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Abstract

Multivariate GARCH models do not perform well in large dimensions due to the so-called

curse of dimensionality. The recent DCC-NL model of Engle et al. (2019) is able to overcome

this curse via nonlinear shrinkage estimation of the unconditional correlation matrix. In this

paper, we show how performance can be increased further by using open/high/low/close

(OHLC) price data instead of simply using daily returns. A key innovation, for the improved

modeling of not only dynamic variances but also of dynamic correlations, is the concept of a

regularized return, obtained from a volatility proxy in conjunction with a smoothed sign of

the observed return.
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1 Introduction

Modeling and forecasting dynamic (or time-varying) covariance matrices of a vector of asset

returns has many important applications in finance, such as Markowitz portfolio selection and

risk management. A popular tool to this end are multivariate GARCH models. Historically,

such models did not perform well in large dimensions due to the so-called curse of dimensionality.

The recent DCC-NL model of Engle et al. (2019) is able to overcome this curse via nonlinear

shrinkage (NL) estimation of the unconditional correlation matrix.

Just as the original dynamic conditional correlations (DCC) model of Engle (2002), also the

DCC-NL model is based on daily returns for the modeling of both (univariate) dynamic variances

and the dynamic correlation matrix; those quantities are then combined for the modeling of the

dynamic covariance matrix. It is known that the use of intraday pice data can lead to improved

modeling of dynamic variances: Even if one uses only the four pieces of information given by

open/high/low/close (OHLC) prices, the improvements can be considerable. The intuition

is that using an improved volatility proxy as the innovation of a GARCH-type model works

better than using the squared daily return, which is the original proposal of Engle (1982) and

Bollerslev (1986).

Therefore, it is natural to use such an approach in the first step of a DCC(-NL) model, the

modeling of dynamic variances. Doing so has already been suggested before; for example, see

Molnár (2016) and Fiszeder et al. (2019). On the other hand, we are the first to extend this

approach to the second step of a DCC(-NL) model, the modeling of the dynamic correlation

matrix. The crux of our proposal is as follows. The intraday counterpart of the daily squared

return is the (improved) volatility proxy. Hence, we suggest to use as the intraday counterpart

of the daily return itself the square root of the volatility proxy in conjunction with a (smoothed)

sign of the return, a construct we call regularized return. Then these regularized returns are

used in the second step of the DCC(-NL) model instead of the daily returns.

Importantly, the resulting models remain computationally feasible also for large dimensions

of N ≥ 1000 assets. In contrast, the HEAVY-DCC model, for example, which is also based on

intraday data, can be applied only to small investment universes; for example, see the empirical

analyses with N ≤ 10 of Xu (2019) and Noureldin et al. (2012), respectively.

The remainder of the paper is organized as follows. Section 2 reviews existing DCC(-NL)

models. Section 3 details our new models based on intraday data. Section 4 gives a brief

description of existing estimators of dynamic variances that we deem the most useful for our

purpose. Section 5 describes the empirical methodology and presents the results of out-of-sample

backtest exercises based on real-life stock return data. Section 6 concludes. An appendix contains

all figures and tables.

2



2 Large Dynamic Covariance Matrices

2.1 Notation

In what follows, the subscript i indexes assets and covers the range of integers from 1 to N ,

where N denotes the dimension of the investment universe; the subscript t indexes dates and

covers the range of integers from 1 to T , where T denotes the sample size. Cor(·) denotes the

correlation matrix of a random vector, Cov(·) denotes the covariance matrix of a random vector,

and Diag(·) denotes the function that sets to zero all the off-diagonal elements of a square matrix.

Furthermore, we use the following notations:

• oi,t: observed opening price (“open”) for asset i at date t, stacked into ot ..= (o1,t, . . . , oN,t)
′

• hi,t: observed highest price (“high”) transacted for asset i at date t, stacked into

ht ..= (h1,t, . . . , hN,t)
′

• li,t: observed lowest price (“low”) transacted for asset i at date t, stacked into lt ..=

(l1,t, . . . , lN,t)
′

• ci,t: observed closing price (“close”) for asset i at date t, stacked into ct ..= (c1,t, . . . , cN,t)
′

• ri,t: observed return for asset i at date t, stacked into rt ..= (r1,t, . . . , rN,t)
′

• r̃i,t: regularized return for asset i at date t, stacked into r̃t ..= (r̃1,t, . . . , r̃N,t)
′

• xi,t: underlying time-series for covariance matrix estimation; thus xi,t ∈ {ri,t, r̃i,t}
• d2i,t

..= Var(xi,t|Ft−1): conditional variance of the ith asset at t

• si,t ..= xi,t/di,t: devolatilized series, stacked into st ..= (s1,t, ..., sN,t)
′

• Dt: the N -dimensional diagonal matrix whose ith diagonal element is di,t

• Rt ..= Cor(xt|Ft−1) = Cov(st|Ft−1): conditional correlation matrix at date t

• Σt
..= Cov(xt|Ft−1): conditional covariance matrix at date t; thus Diag(Σt) = D2

t

• C ..= E(Rt) = Cor(xt) = Cov(st): unconditional correlation matrix

Here, the symbol ..= denotes a definition sign where the left-hand side is defined to be equal to

the right-hand side, whereas the symbol =.. (to be used below) denotes a definition sign where

the right-hand side is defined to be equal to the left-hand side.

Remark 2.1 (Terminology). In this paper, the terms “dynamic” and “conditional” are used

interchangeably. As an example, a dynamic covariance matrix is equal to a conditional covariance

matrix, such as the covariance matrix Σt defined above; analogously for a correlation matrix

and, necessarily then, also for any entries of such matrices, such as a variance, a covariance, or

a correlation.

2.2 Averaged Forecasting of Dynamic Covariance Matrices

In our empirical analysis, as is common in the literature, we use (intra-)daily data to forecast

dynamic covariance matrices but then hold the portfolio for an entire ‘month’ (that is, for a
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period of 21 subsequent trading days) before updating it again. Doing so creates a certain

‘mismatch’ for dynamic models that assume that the (conditional) covariance matrix changes at

the forecast frequency, that is, at the daily level: Why use a covariance matrix forecasted only

for the next day to construct a portfolio that will then be held for an entire month?

To address this mismatch, we use an ‘averaged-forecasting’ approach for all dynamic

models; this approach was first suggested by De Nard et al. (2021): At portfolio construction

date k, forecast the covariance matrix for all days of the upcoming month, that is, for

t = k, k + 1, . . . , k + 20; then average those 21 forecasts and use this ‘averaged forecasts’

to construct the portfolio at date k.

To model conditional variances, we use a GARCH(1,1) process:

d2i,t = ωi + δ1,ix
2
i,t−1 + δ2,id

2
i,t−1 , (2.1)

where (ωi, δ1,i, δ2,i) are the variable-specific GARCH(1,1) parameters. We assume that the

evolution of the conditional correlation matrix over time is governed as in the DCC-NL model of

Engle et al. (2019):

Qt = (1− δ1 − δ2)C + δ1st−1s
′
t−1 + δ2Qt−1 , (2.2)

where (δ1, δ2) are the DCC-NL parameters analogous to (δ1,i, δ2,i). The matrix Qt can be

interpreted as a conditional pseudo-correlation matrix, or as a conditional covariance matrix of

devolatized residuals. It cannot be used directly because its diagonal elements, although close

to one, are typically not exactly equal to one. Therefore, we obtain the conditional correlation

matrix, and from it the conditional covariance matrix, as

Rt ..= Diag(Qt)
−1/2 Qt Diag(Qt)

−1/2 (2.3)

Σt
..= DtRtDt . (2.4)

Finally, the data-generating process is driven by the multivariate normal law

xt|Ft−1 ∼ N (0,Σt) . (2.5)

Hence, to determine the average of the L forecasts of the conditional covariance matrices

Σk+l = Dk+lRk+lDk+l, for l = 0, 1, . . . , L− 1, we suggest a three-step approach where Dk+l and

Rk+l can be forecasted separately.

