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Abstract

We consider the problem of optimal consumption for an investor who is risk and uncertainty

avers. We model these preferences of the investor with the help of a convex risk-measure. Apart

from consumption the agent has the possibility to invest initial capital and random endowment

in a market where stock-prices are semimartingales. We formulate this as a maximin problem

that will be solved by duality methods.

keywords: duality theory; risk measures; optimal consumption; model uncertainty

AMS classification 91B16, 62C20

JEL classification D11, D81

1 Introduction

Starting in 1969, 1971 with the works by Merton [19], [20] the problem of optimal investment

has become one of the major research areas in mathematical finance. Merton and many of the

following authors determined the optimal financial position with respect to expected utility but

expected utility does not reflect preferences correctly in situations where model uncertainty is

present. Therefore, Gilboa and Schmeidler [9] extended the model by incorporating Knightian

∗Supported by Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.
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uncertainty which resulted in a robust approach. One possible interpretation of this approach is

that the agent takes a class of possible models into consideration and decides for the worst-case

outcome. This interpretation also explains why it is useful to extend the robust approach to an

evaluation via risk measures: the agent will typically have some assessment of the different models

(for instance she might use estimated data for the model specification and while she does not assume

her estimates to be correct she believes values close to the estimates to be more likely than values

far off). It is possible to include this assessment by the introduction of a penalty function, which

allows to weight the impact of a model according to its plausibility. In Maccheroni et al. [18] a set

of axioms is given yielding these preferences.

The non-robust problem of optimal terminal wealth was considered by several authors who

discussed different aspects of the problem. For example Kramkov and Schachermayer [16], [17]

characterized solutions of this problem in a general setting using duality methods. There exist

many extensions of this problem, e.g. Cvitanić et al. [5], Karatzas and Zitkovic [15], or Hugonnier

and Kramkov [14] consider the case where the agent optimizes the consumption process and also

receives some kind of additional random endowment.

In [23], [25] and [10] the robust problem (without penalty term) was solved, also via the duality

or martingale method. Furthermore, there are papers where the authors assume more specific

market models and preferences and are therefore able to compute not just the optimal financial

position but also the optimal investment strategy: See [7] for a stochastic control approach for a

model with random endowment or [22] for computation of the optimal strategy in a robust setting.

In [2] or [21] a optimal investment problem is solved using BSDE’s. Also the robust problem with

a penalty term was considered, among others by Hansen and Sargent [11], and Bordigoni et al.[3]

for an entropic penalty term and by Hernández-Hernández and Schied [13] for a general penalty

term.

In this paper we will investigate the problem of optimal consumption in a general semimartingale

framework where the agent may invest in the stock market and receives additional random endow-

ment. She evaluates positions by a robust utility functional described through a utility function U

and a penalty term γ. More specifically the agent tries to maximize

inf
Q≪P

(
EQ

[ ∫ T

0
U(t, ct)µ(dt)

]
+ γ(Q)

)

over all possible consumption rate processes c. First the dual function for this problem is given

and then we examine properties and relations between primal and dual problem, e.g. we will show
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that both problems have a solution and are conjugate to one another. Next we will verify that the

above maximin problem and the corresponding minimax problem are equivalent.

In the long run we would like to compute explicitely the optimal consumption plan and invest-

ment strategy with the help of stochastic control methods (compare [13] or [12]). These techniques

are - even in the nonrobust case - easier to apply to the dual problem than to the primal problem.

In the robust case the primal problem becomes a maximin problem, i.e. we need to find a saddle-

point whereas the dual problem can still be solved through pure minimization. Hence, if we want

to use stochastic control techniques it is sensible to examine the dual problem first. Furthermore,

the duality results are also valid for preferences that are not dynamically consistent.

The problem is motivated by [24] where Schied considers the problem of optimal terminal wealth

with respect to a convex risk measure in a setting without random endowment. We extend this

problem by introducing a concept of consumption, general enough to include also the maximization

of terminal wealth, and additional random endowment (compare [15]). In contrast to the problem

of optimal terminal wealth, the problem of optimal consumption does not admit an equivalent static

version. Hence, we cannot restrict ourselves to random variables to solve the primal problem, but

need to work with stochastic processes. Furthermore, our dual problem is different from the dual

problem in [24] or [15] due to random endowment on the one hand and robustification on the other.

These differences imply for instance that there are cases where, given the dual solution (Q̂, R̂), R̂

is no longer a solution to the associated dual problem under the model Q̂. Aspects regarding the

dual function will be discussed in more detail in the third section. Robustification changes the

problem of optimal consumption also significantly with respect to the optimization procedure since

we consider a maximin instead of just a maximization problem. This extension yields some new

results and partly we give new proofs for known results.

In [4] Burgert and Rüschendorf also consider a robust version of [15]. The most obvious differ-

ence to our setting is that we deal with preferences given by convex instead of just coherent risk

measures. Furthermore Burgert and Rüschendorf work under the serious restriction that the set

Q should only consist of measures that are equivalent to P and have a uniformly bounded density.

The first assumption rules out risk measures such as AVaR, the second standard dynamic consistent

coherent utility functionals in a Brownian setting such as used in [13].

In the next section we will introduce the market setting and describe the agent’s preferences

in more detail before we state our main theorem and give an example. In the third section we

will derive our dual problem and prove the statements of the theorem related to it. Finally, in the
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fourth section we will finish the proof of the theorem.

2 Notations and main results

We consider an agent who wants to maximize her utility from consumption between time zero and

some finite time horizon T . She is endowed with an initial capital and receives additional random

endowment over time, which she may invest into d assets. To formalize this problem we use the

same market model as Karatzas and Žitković [15]. That means we model the price process of

the assets as a d-dimensional RCLL semi-martingale on (Ω,F , (Ft)0≤t≤T , P ) where the filtration

satisfies the usual conditions. The financial market is assumed to be arbitrage-free in the sense

that the set M of supermartingale measures equivalent to P is not empty. The portfolio process

is denoted by θ = (θt)0≤t≤T , and we allow only those strategies for which
∫ t
0 θu dSu is bounded

from below by some constant.1 The initial capital is denoted by x and the random endowment

is described as a nondecreasing, adapted, RCLL process E = (Et)0≤t≤T with ET ∈ L∞(P ). The

consumption process C = (Ct)0≤t≤T is assumed to be a nonnegative, nondecreasing and adapted

RCLL process. More specifically we will only deal with consumption processes that can be written

as Ct =
∫ t
0 cs µ(ds) where µ is a probability measure on [0, 1] which is diffuse on [0, 1). This means

we assume that the agent consumes in a continuous way except for the final time T where we also

allow for lump consumption. In particular we can choose µ = δ{T} which accords to the problem

of optimizing terminal wealth.

