consumption
of the old, which can also be seen by a reduction the young are supposed
to make to the pension system, i.e. a lowering of their lump-sum taxes. In
response to a shock to population growth, consumption falls: essentially, the
young now have to make-do with less capital-per-capita than before. Due to
the endogenous growth formulation of the model, this effect persists.

6.5 Technology shocks

In the simplest risk sharing case, consumption of the young and old rise by
the same percentage, see the first case of the interpretation of the general risk-
sharing equation and equation (34). There, this case is obtained if there is
no endogenous labor supply and risk-aversion and intertemporal substitution
are assumed to be the same for the young and the old, and where there are
no life risks. The case of equal risk sharing can arise in the full version of
the model as well. Indeed, for the case of a technology shock Z and for
the case that ξ = ν, and with full depreciation δ̄ = 1, consumption of the
young as well as the old rises one-for-one with productivity, and there is no
shift in old-age consumption relative to total consumption, as the first block
of table 4 shows. The tax payments both for the case of private capital as
well as public capital do not react as both labor income (collected by the
young) and capital income (collected by the old) rise proportionally with
productivity. There is a reaction of the total tax collection from the young
in case of publicly held capital simply because their wages rise, and because
the initial tax rate in case of publicly held capital is not zero.
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Whether or not the consumption of the old or the consumption of the
young reacts more strongly depends on the ratio between life risk aversion
versus risk-aversion when old. The upper-left corner of the contour plot
figure 9 shows a straight line of no reaction in the old-consumption-to-total-
consumption-ratio for the case ν = ξ. If ν is larger than ξ, i.e., if the old
are relatively more risk averse, then the consumption of the old reacts less
strongly, and most of the risk is thus born by the young. Indeed, the young
will then consume more goods and consume more leisure (as the income effect
dominates the substitution effect), which is why labor declines in response,
see the upper-right corner of the same contour plot.

To implement the higher sensitivity of the consumption of the young,
when the risk-aversion of the young is relatively low, actually requires a
additional subsidy from the old to the young in the case of privately held
capital or a lower total tax payment in the case of publicly held capital if
a positive production shock materializes. This is paid out of the increased
return to capital in the hands of the old, as e.g. the upper-left hand corner
of figure 10 shows. It is easier to see the intuition for a case of a less-than-
expected growth in technology, resulting in lower capital and labor income.
In that case, the young have to make up for the low returns on equity by
working harder and giving up some of their wage income. In other words, the
young bear most of the productivity risk by transferring additional resources
to the old in bad times and by collecting additional resources from the old in
bad times. Risks are traded in just the opposite way if the old are relatively
less risk averse.

The reaction of total consumption is modified by the rate of depreciation:
with only partial depreciation, as in the second and fifth column of table 4,
some consumption smoothing is possible out of capital so production shocks
result in less volatile consumption. At the same time, a positive production
results in less additional growth (compared to a full one-percent advantage
in growth due to the additional one-percent growth in TFP).

6.6 Population growth shocks

Note that the consumption of the young and the old always move in the same
direction for all shocks, as can be seen both from the impulse responses as
well as table 4. This is a key difference between optimal risk sharing and
decentralized pension systems. For example, in the absence of insurance,
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a population growth shock will enhance the return to capital, due to the
abundance of labor. At the same time, the shock induces lower wages, lower
consumption of the young, and higher consumption of the old. This is not
the case with optimal risk sharing: both the consumption of the young and
the old decrease.

The response of old versus young consumption depends again on the
relationship between old-age risk aversion versus life risk aversion. The young
need to be actually slightly more risk averse for the relative consumption
changes of the old and young to be the same, see the first three columns and
the rows for co and ctot in table 4.

Labor of the young declines with the population shock: this should be an
unsurprising consequence of the substitution effect, as the marginal product
of labor falls. Note, however, how the income effect (which may lead young
agents to work harder) is offset here due to the risk-sharing arrangement with
the currently old.

Note also that the difference between the tax rate τpriv, when not ac-
counting for the changes in wages, population and labor, and the total tax
collection τpriv,tot is fairly minor in all cases, i.e., even if the steady state
values for these tax rates are nonzero. The same holds true for the case of
publicly held capital. This result comes about, because the additional popu-
lation growth is almost nearly completely offset by the decline in wages and
the change in hours.

6.7 Shocks to Longevity

The reaction to a longevity-shock shows a number of interesting and possibly
counterintuitive features. If the young are sufficiently risk-neutral, they are
asked to work harder individually, in order to somehow generate additional
resources. However, as table 4 shows, these resources do not go to the cur-
rently old - total consumption for the currently old (and therefore, certainly
per-period consumption of the currently old) actually falls! Instead, because
the longevity shock is persistent, the additional resources are planted into
higher capital for the future, and growth picks up. I.e., the same generation
that now is asked to work harder is also the first generation that gets to enjoy
the fruits of this additional labor in the form of higher old-age consumption,
see also the impulse response in figure 1. The drop in (total) consumption
for the currently old is not quite as dramatic as the drop in consumption of
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the currently young, and thus, consumption is actually shifted in their favor
in terms of their share of total consumption.

The intuition for the additional redistribution in favor of future genera-
tions in response to increased longevity is as follows. Longer longevity raises
the marginal utility of old-age consumption and therefore increases the re-
turn on private saving. The higher implicit return on saving makes it more
attractive to redistribute towards future generations, especially if the social
intertemporal substitution elasticity 1/ξ is large. The comparison between
the first three columns and the last three columns of Table 4 shows indeed
that the growth response to longevity is larger if ξ is smaller. We find a
larger growth response to an increase in longevity than Bohn (2003) for two
reasons. First of all, our calibration implies a relatively large intertemporal
substitution elasticity. Second, in view of the endogenous growth feature
of our model, the marginal product of capital does not decline with capital
accumulation. Hence, shifting resources over time and between generations
can be attractive in response to shocks.

Increased longevity raises not only saving but also work effort. Indeed,
the higher marginal utility of consumption on account of a longer expected
life makes work more attractive. Note also that the difference between the
tax rate τpriv, when not accounting for the changes in wages, population and
labor, and the total tax collection τpriv,tot is fairly substantial, if the steady
state values for the tax rates are nonzero, most notably in the fifth column
of table 4. The same holds true for the case of publicly held capital. This
result comes about, because the fairly change in labor supply by the young
triggers additional tax collections in that scenario.

7 Conclusions

We have developed a stochastic endogenous growth with overlapping gen-
erations to explore optimal intergenerational risk sharing and redistribution
to explore how the pension system can implement optimal intergenerational
risk sharing and redistribution between old, young and future generations.
Our endogenous growth model is fairly tractable, despite featuring endoge-
nous labor supply, a number of different shocks and nonseparable preferences.
Depending on risk aversion of the various generations, the pension system
can help to diversify the financial-market risks faced by older generations
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and the labor-market and human-capital risks faced by younger generations.
A number of interesting insights emerge from the quantitative exploration

of the model, as discussed in detail in section 6: Neither a defined benefit
system or a defined contribution system is typically optimal from a social
planners perspective. In particular, per capita consumption of the young
and the old always move in the same direction, even for positive population
growth shocks. This result is in contrast to the response of a fully-funded
decentralized system to such shocks: there, the old would receive higher per-
capita consumption (due to the increase in return to capital), while the young
would receive lower per-capita consumption (due to decreasing marginal re-
turns in labor from the larger working population). In contrast to what a
defined benefit system offers, higher life-expectancy optimally requires old
agents to get by with less resources. Indeed, persistent increases in longevity
will lead to lower total consumption of the old (and thus certainly lower per-
period consumption of the old) and the young as well as higher work effort of
the young. The additional resources are used to increase growth and future
output, resulting in higher consumption of future generations.

In future work, we plan to use the model to explore how the intergener-
ational risk sharing properties of the pension system affect the equity pre-
mium. In particular, in a laissez fair equilibrium without intergenerational
risk sharing, the equity premium may be quite high as the risk-averse retired
generations cannot share capital income risk with other generations. In the
presence of a defined-benefit pension system, however, the old can shed some
of this risk to younger generations. In effect, the young issue bonds to the
older generations and invest the proceeds in the capital market. In this way,
the young have become residual claimants of the pension funds and thus
share in the investment risk. By thus spreading investment risk more widely
over the population and allowing the young to in effect borrow against their
human capital to invest in the stock market (see Constantinides, Donaldson
and Mehra (2002)), the equity premium can fall (and the risk-free rate can
rise) in general equilibrium. Indeed, defined-benefit pension funds may help
individuals to implement an optimal life investment plan, which typically in-
volves individuals to heavily borrow in the beginning of their life to invest in
the stock market (see Bodie, Merton and Samuelson (1992), Davis, Kubler,
and Willen (2002), Jagannathan, and Kocherlakota (1996), and Teulings
and de Vries (2006)). These pension plans thus in effect allow the young to
participate in the stock market. If households can choose between low-risk

41



(and low-return) and high-risk (and high-return) investments, better inter-
generational risk sharing can boost growth by maintaining incentives for risk
taking in high-return investments (see Obstfeld (1994) in the context of in-
ternational risk sharing). At the same time, however, better risk sharing
may decrease precautionary saving, thereby reducing capital accumulation
and growth. We plan to estimate the potential effects of the pension system
in calibrated models.