2.2.1 Step One: Forecasting Conditional Univariate Volatilities

According to Baillie and Bollerslev (1992), the multi-step ahead forecasts of the i = 1, . . . , N

GARCH(1,1) volatilities can be written as

E[d2i,k+l|Fk−1] =

l−1∑
j=0

ωi(δ1,i + δ2,i)
j + (δ1,i + δ2,i)

lE[d2i,k|Fk−1] , (2.6)
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where E[d2i,k|Fk−1] = ωi + δ1,ix
2
i,k−1 + δ2,id

2
i,k−1. Therefore, we compute the forecasts of the

N -dimensional diagonal matrix Dk+l as

E[Dk+l|Fk−1] = Diag
(√

E[d21,k+l|Fk−1], . . . ,
√
E[d2N,k+l|Fk−1]

)
. (2.7)

2.2.2 Step Two: Forecasting Conditional Correlation Matrices

For the multivariate case we consider the approach of Engle and Sheppard (2001) where the

multi-step ahead forecasts of the conditional correlation matrices are computed as

E[Rk+l|Fk−1] =
l−1∑
j=0

(1− δ1 − δ2)C(δ1 + δ2)
j + (δ1 + δ2)

lE[Rk|Fk−1] , (2.8)

using the approximation E[Rk|Fk−1] ≈ E[Qk|Fk−1]. In practice, the diagonal elements of the

matrix C tend to deviate from one slightly, in spite of the fact that devolatized returns are used

as inputs. Therefore, every column and every row has to be divided by the square root of the

corresponding diagonal entry, so as to produce a proper correlation matrix.

2.2.3 Step Three: Averaging Forecasted Conditional Covariance Matrices

By using the notation Σ̂k+l
..= E[Σk+l|Fk−1], R̂k+l ..= E[Rk+l|Fk−1] and D̂k+l

..= E[Dk+l|Fk−1]
we finally calculate Σ̂k+l

..= D̂k+lR̂k+lD̂k+l, for l = 0, 1, . . . , L−1. Therefore, to get the estimated

covariance matrix on portfolio construction day k we average over the L forecasts:

Σ̂k
..=

1

L

L−1∑
l=0

Σ̂k+l . (2.9)

2.3 Estimation of Parameters

In practice, both the GARCH parameters in step one and the DCC(-NL) parameters in step two

need to be estimated. In doing so, we mainly follow the suggestions of Engle et al. (2019,

Section 3).

In step one, the GARCH parameters of Equaton (2.1) are estimated using (pseudo) maximum

likelihood assuming normality. This results in estimators (ŵi, δ̂1,i, δ̂2,i) that are used for

devolatizing returns and are also used for forecasting conditional variances via Equation (2.6).

In step two, the correlation-targeting matrix C of Equation (2.2) is estimated in one of two

ways. For DCC, we use the sample covariance matrix of the devolatized returns {st}, whereas

for DCC-NL we use nonlinear shrinkage applied to the {st}, with post-processing analogous

to (2.3) to enforce a proper correlation matrix.1 Having an estimator Ĉ, obtained either way,

we then estimate the DCC parameters (δ1, δ2) of Equation (2.2) via the (pseudo) composite

1To speed up the computations, we use the analytical nonlinear shrinkage method of Ledoit and Wolf (2020);

in contrast, Engle et al. (2019, Section 3) use the numerical method of Ledoit and Wolf (2015).
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likelihood method of Pakel et al. (2021) assuming normality.2 In this way, (ŵi, δ̂1,i, δ̂2,i, δ̂1, δ̂2)

are used for forecasting conditional correlation matrices via Equation (2.8).

Combining forecasts of conditional variances with forecasts of conditional correlation matrices

yields forecasts of conditional covariance matrices in the usual fashion.

3 Models Based on OHLC Data

One might ask why not use monthly data instead of daily data for the estimation of the various

models given that the investment horizon is one month? Part of the justification is that at the

monthly frequency, there generally are not enough data to estimate a multivariate GARCH

model. Another part is that using daily data for the estimation tends to lead to better results

even if the investment period is one month; for example, compare Tables 1 and 10 of Ledoit and

Wolf (2017). So given that using daily data leads to improved performance when investing at

the monthly frequency, it natural to go a step further and use intraday day, which hopefully will

lead to another round of improvement.

In GARCH-type models operating at the daily frequency, the volatility of today is expressed

as a function of the volatility of yesterday and a volatility innovation, typically taken to be the

squared (possibly demeaned) return of yesterday. From this angle, the squared return serves as

a proxy for the return variance of yesterday. Although this proxy is unbiased, it is rather crude.

Using a more accurate proxy based on intraday data instead should improve the performance

of GARCH-type models, in terms of both in-sample fit and out-of-sample forecasting ability.

In following this route, we will restrict attention to volatility proxies that only require easily

obtained intraday data in the form of open/high/low/close (OHLC) prices.

3.1 Volatility Proxy

Replacing the squared return r2i,t−1 of Equation (2.1) with an improved volatility proxy, denoted

v̂i,t−1, yields the following GARCH(1,1) model:

d2i,t = ωi + δ1,iv̂i,t−1 + δ2,id
2
i,t−1 . (3.1)

If one only modifies the first step of the DCC(-NL) model in this way, then the returns that get

devolatized based on (3.1) for use in the second step are still the observed daily returns. We call

the resulting models ID-DCC(-NL), where “ID” stands for “volatility proxy based on IntraDay

data”. Such models have been suggested before in the literature; for example, see Molnár (2016)

and Fiszeder et al. (2019).

But one can forge ahead by using improved volatility proxies also in the second step

of DCC(-NL) models. Especially in large dimensions, there are many more conditional

2As Engle et al. (2019, Section 3) do, we using neighboring pairs of assets to build up a (pseudo) composite

likelihood.
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covariances/correlations ((N2 − N)/2) to estimate than conditional variances (N). Hence,

the idea is to use intraday volatility proxies not only to improve upon the diagonal of a

covariance matrix estimator but also upon its off-diagonal. To this end, we introduce the new

concept of a regularized return.

3.2 Regularized Returns

At this point, we know that the intraday approach brings substantial improvements to the

diagonal of the covariance matrix. However, the diagonal is not the prize because it has only

N entries. The off-diagonal is the real prize because it has N(N − 1)/2 entries — one order of

magnitude higher — and because it carries the biggest hazard to adversely impact the inversion

of the covariance matrix for the purpose of portfolio selection, namely through ill-conditioning

or even singularity.

How can one extend the intraday approach to the off-diagonal? The off-diagonal is based on

cross-products of returns, not on squared returns. Hence, we need an intraday counterpart to

returns themselves, which we call regularized returns. For a given stock, the intraday counterpart

of the squared return is the volatility proxy, which then suggests to use as the intraday counterpart

of the return itself the ‘signed’ square root of the volatility proxy. But some care is needed. On

any given trading day, there are many stocks that go up and many stocks that go down. This is

often easy to identify: If Apple goes up 1% and MacDonald’s goes down 1%, say, then their

signs are +1 and −1, respectively. However, what if Apple goes up 1 bp and MacDonald’s goes

down 1 bp? Is this still a straight +1/− 1 signing? It could very well be that the closing price of

Apple ended up on the asking price, due to short-term trading pressures, and the closing price of

MacDonald’s ended up on the bid price, due to other trading pressures that are uncontrollable.

At a higher level, we can refer to Max Planck’s concept of the quantum from theoretical

physics to reason that certain things are not knowable as continuously as we would wish, but

only up to a certain (discrete) level of precision; and, as a matter of fact, stock prices move in

quanta known as ticks rather than continuously. At a more down-to-earth level, we can refer to

the well-documented bid-ask-bounce effect going back to at least Roll (1984). In mathematical

terms, the discontinuity of the sign function is uncomfortable and may propagate deleterious

effects into the statistical analysis. The point is that there is such a thing between “today Apple

went up” and “today Apple was flat”, which is: “today we think Apple may sort of have gone

up but we are not completely sure”. In such an intermediate case, it seems appropriate to assign

Apple a middle-of-the-road signing factor in the open interval (0, 1). As for MacDonalds, if it

goes down 1 bp, then we would assign it some middle-of-the-road signing factor in the open

interval (−1, 0).