The terminal wealth is required to be non-negative:

x + ET +

∫ T

0
θt dSt − CT ≥ 0 P − a.s. (1)

We denote by A(x, µ) the set of consumption process densities (ct)0≤t≤T , for which an admissible

strategy exists, such that condition (1) is fulfilled.

The utility from consumption is measured in terms of a robust utility functional of the form

c 7−→ inf
Q≪P

(
EQ

[ ∫ T

0
U(t, ct)µ(dt)

]
+ γ(Q)

)
. (2)

This approach is called robust since such utility functionals are useful to deal with model uncertainty

[9, 18]. The penalty function γ enables us to influence how serious a model should be taken. The

1This condition will correspond to our admissibility condition for strategies, since the additional income of the

agent is bounded.
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robust functional is closely linked to the convex risk measure

ρ(Y ) := sup
Q≪P

(
EQ[−Y ] − γ(Q)

)
, Y ∈ L∞(P ). (3)

More precisely the penalty function γ is supposed to be bounded from below and equal to the

minimal penalty function of the convex risk measure above, which means, that it satisfies the

biduality relation

γ(Q) = sup
Y ∈L∞(P )

(
EQ[−Y ] − ρ(Y )

)
. (4)

Furthermore we need the following conditions on γ; compare [24, Assumption 2.1].

Assumption 2.1

We assume that the risk measure ρ is continuous from below, i.e. for a sequence (Yn) ⊂ L∞

increasing a.s. to some Y ∈ L∞, we have ρ(Yn) ց ρ(Y ). Furthermore, ρ needs to be sensitive in

the sense that ρ(Y ) is strictly positive for all Y ∈ L∞
− \ {0}.

We work with a utility function U : [0, T ] × R+ → R with the properties assumed in Definition 3.1

of [15].

Assumption 2.2

More precisely, for fixed t ∈ [0, T ] we request U(t, .) : R+ → R to be a utility function, i.e. U(t, ·)

is strictly concave, increasing, continuously differentiable and satisfies the Inada conditions.

The marginal utility is assumed to be bounded by the strictly decreasing continuous functions

K1 and K2, such that K1(x) ≤ Ux(t, x) ≤ K2(x) and

lim sup
x→∞

K2(x)/K1(x) < ∞.

The map t 7→ U(t, 1) is bounded and

lim
x→∞

inf
t∈[0,T ]

U(t, x) > 0.

Additionally U is supposed to be of reasonable asymptotic elasticity, i.e.

lim sup
x→∞

(
sup

t

xUx(t, x)

U(t, x)

)
< 1.

See [15] for a discussion of these assumptions.

To avoid problems of evaluating EQ

[ ∫ T
0 U(t, ct)µ(dt)

]
+γ(Q) for the case where U is unbounded

from below it is sensible to restrict the set of measures that enter the optimization problem to

Q = {Q ≪ P | γ(Q) < ∞}. Hence, our optimization problem is now

maximize inf
Q∈Q

(
EQ

[ ∫ T

0
U(t, ct)µ(dt)

]
+ γ(Q)

)
over all c ∈ A(x, µ).
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Furthermore, to circumvent difficulties when integrating we follow [24] in setting

EQ[ F ] := sup
n

EQ[ F ∧ n ] = lim
n

EQ[ F ∧ n ] for arbitrary F ∈ L0. (5)

In doing so we keep the functional (ct)0≤t≤T 7−→ EQ[
∫ T
0 U(t, ct)µ(dt) ] concave.

In the following we will use UQ(c) to abbreviate EQ

[ ∫ T
0 U(t, ct)µ(dt)

]
. We define the value

function of the maximization problem as follows

u(x) = sup
c∈A(x,µ)

inf
Q∈Q

(
UQ(c) + γ(Q)

)
. (6)

Hence, the investor needs to solve a maximin problem in order to find u. Another approach to

the optimization problem is to solve the problem in each possible model, i.e. compute uQ(x) =

supc∈A(x,µ) UQ(c) for each Q ∈ Q and then robustify the result by taking the infimum. We will

show that both methods lead to the same result, namely

u(x) = inf
Q∈Q

(uQ(x) + γ(Q)).

Sometimes it will be more convenient to work with densities than measures. We denote the

density of Q with respect to P on FT by ZQ = dQ/dP and the set {ZQ |Q ∈ Q} by Z. We will

identify Q and ZQ, and thus write γ(ZQ) γ(Q) and γ(ZQ) or uQ and uZQ denote the same object.

While we write ZQ for dQ/dP |FT
we will denote the corresponding density process by (ZQ

t )0≤t≤T .

We will use the dual (or martingale) approach to characterize the solution to our optimization

problem. A downside of the dual method is that it does not directly give the investment strategy

θ which is necessary in order to realize the optimal consumption plan. In some cases this strategy

can be determined using stochastic control techniques, compare e.g. [13] or [22]. These authors

also argue that the dual problem is easier to treat than the primal problem which shows that our

results are still useful. Furthermore, in our case we did not restrict the form of the penalty function,

therefore our approach covers also the cases where time consistency is lacking and hence optimal

control techniques cannot be applied (see [24]).

In general the dual problem is an associated minimization problem where the dual domain is

related to the set of equivalent martingale measures. As was shown in [5] and [15] we need to use

D, the weak*-closure of the set of equivalent supermartingale measures M, as dual domain. More

precisely, we identify the set M with its embedding in the dual of L∞(P ), (L∞(P ))∗. Then D is

the σ((L∞(P ))∗, L∞(P ))-closure of M. The set D contains also finitely-additive measures to which

we cannot directly associate a density process. Therefore, we use that each R in D has a unique
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Hewitt-Yosida decomposition Rr +Rs where the regular part Rr is the maximal countable measure

on F that is dominated by R. Hence, we can for each R ∈ D define a supermartingale LR, where

LR
t is the density of the regular part (R|Ft)

r of R|Ft with respect to P |Ft . In the following we will

work with the RCLL supermartingale Y R that coincides with LR for all t ∈ Q ∩ [0, T ]. For a proof

of the existence of Y R and further properties of Y and D see [15]. We need as further notation

〈R, ET 〉 which gives the canonical pairing. Observe that in particular 〈R, IΩ〉 = 1.