In allowing intergenerational risk sharing through government interven-
tion, we have assumed that the young cannot participate in capital markets
at all to share risks (before the uncertainty during their life time has un-
folded). One interpretation is that human capital is not tradable and that
the young therefore cannot borrow at all against their human capital to invest
in financial capital (see also Constantinides, Donaldson and Mehra (2002)).
In practice, however, the young may be able to participate in equity-market
risk that materializes during their working career, either by borrowing, by
investing all their saving in the risk-bearing capital, or by buying call op-
tions. Indeed, capital markets allow in principle for risk-sharing between
overlapping generations, especially if the young can borrow. In this regard,
our calculations, which assumed only two discrete periods of life, are likely
to overstate the potential risk-sharing benefits from defined-benefit pension
plans. In future work, we would like to explore how sensitive our results
are with respect to alternative assumptions about the extent (including the
frequency) which the young can participate in capital markets.

Our analysis has assumed that governments can implement optimal inter-
generational risk sharing by committing future generations to a risk sharing
contract. For the question of implementability, additional aspects seem cru-
cial to us. First, government intervention may not only help to share market
risks but also give rise to new risks. These additional political risks must
be traded off against the possible gains in sharing market risks. Second, the
government may face serious problems in committing future generations to
an optimal complete risk-sharing contract. For one, in a democracy in which
current generations have the voting power, the government faces a serious
commitment problem; future generations can always opt out. For another,
the government faces substantial fundamental uncertainty so that complete
contracts are excessively costly. With substantial fundamental uncertainty,
discretion rather than rules become optimal.

Optimal risk sharing is sensitive to the magnitude of ex-ante risk aver-
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sion ξ versus ex-post risk aversion ν. The latter type of risk aversion may
exceed ex-ante risk aversion in the presence of habit formation (see also
Bohn (2003)). Habit formation, however, gives rise to new phenomena. An-
other explanation for high levels of risk aversion is ’standard-of-living’ utility
in which people are sensitive to their utility level compared to that of oth-
ers. Exploring the sensitivity of our results to alternative specifications of
preferences is an important subject for future research.

We have relied on numerical solutions. In some special cases, however, we
can solve the model analytically. This may provide a useful benchmark for
understanding the features of the optimal solution in other, more complicated
cases. We plan to investigate the analytical solutions in the future.
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A Details and additionally useful results

A.1 The calculations for proposition 2

The explicit expressions for the logarithmic derivatives are

ℓu,c,t =
uc(c̄t,y, n̄t)c̄t,y
u(c̄t,y, n̄t)

,

ℓu,n,t =
un(c̄t,y, n̄t)n̄t
u(c̄t,y, n̄t)

,

ℓx,t+1 =
x′( ¯̟ t+1q(

c̄t+1,o

¯̟ t+1
)) ¯̟ t+1q(

c̄t+1,o

¯̟ t+1
)

x( ¯̟ t+1q(
c̄t+1,o

¯̟ t+1
))

,

ℓq,t+1 =
q′( c̄t+1,o

¯̟ t+1
) c̄t+1,o

¯̟ t+1

q( c̄t+1,o

¯̟ t+1
)

,

Furthermore, define

µz,t = −
z′′(āt)āt
z′(āt)

,

µuc,c,t = −
ucc(c̄t,y, n̄t)c̄t,y
uc(c̄t,y, n̄t)

,

µq,t = −
q′′( c̄t,o

¯̟ t
) c̄t,o

¯̟ t

q′( c̄t,o
¯̟ t

)
,

µx,t = −
x′′( ¯̟ tq(

c̄t,o
¯̟ t

)) ¯̟ tq(
c̄t,o
¯̟ t

)

x′( ¯̟ tq(
c̄t,o
¯̟ t

))
,

µuc,n,t = −
unc(c̄t,y, n̄t)n̄t
uc(c̄t,y, n̄t)

.

Recall (30),

αt =
u(c̄t,y, n̄t)

āt
. (76)

Note that all these logarithmic derivatives are known as of t − 1 by as-
sumption. The time subscript therefore does not indicate “information”, but
rather indicates the argument.
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To derive the equations in proposition 2, one needs to take a first-order
Taylor expansion in the logarithmic deviations. These calculations can often
be performed rather speedily by combining several “rules”, which are easily
verified:

[Rule 1:] To take the Taylor expansion for a single variable, note

xt = x̄t exp x̌t ≈ x̄t(1 + x̂t)

[Rule 2:] If zt = Axtyt, where A is some constant, and the same is true for
the benchmark values, then

žt = x̌t + y̌t.

[Rule 3:] If zt = xt + yt and the same is true for the benchmark values,
then

z̄tžt = x̄tx̌t + ȳty̌t.

[Rule 4:] Suppose, some variable zt satisfies zt = f(xt) as well as z̄t = f(x̄t).
Then,

žt = ℓf x̌t.

where ℓf is the logarithmic derivative of f(·) at x̄t,

ℓf =
f ′(x̄t)x̄t
f(x̄t)

The extension to two variables, zt = f(xt, yt) is

žt = ℓf,xx̌t + ℓf,yy̌t,

where

ℓf,x =
fx(x̄t, ȳt)x̄t
f(x̄t, ȳt)

, ℓf,y =
fy(x̄t, ȳt)ȳt
f(x̄t, ȳt)

.

Note furthermore, that
ℓx−1,t = ℓ−1

x,t+1 (77)
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and that
µx−1,t = −

µx,t+1

ℓx,t+1

(78)

Define the variables

z′t ≡ z′ (at)

ut ≡ u (ct,y, nt)

u′c,t ≡
∂u(ct,ynt)

∂ct,y

xt ≡ x

(

̟tq

(

ct,o
̟t

))

x′t ≡ x′
(

̟tq

(

ct,o
̟t

))

et ≡ Et [xt+1]

ιt ≡ x−1(et)

ι′t−1 ≡ (x−1)′ (et−1)

q′t ≡ q′
(

ct,o
̟t

)

Note that ēt = x
(

¯̟ t+1q
(

c̄t+1,o

¯̟ t+1

))

and ēt−1 = x
(

¯̟ tq
(

c̄t,o
¯̟ t

))

, since we assume

that the benchmark levels are known at date t− 1 already.
With this, the risk-sharing condition (29), i.e.

z′ (at)
∂u(ct,ynt)

∂ct,y
= z′ (at−1)

β

ω
dtq

′

(

ct,o
̟t

)

can be written as
z′t u

′
c,t = z′t−1

ω

β
dt q

′
t. (79)

The argument definition

at = u (ct,y, nt) + βx−1

(

Et

[

x

(

̟t+1q

(

ct+1,o

̟t+1

))])

(80)

can likewise be written as
at = ut + βιt (81)
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Finally, the definition for the discounting correction (20), i.e.

dt =
(

x−1
)′
(

Et−1

[

x

(

̟tq

(

ct,o
̟t

))])

x′
(

̟tq

(

ct,o
̟t

))

(82)

can be written as
dt = ι′t−1x

′
t (83)

1. Taking logarithms of equation (79) delivers

ž′t + ǔ′c,t = ž′t−1 + ďt + q̌′t

Application of rule 4 to these items immediately delivers (84), i.e.

µz,tǎt + µuc,c,tčt,y + µuc,n,tňt (84)

= µz,t−1ǎt−1 + ďt + µq,t (čt,o − ˇ̟ t)

2. To loglinearize (81), use rule 3 to obtain

ǎt = αtǔt + (1 − αt)ι̌t.

With rule 4, extended to two arguments, and applied to ut = u(c, n),

ǔt = ℓu,c,tčt,y + ℓu,n,tňt.

Also with rule 4,
ι̌t = ℓι,tět

Interchanging expectation and differentiation, rule 4 delivers

ět = ℓx,t+1 ((1 − ℓq,t+1)Et[ ˇ̟ t+1] + ℓq,t+1Et[čt+1,o]) . (85)

Combining and exploiting (77), one obtains equation (33), i.e.