Therefore, when ‘signing’ the root of the volatility proxy to obtain the regularized return, we

recommend replacing the ordinary sign with a similar function but smoothed down by some

controllable parameter that represents the amount of uncertainty about whether an observed
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uptick or downtick was real, and actionable, or maybe due to last-minute randomness in order-

placing near the close. For tractability, we choose the ‘scaled’ hyperbolic tangent function to

this end:

stanh(r, κ) ..=
eκr − 1

eκr + 1
, (3.2)

which is graphically displayed in Figure 1. The regularized return is then defined as

r̃i,t−1 ..= stanh(ri,t−1, κ) ·
√
v̂i,t−1 . (3.3)

The function (3.2) can be considered a smoothed sign function, where the amount of smoothing

is determined by the scaling factor κ: the smaller κ, the larger the amount of smoothing. In

particular, for κ = 2, one obtains the ‘standard’ hyperbolic tangent function

stanh(r, 2) =
e2r − 1

e2r + 1
=
er − e−r

er + e−r
=

sinh(r)

cosh(r)
=.. tanh(r) , (3.4)

whereas for κ→∞, one recovers the ordinary sign function in the limit:

stanh(r,∞) ..= lim
κ→∞

stanh(r, κ) =


1 , for r > 0

0 , for r = 0

−1 , for r < 0

 =.. sign(r) . (3.5)

The reason why we use the more general scaled hyperbolic tangent function definition (3.3)

instead of the sign function is that the sign function is intuitively not ‘quite right’ when the

observed return ri,t−1 is close to zero and that the scaled hyperbolic tangent function ‘corrects’

for that: It believes the big moves but tends to disbelieve the small ones, as illustrated by

Figure 2. For observed returns close to zero, it is desirable to enforce the regularized return to

have a smaller magnitude than the root of the volatility proxy, and this is exactly what the

scaled hyperbolic tangent function does: shrinking the root of the volatility proxy to zero while

keeping the sign of the observed return.

Of course, the relevant question is what is to be considered “close to zero” in practice?

That is, for observed returns in which range should (noticeable) shrinkage of the root of the

volatility proxy occur? Our proposal, going back to Roll (1984), is the bid-ask bounce, since

a return in that range can be considered ‘noise’ whereas a return outside that range can be

considered a true ‘signal’. The bid-ask bounce varies (somewhat) across stocks, but for simplicity

we use 5 bps as a ‘typical’ common number. Armed with this range, we can now consult Figure 1

to determine an appropriate scaling factor κ for the scaled hyperbolic tangent function. It can

be seen that the choice κ = 100 basically limits shrinkage to the range [−5 bps, 5 bps] and

is therefore the natural suggestion; but any κ ∈ [50, 200] would also be a reasonable choice.

Some robustness checks in the empirical analysis of Section 5 will come back to this issue; see

Remark 5.3.
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Remark 3.1 (Returns in percent vs. raw returns). The discussion above applies to returns in

percent. If raw returns are used instead, the value of κ needs to be multiplied by 100 to achieve

the same amount of shrinkage; see Equation (3.2) and Figure 1. For example, the choice κ = 100

for returns in percent corresponds to the choice κ = 10, 000 for raw returns.

Finally, for internal consistency, when we use regularized returns in the second step to model

the conditional correlation matrix, we also use (squared) regularized returns in the first step to

model conditional variances; that is, we upgrade (3.1) to

d2i,t = ωi + δ1,ir̃
2
i,t−1 + δ2,id

2
i,t−1 . (3.6)

We call the resulting models IDR-DCC(-NL), where “R” stands for “regularized returns”.

Appendix B provides a detailed description of these models.

Figure 2 display a representative example of a time series of absolute observed returns

juxtaposed with the square root of the volatility proxies. on the one hand, and the absolute

regularized returns, on the other hand. One can see that the absolute regularized returns are

somewhat more stable than the absolute observed returns (but not as much ‘bounded away

from zero’ as the square root of the volatility proxies). Hence, one could say that regularized

returns place more weight on the sign of the observed return relative to the magnitude of the

observed return. Arguably, this is a desirable feature, as the magnitude of daily stock returns

is generally regarded as unpredictable, whereas their sign is regarded as predictable to some

extent; for example, see Welch and Goyal (2008); Henriksson and Merton (1981), Pesaran and

Timmermann (1995), and Christoffersen and Diebold (2006).

Intuitively, squares of the regularized returns are improved innovations for modeling dynamic

variances compared to squares of observed returns (first step of DCC-type models); and similarly,

cross-products of regularized returns are improved innovations for modeling dynamic covariances

compared to cross-products of observed returns (second step of DCC-type models). Relating

to the latter point, Figure 3 displays a representative example of a time series of absolute

cross-products of observed returns juxtaposed with the cross-products of regularized returns;

again, it can be seen that using regularized returns results in somewhat more stable values.

3.3 Intraday Data vs. High-Frequency Data

Based on what we have promoted so far, it might be tempting to go even further and use

high-frequency data such as 5-minute returns, or even tick-by-tick data, instead of ‘only’ intraday

data in the form of OHLC prices. However, this would give rise to a number of difficulties.

First, high-frequency data is not easily available to everybody, and when it is, it tends to be

expensive, especially if one wants a large universe and a long time series. Second, even if such

data is available, it requires expert pre-processing to be put in usable form, which is tedious and

time-consuming; for example, see Barndorff-Nielsen et al. (2009). Third, using high-frequency
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data stretches computing resources because the data takes a lot of space, and running multiple

simulations or backtest exercises can be very slow. Fourth, if the investment universe is large,

there will be some smaller stocks included for which the realized variance will be downward

biased due to liquidity issues (that is, due to many near-zero values for 5-minute returns). For all

these reasons, we stick to intraday data in the form of OHLC prices in this paper. Nevertheless,

if someone wants to go down the high-frequency route, our methodology, including regularized

returns, can be adapted easily.3

There exists already a multivariate realized GARCH model; see Archakov et al. (2020). It is

similar to our model in that it separately models conditional variances and conditional correlations.

It is more flexible than our model in that it models the evolvement of the conditional correlation

matrix in a more flexible way. However, doing so comes at the expense of the dimension N that

can be handled in practice. It is not clear whether this model can handle dimensions N ≥ 100;

in particular, the empirical application in the paper considers N = 9 assets only.

A different approach based on realized measures is proposed by Brito et al. (2018). They

forecast future realized covariances as a function of current and past realized covariance matrices

in the spirit of a vector autogregressive (VAR) model. (Note that a covariance matrix can

be equivalently represented as a vector by means of the vech operator.) In order to keep the

number of parameters manageable when the dimension N is large, the authors make use of a

covariance decomposition based on a factor model and estimate the VAR-type coefficients by

LASSO or adaLASSO instead of OLS. Their empirical application considers N = 430 assets; see

Remark 5.4.

4 Volatility Proxies/Estimators of Conditional Variance

In this section, we review the existing volatility proxies (or conditional-variance estimators) that

we deem the most useful for our purposes. Note that returns are not demeaned, as is common

practice in the literature when working with daily returns; for example, Hansen and Lunde

(2005) demonstrate that modeling expected returns, whether conditionally or unconditionally,

makes virtually no difference when forecasting conditional variances. As stated before, all of the

proxies considered make only use of OHLC price data.

4.1 Close/Close

To start out, it is customary to back out a synthetic closing price on day t− 2 from the closing

price on day t− 1 together with the return during on day t− 1 as

c̃i,t−2 ..=
ci,t−1

1 + ri,t−1
. (4.1)

3For example, one could use realized variances as volatility proxies in Equations (3.1) and (3.3).

10



Most of the time, c̃i,t−2 is simply equal to ci,t−2, But there can be exceptions, for example when

there is an overnight dividend payment, stock split, or other corporate action, In such exceptional

cases, c̃i,t−2 can be interpreted as a suitable rescaling of ci,t−2 that is economically more suitable

to be used in formulas alongside ci,t−1 (or any other price data recorded on day t− 1).

The first, and most obvious, estimator of the conditional variance on day t− 1 is then given

as

r2i,t−1 =

(
ci,t−1
c̃i,t−2

− 1

)2

. (4.2)

r2i,t−1 is the usual ‘ingredient’ in the standard ARCH/GARCH models of Engle (1982) and

Bollerslev (1986).

As an alternative, one can take the square of the log return instead:

v̂CC
i,t−1

..=
[

log (1 + ri,t−1)
]2
, (4.3)

where log(·) denotes the natural logarithm.

Taking logarithms at the daily return frequency matters little in numerical terms and thus

there is little difference between r2i,t−1 and v̂CC
i,t−1. The value of introducing the latter proxy is

that, in the relevant literature, it is the natural stepping stone toward improved estimators,

which traditionally have been couched in terms of continuously compounded returns because of

mathematical grounding in the random-walk model favored by the Black and Scholes (1973)

option-pricing formula.