Using D we consider as dual problem

v(y) = inf
Z∈Z

(
inf

R∈D

(
E

[
Z

∫ T

0
V

(
t, y

Y R
t

Zt

)
µ(dt)

]
+ y〈R, ET 〉

)
+ γ(Z)

)
(7)

where V is the convex conjugate of U , i.e. V (t, y) = supx≥0(U(t, x) − xy). This problem results

from the capital constraint (1). This link will be explained more explicitly in section 3. To simplify

notations, EQ

[ ∫ T
0 V (t, Y R

t )µ(dt)
]

will be denoted by VQ(Y R). We defined the function uQ as the

solution to the optimization problem under the subjective probability Q. We can now define an

associated dual value function vQ as

vQ(y) = inf
R∈D

(
VQ(yY R/ZQ) + y〈R, ET 〉

)
.

Remark 2.3

In the introduction convex risk measures where interpreted as a worst-case approach for different

scenarios Q. Using this interpretation it seems sensible to formulate the market restrictions under

each measure Q but we formulated the assumptions for the market and the trading strategy with

respect to the measure P . (In particular the dual domain depends on the measure we use to give

the capital constraint (1).) One reason why we use P is that we use the convex risk measure as

a model for the agent’s preferences, not as a model of the “real” market. Furthermore, the worst-

case measure may allow for arbitrage, compare [24, Example 3.2]. Hence, to exclude arbitrage

opportunities it is necessary to formulate the admissibility condition under P .

Nevertheless, for all Q out of Qe := {Q ∈ Q |Q ∼ P} we have the conditions necessary to apply

standard duality results. (Lemma 3.3 will guarantee that Qe is non-empty.)

Assumption 2.4

In the following we will assume that there exists Q0 ∈ Qe that satisfies

uQ0
(x) < ∞ for some x > 0.

This is a similar assumption as is needed in [15] to guarantee the existence of solutions to both

the primal and the dual problems under the subjective probability measure Q0. Furthermore we
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can conclude that uQ0
and vQ0

are dual functions [15, Theorem 3.10]. We will show that we have

similar results in our robust setting.

Theorem 2.5

Under the above assumption the following assertions are valid.

1. Both value functions u and v take only finite values and satisfy

u′(∞−) = 0 and v′(0+) = −∞, (8)

u is strictly concave and v is continuously differentiable.

2. The value function u satisfies

u(x) = sup
c∈A(x,µ)

inf
Q∈Q

(
UQ(c) + γ(Q)

)
= inf

Q∈Q

(
sup

c∈A(x,µ)
UQ(c) + γ(Q)

)
.

3. The two value functions u and v are conjugate to another:

u(x) = inf
y>0

(
v(y) + xy

)
and v(y) = sup

x>0

(
u(x) − xy

)
. (9)

In particular, v is convex.

4. The derivative of v satisfies

v′(∞−) ∈ [ inf
R∈D

〈R, ET 〉, sup
R∈D

〈R, ET 〉 ]. (10)

If ET ≡ 0 the derivatives of v and u satisfy

u′(0+) = ∞ and v′(∞−) = 0. (11)

5. There exists a solution (Q̂, R̂) ∈ Q×D to the dual problem, i.e.

v(y) = V bQ,µ

(
y

Y
bR

Z bQ

)
+ y 〈R̂, ET 〉 + γ(Q̂). (12)

6. For any x > 0 there exists an optimal consumption strategy ĉ ∈ A(x, µ). If (Q̂, Y
bR) is a

solution to the dual problem for y > 0 such that x = −v′(y) then

u(x) = inf
Q∈Q

(
UQ(ĉ) + γ(Q)

)
= U bQ,µ

(ĉ) + γ(Q̂) = u bQ
(x) + γ(Q̂)

and

ĉ = I
(
·,

ŷ Y
bR

Ẑ

)
Q̂ ⊗ µ-a.s.,

where Ẑ = dQ̂/dP and I(t, ·) = (∂U
∂x (t, ·))−1.
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Obviously the problem is easier to treat if Q contains only measures that are equivalent to P . As

in Schied [24] we get additional results in this case:

Corollary 2.6

If Assumption 2.4 and Q = Qe are satisfied and γ is strictly convex on Q then the value function u

is continuously differentiable, the dual value function v is strictly convex, and for each y > 0 there

exist Q̂ ∈ Q and R̂ ∈ D such that

v(y) = V bQ,µ

(
y

Y
bR

Z bQ

)
+ y 〈R̂, ET 〉 + γ(Q̂).

Moreover, Y
bR is unique. For any x > 0, the optimal solution ĉ ∈ A(x, µ) is P -a.s. unique.

(The condition of strict convexity for γ is crucial for the differentiability of u.)

The following example considers the case of uncertain drift in a Black-Scholes model. Here one

can see the advantage of a penalty function - if we used a purely robust approach the least absolute

drift would always give the optimum but when a penalty is introduced the result is dependent on

the drift under the measure P . For simplicity we consider a complete market. For computations

in a more complex setting considerable additional effort is needed (compare e.g. [13]). Therefore

we will treat these problems later. Nevertheless, we will then need the results from duality theory

which we developed in this paper.

Example 2.7

We consider a Black-Scholes model, i.e. S is given through dSt = St(btdt + σdWt) for constant

σ > 0 and As penalty function we take the relative entropy between Q and P and we look at the

non time-dependent utility functional U(t, x) = log(x). If we do not restrict the market, we do not

need to consider different processes Y R, R ∈ D but only

Yt = exp
(
−

∫ t

0

bs

σ
dWs −

1

2

∫ t

0

b2
s

σ2
ds

)

(Compare [15, Proposition 4.1]). The convex conjugate of U is given by V (t, y) = −1 − log(y).

In [12, Lemma 3.1] it is proved that for each measure Q ≪ P we can write the density

dQ

dP
= E

( ∫ T

0
ηs dWs

)
Q − a.s.

for a progressive η. We set b̃s = σηs + bs which corresponds to the drift under Q.
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With this we have

v(y) = inf
Z∈Z

(
E

[
Z

∫ T

0
V (t, yYt/Zt)µ(dt)

]
+ γ(Z)

)

= inf
b̃

(
EQ

[∫ T

0
log(1/y) +

∫ t

0

b̃s

σ
dWQ

s +
1

2

∫ t

0

b̃2
s

σ2
dsµ(dt)

]
− 1

+ EQ

[
−

∫ T

0

bt − b̃t

σ
dWt −

1

2

∫ T

0

(bt − b̃t)
2

σ2
dt

])
.

If we consider the case where µ = δ{T} we get

v(y) = − EQ

[ ∫ T

0

bt

σ
dWQ

t

]
+ 2EQ

[ ∫ T

0

b̃t

σ
dWQ

t

]
+ EQ

[ ∫ T

0

(bt − b̃t)
2 + btb̃t −

1
2b2

t

σ2
dt

]
.