ǎt = αt (ℓu,c,tčt,y + ℓu,n,tňt)

+(1 − αt)((1 − ℓq,t+1)Et[ ˇ̟ t+1] + ℓq,t+1Et[čt+1,o]). (86)
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3. Taking logarithms of (83) delivers

ďt = ι̌′t−1 + x̌′t

For x̌′t, rule 4 delivers

x̌′t = −µx,t ((1 − ℓq,t) ˇ̟ t + ℓq,tčt,o)

For ι̌′t−1, repeated application of rule 4 delivers

ι̌′t−1 = −µx−1,t−1ět

= −µx−1,t−1Et−1 [ℓx,t ((1 − ℓq,t) ˇ̟ t + ℓq,tčt,o)]

Combining and exploiting (78) delivers equation (33), i.e.

ďt = µx,t ((1 − ℓq,t) ( ˇ̟ t − Et−1[ ˇ̟ t]) + ℓq,t (čt,o − Et−1[čt,o]))

A.2 Scale Invariance and Balanced Growth

Scale invariance has a number of implications.

1. To save on notation, define c̆t,y = φct,y, c̆t,o = φct,o and w̆t = φwt: these

are part of the allocation Φ̆. Thus, equation (22) can be rewritten as

ℓu,c,t
ℓu,n,t

= −
ct,y
wtnt

(87)

Note that the right hand side - which can be interpreted as the income
share spend on consumption of the young - does not depend on φ.
Hence, the ratio of the two logarithmic derivatives ℓu,c,t = ℓu,c,t(c̆t,y, nt)
and ℓu,n,t = ℓu,n,t(c̆t,y, nt) is independent of the argument c̆t,y.

2. Suppose that the income share spend on consumption of the young is
constant

ct,y
wtnt

≡ σy, (88)

then
ℓu,c,t = σyℓu,n,t. (89)

We note that this condition will hold along a balanced growth path,
where indeed the income share should be constant.
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3. Replace ct,y with φct,y in (22), and take the logarithmic derivative with
respect to φ to obtain

0 = −µuc,c,t − µuc,n,t
ct,y
wtnt

+ 1, (90)

or

0 = −µuc,c,t + µuc,n,t
ℓu,c,t
ℓu,n,t

+ 1 (91)

across all values c̃t,y.

4. Suppose additionally, that µuc,c,t is constant over time and η ≡ µuc,c,t.
We can derive a semi-closed form for the utility function u(c, n), as is
well-known from the literature, see e.g. King and Plosser (1989). We
provide the derivation here for the sake of completeness. Consider first
the case η 6= 1. Since µuc,c,t is the (negative) logarithmic derivative of
uc with respect to c, this implies log-linearity for uc,

log uc(čt,y, nt) = (1 − η) log v(nt) − η log čt,y,

where the “constant” term (1 − η) log v(nt), may depend on nt (and
seems to have been written in a rather complicated fashion, as this will
turn out to be convenient below). Rewrite as

uc(c̆t,y, nt) = v(nt)
1−η c̆−ηt,y ,

and integrate to obtain

u(c̆t,y, nt) =
(v(nt)c̆t,y)

1−η

1 − η
+ κ(nt), (92)

where κ(nt) is an additional constant, possibly depending on nt. Differ-
entiating with respect to nt and comparing to (22) shows that κ(nt) ≡ κ
independent of nt as follows. Rewrite (22) for the allocation Φ̆ as

φwt = −
un(φct,y, nt)

uc(φct,y, nt)

= −
v′(nt)

v(nt)
φct,y −

κ′(nt)

v(nt)1−η(φct,y)−η
.

53



Divide by φ to see that the left hand side and the first term on the
right hand side do not depend on φ, whereas the last one does, unless
either η = 1 or κ′(nt) = 0. Since we assumed η 6= 1, κ(nt) must be a
constant, independent of nt. The case η = 1 similarly yields

u(c̆t,y, nt) = log c̆t,y + v(nt). (93)

5. Consider a nonstochastic case. Equation (26) reads

uc(φct,y, nt) = β
(

x−1
)′
(

x

(

̟t+1q

(

φct+1,o

̟t+1

)))

(94)

x′
(

̟t+1q

(

φct+1,o

̟t+1

))

q′
(

φct+1,o

̟t+1

)

Rt+1.

Take the logarithmic derivative with respect to φ and exploit (78) to
find

µuc,c,t = µq,t+1 (95)

6. Again for the nonstochastic case, the constant share condition α̃t = αt
can be rewritten as

(

1

αt
− 1

)

u(φct,y, nt) = βq(φct+1,o)

where αt does not depend on φ. Taking the logarithmic derivative with
respect to φ, we establish

ℓu,c,t = ℓq,t+1 (96)

A.3 The equity premium

To relate the risk-aversion parameters to observables, one possibility is that
observed allocations are (nearly) optimal as far as intergenerational risk shar-
ing is concerned, and to calibrate the risk-aversion parameters to observed
market prices of risk. In our context, this means to observe market prices of
risk from young agents trading assets which pay off when they are old.

Given an allocation which solves the social planners problem, suppose
that the social planer contemplates transferring resources between periods
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using some asset a with return Ra
t+1. Since the allocation is already optimal,

the social planner must wish not to execute this reallocation. Hence, it has
to be the case that the asset pricing condition ( 26) not only holds for Rt+1,
but for the return Ra

t+1 as well, which might, of course, coincide with Rt+1.
Recall the definition of the stochastic discount factor mt+1,

mt+1 = β
(

x−1
)′
(

Et

[

x

(

̟t+1q

(

ct+1,o

̟t+1

))])

x′
(

̟t+1q

(

ct+1,o

̟t+1

))

q′
(

ct+1,o

̟t+1

)

The asset pricing equation (26) then implies

Et
[

mt+1R
a
t+1

]

= Et [mt+1Rt+1] . (97)

Decompose Ra
t+1, ct+1,o, ̟t+1, ms,t+1 into their predicted part and surprise

part,

log(Ra
t+1) = log(R̄a

t+1) + Řa
t+1,

log(ct+1,o) = log(c̄t+1,o) + čt+1,

log(̟t+1) = log( ¯̟ t+1) + ˇ̟ t+1,

log(mt+1) = log(m̄t+1) + m̌t+1,

with
0 = Et[Ř

a
t+1] = Et[čt+1] = Et[ ˇ̟ t+1] = Et[m̌t+1]

We assume that the surprise parts are jointly normally distributed, condi-
tional on information up to and including t. Denote the standard deviations
by e.g. σR,t+1 and σm,t+1 and correlations denoted by e.g. ρm,R,t+1. Define
the Sharpe ratio, defined as the difference of the log expected returns divided
by the standard deviation of the log return,

SRt =
log (Et[Rt+1]) − log

(

Rf
t

)

σR,t+1

. (98)

Using a standard calculation, see Lettau and Uhlig (2002), one can show
that

SRt = −ρm,R,t+1σm,t+1 (99)
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It is easy to see that, up to a log-linear approximation,

m̌t+1 = −µx,t+1( ˇ̟ t+1 + ℓq,t+1(čt+1,o − ˇ̟ t+1)) − µq,t+1(čt+1,o − ˇ̟ t+1)

= (µx,t+1(ℓq,t+1 − 1) + µq,t+1) ˇ̟ t+1 − (µx,t+1ℓq,t+1 + µq,t+1)čt+1,o

Using the same calculation as for (99), one can then show that

SRt = −(µx,t+1(ℓq,t+1 − 1) + µq,t+1)ρ̟,R,t+1σ̟,t+1

+(µx,t+1ℓq,t+1 + µq,t+1)ρc,o,R,t+1σc,o,t+1 (100)

For the specific functional form of subsection 3.3, we thus obtain

SRt =
η − ν

1 − η
ρ̟,R,t+1σ̟,t+1 + νρc,o,R,t+1σc,o,t+1 (101)

These equations are informative about measuring curvature parameters of
the utility specification. In particular, we see that if there is no surprise
longevity risk, ˇ̟ t+1 ≡ 0, then the risk premium is proportional to the risk
aversion parameter ν, the standard deviation σc,o,t+1 of old-age consumption
co,t+1 and the correlation ρc,o,R,t+1 of old-age consumption with the asset
return.

In solving a social planners problem and in characterizing the speed of
capital accumulation, the appropriate risk premium and thus, the appropri-
ate “scarcity” of capital to generate the required average return, ought to be
taken into account.