4.2 Introducing the Open

One of the first contributions of Garman and Klass (1980) is to realize that decomposing the

close-to-close log-return as

log (1 + ri,t−1) = log

(
oi,t−1
c̃i,t−2

)
+ log

(
ci,t−1
oi,t−1

)
(4.4)

opens the door to a family of improved estimators. An important issue is scaling: Both overnight

and open-market variances are on a different scale than daily, so they need to be adjusted

appropriately. To this end, Garman and Klass (1980, Section III) introduce a factor f ∈ (0, 1)

that represents the proportion of variance realized when the market is closed. In consequence,

they propose an improved estimator as

v̂OC
i,t−1

..=
1

2f

[
log

(
oi,t−1
c̃i,t−2

)]2
+

1

2(1− f)

[
log

(
ci,t−1
oi,t−1

)]2
. (4.5)

Yang and Zhang (2000, p. 485), based on an empirical study of U.S. equity data at the daily

frequency, recommend the choice f = 0.25.
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4.3 High-Low Range

Parkinson (1980) proposes an estimator for the conditional variance during market hours on day

t− 1 based on the range, determined by high and low, as

v̂HL
i,t−1

..=
1

4 log 2

[
log

(
hi,t−1
li,t−1

)]2
, (4.6)

where the normalizing coefficient 4 log 2 is derived from random-walk mathematics. In reality,

however, overnight jumps matter too. Hence, Garman and Klass (1980, Section IV) propose to

amend the range-based estimator as follows:

v̂OHLC
i,t−1

..=
a3
f

[
log

(
oi,t−1
c̃i,t−2

)]2
+

1− a3
1− f

1

4 log 2

[
log

(
hi,t−1
li,t−1

)]2
, (4.7)

and claim that for the optimal choice of parameter a3 = 0.17, v̂OHLC
i,t−1 is around 6.2 times more

efficient than the näıve close-to-close estimator v̂CC
i,t−1.

Remark 4.1 (Choice of tuning parameters). The estimator (4.5) involves a single tuning

parameter, f , whereas the estimator (4.7) involves two tuning parameters, f and a3. We simply

follow the recommended choices from the original papers and refer to these papers for justification.

It is possible that alternative choices might result in even better performance for our purposes

but we do not want to open the door to such experiments and possible ensuing suspicions of

data mining.

5 Empirical Analysis

5.1 Aim of the Analysis

We carry out backtest exercises where various estimators of the covariance matrix are used to

estimate Markowitz portfolios. To compare (pseudo) out-of-sample performance, as opposed

to in-sample performance, we always estimate the portfolios based on a fixed window of ‘past’

observations and then compute the resulting returns over a fixed stretch into the ‘future’. These

exercises are primarily designed to compare the accuracy of estimators of the covariance matrix;

they are not designed to compare the performance of real-life investment strategies; for example,

see Remark 5.1.

5.2 Data and General Portfolio-Construction Rules

We download daily stock return data from the Center for Research in Security Prices (CRSP)

starting on 01/01/1994 and ending on 12/31/2018. We restrict attention to stocks from the

NYSE, AMEX, and NASDAQ stock exchanges. We also download daily OHLC price data

(in dollars per share).
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For simplicity, and in line with literature, we adopt the common convention that

21 consecutive trading days constitute one (trading) ‘month’. The out-of-sample period ranges

from 12/18/1998 through 12/31/2018, resulting in a total of 240 months (or 5,040 days). All

portfolios are updated monthly.4 We denote the investment dates by k = 1, . . . , 240. At any

investment date k, a covariance matrix is estimated based on the most recent 1260 daily returns,

which roughly corresponds to using five years of past data.

We consider the portfolio sizes N ∈ {100, 500, 1000}. For a given combination (k,N), the

investment universe is obtained as follows. We first determine the set of stocks that have an

almost complete return history over the most recent T = 1260 days as well as a complete return

‘future’ over the next 21 days.5 Additionally, we require every stock in the universe to have all

four OHLC price data available at least 90% of the time and either high/low or open available at

least 95% of the time. We next look for possible pairs of highly correlated stocks, that is, pairs

of stocks that have returns with a sample correlation exceeding 0.95 over the past 1260 days. In

such pairs, if they should exist, we remove the stock with the lower market capitalization of the

two on investment date k.6 Of the remaining set of stocks, we then pick the largest N stocks

(as measured by their market capitalization on investment date k) as our investment universe. In

this way, the investment universe changes relatively slowly from one investment date to the next.

There is a great advantage in having a well-defined rule that does not involve drawing stocks

at random, as such a scheme would have to be replicated many times and averaged over to give

stable results. As far as rules go, the one we have chosen seems the most reasonable because it

avoids so-called “penny stocks” whose behavior is often erratic; also, high-market-cap stocks

tend to have the lowest bid-ask spreads and the highest depth in the order book, which allows

large investment funds to invest in them without breaching standard safety guidelines.

In the best-case scenario where all the price data are available for a given stock on day t− 1,

we use (4.7) as the volatility proxy v̂i,t−1. If high/low are available but open is missing, we

use (4.6). If high/low are missing but open is available, we use (4.5). Finally, if neither high/low

nor open are available, we go back to the traditional setting and use (4.3).

5.3 Competing Models

The following models are included in our empirical analysis:

4Monthly updating is common practice to avoid an unreasonable amount of turnover and thus transaction

costs. During a month, from one day to the next, we hold number of shares fixed rather than portfolio weights; in

this way, there are no transactions at all during a month.
5The first restriction allows for up to 2.5% of missing returns over the most recent 1260 days, and replaces

missing values by zero. The latter, ‘forward-looking’ restriction is not feasible in practice but is commonly used in

the literature. Although it might induce a (very minor) bias in absolute performance due to survivorship bias, it

does not systematically affect relative performance of various portfolio-selection strategies.
6The reason is that we do not want to include highly similar stocks. In the early years, there are no such pairs;

in the most recent years, there are never more than three such pairs.
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• DCC: the multivariate GARCH model of Engle (2002).

• ID-DCC: a model based on DCC with intraday-based volatility proxy in the first step;

see formula (3.1).

• IDR-DCC: as ID-DCC but, additionally, with regularized returns as underlying time

series for estimating DCC dynamics in the second step; see formula (3.3) and Appendix B.

• DCC-NL: the multivariate GARCH model of Engle et al. (2019) where the unconditional

correlation matrix C is estimated via nonlinear shrinkage.

• ID-DCC-NL: a model based on DCC-NL with intraday-based volatility proxy in the first

step; see formula (3.1).

• IDR-DCC-NL: as ID-DCC-NL but, additionally, with regularized returns as underlying

time series for estimating DCC dynamics in the second step; see formula (3.3) and

Appendix B.

Note that in the acronyms of the new models proposed, “ID” stands for “volatility proxy based

on IntraDay data” and “R” stands for “regularized returns”.

5.4 Global Minimum Variance Portfolio

We consider the problem of estimating the global minimum variance (GMV) portfolio in the

absence of short-sales constraints. The problem is formulated as

min
w
w′Σtw (5.1)

subject to w′1 = 1 , (5.2)

where 1 denotes a vector of ones of dimension N × 1. It has the analytical solution

w =
Σ−1t 1

1′Σ−1t 1
. (5.3)

The natural strategy in practice is to replace the unknown covariance matrix Σt by an

estimator Σ̂t in formula (5.3), yielding a feasible portfolio

ŵ ..=
Σ̂−1t 1

1′Σ̂−1t 1

. (5.4)

Estimating the GMV portfolio is a ‘clean’ problem in terms of evaluating the quality of a

covariance matrix estimator, as it abstracts from having to estimate the vector of expected returns

at the same time. In addition, researchers have established that estimated GMV portfolios have

desirable out-of-sample properties not only in terms of risk but also in terms of reward-to-risk,

that is, in terms of the information ratio; for example, see Haugen and Baker (1991), Jagannathan

and Ma (2003), and Nielsen and Aylursubramanian (2008).
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Remark 5.1 (Academia vs. real life). The portfolio (5.4) must be considered an ‘academic’

portfolio, since the only constraint it imposes is that the weights sum up to one (that is,

that the portfolio be fully invested). In real life, portfolio managers face many potential

additional constraints, such as gross-exposure constrains, leverage constraints, maximum-position

constraints, factor-exposure constraints, and style constraints. In addition, it is customary

to (explicitly) limit turnover, respectively trading costs, when rebalancing. Although the

portfolio (5.4) is unrealistic for these reasons, it is still useful to compare the accuracy of

estimators of the covariance matrix. The point is that real-life portfolio managers who operate

in a Markowitz framework will always benefit from using a more accurate estimator of the

covariance matrix regardless of the number and the nature of the constraints they face. In this

sense, there certainly is real(-life) value to our analysis.