Hence, here the infimum is achieved for b̃∗t = bt/2. Furthermore, one can calculate that

u(x) = log x +
Tb2

4σ2
.

If we choose µ(dt) = dt, take b to be constant, and restrict the set Z to processes for which η is

also constant we get

v(y) = inf
b̃

(
EQ

[∫ T

0
log(1/y) +

1

2

∫ t

0

b̃2
s

σ2
dsµ(dt)

]
− 1 + EQ

[ 1

2

∫ T

0

(bt − b̃t)
2

σ2
dt

])
.

Which yields that the optimal b̃ is given by b̃∗ = 2b/(T + 2). Obviously the drift that gives the

infimum depends on the original drift b.

3 Dual Problem

We now develop the dual problem. The general approach is to use the capital constraint to bound

the result of the primal problem from above which gives a related minimization problem. Karatzas

and Žitković prove (Proposition 2.13 in [15]) that the capital constraint (1) can equivalently be

formulated as follows, using the set D introduced above. The set A(x, µ) of admissible consumption

rates consists of all processes c such that (Ct :=
∫ t
0 cu µ(du))0≤t≤T is a nonnegative, nondecreasing,

right-continuous and adapted process satisfying

E

[ ∫ T

0
Y R

t ct µ(dt)

]
≤ x + 〈R, ET 〉 for all R ∈ D. (13)
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With the help of this characterization we can justify our dual problem by the next calculation. Due

to (13) we have for all y > 0 and all R ∈ D

UQ(c) ≤EQ

[ ∫ T

0
U(t, ct)µ(dt)

]
+ y

(
x + 〈R, ET 〉 − E

[ ∫ T

0
ctY

R
t µ(dt)

])

≤E
[
ZQ

∫ T

0
U(t, ct) − y ct

Y R
t

ZQ
t

µ(dt)
]

+ y
(
x + 〈R, ET 〉

)

≤E
[
ZQ

∫ T

0
V

(
t, y

Y R
t

ZQ
t

)
µ(dt)

]
+ y

(
x + 〈R, ET 〉

)
.

Hence, we arrive at the dual problem

v(y) = inf
Z∈Z

(
inf

R∈D

(
E

[
Z

∫ T

0
V

(
t, y

Y R
t

Zt

)
µ(dt)

]
+ y〈R, ET 〉

)
+ γ(Z)

)
. (14)

Remark 3.1

When considering the inner problem we could also define

ṽQ(y) = inf
R∈DQ

EQ

[∫ T

0
V

(
t, yY R,Q

t

)
µ(dt)

]
+ y 〈R, ET 〉

where DQ is the weak*-closure of the set of supermartingale measures equivalent to Q in (L∞(P ))∗

and Y R,Q is again defined as a version of the density process of the regular part of R but here with

respect to Q. Obviously DQ can be empty if the market given by the measure Q admits arbitrage.

In this case we set the infimum to infinity. With the help of the functions (ṽQ)Q∈Q we can define

an alternative dual function ṽ:

ṽ(y) = inf
Q∈Q

(ṽQ(y) + γ(Q)) .

Schied defines his dual problem in [24] in this way. In contrast to our setting he is able to show

that there is a one-to-one correspondence between the two kinds of dual sets [24, Lemma 4.2]. In

our case no similar result holds, i.e. there is no way to decide whether R belongs to D based on

the knowledge of cDQ. This is due to the random endowment. Nevertheless, we can still show that

v(y) = ṽ(y) for all y > 0. If we define the dual problem via the function ṽ there are cases where

the infima are not attained in contrast to assertion 5 of Theorem 2.5. This will be illustrated by

the example below.

Example 3.2

In this example we will have a unique solution (R̂, Q̂) to the dual problem for which R̂ 6∈ D bQ. We

consider all convex combinations of two measures Q∗ and P , i.e. Q = {Qα = αP + (1 − α)Q∗|0 ≤

α ≤ 1}. The penalty function is given by γ(Qα) = αn, and γ(Q) = ∞ for all Q 6∈ Q. Under
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P , S0 = 10 and ST takes the values 5 and 15 each with probability 0.5. Under Q∗, S0 = 10

and ST = 5 Q∗-a.s. In order to achieve a continuous time model we set St = S0 for all t < T.

Obviously Q∗ ≪ P . Assume that ET = mI{ST =5}, µ = δT and U(t, x) = −e−x. Hence, V (t, y)

equals y(ln y − 1) for y ≤ 1 and −1 otherwise. Observe that D contains all measures R that satisfy

β := R[ST = 5] ≥ 0.5 and DQ∗ contains only Q∗. Then

v(y) = inf
α∈[0,1]

inf
R∈D

(
EQα

[ ∫ T

0
V (t, yY R

t /Zα
t )µ(dt)

]
+ γ(Q) + 〈R, ET 〉

)

= inf
α∈[0,1]

inf
β∈[1/2,1]

(
(1 −

α

2
)V

(
T, y

β

1 − α/2

)
+

α

2
V

(
T, y

1 − β

α/2

)
+ αn + βm

)
.

We want to compute v(1), hence we get different situations for β < 1−α/2 and β ≥ 1−α/2. First

we compute the infima for the case β < 1 − α/2. Here we need to consider

g(α, β) =
(
1 −

α

2

) β

1 − α/2

(
ln

β

1 − α/2
− 1

)
−

α

2
+ αn + βm.

The partial derivatives of g are

gα(α, β) = n −
α

2
+

β

2(1 − α/2)

and

gβ(α, β) = m + ln
( β

1 − α/2

)
.

If we choose m = 1 and n = 2 both derivatives are positive and therefore the infimum for this

case is reached for α = 0 and β = 1/2, and takes the value 1/2(ln 1/2 − 1) + 1/2 < 0. In the case

β ≥ 1 − α/2 we need to compute the infimum of the function

h(α, β) = −(1 − α/2) +
α

2

1 − β

α/2

(
ln

1 − β

α/2
− 1

)
+ αn + βm.

We have that

h(α, β) = − 1 + α/2 +
α

2

1 − β

α/2
ln

1 − β

α/2
− (1 − β) + 2α + β

≥− 2 + 2β + (2 + 1/2 − 1/2e−1)α

≥− 2 + 2(1 − α/2) + (2 + 1/2 − 1/2e−1)α > 0.

For the first inequality we used the fact that x lnx ≥ −e−1.

Hence, the solution to the dual problem is given by the first case, and equals (Q0, P ) = (Q∗, P ).

Obviously P 6∈ DQ∗ .