A.4 Solving the social planners problem

A.4.1 Collecting the equations

For reference, the social planners problem solves the following set of equa-
tions:

yt = Atkt−1f(Ztnt),

ct,yπt + ct,o + ktπt = (Atf(Ztnt) + 1 − δt) kt−1,

wt = Atkt−1f
′(Ztnt)

Zt
πt
,

∂u(ct,y, nt)

∂ct,y
wt = −

∂u(ct,y, nt)

∂nt
,
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Rt = Atf(Ztnt) + 1 − δt,

∂u(ct,y, nt)

∂ct,y
= β(x−1)′

(

Et

[

x

(

̟t+1q

(

ct+1,o

̟t+1

))])

·

Et

[

x′
(

̟t+1q

(

ct+1,o

̟t+1

))

q′
(

ct+1,o

̟t+1

)

Rt+1

]

,

z′ (at)
∂u(ct,ynt)

∂ct,y
=

β

ω
z′ (at−1) (x−1)′

(

Et−1

[

x

(

̟tq

(

ct,o
̟t

))])

·

x′
(

̟tq

(

ct,o
̟t

))

q′
(

ct,o
̟t

)

at = u (ct,y, nt) + βx−1

(

Et

[

x

(

̟t+1q

(

ct+1,o

̟t+1

))])

.

We assume that preferences are given by (44). Define

ς =
η

1 − η
(1 − ν) (102)

and note that
1 − η

1 − ν
ς = η

which turns out to be useful in some calculations below. Note that

x

(

̟tq

(

ct,o
̟t

))

=
1

1 − ν
̟ς
tc

1−ν
t,o

x′
(

̟tq

(

ct,o
̟t

))

q′
(

ct,o
̟t

)

= ̟ς
tc

−ν
t,o

Thus, the equations above become

yt = Atkt−1f(Ztnt),

ct,yπt + ct,o + ktπt = (Atf(Ztnt) + 1 − δt) kt−1,

wt = Atkt−1f
′(Ztnt)

Zt
πt
,

wt
ct,y

= −
v′(nt)

v(nt)
,

Rt = Atf(Ztnt) + 1 − δt,

c−ηt,y v(nt)
1−η = βxν−ηt Et[̟

ς
t+1c

−ν
t+1,oRt+1],
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β

ω
s−1
t−1̟

ς
tc

−ν
t,o = ((1 − η)at)

η−ξ
1−η c−ηt,y v(nt)

1−η,

(1 − η)at = (ct,yv(nt))
1−η + βx1−η

t ,

xt =
(

Et
[

̟ς
t+1c

1−ν
t+1,o

])
1

1−ν ,

st = ((1 − η)at)
ξ−η
1−η xη−νt ,

where the last two lines define xt and st.

A.4.2 Normalization

To turn this into a stationary system, the growing variables need to be divided
by the beginning-of-period capital level kt−1. Thus, let

c̃t,y ≡
ct,y
kt−1

,

c̃t,o ≡
ct,o
kt−1

,

w̃t ≡
wt
kt−1

,

ỹt ≡
yt
kt−1

,

k̃t ≡
kt
kt−1

,

x̃t ≡
xt
kt−1

,

except that we define

ãt ≡
at

k1−η
t−1

,

s̃t ≡ stk
ν−ξ
t .

The exponent differs here in order to achieve the appropriate scaling for these
utility variables. Moreover, we scale st by kν−ξt rather than by kν−ξt−1 because

that way, s̃t−1 (rather than s̃t−1 and k̃t−1) turns out to be the only remaining
endogenous state variable.
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Rewrite the system as

ỹt = Atf(Ztnt),

c̃t,yπt + c̃t,o + k̃tπt = Atf(Ztnt) + 1 − δt,

w̃t = Atf
′(Ztnt)

Zt
πt
,

w̃t
c̃t,y

= −
v′(nt)

v(nt)
,

Rt = Atf(Ztnt) + 1 − δt,

c̃−ηt,y v(nt)
1−η = βx̃ν−ηt k̃−νt Et[̟

ς
t+1c̃

−ν
t+1,oRt+1],

β

ω
s̃−1
t−1̟

ς
t c̃

−ν
t,o = ((1 − η)ãt)

η−ξ
1−η c̃−ηt,y v(nt)

1−η,

(1 − η)ãt = (c̃t,yv(nt))
1−η + βx̃1−η

t ,

x̃t = k̃t
(

Et
[

̟ς
t+1c̃

1−ν
t+1,o

])
1

1−ν ,

s̃t = ((1 − η)ãt)
ξ−η

1−η x̃η−νt k̃ν−ξt .

Note that indeed the only endogenous state variable remaining is s̃t−1.

A.4.3 Stochastic assumptions

To make further progress, we need some additional, tractable assumptions.
Let

ζt =













̟t

At
Zt
πt
δt













(103)

be the vector of exogenous parameters. We assume that a steady state ζ̄
exists and that

ζ̂t = log(ζt) − log(ζ̄)

follows an AR(1) process,
ζ̂t = Nζ̂t−1 + ǫt (104)

for some 5 × 5 matrix N with nonexplosive roots, where
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ǫt =













ǫ̟,t
ǫA,t
ǫZ,t
ǫπ,t
ǫδ,t













is the vector of innovations for each exogenous parameter and

ǫt ∼ N (0,Σ).

A.4.4 Steady state

The steady state for the “tilde”-variables - which we shall now also use as
our benchmark values - is given by the equations

ȳ = Āf(Z̄n̄), (105)

c̄yπ̄ + c̄o + k̄π̄ = Āf(Z̄n̄) + 1 − δ̄, (106)

w̄ = Āf ′(Z̄n̄)
Z̄

π̄
, (107)

w̄

c̄y
= −

v′(n̄)

v(n̄)
, (108)

R̄ = Āf(Z̄n̄) + 1 − δ̄, (109)

c̄−ηy v(n̄)1−η = βx̄ν−ηk̄−ν ¯̟ ς c̄−νo R̄ exp
(

σ2
R−νc/2

)

, (110)

β

ω
s̄−1 ¯̟ ς c̄−νo = ((1 − η)ā)

η−ξ
1−η c̄−ηy v(n̄)1−η, (111)

(1 − η)ā = (c̄yv(n̄))1−η + βx̄1−η, (112)

x̄ = k̄(exp
(

σ2
x/2
)

¯̟ ς c̄1−νo )
1

1−ν , (113)

s̄ = ((1 − η)ā)
ξ−η
1−η x̄η−ν k̄ν−ξ, (114)

where σ2
R−νc denotes the conditional variance of logRt+1 + ς log(̟t+1) −

ν log(ct+1,o) and σ2
x is the conditional variance of ς log̟t+1 + (1 − ν) log

ct+1,o.
We have included the risk terms in the intertemporal equations, thus

including a precautionary motive for saving. We implicitely assumed (as
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remains to be shown in the log-linearized version), that the variances are
constant over time. This will be justified below, when solving for the linear
recursive law of motion for the loglinearized system, see subsection A.4.10.

Finally, define the argument share

α =
(c̄yv(n̄))1−η

(1 − η)ā

for η 6= 1 and

α =
1

1 + β

for η = 1.

A.4.5 Solving for the steady state

Labor supply (108) can be written as

w̄n̄

c̄y
= −ℓv(n̄), (115)

which says that the inverse of the share of wage income spent on consumption
when young is tied to ℓv(n̄). Labor demand (107) together with (105) implies

w̄n̄π̄

ȳ
= ℓf (Z̄n̄). (116)

The labor share in production is thus closely relared to the productivity-
weighted labor input Z̄n̄. Combining equations (115) and (116), one can
eliminate the wage rate w̄

π̄c̄y
ȳ

=
ℓf (Z̄n̄)

−ℓv(n̄)
. (117)

We also assume that variances and covariances are known: the underlying
fixed point problem will be discussed below. Equation (113) implies

x̄ = κ1k̄c̄o, (118)

where

κ1 = exp

(

σ2
x/2

1 − ν

)

¯̟
ς

1−ν .
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The asset pricing equation (110), which can be viewed as describing optimal
saving, can be rewritten with (118) as

c̄−ηy v(n̄)1−η = κ2c̄
−η
o k̄−ηR̄, (119)

where

κ2 = βκν−η1 ̟ζ exp
(

σ2
R−νc/2

)

= β ¯̟ η exp

(

ν − η

1 − ν
σ2
x/2

)

exp
(

σ2
R−νc/2

)

.