In addition to Markowitz portfolios based on formula (5.4), we also include as a simple-

minded benchmark the equal-weighted portfolio promoted by DeMiguel et al. (2009), among

others, as it has been claimed to be difficult to outperform. We call this portfolio EW. In

addition, we include the value-weighted portfolio, called VW, which is sometimes favored over

the equal-weighted portfolio, for example because it incurs lower turnover and ‘controls’ for

small-cap biases.

We report the following three out-of-sample performance measures for each scenario. (All of

them are annualized and in percent for ease of interpretation.)

• AV: We compute the average of the 5,040 out-of-sample returns and then multiply by 252

to annualize.

• SD: We compute the standard deviation of the 5,040 out-of-sample returns and then

multiply by
√

252 to annualize.

• IR: We compute the (annualized) information ratio as the ratio AV/SD; so implicitly the

benchmark is zero here.

• SR: We compute the (annualized) Sharpe ratio, which is defined as the information ratio

with the riskfree rate as the benchmark.7

Our stance is that in the context of the GMV portfolio, the most important performance

measure is the out-of-sample standard deviation (SD). The true (but unfeasible) GMV portfolio

is given by (5.3). It is designed to minimize the variance (and thus the standard deviation) rather

than to maximize the expected return or the information ratio. Therefore, any portfolio that

implements the GMV portfolio should be primarily evaluated by how successfully it achieves this

goal. A high out-of-sample average return (AV) and a high out-of-sample information ratio (IR)

are naturally also desirable, but should be considered of secondary importance when evaluating

the quality of a covariance matrix estimator.

7The data for the riskfree rate are obtained from the website of Kenneth French.
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We also study whether one model delivers a lower out-of-sample standard deviation than

another model with statistical significance. As we include 7 models, there are 21 pairwise

comparisons. To avoid a multiple testing problem and since a major goal of this paper is to

show that using higher-frequency (intraday) data improves the estimation of large-dimensional

covariances matrices, we restrict attention to two comparisons: (i) DCC with IDR-DCC and

(ii) DCC-NL with IDR-DCC-NL. For a given universe size N , a two-sided p-value for the

null hypothesis of equal standard deviations is obtained by the prewhitened HACPW method

described in Ledoit and Wolf (2011, Section 3.1).8

The results are presented in Table 1 and can be summarized as follows; unless stated

otherwise, the findings are with respect to SD as the performance measure.

• All models outperform EW and VW by a wide margin.

• Each DCC-NL model outperforms its DCC version.

• Each intraday model, IDR-DCC(-NL) and ID-DCC(-NL), outperforms its traditional base

model, DCC(-NL). Additionally, IDR-DCC(-NL) outperforms its ID-DCC(-NL) version.

• Moreover, the outperformance of IDR-DCC-NL over DCC-NL, respectively IDR-DCC over

DCC, is always statistically significant and also economically meaningful.

• There is a consistent ranking across all portfolio sizes N (from best to worst):

IDR-DCC-NL, ID-DCC-NL, IDR-DCC, ID-DCC, DCC-NL, DCC, VW, EW.9

To sum up, models using intraday data such as IDR-DCC(-NL) and ID-DCC(-NL) outperform

the traditional DCC(-NL) models using daily data only. Furthermore, IDR models, which use

regularized returns in the second step, outperform their ID counterparts. As a visual addition to

these tabulated results, Figure 4 displays boxplots of the various out-of-sample portfolio returns.

Remark 5.2 (Subperiod analysis). Table 1 presents ‘single’ results over the entire out-of-sample

period 12/18/1998–12/31/2018. It is natural to ask whether the relative performance of the

various models is stable during that period or whether it changes during certain subperiods, such

as periods of ‘boom’ or ‘bust’ compared to normal periods. To address this question, we carry

out a rolling-window analysis based on shorter out-of-sample periods: one month (21 days),

one year (252 days), and five years (1260 days). The results are displayed in Figure 5, where

any given number represents the out-of-sample standard deviation (SD) over the corresponding

period ending on that day; the universe size is N = 1000 always. It can be seen that the relative

performance is remarkably stable over time and that, in particular, IDR-DCC-NL generally

8As the out-of-sample size is very large at 5,040, there is no need to use the computationally more involved

bootstrap method described in Ledoit and Wolf (2011, Section 3.2), which is preferred for small sample sizes.
9With the single exception of N = 1000 where DCC-NL outperforms ID-DCC. Thus, for ‘medium’-sized

investment universes, N = 100, 500, even the proposed DCC models using intraday data outperform the traditional

DCC-NL model. However, for larger dimensions, N = 1000, the benefit of nonlinear shrinkage is too important to

neglect; see Figure 4.
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performs best during all subperiods. Interestingly, the benefit of using intraday data instead

of daily data, namely the reduction in SD from DCC(-NL) to IDR-DCC(-NL), is pretty much

time-invariant: We do not find that the outperformance of intraday models is systematically

different during periods of ‘boom’ or ’bust’ compared to normal periods, which is a reassuring

finding.

Inspired by Leippold and Svaton (2019), who discuss the measurement of idiosyncratic

volatility, we also analyze whether events like the trade decimalization in April 2001, meaning

how prices are reported on different exchanges, have a visible effect on the estimation of

dynamic covariance matrices, based on daily and intradaily data. As our out-of-sample period

starts in December 1998, we only have less than two years of data before the mentioned trade

decimalization. Based on this short pre-event period at least, we do not observe any noticeable

differences in the relative performance of the various models (before the event compared to after

the event).

Remark 5.3 (Choice of κ). The two IDR models use regularized returns, which are based

on shrinking the root of the volatility proxy to zero when the observed return is small. In

practice, the amount of shrinkage is determined by the choice of the parameter κ of the scaled

hyperbolic tangent function (3.2). Based on theoretical arguments, we had considered the range

κ ∈ [50, 200] to be reasonable and, specifically, had suggested the use of κ = 100. Robustness

checks in Tables 3 and 4 provide empirical support for this suggestion. In particular, for the

IDR-DCC-NL model, which is our ultimate proposal, κ = 100 is uniformly the best of the three

choices κ ∈ {50, 100, 200}, in terms of both SD and IR as the performance measure. But the

other two choices, κ ∈ {50, 200}, also result in good performance and improve upon the näıve

choice κ =∞, that is, upon the standard sign function.

Remark 5.4 (Alternative models). Another way to improve upon the DCC-NL model, while

only using daily returns, is to combine it with an approximate factor model. In particular,

De Nard et al. (2021) suggest the AFM1-DCC-NL model which is based on an approximate

single-factor model using the market factor. Based on unreported results, we find that the

performance of this model (in terms of SD) is generally somewhere between the performances of

DCC-NL and ID-DCC, and always below the performance of IDR-DCC-NL. The approximate

factor model uses DCC-NL to model the dynamic covariance matrix of the residuals from a factor

model. Although tempting at first sight, it is therefore not possible to ‘marry’ approximate

factor models with our new proposal, since doing so would require intraday data for the residuals

instead of the actual stocks, and such data is not available. Our recommendation is thus the

following: If one only has access to daily data, use AFM1-DCC-NL; but if one also has access to

OHLC price data, use IDR-DCC-NL instead.

There are more complicated multivariate volatility models based on high-frequency data.

For example, one can use all 5- or 10-minute returns during the day to compute realized
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covariance matrices and then use a sophisticated methodology, involving factor structure and

regularization, to make corresponding forecasts. Using such an approach, Brito et al. (2018)

obtain a reduction of 22.1% in SD (from 10.65 to a typical number of 8.3) compared to DCC-NL

for a (constant) universe of N = 430 stocks; see their Table 5. Note that with our (much) simpler

IDR-DCC-NL model, we get a not much lower reduction in SD for a (time-varying) universe of

N = 500 stocks, namely a reduction of 17.4% (from 9.01 to 7.44).10

Some further remarks are in order.

DeMiguel et al. (2009) claim that it is difficult to outperform EW in terms of the out-of-

sample Sharpe ratio (SR) with ‘sophisticated’ portfolios (that is, with Markowitz portfolios that

estimate input parameters). However, contradicting this claim, it can be seen that all DCC

models outperform EW (and also VW) in terms of SR.

Additionally, we report results on average turnover, gross leverage, and proportion of leverage,

defined as follows.

• TO: We compute average (monthly) turnover as 1
239

∑239
k=1 ||ŵk+1 − ŵhold

k ||1, where || · ||1
denotes the L1 norm and ŵhold

k denotes the vector of the ‘hold’ portfolio weights at the

end of month k.11

• GL: We compute average (monthly) gross leverage as 1
240

∑240
k=1 ||ŵk||1.