12



In the rest of this section we will prove that in contrast to the example the solution to our dual

problem exists, and that v equals ṽ. First we observe that for Q0 ∈ Qe of Assumption 2.4 [15,

Theorem 3.10] guarantees that vQ0
(y) < ∞ for all y > 0 and consequently also v(y) < ∞ for all

y > 0.We will repeatedly make use of a version of Komlós principle of convergence, compare e.g. [6,

Lemma A1.1]. To control the behavior of the penalty function we will need the following lemma,

which is taken from Schied [24, Lemma 4.1].

Lemma 3.3

For d ≥ 0 denote the subsets of Z corresponding to

Q(d) := {Q ∈ Q | γ(Q) ≤ d} and Qe(d) := {Q ∈ Q(d) |Q ∼ P}

by Z(d) and Ze(d). Then for every d > 0, the level set Z(d) is weakly compact, and Ze(d) is

nonempty. Moreover, Z 7→ γ(Z) is lower semicontinuous with respect to P -a.s. convergence on

Z(d).

We will need the following technical result.

Lemma 3.4

For each constant d > 0 the set,

{
ZV −

(
· ,

y Y R
·

Z·

) ∣∣ Z ∈ Z(d), R ∈ D
}
,

is uniformly integrable with respect to P ⊗ µ.

Proof. Proposition 3.5 in [15] guarantees the existence of a utility function U such that U(x) ≤

U(t, x) for all x > 0 and all t ∈ [0, T ]. Furthermore, the convex conjugate V to U satisfies V (·) ≤

V (t, ·) for all 0 ≤ t ≤ T . Since Z(d) is uniformly integrable (according to Lemma 3.3 and the

Dunford-Pettis theorem) the claim follows immediately if V is bounded from below. Assume V is

not bounded from below. Let ϕ denote the inverse function of −V and y0 = ϕ(0). Then it follows

that

E
[ ∫ T

0
Ztϕ

(
V −

(
y
Y R

t

Zt

))
µ(dt)

]
≤E

[ ∫ T

0
Ztϕ

(
−V

(
y
Y R

t

Zt

))
µ(dt)

]
+ y0

≤E

[ ∫ T

0
y Y R

t µ(dt)

]
+ y0

≤y + y0 = M.

13



In [16] it was proved that ϕ(h)/h → ∞ as h → ∞. Hence for each a there exists d(a) such that

ϕ(h) ≥ ah for all h ≥ d(a). Let ε > 0 and take d = d(2M/ε), η = ε/2d. If A ∈ F ⊗ B([0, T ]) with

E[
∫ T
0 ZtIA µ(dt) ] < η then we obtain the following inequality.

E
[ ∫ T

0
ZtV

−
(
t,

y Y R
t

Zt

)
IA µ(dt)

]

≤ E
[ ∫ T

0
ZtV

−
(y Y R

t

Zt

)(
IA∩{V −(y Y R

t /Zt)≥d} + IA∩{V −(y Y R
t /Zt)<d}

)
µ(dt)

]

≤ E
[ ∫ T

0
Ztϕ

(
V −

(y Y R
t

Zt

))
IA∩{V −(y Y R

t /Zt)≥d} µ(dt)
] ε

2M
+ dE

[ ∫ T

0
ZtIA µ(dt)

]

< ε.

Because of the uniform integrability of Z(d) there exists δ > 0 such that E[
∫ T
0 ZtIA µ(dt) ] < η as

soon as (P ⊗ µ)[A] < δ. This finishes the proof.

The next lemma shows assertion 5 of the main theorem. In this and some later proofs we will need

that the map (x, y) 7→ xV (t, y/x) is convex for all 0 ≤ t ≤ T , and that

α x0V (t, y0/x0) + (1 − α)x1V (t, y1/x1) > (αx0 + (1 − α)x1)V
(
t,

αy0 + (1 − α)y1

αx0 + (1 − α)x1

)

for y1/x1 6= y0/x0 and α ∈ (0, 1); see e.g. [24, equation (25)].

Lemma 3.5

There exist Ẑ ∈ Z and R̂ ∈ D such that

v(y) = E
[
Ẑ

∫ T

0
V

(
t, y

Y
bR

t

Ẑt

)
µ(dt)

]
+ y〈R̂, ET 〉 + γ(Ẑ).

Proof. Observe that Assumption 2.4 guarantees that v(y) < ∞ (compare Karatzas/Zitkovic [15,

Theorem 3.10]). Let (Zn, Rn)n∈N be a sequence in Z ×D such that

E
[
Zn

∫ T

0
V

(
t, y

Y Rn

t

Zn
t

)
µ(dt)

]
+ y〈Rn, ET 〉 + γ(Zn) → v(y).

Let dQn = ZndP , then Jensen’s inequality and Fubini’s theorem imply that

E
[
Zn

∫ T

0
V

(
t, y

Y Rn

t

Zn
t

)
µ(dt)

]
≥E

[
Zn

∫ T

0
V

(
y
Y Rn

t

Zn
t

)
µ(dt)

]
(15)

≥

∫ T

0
V

(
EQn

[ y Y Rn

t

Zn
t

])
µ(dt)

=

∫ T

0
V

(
E

[
y Y Rn

t ; Zn
t > 0

])
µ(dt)

≥V (y).
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Since ET ≥ 0 it follows that d := 1 + lim supn→∞ γ(Zn) < ∞ and we may assume that Zn ∈ Z(d)

for all n.

Now we want to construct a sequence converging to the optimal (Ẑ, R̂). For this we apply

repeatedly a Komlós-type argument. Observe that in our case convex combinations of a converging

sequence are still convergent. First we obtain a sequence (Z̃n, R̃n)n of convex combinations of

(Zn, Rn)n, i.e. (Z̃n, R̃n) ∈ conv{(Zn, Rn), (Zn+1, Rn+1), . . .}, where Z̃n converges P - a.s. to

some Ẑ ∈ Z(d) (compare Lemma 3.3). To get also convergence for the processes (Zt)0≤t≤T and

(Y Rn

t )0≤t≤T we will argue analogously to the proof of Proposition A.2 in [15]. Due to [8, Lemma

5.2] we can choose a sequence of convex combinations ((Ẑn
t )0≤t≤T , (Y

bRn

t )0≤t≤T ) of elements in

((Z̃m
t )0≤t≤T ), (Y R̃m

t )0≤t≤T )m≥n that Fatou-converges to some RCLL supermartingale (Ẑt)0≤t≤T .

Due to Lemma 3.3 and the fact that µ is diffuse on [0, T ) we can find a subsequence that converges

also P ⊗ µ-a.s. to (Ẑt)0≤t≤T . We know that Z̃ = ẐT ∈ Z(d) hence (Ẑt)0≤t≤T is a density process.