The risk-sharing condition (111) together with the definitions (114) and
(118) implies

c̄−ηy v(n̄)1−η =

(

β

ω
κν−η1 ¯̟ ζ

)

c̄−ηo k̄ξ−η, (120)

which can be rewritten as

c̄o
π̄c̄y

= κ3k̄
ξ−η
η v(n̄)

η−1
η , (121)

where

κ3 =
1

π̄

(

β

ω
κν−η1 ¯̟ ζ

)
1
η

=
1

π̄

(

β

ω

)
1
η

¯̟ exp

(

ν − η

η(1 − ν)
σ2
x/2

)

.

While (119) arises from an intertemporal savings decision, equation (120)
arises from the risk-sharing condition. The difference between these two
equations thus partially stems from the different weights given to an agent
currently alive or alive in the future due to population growth and social
planner discounting. Equations (119) and (120) with (109) together imply

k̄ξ = κ4R̄ = κ4

(

Āf(Z̄n̄) + 1 − δ̄
)

, (122)

where
κ4 =

ωκ2

βκν−η1 ̟ζ
= ω exp

(

σ2
R−νc/2

)

,
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which sheds light on the relationship between growth of the economy k̄ and
required labor n̄ versus the discount factor of the social planner ω and a term
exp(σ2

R−νc) related to the risk premium. Note also, that

κ3 =
1

π̄

(

κ2

κ4

)
1
η

.

The right-hand side of (106) equals R̄. Use (105) to rewrite (106) as

π̄c̄y
ȳ

(

1 +
c̄o
π̄c̄y

)

= 1 +
1 − δ̄ − π̄k̄

Āf(Z̄n̄)
. (123)

Combining equations in π̄c̄y
ȳ
, c̄o
π̄c̄y
, k̄, and n̄, we have

π̄c̄y
ȳ

(

1 +
c̄o
π̄c̄y

)

= 1 +
1 − δ̄ − π̄k̄

Āf(Z̄n̄)
, (124)

π̄c̄y
ȳ

=
ℓf (Z̄n̄)

−ℓv(n̄)
, (125)

c̄o
π̄c̄y

= κ3k̄
ξ−η
η v(n̄)

η−1
η , (126)

k̄ξ = κ4R̄ = κ4

(

Āf(Z̄n̄) + 1 − δ̄
)

. (127)

Substituting the second and third equation into the first to eliminate π̄c̄y
ȳ

and
c̄o
π̄c̄y

, one obtains
(

ℓf (Z̄n̄)

−ℓv(n̄)

)

(

1 + κ3k̄
ξ−η
η v(n̄)

η−1
η

)

= 1 +
1 − δ̄ − π̄k̄

Āf(Z̄n̄)
.

Finally, use the fourth equation (127) to eliminate k̄ to obtain
(

ℓf (Z̄n̄)

−ℓv(n)

)

(

1 + κ3

(

κ4

(

Āf(Z̄n̄) + 1 − δ̄
))

ξ−η
ξη v(n̄)

η−1
η

)

= 1 +
1 − δ̄ − π̄

(

κ4

(

Āf(Z̄n̄) + 1 − δ̄
))

1
ξ

Āf(Z̄n̄)
.(128)

This is a single and nonlinear equation in n̄. Solving it requires a specification
for v(·) and f(·). A solution may perhaps be given in special cases, but
numerical methods must be used generally. There may be multiple solutions
n̄ > 0, indicating a multiplicity of steady states. Given a solution to this
equation, all other steady state variables can then be calculated.
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A.4.6 A parameterization

We shall assume that

v(n) = v̄
(1 − n)1−χ

1 − χ

with 0 ≤ χ < 1, so that

ℓv(n) = −(1 − χ)
n

1 − n
,

µv(n) = −χ
n

1 − n
.

Thus, (115) can be rewritten as

w̄(1 − n̄)

c̄y
= 1 − χ. (129)

The “expenditure ratio” of leisure over consumption when young is thus given
by 1 − χ.

Further, we assume that

f(x) =
(

θ + (1 − θ)x1− 1
ψ

)
1

1− 1
ψ (130)

with 0 ≤ θ < 1 and ψ > 0 (where one should note that we usually use
x = Zn as argument), and thus

ℓf (x) =
(1 − θ)x1− 1

ψ

θ + (1 − θ)x1− 1
ψ

,

µf (x) =
1

ψ
(1 − ℓf (x)).

For ψ → 1, this becomes
f(x) = x1−θ (131)

Proof: Let ǫ = 1 − 1
ψ
. Note that

log f(x; ǫ) =
1

ǫ
log (1 + (1 − θ) (exp (ǫ log x) − 1))

≈
1

ǫ
(1 − θ) (exp (ǫ log x) − 1)

≈
1

ǫ
(1 − θ) (ǫ log x)

= (1 − θ) log x,
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which delivers the claim. •

Either directly or per ψ → 1, one then gets

ℓf (x) = 1 − θ,

µf (x) = θ.

A.4.7 A special case

We now analyze the case ψ = 1, ξ = η → 1, δ̄ = 1 per successively investigat-
ing the implications of each additional restriction.

For the special case ψ = 1, replace in equation (125) to get

π̄c̄y
ȳ

=

(

1

n̄
− 1

)

(1 − θ)

(1 − χ)
,

and in equation (128) to find

(

1

n̄
− 1

)

(1 − θ)

(1 − χ)

(

1 + κ3

(

κ4

(

Ā(Z̄n̄)1−θ + 1 − δ̄
))

ξ−η

ξη

(

v̄
(1 − n̄)1−χ

1 − χ

)

η−1
η

)

= 1 +
1 − δ̄ − π̄

(

κ4

(

Ā(Z̄n̄)1−θ + 1 − δ̄
))

1
ξ

Ā(Z̄n̄)1−θ
.(132)

For ξ = η → 1, the ratio of old-age consumption to young-age consump-
tion is given by (126) as

c̄o
c̄y

= π̄κ3 =
β

ω
exp

(

−σ2
x/2
)

. (133)

Furthermore for ξ = η → 1, one obtains
(

1

n̄
− 1

)

(1 − θ)

(1 − χ)
(1 + κ3) = (1 − π̄κ4)

(

1 +
1 − δ̄

ĀZ̄1−θn̄1−θ

)

. (134)

With complete depreciation (i.e. δ̄ = 1), this becomes

n̄ =

(

1 + κ5
(1 − χ)

(1 − θ)

)−1

, (135)
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where
π̄c̄y
ȳ

= κ5 =
1 − π̄κ4

1 + κ3

. (136)

A closed-form solution is thus available in this case. Ignoring the variance
and risk premium terms or assuming a nonstochastic steady state, we can
write κ5 as

π̄c̄y
ȳ

= κ5 =
1 − π̄ω

1 + β(π̄ω)−1
, (137)

so that (by substitution into (136))

n̄ =

(

1 +
(1 − π̄ω)

(1 + β(π̄ω)−1)

(1 − χ)

(1 − θ)

)−1

, (138)

where one can now investigate the impact of a variety of parameters on the
steady state.

A particularly simple case is β = ω and π̄ = 1. Ignoring the variance and
risk premium terms, one has

c̄y
ȳ

=
c̄o
ȳ

=
1 − β

2
(139)

n̄ =

(

1 +
(1 − β)

2

(1 − χ)

(1 − θ)

)−1

with the gross-investment-to-GDP ratio π̄k̄
ȳ

given by β.

Given a value of n̄, equation (127) shows that the growth factor k̄ of
the economy and the level of total factor productivity Ā are closely related.
Varying the latter will not affect n̄ under full depreciation in case ξ = η → 1,
as shown above. Thus, to obtain an economy with a growth factor k̄, we can
set

Ā =
k̄

ω(Z̄n̄)θ
,

where we once again ignore the variance and risk premium terms.
These calculations also help in a somewhat more general case. For sup-

pose alternatively, that δ̄ = 1, but that ξ 6= η 6= 1. Use the solution n̄
of equation (135), but without imposing η = 1 for calculating κ5, i.e. us-
ing (136) to “back out” the level parameter v̄ in the disutility of the young
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consistent with this steady state

v̄ =
(

κ4

(

Ā(Z̄n̄)1−θ + 1 − δ̄
))

ξ−η
ξ(1−η)

(

(1 − n̄)1−χ

1 − χ

)−1

.

This may be useful in order to investigate local comparative statics around
a known steady state or to find an initial point for numerically calculating
the steady state.

A.4.8 Loglinearization

We now use hats on variables to denote the loglinearization of the detrended
variables around the detrended steady state, e.g.

ĉt,y = log(c̃t,y) − log(c̄t,y).