• PL: We compute average (monthly) proportion of leverage as 1
240×N

∑240
k=1

∑N
i=1 1{ŵi,k<0},

where 1{·} denotes the indicator function.

The results are presented in Table 2 and can be summarized as follows.

• IDR-DCC-NL leads to markedly lower turnover and gross leverage than all other models.

• IDR-DCC leads to the lowest proportion of leverage, but the differences across all DCC

models are minor.

• Using regularized returns instead of observed returns in the estimation of the DCC(-NL)

models (that is, using models with an IDR part instead of models with an ID part) reduces

turnover and gross leverage, but has no noticeable effect on percentage of leverage.

As we have stated before, the point of the backtest exercise is not to evaluate realistic

portfolio strategies but to compare the accuracy of estimators of the covariance matrix. Still,

based on previous experience, there are always readers interested in additional measures of

portfolio performance. The remainder of this section is dedicated to such readers.

First, we investigate the impact of gross-leverage (GL) constraints which are often used

by quantitative investors. Specifically, we consider so-called 150-50 portfolios that allow for a

10It makes sense to compare reduction in percentage points rather than nominal reduction, as the actual SD

numbers of Brito et al. (2018) are not one-to-one comparable to ours because of different universes, different

out-of-sample periods, and different portfolio-rebalancing frequency.
11The vector ŵhold

k is determined by the initial vector of portfolio weights, ŵk, together with the evolution of

the various prices of the N stocks in the portfolio during month k.

18



total short position of at most 50% and thus a gross leverage of at most 2.0; for example, such

portfolios are also considered by Zhao et al. (2022). Table 5 presents the corresponding results for

N = 1, 000. The fact that imposing the GL constraint actually reduces SD for models without a

NL part quite a bit whereas there is almost no difference for models with a NL part, is consistent

with the findings of Zhao et al. (2022, Table 2). IDR-DCC-NL remains the best model in the

end, though now its performance is basically matched by IDR-DCC.

Second, it may be of interest to see whether the outperformance of DCC models over EW

and VW in terms of the information ratio survives transactions costs. To this end, we compute

the information ratio net of transaction costs, called ĨR, where we assume a constant transaction

cost of 5 bps for all stocks.12 Arguably, such a comparison is not overly meaningful, since any

real-life portfolio managers would take transaction costs into account at the portfolio-selection

stage, which is expected to result in better ‘net’ performance compared to ignoring transaction

costs at the selection stage and just paying them afterwards. Nevertheless, Table 2 demonstrates

that all DCC portfolios with a NL part still outperform EW and VW in terms of ĨR for

N = 500, 1000. On the other hand, the DCC portfolios without a NL part, which incur higher

turnover compared to their NL counterparts, often underperform EW and VW.

Third, we compute the maximum drawdown, called MDD. Compared to EW and VW,

the DCC models achieve more favorable (that is, smaller) numbers and IDR-DCC-NL is again

best. For example, for N = 1000, the maximum drawdown for EW is 57.15% whereas for

IDR-DCC-NL it is only 23.45%, less than half.

As a visual addition to these tabulated results, Figure 6 displays the trajectories of the

portfolios EW, DCC-NL, and IDR-DCC-NL for N = 1000; we restrict attention to these three

portfolios in order to not over-crowd the figure. EW achieves the highest value at the end but

suffers from periods of extreme turmoil and a maximum drawdown of nearly 60%. DCC-NL

achieves the second-highest value at the end but is also more volatile compared to IDR-DCC-NL.

5.5 Markowitz Portfolio with Momentum Signal

We next turn attention to a ‘full’ Markowitz portfolio with a signal, where the term “signal’

stands for an estimate of

µt ..= E(rt|Ft−1) .

By now a large number of variables have been documented that can be used to construct a

signal in practice. For simplicity and reproducibility, we use the well-known momentum factor

(or simply momentum for short) of Jegadeesh and Titman (1993). For a given investment

period k and a given stock, the momentum is defined as the geometric average of the previous

252 returns on the stock but excluding the most recent 21 returns; in other words, one uses

12Many academic studies consider higher transaction costs, up to 50 bps, but 5 bps is a typical number for

large stocks this day and age.
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the geometric average over the previous ‘year’ but excluding the previous ‘month’. Collecting

the individual momentums of all the N stocks contained in the portfolio universe yields the

return-predictive signal mt.

In the absence of short-sales constraints, the investment problem is formulated as

min
w
w′Σtw (5.5)

subject to w′mt = b , and (5.6)

w′1 = 1 , (5.7)

where b is a selected target expected return. The problem has the analytical solution

w = c1Σ
−1
t 1 + c2Σ

−1
t mt , (5.8)

where c1 ..=
C − bB
AC −B2

and c2 ..=
bA−B
AC −B2

, (5.9)

with A ..= 1
′Σ−1t 1 , B ..= 1

′Σ−1t mt , and C ..= m′tΣ
−1
t mt . (5.10)

The natural strategy in practice is to replace the unknown covariance matrix Σt by an

estimator Σ̂t in formulas (5.8)–(5.10), yielding the feasible portfolio

ŵ ..= c1Σ̂
−1
t 1 + c2Σ̂

−1
t mt , (5.11)

where c1 ..=
C − bB
AC −B2

and c2 ..=
bA−B
AC −B2

, (5.12)

with A ..= 1
′Σ̂−1t 1 , B ..= 1

′Σ̂−1t mt , and C ..= m′tΣ̂
−1
t mt . (5.13)

In addition to Markowitz portfolios based on formulas (5.11)–(5.13), we also include as a

simple-minded benchmark the equal-weighted portfolio of the top-quintile stocks. This portfolio

is obtained by sorting the stocks, from lowest to highest, according to momentum and then

putting equal weight on all the stocks in the top 20%, that is, in the top quintile. We call

this portfolio EW-TQ. A related strategy, called VW-TQ, uses value-weighting instead of

equal-weighing for the stocks in the top 20%.

Our stance is that in the context of a ‘full’ Markowitz portfolio, the most important

performance measure is the out-of-sample information ratio (IR). In the investment problem

(5.5)–(5.7), minimizing the variance (for a fixed target expected return b) is equivalent to

maximizing the information ratio if the true expected return is equal to the target. In practice,

because of the estimation error in mt relative to µt, different strategies do not necessarily have

the same expected return. As a consequence, rankings based on the standard deviation may not

coincide with rankings based on the information ratio.

Remark 5.5 (Information ratio vs. Sharpe ratio). For completeness, the tables also report

the out-of-sample Sharpe ratio (SR) in addition to the out-of-sample information ratio (IR).

But as the performance criterion, we focus on the information ratio for two reasons. First, the
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feasible portfolio (5.11) is based on actual returns instead of excess returns, since we use actual

returns to compute the two inputs Σ̂t and mt, as is customary with real-life portfolio managers.

It would then appear inconsistent to base the performance measure on excess returns instead of

actual returns (when dividing the average return by the standard deviation of the returns); after

all, our empirical analysis has to be a competition about who has the ‘strongest muscle’ (that is,

the most accurate estimator of the covariance matrix) on a level playing field. Second, if one

advocates that out-of-sample returns should be benchmarked, then a suitable benchmark for a

fully invested portfolio (that is, a portfolio for which ŵt sums up to one) is, arguably, a stock

market index, such as the S&P 500, rather than the riskfree rate.

We also study whether IDR-DCC(-NL) delivers a higher out-of-sample information ratio than

DCC(-NL) with statistical significance; so there are two comparisons again just as in Section 5.4.

For a given universe size, a two-sided p-value for the null hypothesis of equal information ratios is

obtained by the prewhitened HACPW method described in Ledoit and Wolf (2008, Section 3.1).13

The results are presented in Table 6 and can be summarized as follows; unless stated

otherwise, the findings are with respect to IR as performance measure.

• All models outperform EW-TQ and VW-TQ by a wide margin.

• Each DCC-NL model outperforms its DCC counterpart.

• IDR-DCC-NL outperforms all other models.

• Having said that, we do not find statistical significance (for the two comparisons considered).

• Moreover, in terms of SD as performance measure, we find statistical significance (for the

two comparisons considered) for N = 500, 1000, with IDR-DCC-NL again being the best

model.

Some further remarks are in order.

DeMiguel et al. (2009) claim that it is difficult to outperform EW in terms of the out-of-

sample Sharpe ratio (SR) with ‘sophisticated’ portfolios (that is, with Markowitz portfolios

that estimate input parameters). However, comparing with Table 1, it can be seen that all

DCC strategies using the (simple-minded) momentum signal outperform EW. Even though

momentum is not a very powerful return-predictive signal, the differences compared to EW can

be substantial. For example, for N = 1000, the Sharpe ratio of EW is only 0.45 whereas the

Sharpe ratio of IDR-DCC-NL is 0.73, more than 60% larger.