To get similarly Y
bR we first extract a subsequence of (R̂n, Ẑn)n also denoted by (R̃n, Z̃n)n such

that 〈R̂n, ET 〉 converges in R. Then we consider the corresponding series (Y
bRn

)n∈N. We have a

sequence (Ỹ
bRn

)n∈N of convex combinations of (Y
bRn

) converging P ⊗ µ - a.s. to some Y
bR where R̂

is a weak* cluster point of R̂n ∈ D.

For Z ∈ Z(d), R ∈ D the function (Z, Y R) 7→ E
[
Z

∫ T
0 V (t, y Y R

t /Zt)µ(dt)
]

is lower semicon-

tinuous with respect to P -a.s. convergence. This can be proved the same way as Lemma 3.7 in

[25] using Lemma 3.4. Combining this lower semicontinuity with Lemma 3.3 and the fact that

(x, y) 7→ xV (t, y/x) is a convex function, results in

E
[
Ẑ

∫ T

0
V

(
t, y

Y
bR

t

Ẑt

)
µ(dt)

]
+ y〈R̂, ET 〉 + γ(Ẑ)

≤ lim inf
n→∞

(
E

[
Zn

∫ T

0
V

(
t, y

Y Rn

t

Zn
t

)
µ(dt)

]
+ y〈Rn, ET 〉 + γ(Zn)

)

= v(y).

This proves the optimality of (Ẑ, R̂).

We will now show that we may replace the set Q in the dual problem by Qe as well as Qf
e , and

that the dual functions are equal. (Where Qf
e denotes the set of measures Q ∈ Qe where uQ(x) is

finite for some x > 0.)
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Lemma 3.6

The dual value function of the robust problem satisfies

ṽ(y) = v(y) = inf
Q∈Qf

e

(vQ(y) + γ(Q)) = inf
Q∈Qe

(vQ(y) + γ(Q)) .

Proof. Let (Z1, R1) ∈ Z ×D be such that

v(y) = E
[
Z1

∫ T

0
V (t, y Y R1

t /Z1
t )µ(dt)

]
+ γ(Z1) + 〈R1, ET 〉 < ∞.

Due to Assumption 2.4 and the assumptions on U we can choose Z0 ∈ Ze and R0 ∈ D such

that also E[ Z0
∫ T
0 V (t, y Y R0

t /Z0
t )µ(dt) ] + γ(Z0) < ∞. Let Zα := αZ1 + (1 − α)Z0 ∈ Ze and

Rα = αR1 + (1 − α)R0 for 0 ≤ α < 1. Since

α 7→ E
[
Zα

∫ T

0
V (t, y Y Rα

t /Zα
t )µ(dt)

]

is convex and takes only finite values it is upper semicontinuous. Moreover, with the same argument

we can conclude that α 7→ γ(Zα) is upper semicontinuous. This yields together with Lemma 3.3

that α 7→ γ(Zα) is continuous2. The functional α 7→ 〈Rα, ET 〉 is linear and bounded and hence

continuous. Consequently, the function

α 7→ inf
R∈D

(
E

[
Zα

∫ T

0
V

(
t,

y Y R
t

Zα
t

)
µ(dt)

]
+ y〈R, ET 〉

)
+ γ(Zα)

= vZα(y) + γ(Zα),

is also upper semicontinuous on [0, 1], therefore we get

v(y) = inf
R∈D

(
E

[
Z1

∫ T

0
V

(
t,

y Y R1

t

Z1
t

)
µ(dt)

]
+ y〈R1, ET 〉

)
+ γ(Z1)

≥ lim sup
α↑1

(vZα(y) + γ(Zα)).

This yields v(y) = infQ∈Qe (vQ(y) + γ(Q)). Furthermore, observe that vQ(y) = ∞ for Q ∈ Qe\Q
f
e .

This follows again from [15, Lemma A.3] for Q ∼ P since then vQ and uQ satisfy the duality

relations. We have v(y) ≤ ṽ(y) as DQ ⊂ D for Q ≪ P . Since Zα ∈ Ze for α ∈ (0, 1) we also get

v(y) ≥ lim sup
α↑1

(vZα(y) + γ(Zα)) ≥ inf
Z∈Z

(vZ(y) + γ(Z)) = ṽ(y).

This proves the first identity.

2For a more detailed argument compare [24, Remark 4.5].
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4 Proofs for the primal problem

In this section we will prove the missing assertions. First we make some easy observations. Due to

(13) we know that for all α ∈ [0, 1] we have

αA(x1, µ) + (1 − α)A(x2, µ) ⊂ A(αx1 + (1 − α)x2, µ).

Furthermore, if Assumption 2.4 is satisfied it is easy to show that, under the convention (5),

c 7→ UQ(c) is a concave functional on A(x, µ) for each Q ∈ Q and all x > 0. These facts yield the

concavity of the value functions uQ and u and therefore under Assumption 2.4 the finiteness of the

value function u(x) for all x > 0. The concavity of uQ implies in turn that

uQ ≡ +∞ as soon as EQ

[ ∫ T

0
U+(t, ct)µ(dt)

]
= +∞ for some c ∈

⋃

x>0

A(x, µ). (16)

Indeed, if EQ[
∫ T
0 U+(t, ct)µ(dt) ] = +∞ for c ∈ A(x, µ) then it follows that c+1 ∈ A(x+1, µ) and

EQ[
∫ T
0 U(t, ct)µ(dt) ] = +∞. Thus, uQ(x + 1) = +∞. As uQ is concave this implies uQ ≡ +∞.

Lemma 4.1

We have the following minimax identity.

u(x) = sup
c∈A(x,µ)

inf
Q∈Q

(
UQ(c) + γ(Q)

)
= inf

Q∈Q

(
uQ(x) + γ(Q)

)

= sup
c∈A(x,µ)

inf
Q∈Qe

(
UQ(c) + γ(Q)

)
= inf

Q∈Qe

(
uQ(x) + γ(Q)

)
.

Hence, assertion 2 of Theorem 2.5 is valid.

Proof. Let ε ∈ (0, 1). Proposition 3.5 in [15] gives the existence of a utility function U such that

U(x) ≤ U(t, x) for all x > 0 and all t ∈ [0, T ]. With the help of this utility function we define

d = 1 + u(x + 1) − U(ε) ∧ 0. Then we have

u(x + 1) ≥u(x + ε) ≥ sup
c∈A(x,µ)

inf
Q∈Q

(
UQ(c + ε) + γ(Q)

)
= sup

c∈A(x,µ)
inf

Z∈Z(d)

(
UQ(c + ε) + γ(Z)

)
.