Furthermore and from here onwards and in slight abuse of notation, let ℓf and
ℓv be the logarithmic derivatives of f(·) and v(·), and µf and µv the (negative)
elasticity of f ′(·) and v′(·), all evaluated at steady-state employment n̄ for
v(·) resp. Z̄n̄ for f(·). The loglinearization is given by

ŷt = Ât + ℓf (Ẑt + n̂t), (140)

c̄yπ̄(ĉt,y + π̂t) + c̄oĉt,o + k̄π̄(k̂t + π̂t) (141)

= ȳ(Ât + ℓf (Ẑt + n̂t)) − δ̄δ̂t, (142)

ŵt = Ât − µf

(

Ẑt + n̂t

)

+ Ẑt − π̂t, (143)

ŵt − ĉt,y = −(µv + ℓv)n̂t, (144)

R̄R̂t = ȳ(Ât + ℓf (Ẑt + n̂t)) − δ̄δ̂t, (145)

−ηĉt,y + (1 − η)ℓvn̂t = −ηk̂t + Et

[

η ˆ̟ t+1 − ηĉt+1,o + R̂t+1

]

, (146)

ŝt−1 + νĉt,o − ς ˆ̟ t = (ξ − η)

(

ât
1 − η

)

+ ηĉt,y − (1 − η)ℓvn̂t, (147)

(

ât
1 − η

)

= α (ĉt,y + ℓvn̂t) (148)

+(1 − α)

(

k̂t + Et

[

η

1 − η
ˆ̟ t+1 + ĉt+1,o

])

,(149)
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ŝt = (ξ − η)

((

ât
1 − η

)

− k̂t

)

(150)

+(η − ν)Et

[

η

1 − η
ˆ̟ t+1 + ĉt+1,o

]

, (151)

where we replaced x̂t everywhere with

x̂t = k̂t + Et

[

η

1 − η
ˆ̟ t+1 + ĉt+1,o

]

. (152)

A.4.9 Preparation for MATLAB implementation

In order to implement this system of equations, it is more convenient to use
δ̂∗t = δ̄δ̂t - since this is already in percent anyways and to handle δ̄ = 0 as

limit - as well as â∗t =
(

ât
1−η

)

. Write the system as

0 = Ât + ℓf (Ẑt + n̂t) − ŷt, (153)

0 = R̄R̂t − c̄yπ̄(ĉt,y + π̂t) − c̄oĉt,o − k̄π̄(k̂t + π̂t), (154)

0 = Ât − µf

(

Ẑt + n̂t

)

+ Ẑt − π̂t − ŵt, (155)

0 = −(µv + ℓv)n̂t − ŵt + ĉt,y, (156)

0 = ȳŷt − δ̂∗t − R̄R̂t, (157)

0 = (ξ − η)â∗t + ηĉt,y − (1 − η)ℓvn̂t (158)

−ŝt−1 − νĉt,o + ς ˆ̟ t),

0 = −ηk̂t + Et

[

η ˆ̟ t+1 − ηĉt+1,o + R̂t+1

]

(159)

+ηĉt,y − (1 − η)ℓvn̂t,

0 = α (ĉt,y + ℓvn̂t) − â∗t (160)

+(1 − α)

(

k̂t + Et

[

η

1 − η
ˆ̟ t+1 + ĉt+1,o

])

0 = (ξ − η)
(

â∗t − k̂t

)

− ŝt (161)

+(η − ν)Et

[

η

1 − η
ˆ̟ t+1 + ĉt+1,o

]

.

In order to incorporate the generational account perspective, we also add
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the equations

0 = τ̂t,priv +
c̄y
w̄n̄

(ĉy,t − ŵt − n̂t) +
k̄

w̄n̄
(k̂ − ŵt − n̂t)

0 = τ̂t,pub +
c̄y
w̄n̄

(ĉy,t − ŵt − n̂t)

to capture the movements in the ratios of lump sum taxes to wage earnings to
be paid by the young, expressed in percent (rather than in percent deviation
from the steady state of this ratio).

As state variables we choose ŝt, ĉt,y, ĉt,o, â
∗
t and k. The first three come

in due to the insights from some analytic calculations towards deriving the
law of motion in closed form, available as a technical appendix in a working
paper version, and are to having three rather than one equation containing
expectations. The variable â∗t has been added in order to avoid potential
difficulties of a purely algebraic nature in the special case ξ = η. Finally,
k has been added as a state to recalculate the impulse responses for the
non-normalized variables, if so desired.

A.4.10 The recursive law of motion

We wish to solve for the linear recursive law of motion,

ŝt = ϕs,sŝt−1 + ϕs,ζζt
n̂t = ϕn,sŝt−1 + ϕn,ζζt
ĉt,y = ϕcy,sŝt−1 + ϕcy,ζζt
ĉt,o = ϕco,sŝt−1 + ϕco,ζζt
R̂t = ϕR,sŝt−1 + ϕR,ζζt

(162)

etc.., i.e. we wish to solve for the coefficients ϕ(·,s) ∈ IR and ϕ(·,ζ) ∈ IR5 such
that the linear recursive law of motion satisfies the loglinearized equations.
Note that the linear recursive law of motion implies that the conditional
variances and covariances are constant and given by e.g.

σ2
c,o = ϕco,ζΣϕ

′
co,ζ

ρc,o,Rσc,oσR = ϕco,ζΣϕ
′
R,ζ

In particular, the Sharpe ratio (100) can now be calculated.
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In principle, this involves the calculation of a fixed point: the steady
state requires knowledge of these variances and covariances, which can be
calculated, given the linear recursive law of motion. But the latter is a
solution to system of equations, whose coefficients depend on the steady
state. An iterative procedure typically works well. As a first step, assume
these variances, covariances and the Sharpe ratio to be zero, in which case
one obtains the nonstochastic steady state. Use it to generate the loglinear
approximation and solve it for the recursive law of motion. Calculate the
implied variances and covariances, and use them to recalculate the steady
state, etc..

This procedure was used in e.g. Canton (1997, 2002) in a different con-
text. The procedure typically converges fast. In fact, typically a single
step often suffices for all practical purposes. For that, use the nonstochastic
steady state to generate a linear recursive law of motion, and use the latter
to calculate variances and covariances.

A.5 A closed-form solution

We shall now provide a closed-form solution for the recursive law of mo-
tion, given the loglinearized system. The procedure follows the methodology
explained in Uhlig (1999). We proceed in three steps. The first two steps
concentrate entirely on calculating the deterministic law of motion. In the
first step, we reduce the loglinearized equations to a system of three equa-
tions in ŝt, ĉt,y and ĉt,o and their leads and lags. Plugging in the recursive
law of motion, we obtain a system of three equations in the three coefficients
ϕcy,s, ϕco,s and ϕs,s, which we reduce to a quadratic equation in ϕs,s and solve
in the second step. With the solution to thee deterministic part at hand, we
proceed to calculate the coefficients on the stochastic part by solving a linear
system of equations in the third step.

A.5.1 Step 1: Reducing the system

Due to linearity, the solution to the deterministic part is obtained by solving
the loglinearized system under the assumption that all shocks are equal to
zero, i.e.

ŷt = ℓf n̂t (163)
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c̄yπ̄ĉt,y + c̄oĉt,o + k̄π̄k̂t = Āf(Z̄n̄)ℓf n̂t (164)

ŵt = −µf n̂t (165)

ŵt − ĉt,y = −(µv + ℓv)n̂t (166)

R̄R̂t = Āf(Z̄n̄)ℓf n̂t (167)

−ηĉt,y + (1 − η)ℓvn̂t = −ηk̂t − ηĉt+1,o + R̂t+1 (168)

ŝt−1 + νĉt,o = (ξ − η)

(

ât
1 − η

)

+ ηĉt,y − (1 − η)ℓvn̂t (169)

(

ât
1 − η

)

= α (ĉt,y + ℓvn̂t) + (1 − α)
(

k̂t + ĉt+1,o

)

(170)

ŝt = (ξ − η)

((

ât
1 − η

)

− k̂t

)

+ (η − ν)ĉt+1,o(171)

The first equation (163) is not needed for the reduction. Use the third and
the forth equation (165), (166) to express n̂t in terms of ĉt,y. Use that in

the second equation (164) to express k̂t in terms of ĉt,y and ĉt,o, in the fifth

equation (167) to express R̂t in terms of ĉt,y and in the seventh equation
(169) to express ât/(1 − η) in terms of ĉt,y, ĉt,o and ĉt+1,o,

n̂t = θn,y ĉt,y

k̂t = θk,y ĉt,y + θk,oĉt,o

R̂t = θR,y ĉt,y
ât

1 − η
= θa,y ĉt,y + θa,oĉt,o + θa,Eoĉt+1,o

where

θn,y =
1

µv + ℓv − µf

θk,y =
Āf(Z̄n̄)ℓf

k̄π̄
θn,y −

c̄y
k̄

θk,o = −
c̄o
k̄π̄

θR,y =
Āf(Z̄n̄)ℓf

R̄
θn,y

θa,y = α(1 + ℓvθn,y) + (1 − α)θk,y
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θa,o = (1 − α)θk,o