Engle and Colacito (2006) argue for the use of the out-of-sample standard deviation, SD, as

a performance measure also in the context of a ‘full’ Markowitz portfolio. It can be seen that

according to this performance all models outperform EW-TQ and VW-TQ by a wide margin as

well, with IDR-DCC-NL being always best again.

13As the out-of-sample size is very large at 5,040, there is no need to use the computationally more expensive

bootstrap method described in Ledoit and Wolf (2008, Section 3.2), which is preferred for small sample sizes.
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Additionally, we report results on average turnover, gross leverage, and percentage of leverage.

The results are presented in Table 7 and can be summarized as follows. (The summary is verbatim

identical to the one of Section 5.4.)

• IDR-DCC-NL leads to markedly lower turnover and gross leverage than all other models.

• IDR-DCC leads to the lowest proportion of leverage, although the differences across all

DCC models are minor.

• Using regularized returns instead of observed returns in the estimation of the DCC(-NL)

models (that is, using models with an IDR part instead of models with an ID part) reduces

turnover and gross leverage, but has no noticeable effect on percentage of leverage.

As further demonstrated in Table 7, all DCC models with a NL part outperform EW-TQ and

VW-TQ in terms of the information ratio net of transaction costs (ĨR), where again a constant

transaction cost of 5 bps is assumed for all stocks.

Last but not least, compared to EW-TQ and VW-TQ, all DCC models are able to achieve

more favorable (that is, smaller) numbers in terms of maximum drawdown and IDR-DCC-NL is

again best. For example, for N = 1000, the maximum drawdown for EW-TQ is 56.97% whereas

for IDR-DCC-NL it is only 21.04%, down to nearly a third.

6 Conclusion

In this paper we have shown that using intraday data, in the form of open/high/low/close

(OHLC) prices, leads to improved forecasts of dynamic covariance matrices via multivariate

GARCH models, where our focus has been on the original DCC model of Engle (2002) and its

recent extension, the DCC-NL model of Engle et al. (2019).

The first step of a DCC(-NL) model consists of modeling dynamic (univariate) variances via

a GARCH(1,1) model where the innovation is the daily squared return. Hence, the first idea is

to use an improved volatility proxy based on OHLC data, instead of the squared return, in this

step. We call the resulting multivariate GARCH models ID-DCC-(NL), where “ID” stands for

“volatility proxy based on IntraDay data”.

The second step of a DCC(-NL) model consists of modeling the dynamic correlation matrix

where the innovation now is the outer product of the vector of daily (devolatized) returns. Hence,

the second idea is to use an improved innovation that is based on volatility proxies instead of

returns. The counterpart of a volatility proxy itself is the squared return. Thus, it is natural to

take the sign of the return together with the square root of the volatility proxy as the counterpart

of the return itself. This already works well, but a ‘smoothed’ sign of the return together with

the root of the volatility proxy works even better, which is the new concept of a regularized

return. Using these regularized returns in the second step, and their squares in the first step
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(for reasons of internal consistency), gives rise to multivariate GARCH models that we call

IDR-DCC(-NL) models, where “R” stands for “regularized returns”.

An important feature of our newly proposed models is that they remain computationally

feasible for universes of N ≥ 1000 assets, unlike most other multivariate GARCH-type models

(especially when based on intraday data).

Empirical backtest exercises demonstrate that ID-DCC(-NL) models already deliver an

substantial improvement over DCC(-NL) models, and that IDR-DCC(-NL) models deliver

another improvement of roughly the same magnitude. In particular, the IDR-DCC-NL model

is the clear winner and its performance for large investment universes is rather impressive; for

example, the out-of-sample standard deviation of an estimated global-minimum-variance (GMV)

portfolio of N = 1000 stocks improves from 7.88% to 5.90% (on an annual basis) when one

upgrades from DCC-NL to IDR-DCC-NL. A further advantage of the IDR-DCC-NL model is

that it leads to reduced turnover, reduced gross leverage, and reduced maximum drawdown

compared to the DCC-NL model.
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Figure 1: The scaled hyperbolic tangent function: some examples for various values of κ.
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Figure 2: Absolute observed returns vs. the square root of the volatility proxies (upper panel)

and the absolute regularized returns (lower panel) for a representative stock (Exxon Mobil

Corporation) and a representative period (4/19/2000–4/26/2005), in percent. The volatility

proxies, which also form the basis for the regularized returns are computed using formula (4.7).
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Figure 3: Absolute cross-products of the observed returns respectively the regularized returns

for two representative stocks (General Electric Corporation and Exxon Mobil Corporation) and

a representative period (4/19/2000–4/26/2005), in percent. The volatility proxies, which form

the basis for the regularized returns, are computed using formula (4.7).
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Figure 4: Boxplots of the 5,040 daily out-of-sample returns (in percent) for various estimators

of the GMV portfolio; the period is 12/18/1998–12/31/2018. The relative benefit of using

intraday data (ID respectively IDR) and nonlinear shrinkage (NL) gets more pronounced for

larger dimensions.
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Figure 5: Rolling-window out-of-sample standard deviations (SD) for various models and

N = 1000. The lengths of the out-of-sample period are one month, one year, and five years,

respectively. Any given number represents the out-of-sample standard deviation (SD) over the

corresponding subperiod ending on that day.
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Figure 6: Trajectories of three estimated GMV portfolio for N = 1000.
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Period: 12/18/1998–12/31/2018

EW VW DCC ID-DCC IDR-DCC DCC-NL ID-DCC-NL IDR-DCC-NL

N = 100

AV 7.54 6.77 5.57 6.63 7.66 5.52 6.43 7.29

SD 18.94 18.70 12.45 12.24 12.18∗∗ 12.33 12.14 12.07∗∗

IR 0.40 0.36 0.45 0.54 0.63 0.45 0.53 0.60

SR 0.31 0.27 0.31 0.40 0.49 0.31 0.39 0.46

N = 500

AV 10.05 7.81 6.94 5.88 6.62 7.75 6.91 7.04

SD 19.50 18.80 9.67 8.81 7.94∗∗∗ 9.01 8.19 7.44∗∗∗

IR 0.52 0.42 0.72 0.67 0.83 0.86 0.84 0.95

SR 0.43 0.32 0.54 0.47 0.61 0.67 0.63 0.71

N = 1000

AV 10.91 8.07 8.33 6.20 6.08 8.32 6.76 6.29

SD 20.26 18.89 10.05 8.76 7.72∗∗∗ 7.88 6.85 5.90∗∗∗

IR 0.54 0.43 0.83 0.71 0.79 1.06 0.99 1.07

SR 0.45 0.33 0.65 0.51 0.56 0.83 0.73 0.77

Table 1: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; IR stands for information

ratio; and SR stands for Sharpe ratio. All measures are based on 5,040 daily out-of-sample

returns. In the rows labeled SD, the lowest number appears in bold face. In the columns

labeled IDR-DCC respectively IDR-DCC-NL, significant outperformance over DCC respectively

DCC-NL in terms of SD is denoted by asterisks: *** denotes significance at the 0.01 level;

** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 12/18/1998–12/31/2018

EW VW DCC ID-DCC IDR-DCC DCC-NL ID-DCC-NL IDR-DCC-NL

N = 100

TO 0.11 0.03 2.84 3.06 2.44 2.64 2.87 2.26

GL 1.00 1.00 3.20 3.19 2.54 3.00 3.00 2.37

PL 0.00 0.00 0.47 0.46 0.45 0.46 0.46 0.45

ĨR 0.39 0.36 0.31 0.39 0.51 0.32 0.39 0.49

S̃R 0.30 0.27 0.17 0.25 0.37 0.18 0.24 0.35

MDD 55.47 52.70 37.47 36.64 35.34 36.79 36.33 35.08

N = 500

TO 0.10 0.02 4.56 4.47 3.83 3.05 3.01 2.57

GL 1.00 1.00 4.99 4.41 3.83 3.46 3.12 2.62

PL 0.00 0.00 0.49 0.49 0.49 0.51 0.50 0.51

ĨR 0.51 0.41 0.43 0.36 0.54 0.66 0.62 0.74

S̃R 0.42 0.32 0.25 0.17 0.32 0.46 0.40 0.50

MDD 56.51 53.34 32.28 28.59 29.59 25.21 23.93 23.68

N = 1000

TO 0.10 0.01 7.72 7.20 6.20 2.71 2.87 2.56

GL 1.00 1.00 7.90 6.80 6.07 3.07 2.83 2.54

PL 0.00 0.00 0.50 0.49 0.49 0.51 0.51 0.51

ĨR 0.54 0.43 0.37 0.21 0.22 0.85 0.73 0.77

S̃R 0.45 0.33 0.19 0.17 0.01 0.63 0.48 0.48

MDD 57.15 53.58 34.00 32.45 25.69 28.69 25.25 23.45

Table 2: Additional performance measures for various estimators of the GMV portfolio. TO stands

for average turnover; GL stands for average gross leverage; PL stands for average proportion

of leverage; ĨR stands for the information ratio net of transaction costs (5 bps); S̃R stands for

the Sharpe ratio net of transaction costs (5 bps); and MDD stands for maximum drawdown (in

percent). All measures are based on 240 monthly weight vectors. For the DCC models and the

rows labeled TO, GL, PL, and MDD, the lowest (and thus best) number appears in bold face.
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Period: 12/18/1998–12/31/2018