Now U(t, . + ε) is bounded from below and thus

Z 7→ E

[
Z

∫ T

0
U(t, ct + ε)µ(dt)

]
= sup

n
E

[
Z

(∫ T

0
U(t, ct + ε)µ(dt) ∧ n

)]

is a weakly lower semicontinuous affine functional. Lemma 3.3 states that Z 7→ γ(Z) is weakly lower

semi-continuous and Z(d) is a weakly compact and convex set. Furthermore, for each Z ∈ Z(d)
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c 7→ UZ(c) is a concave functional defined on the convex set A(x, µ). Therefore we may use the

lopsided minimax theorem [1] to obtain

sup
c∈A(x,µ)

min
Z∈Z(d)

(
UZ(c + ε) + γ(Z)

)
= min

Z∈Z(d)
sup

c∈A(x,µ)

(
UZ(c + ε) + γ(Z)

)
.

We know that these expressions are bounded by u(x + ε) < d + U(ε)∧ 0. Thus, it does not matter

whether we take the infimum over Z or over Z(d). We obtain

u(x + ε) ≥ inf
Z∈Z

sup
c∈A(x,µ)

(
UZ(c + ε) + γ(Z)

)
(17)

≥ inf
Z∈Z

sup
c∈A(x,µ)

(
UZ(c) + γ(Z)

)
(18)

≥ sup
c∈A(x,µ)

inf
Z∈Z

(
UZ(c) + γ(Z)

)
= u(x). (19)

As ε → 0 the assertion follows since u is continuous.

Observe now that Theorem 3.10 in [15] states that uQ(x) = infy>0(vQ(y) + xy) for all Q ∈ Qf
e .

Pooling our lemmas and using this result, we get

u(x) = inf
Q∈Qe

(uQ(x) + γ(Q)) = inf
Q∈Qf

e

(uQ(x) + γ(Q))

= inf
Q∈Qf

e

inf
y>0

(vQ(y) + γ(Q) + xy) = inf
y>0

(v(y) + xy)

which is assertion 3 of the theorem. Finiteness of v and general duality principles yield then

lim
x→∞

u(x)/x → 0. (20)

Lemma 4.2

For any x > 0 there exist ĉ ∈ A(x, µ) such that

inf
Q∈Q

(
EQ

[ ∫ T

0
U(t, ĉt)µ(dt)

]
+ γ(Q)

)
= u(x).

Proof. Let (cn) be a maximizing sequence. Using again a Komlós-type argument we get a sequence

(c̃n)n∈N with c̃n ∈ conv(cn, cn+1, . . .) converging P ⊗ µ-a.s. to some ĉ ∈ A(x, µ) since A(x, µ) is

closed under convergence in probability. The following adaption of the argument in [17] shows that

the positive parts of U(t, c̃n
t ) are uniformly integrable with respect to Q ⊗ µ for all Q ∈ Qf

e .

Assume (U+(t, c̃n
t ))n is not uniformly integrable. Then there is a constant α, a subsequence

which is also denoted (c̃n)n and a partition (An) such that E[
∫ T
0 U+(t, c̃n

t )IAn µ(dt) ] ≥ α for
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n ≥ 1. For 0 ≤ t ≤ T let x0
t = inf{x > 0 |U(t, x) ≥ 0} and define a process sn = (sn

t )0≤t≤T by

sn
t = x0

t +
∑n

k=1 c̃k
t . Hence, for any R ∈ D we have

E
[ ∫ T

0
Y R

t sn
t µ(dt)

]
≤

∫ T

0
x0

t µ(dt) + n(x + 〈R, ET 〉).

This implies sn ∈ A
(∫ T

0 x0
t µ(dt) + nx, µ

)
. Furthermore

E
[ ∫ T

0
U(t, sn

t )µ(dt)
]
≥

n∑

k=1

E
[ ∫ T

0
U+(t, c̃k

t )IAk
µ(dt)

]
≥ αn.

Which yields

lim sup
x→∞

u(x)

x
≥ lim sup

n→∞

E
[ ∫ T

0 U(t, st)µ(dt)
]

∫ T
0 x0

t µ(dt) + nx

≥ lim sup
n→∞

αn
∫ T
0 x0

t µ(dt) + nx

= α > 0

in contradiction to (20).

Using the uniform integrability we can deduce that

c 7→ EQ

[ ∫ T

0
U(t, ct)µ(dt)

]
+ γ(Q)

is upper semicontinuous with respect to almost sure convergence. From the concavity of

c 7→ inf
Q∈Qf

e

(EQ[

∫ T

0
U(t, ct)µ(dt) ] + γ(Q))

it follows that (c̃n) is still a maximizing sequence. Then the upper semicontinuity yields that

inf
Q∈Qe

(
EQ

[ ∫ T

0
U(t, ĉt)µ(dt)

]
+ γ(Q)

)
≥ u(x).

Actually we also have

inf
Q∈Q

(
EQ

[ ∫ T

0
U(t, ĉt)µ(dt)

]
+ γ(Q)

)
≥ u(x) :

First we have that {Q ∈ Q |EQ[
∫ T
0 U(t, ĉt)µ(dt) ] = −∞} = ∅ since otherwise this set would have

a nonempty intersection with Qe. Hence, for Q ∈ Q\Qe, Q0 ∈ Qf
e and Qα := αQ+(1−α)Q0 ∈ Qe,

the limit of EQα [
∫ T
0 U(t, ĉt)µ(dt) ] as α ↑ 1 is EQ[

∫ T
0 U(t, ĉt)µ(dt) ]. Due to the convexity and

lower semicontinuity of γ, we also have γ(Qα) → γ(Q).
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Lemma 4.3

The dual value function v is lower semicontinuous.

Proof. Define v(0) =
∫ T
0 limε→0 V (t, ε)µ(dt) and let (yn)n∈N be a sequence of positive reals

converging to y ≥ 0. If lim infn→∞ v(yn) = ∞ we are done. Otherwise we may assume that

supn v(yn) < ∞. We proved that we have R̂n ∈ D and Ẑn ∈ Z such that

v(yn) = V bZn,µ

(yn Y
bRn

Ẑn

)
+ yn〈R̂

n, ET 〉 + γ(Ẑn).