θa,Eo = 1 − α

Use these results in the remaining sixth, seventh and ninth equation (168)
(169) and (171) to obtain

0 = θ1,y ĉt,y + θ1,oĉt,o + θ1,Ey ĉt+1,y + θ1,Eoĉt+1,o

st−1 = θ2,y ĉt,y + θ2,oĉt,o + θ2,Eoĉt+1,o

0 = −st + θ3,y ĉt,y + θ3,oĉt,o + θ3,Eoĉt+1,o

(172)
where

θ1,y = η − (1 − η)ℓvθn,y − ηθk,y

θ1,o = −ηθk,o

θ1,Ey = θR,y

θ1,Eo = −η

θ2,y = (ξ − η)θa,y + η − (1 − η)ℓvθn,y

θ2,o = (ξ − η)θa,o − ν

θ2,Eo = (ξ − η)θa,Eo

θ3,y = (ξ − η)(θa,y − θk,y)

θ3,o = (ξ − η)(θa,o − θk,o)

θ3,Eo = (ξ − η)θa,Eo + η − ν

A.5.2 Step 2: A system of three coefficient equations

Use the deterministic part of the recursive law of motion

ŝt = ϕs,sŝt−1

ĉt,y = ϕcy,sŝt−1

ĉt,o = ϕco,sŝt−1

to replace all variables except st−1. For variables dated t + 1, this requires
“plugging in twice”. Comparing coefficients (or, equivalently, dividing by
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st−1) yields

0 = θ1,yϕcy,s + θ1,oϕco,s + θ1,Eyϕs,sϕcy,s + θ1,Eoϕs,sϕco,s
1 = θ2,yϕcy,s + θ2,oϕco,s + θ2,Eoϕs,sϕco,s
0 = −ϕs,s + θ3,yϕcy,s + θ3,oϕco,s + θ3,Eoϕs,sϕco,s

(173)
Multiply the second equation with θ3,Eo and the third with −θ2,Eo, add

and solve for ϕcy,s,

ϕcy,s = θcy + θcy,sϕs,s + θcy,coϕco,s (174)

where

θcy =
θ3,Eo

θ3,Eoθ2,y − θ2,Eoθ3,y

θcy,s =
−θ2,Eo

θ3,Eoθ2,y − θ2,Eoθ3,y

θcy,co =
θ2,Eoθ3,o − θ3,Eoθ2,o

θ3,Eoθ2,y − θ2,Eoθ3,y

Use that in the first two equations to replace ϕcy,s,

0 = θ4 + θ4,sϕs,s + θ4,oϕco,s + θ4,ssϕ
2
s,s + θ4,soϕs,sϕco,s

0 = θ5 + θ5,sϕs,s + θ5,oϕco,s + θ5,soϕs,sϕco,s (175)

where
θ4 = θ1,yθcy
θ4,s = θ1,yθcy,s
θ4,o = θ1,yθcy,co + θ1,co

θ4,ss = θ1,Eyθcy,s
θ4,so = θ1,Eyθcy,co + θ1,Eo

θ5 = θ2,yθcy − 1
θ5,s = θ2,yθcy,s
θ5,o = θ2,yθcy,co + θ2,o

θ5,so = θ2,Eo

Multiply the first of these two equations with θ5,so, the second with −θ4,so,
add and solve for ϕco,s,

ϕco,s = θco + θco,sϕs,s + θco,ssϕ
2
s,s (176)
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where

θco =
θ4,soθ5 − θ5,soθ4

θ5,soθ4,o − θ4,soθ5,o

θco,s =
θ4,soθ5,s − θ5,soθ4,s

θ5,soθ4,o − θ4,soθ5,o

θco,ss =
−θ5,soθ4,ss

θ5,soθ4,o − θ4,soθ5,o

Use this to replace ϕco,s in either of the two equations of (175). We use the
second equation and obtain

0 = θs + θs,sϕs,s + θs,ssϕ
2
s,s + θs,sssϕ

3
s,s (177)

where
θs = θ5 + θ5,oθco
θs,s = θ5,s + θ5,oθco,s + θ5,soθco
θs,ss = θ5,oθco,ss + θ5,soθco,s
θs,sss = θ5,soθco,ss

Equation (177) is a polynomial of third degree, which generally has three
roots, ϕs,s,i, i = 1, 2, 3, and for which closed-form solutions are available. If
only one of these roots is stable, i.e. less than one in absolute value, then this
is the root we use. If there are more than one stable root, then an additional
state variable is needed as generally would be necessary to solve the system
(175). If there are no stable roots, the system is explosive and our baseline
assumption that there is a stationary solution to the social planners problem
in the detrended variables unjustified.

Experimentation with reasonable parameter choices has only delivered
the case of a single stable root. We shall therefore concentrate on that case
from here on. Thus, let ϕs,s be that solution.

The other two key coefficients ϕco,s and ϕcy,s can now be found from
equations (176) and (174).

For the remaining variables, we have

ϕn,s = θn,yϕcy,s
ϕy,s = ℓfθn,yϕcy,s
ϕk,s = θk,yϕcy,s + θk,oϕco,s
ϕw,s = −µfθn,yϕcy,s
ϕR,s = θR,yϕcy,s
ϕa,s = θa,yϕcy,s + θa,oϕco,s + θa,Eoϕs,sϕco,s

(178)
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where ϕa,s is the feedback coefficient for ât
1−η

.
We summarize these feedback coefficients per

ϕ·,s =





























ϕs,s
ϕcy,s
ϕco,s
ϕn,s
ϕy,s
ϕk,s
ϕw,s
ϕR,s
ϕa,s





























(179)

A.5.3 Step 3: Solving for the coefficients on exogenous variables.

Solving for the exogenous variables is now a matter of solving a linear system
of equations. In the equations (140) to (151) replace each endogenous variable
dated t with the feedback rule given (162). The variable ŝt−1 stays as is. The
variables dated t + 1 show up in expectations, and are replaced with the
feedback rules as e.g. in

Et[ct+1,o] = Et[ϕco,sst + ϕco,ζζt+1]

= ϕco,sϕs,sst−1 + (ϕco,sϕco,ζ + ϕco,ζN) ζt

where ϕs,s and ϕco,s are now known, while we still seek to solve for ϕco,ζ .
The resulting system contains coefficients on the variable st−1, which we

already know to hold from the calculations above. Let ϕ·,ζ be the matrix of
the to-be-solved-for feedback coefficients on the exogenous variables ζ, given
by

ϕ·,ζ =





























ϕs,ζ
ϕcy,ζ
ϕco,ζ
ϕn,ζ
ϕy,ζ
ϕk,ζ
ϕw,ζ
ϕR,ζ
ϕa,ζ





























(180)
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where ϕa,ζ is the feedback coefficient for ât
1−η

. Take the feedback coefficients
ϕ·,s on ŝt−1 as given via the calculations above, and compare coefficients
on the entries in ζt. By carefully examining the system or, alternatively,
exploiting the matrix algebra provided in Uhlig (1999), the remaining system
can be written in the form

V vec(ϕ·,ζ) = W

for some matrices V and W and the columnwise vectorization vec(ϕ·,ζ) of
the matrix of coefficients ϕ·,ζ . If N = 0, i.e., if the exogenous variables are
iid, then this can be written more conveniently as

(Cϕ·,ζ) = D

In either case, one obtains a linear system in the entries of ϕ·,ζ , which can be
solved under the usual conditions for invertibility. We shall skip the tedious
details on explicitely stating V and W or C and D.

A.5.4 Impulse responses

Define the vector of endogenous variables

ψt =





























ŝt
ĉy,t
ĉo,t
n̂t
ŷt
k̂t
ŵt
R̂t

ât/(1 − η)





























With the solution above, one can now determine the effect of a shock ǫ0
recursively per

ζ0 = ǫ0 , ψ0 = ϕ·,ζζ0
ζ1 = Nζ0 , ψ1 = ϕ·,s(ψ0)s + ϕ·,ζζ1
ζ2 = Nζ1 , ψ2 = ϕ·,s(ψ1)s + ϕ·,ζζ2

(181)

etc., where e.g. (ψ0)s is the first entry (corresponding to s0) of ψ0.
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Figure 1: Impulse responses for a one percent shock to longevity, given the
benchmark parameterization

Tables and Figures
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Notation meaning first occurance
At total factor productivity (7)
at argument of z(·). (28)
Ct,y aggregate cons. of young at t (9)
ct,y cons. of gen. born in t, when young (2)
c̃t,y rescaled consumption below definition 5
Ct,o aggregate cons. of old at t (9)
ct+1,o cons. of gen. born in t, when old (2)
c̃t,o rescaled consumption below definition 5
dt discounting correction (20)
f(·) production function (7)
Ht set of all possib. histories at t below (11)
H set of all possib. histories below (11)
ht history up to t (11)
Kt−1 aggr. capital, used in prod. at t (7)
kt−1 capital in prod. at t, per old (8)
ℓu,c,t logarithm. deriv. of u w.r.t. c above (31)
ℓu,n,t logarithm. deriv. of u w.r.t. n above (31)
ℓx,t logarithm. deriv. of x above (31)
ℓq,t logarithm. deriv. of q above (31)
ℓv logarithm. deriv. of v (43)
mt+1 discount factor of soc. plan. (23)
nt labor supply of gen. born in t, when young (2)
q(·) utility function when old (2)
Rt social rate of return (24)
S state space for date-t-variables below (10)
SRt Sharpe ratio (98)
U(·) overall utility (2)
Ut,t overall utility of generation t, cond. on t-info (2)
u(·, ·) instantaneous utility when young (2)
uo parameter for initially old (5)

Ut(ht) ex-post utility below definition 1
Ut,0 ex-ante expected utility at beginning of time (12)
x(·) risk aversion transformation (2)
Yt aggregate output at t (7)
yt output at t, per old (8)
z(·) overall ex-ante risk-aversion function (2)
Zt labor-specific productivity t (7)

Table 1: Summary table for the notation and symbols used in this paper,
part 1.
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Notation meaning first occurance
αt argument share above (31)
β discount factor of agent (2)
χ pref. parameter for leisure (55)
δt depreciation rate (9)
µz,t (negative) elasticity of z′(·) above (31)
µuc,c,t (negative) elasticity of uc(·, ·) w.r.t. c above (31)
µuc,n,t (negative) elasticity of uc(·, ·)w.r.t. n above (31)
µx,t (negative) elasticity of x′(·) above (31)
µq,t (negative) elasticity of q′(·) above (31)
φ scale factor in definition 5

Φ(·) allocation in definition 1

Φ̃ rescaled allocation in definition 5
γt extra (policy) shock below (10)
η inverse of intertemp. elast. of subst. above (40), (42)
ι x−1 just below (78)

κ(nt) integration constant (40)
κ integration constant below (40)
λt Lagrange multiplicator on feasibility (14)
ν risk avers. wrt old-age risk (44)
Πt young population (6)
πt young population growth factor (6)
σy income share (88)
σt return subsidy (69)
τt,y lump sum tax on young (68)
τt,o lump sum tax on old (69)
τt,priv tax, if priv. cap. (70)
τt,pub tax, if publ. cap. (71)
ξ life-time risk aversion parameter (44)
ωt welfare weight in definition 4
ω welfare weight factor below definition 4
ρ correlation before (98)
ψ production function param. (56)
θ production function param. (56)
̟t expected life time of the old in period t (2 )
ς exponent of ̟ (102)
ζ vector of exog. var. (103)

Table 2: Summary table for the notation and symbols used in this paper,
part 2.
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Figure 2: Impulse responses for a one percent shock to total factor produc-
tivity, given the benchmark parameterization
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Figure 3: Impulse responses for a one percent shock to labor productivity,
given the benchmark parameterization
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Figure 4: Impulse responses for a one percent shock to population growth,
given the benchmark parameterization
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Figure 5: Impulse responses for a one percent shock to depreciation, given
the benchmark parameterization
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Figure 6: Impulse responses for an initial one percent deviation of the state
from its steady state.
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ξ = 2.00 2.00 2.00 0.50 0.50 0.50
δ̄ = 1.00 0.00 1.00 1.00 0.00 1.00

ω = β = 0.40 0.40 0.80 0.40 0.40 0.80
n̄ = 0.83 0.80 0.83 0.83 0.83 0.83
k̄ = 1.00 1.17 1.00 1.00 1.94 1.00

π̄c̄y/ȳ = 0.27 0.33 0.27 0.27 0.28 0.27
c̄o/c̄y = 1.22 1.81 1.22 1.22 1.20 1.22
τpriv = -0.65 -21.83 -0.65 -0.56 -59.68 -0.56
τpub = 59.38 50.35 59.38 59.37 57.62 59.37
ϕs,s = 0.15 0.19 0.12 -0.00 -0.00 -0.00

Table 3: A comparison of steady states, when varying some parameters.
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Figure 7: Endogenous dynamics, i.e. feedback coefficient ϕss on the endoge-
nous state, as the risk aversion parameters are varied.
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ξ = 2.00 2.00 2.00 0.50 0.50 0.50
δ̄ = 1.00 0.00 1.00 1.00 0.00 1.00

ω = β = 0.40 0.40 0.80 0.40 0.40 0.80
ϕcy,Z 1.00 0.71 1.00 1.38 0.83 1.38
ϕco,Z 1.00 0.72 1.00 0.30 0.23 0.30
ϕn,Z 0.00 0.07 -0.00 -0.07 0.03 -0.07
ϕy,Z 1.00 1.04 1.00 0.95 1.02 0.95

ϕgrowth,Z 1.00 0.91 1.00 1.20 1.77 1.20
ϕτ,priv,Z 0.00 0.36 0.00 -0.32 0.21 -0.32

τpriv,tot for Z -0.01 0.13 -0.01 -0.33 -0.40 -0.33
ϕτ,pub,Z 0.00 0.17 -0.00 -0.17 0.08 -0.17

τpub,tot for Z 0.59 0.69 0.59 0.39 0.67 0.39
co/ctot for Z 0.00 0.00 -0.00 -0.49 -0.27 -0.49

ϕcy,π -0.69 -0.58 -0.67 -0.87 -0.90 -0.87
ϕco,π -0.69 -0.60 -0.71 -0.23 -0.24 -0.23
ϕn,π -0.06 -0.10 -0.06 -0.02 -0.02 -0.02
ϕy,π -0.04 -0.06 -0.04 -0.02 -0.01 -0.02

ϕgrowth,π -0.74 -0.80 -0.75 -0.93 -1.84 -0.93
ϕτ,priv,π -0.32 -0.52 -0.33 -0.11 -0.12 -0.11

τpriv,tot for π -0.32 -0.51 -0.33 -0.11 -0.11 -0.11
ϕτ,pub,π -0.14 -0.24 -0.15 -0.06 -0.05 -0.06

τpub,tot for π -0.17 -0.27 -0.18 -0.07 -0.05 -0.07
co/ctot for π -0.45 -0.36 -0.47 -0.16 -0.15 -0.16

ϕcy,̟ -0.93 -0.85 -1.02 -3.49 -7.95 -3.49
ϕco,̟ -0.39 -0.24 -0.20 -0.96 -1.56 -0.96
ϕn,̟ 0.18 0.19 0.19 0.66 1.57 0.66
ϕy,̟ 0.12 0.13 0.13 0.44 1.05 0.44

ϕgrowth,̟ 1.25 1.34 1.18 4.26 9.50 4.26
ϕτ,priv,̟ -0.25 -0.25 -0.16 -0.70 -0.69 -0.70

τpriv,tot for ̟ -0.25 -0.28 -0.17 -0.70 -1.31 -0.70
ϕτ,pub,̟ 0.43 0.48 0.47 1.60 3.81 1.60

τpub,tot for ̟ 0.50 0.55 0.54 1.86 4.42 1.86
co/ctot for ̟ 0.25 0.22 0.37 1.14 2.91 1.14

Table 4: Parameter variations and feedback coefficients.
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Figure 8: Reaction of consumption of old relative to total consumption as
well as reaction of labor, as the risk aversion parameters are varied.87
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Figure 9: Contour plots: Reaction of consumption of old relative to total
consumption as well as reaction of labor, as the risk aversion parameters are
varied.
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Figure 10: Reaction of total tax payments by young relative to unchanged
labor income, as the risk aversion parameters are varied.
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Figure 11: Contour plots: Reaction of total tax payments by young relative
to unchanged labor income, as the risk aversion parameters are varied.
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