And with an estimate similar to (15) and ET ≥ 0 we know that v(yn) ≥
∫ T
0 V (t, yn)µ(dt) +

γ(Ẑn). Since γ is bounded from below we get that V (., yn) < ∞ Q̂n ⊗µ-a.s., where dQ̂n =

ẐndP. Furthermore we can find d such that Ẑn ∈ Z(d). This enables us to use once more a

Komlós-type argument to get a sequence of convex combinations, ((R̃n, Z̃n))n where (R̃n, Z̃n) ∈

conv{(Rn, Zn), (Rn+1, Zn+1), . . .}, which converges P -a.s. to some (R̂, Ẑ). Now we use Lemma 3.3

and the convexity of (Z, R) 7→ Z
∫ T
0 V (t, y Y R

t /Zt)µ(dt) to obtain

v(y) ≤ V bZ,µ

(y Y
bR

Ẑ

)
+ y〈R̂, ET 〉 + γ(Ẑ) ≤ lim inf

n→∞
v(yn),

which is the desired lower semicontinuity.

Proof of Theorem 2.5. Assertion 2 and 3, the finiteness of u and v, and the concavity

of u were already proved. The convexity of v is an immediate consequence of the convexity of

(Z, y Y R) 7→ VZ(Y R/Z) + γ(Z). Furthermore, the lower semicontinuity of v (see Lemma 4.3)

implies assertion 3 of Theorem 2.5. Equation (10) follows as in [15, Lemma A.7]. If ET ≡ 0 this

implies v′(∞−) = 0 which yields by general duality results that u′(0) = ∞ which is equation (11).

Assertion 5 corresponds to Lemma 3.5. Furthermore, the existence of an optimal c (item 6) is the

content of Lemma 4.2.

We will now deal with the existence of a saddle point. Let y > 0 be such that v(y)+yx = u(x),

such a y exists due to the behavior of v′. Take then a solution (R̂, Q̂) to the dual problem for y

and let Ẑ be the density of Q̂ with respect to P . Let Z1 be in Zf
e and define Zα = αZ1 + (1−α)Ẑ

for α ∈ (0, 1]. Then vZα(y) + γ(Zα) → v(y) as α → 0: Let R1 be such that

VZ1(yY R1

/Ẑ1) + 〈R1, ET 〉 = vZ1(y).
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Then define Rα = αR1 + (1 − α)R̂. We get

v(y) ≤ vZα(y) + γ(Zα)

≤ VZα(yY Rα

/Zα) + 〈Rα, ET 〉 + γ(Zα)

≤ α
(
vZ1(y) + γ(Z1)

)
+ (1 − α)

(
ṽ bZ

(y) + γ(Ẑ)
)

because of convexity. Observe that the righthand side of the equation goes to v(y) as α goes to 0.

Due to the duality relations we have that vZα + xy ≥ uZα and uZα + γ(Zα) → u bZ
+ γ(Ẑ).

Hence,

u(x) = v(y) + yx = lim
α→0

(
vZα(y) + xy + γ(Zα)

)

≥ lim
α→0

(
uZα(x) + γ(Zα)

)
= u bZ

(x) + γ(Ẑ)

With the minimax identity we get u(x) = u bZ
+ γ(Ẑ) and therefore we get for ĉ as in Lemma 4.2

u(x) = u bZ
(x) + γ(Ẑ) ≥ U bZ,µ

(ĉ) + γ(Ẑ) ≥ inf
Q∈Q

UQ(ĉ) + γ(Ẑ) = u(x).

Now we show that ĉ = I(·, yY
bR) Q̂ ⊗ µ-a.s. We have

0 ≤ V
(
t,

ŷ Y
bR

t

Ẑt

)
+

ŷ Y
bR

t

Ẑt

ĉt − U(t, ĉt)

and therefore

0 ≤E bQ

[ ∫ T

0
V

(
t,

y Y
bR

t

Ẑt

)
µ(dt) +

∫ T

0

y Y
bR

t

Ẑt

ĉt µ(dt) −

∫ T

0
U(t, ĉt)µ(dt)

]

=v(y) + E
[ ∫ T

0
y Y

bR
t ĉt µ(dt)

]
− y〈R̂, ET 〉 − u(x)

≤v(y) + yx − u(x) = 0.

Together this implies

0 = V
(
t,

y Y
bR

t

Ẑt

)
+

y Y
bR

t

Ẑt

ĉt − U(t, ĉt) Q̂ ⊗ µ(dt)-a.s.

which means that ĉt = I(t, y Y
bR

t /Ẑt).

The fact that u′(∞−) = 0 follows from (20). Therefore we also have v′(0+) = −∞. To obtain

the strict concavity of the function u (and hence the differentiability of v) assume that u is not

strictly concave. Since u is increasing and because of the conditions for the derivatives we know

there exist 0 < x0 < x1 and y > 0 such that v(y) + yx0 = u(x0) and v(y) + yx1 = u(x1). Let c0, c1

be the corresponding optimal consumption processes and (Q̂, R̂) the solution to the dual problem.

Then we have c0
t = I(t, yY

bR) = c1
t Q̂-a.s. and E bQ

[
∫ T
0 c0

t yY
bR

t µ(dt) ] + y〈R̂, ET 〉 = x0y < x1y =

E bQ
[
∫ T
0 c1

t yY
bR

t µ(dt) ] + y〈R̂, ET 〉. This is a contradiction.
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Proof of Corollary 2.6. This corollary can be proved by copying the arguments of the proof

of Proposition 2.5 in [24].
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[15] I. Karatzas and G. Žitković. Optimal consumption from investment and random endowment

in incomplete semimartingale markets. Annals of Probability, 31(4):1821–1858, 2003.

[16] D. Kramkov and W. Schachermayer. The asymptotic elasticity of utility functions and optimal

investment in incomplete markets. Annals of Applied Probability, 9(3):904–950, 1999.

[17] D. Kramkov and W. Schachermayer. Necessary and sufficient conditions in the problem of

optimal investment in incomplete markets. Annals of Applied Probability, 13(4):1504–1516,

2003.

[18] F. Maccheroni, M. Marinacci, and A. Rustichini. Ambiguity aversion, malevolent nature, and

the variational representation of preferences. Preprint, 2004.

[19] R. C. Merton. Lifetime portfolio selection under uncertainty: The continuous-time case. Review

of Economics and Statistics, 1969.

[20] R. C. Merton. Optimum consumption and portfolio rules in a continuous time model. Journal

of Economic Theory, 3:373–413, 1971.

[21] M. Müller. Market completion and robust utility maximization. PhD thesis, Humboldt Uni-

versity, 2005.

[22] M.-C. Quenez. Optimal portfolio in a multiple-priors model. In Seminar on stochastic analysis,

random fields and applications IV, Progress in Probability 58, pages 291–321, Basel, 2004.

Birkhäuser.
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