IDR-DCC with

κ = 2 κ = 50 κ = 100 κ = 200 κ =∞

N = 100

AV 5.46 7.06 7.66 7.00 6.94

SD 12.59 12.18 12.18 12.24 12.17

IR 0.43 0.58 0.63 0.57 0.57

SR 0.29 0.44 0.49 0.43 0.43

N = 500

AV 6.35 5.99 6.62 5.88 6.84

SD 9.45 8.13 7.94∗∗∗ 8.08 8.60

IR 0.67 0.74 0.83 0.73 0.79

SR 0.49 0.52 0.61 0.51 0.59

N = 1000

AV 5.98 5.51 6.08 6.26 7.23

SD 8.80 7.88 7.72∗∗∗ 8.12 8.73

IR 0.68 0.70 0.79 0.77 0.82

SR 0.48 0.48 0.56 0.56 0.63

Table 3: Annualized performance measures (in percent) for various IDR-DCC estimators of

the GMV portfolio. AV stands for average; SD stands for standard deviation; IR stands for

information ratio; and SR stands for Sharpe ratio. All measures are based on 5,040 daily

out-of-sample returns. In the rows labeled SD, the lowest number appears in bold face. In the

column labeled κ = 100, significant outperformance over κ =∞ in terms of SD is denoted by

asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level; and

* denotes significance at the 0.1 level.
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Period: 12/18/1998–12/31/2018

IDR-DCC-NL with

κ = 2 κ = 50 κ = 100 κ = 200 κ =∞

N = 100

AV 5.35 6.78 7.29 6.69 6.64

SD 12.47 12.07 12.07 12.13 12.07

IR 0.43 0.56 0.60 0.55 0.55

SR 0.29 0.42 0.46 0.41 0.41

N = 500

AV 6.80 6.75 7.04 6.65 7.62

SD 9.03 7.69 7.44∗∗∗ 7.50 8.14

IR 0.75 0.88 0.95 0.89 0.94

SR 0.56 0.65 0.71 0.53 0.71

N = 1000

AV 6.25 6.11 6.29 6.65 7.15

SD 7.72 6.13 5.90∗∗∗ 6.18 6.84

IR 0.81 1.00 1.07 1.08 1.04

SR 0.58 0.71 0.77 0.77 0.77

Table 4: Annualized performance measures (in percent) for various IDR-DCC-NL estimators

of the GMV portfolio. AV stands for average; SD stands for standard deviation; IR stands

for information ratio; and SR stands for Sharpe ratio. All measures are based on 5,040 daily

out-of-sample returns. In the rows labeled SD, the lowest number appears in bold face. In the

column labeled κ = 100, significant outperformance over κ =∞ in terms of SD is denoted by

asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level; and

* denotes significance at the 0.1 level.
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Period: 12/18/1998–12/31/2018

DCC ID-DCC IDR-DCC DCC-NL ID-DCC-NL IDR-DCC-NL

N = 1000

AV 7.64 6.43 5.81 8.07 6.69 6.24

SD 7.88 6.84 5.80∗∗∗ 7.77 6.67 5.73∗∗∗

IR 0.97 0.94 1.00 1.04 1.00 1.09

SR 0.75 0.68 0.70 0.81 0.74 0.78

Table 5: Annualized performance measures (in percent) for various estimators of the constrained

GMV portfolio, allowing for a gross leverage of at most 2.0. AV stands for average; SD stands for

standard deviation; IR stands for information ratio; and SR stands for Sharpe ratio. All measures

are based on 5,040 daily out-of-sample returns. In the rows labeled SD, the lowest number

appears in bold face. In the columns labeled IDR-DCC respectively IDR-DCC-NL, significant

outperformance over DCC respectively DCC-NL in terms of SD is denoted by asterisks: ***

denotes significance at the 0.01 level; ** denotes significance at the 0.05 level; and * denotes

significance at the 0.1 level.
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Period: 12/18/1998–12/31/2018

EW-TQ VW-TQ DCC ID-DCC IDR-DCC DCC-NL ID-DCC-NL IDR-DCC-NL

N = 100

AV 9.75 9.42 9.41 10.23 10.76 9.63 10.38 10.69

SD 23.49 23.17 14.89 14.71 14.72 14.77 14.61 14.65

IR 0.42 0.41 0.63 0.70 0.73 0.65 0.71 0.73

SR 0.34 0.33 0.51 0.58 0.61 0.53 0.59 0.61

N = 500

AV 11.82 10.21 7.77 6.28 7.03 8.80 7.56 7.80

SD 22.97 23.04 10.81 9.96 9.12∗∗∗ 10.13 9.29 8.58∗∗∗

IR 0.51 0.44 0.72 0.63 0.77 0.87 0.81 0.91

SR 0.44 0.37 0.56 0.46 0.58 0.70 0.63 0.71

N = 1000

AV 12.02 10.33 8.36 6.34 6.03 8.51 6.74 6.54

SD 23.66 23.23 11.32 10.02 8.73∗∗∗ 8.64 7.52 6.54∗∗∗

IR 0.51 0.44 0.74 0.63 0.69 0.98 0.90 1.00

SR 0.43 0.37 0.58 0.46 0.49 0.78 0.66 0.73

Table 6: Annualized performance measures (in percent) for various estimators of the Markowitz

portfolio with momentum signal. AV stands for average; SD stands for standard deviation;

IR stands for information ratio; and SR stands for Sharpe ratio. All measures are based on 5,040

daily out-of-sample returns. In the rows labeled IR, the largest number appears in bold face.

In the columns labeled IDR-DCC respectively IDR-DCC-NL, significant outperformance over

DCC respectively DCC-NL in terms of SD and IR (separately) is denoted by asterisks: ***

denotes significance at the 0.01 level; ** denotes significance at the 0.05 level; and * denotes

significance at the 0.1 level.
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Period: 12/18/1998–12/31/2018

EW-TQ VW-TQ DCC ID-DCC IDR-DCC DCC-NL ID-DCC-NL IDR-DCC-NL

N = 100

TO 0.58 0.58 3.40 3.54 2.86 3.17 3.34 2.66

GL 1.00 1.00 3.90 3.87 3.14 3.67 3.65 2.95

PL 0.00 0.00 0.47 0.47 0.46 0.47 0.47 0.46

ĨR 0.40 0.39 0.50 0.55 0.61 0.52 0.57 0.62

S̃R 0.33 0.32 0.38 0.43 0.50 0.41 0.45 0.50

MDD 56.85 58.29 37.16 35.99 32.86 36.05 34.49 32.63

N = 500

TO 0.56 0.59 5.04 4.89 4.19 3.41 3.43 2.84

GL 1.00 1.00 5.68 5.04 4.35 3.99 3.59 3.02

PL 0.00 0.00 0.50 0.50 0.50 0.50 0.50 0.51

ĨR 0.50 0.43 0.53 0.42 0.50 0.68 0.60 0.71

S̃R 0.42 0.35 0.37 0.24 0.30 0.51 0.42 0.51

MDD 57.24 51.46 32.38 29.42 27.61 23.17 21.15 21.01

N = 1000

TO 0.56 0.60 8.99 8.33 6.95 3.05 3.24 2.83

GL 1.00 1.00 9.58 8.20 6.98 3.59 3.33 2.93

PL 0.00 0.00 0.50 0.50 0.50 0.51 0.51 0.51

ĨR 0.49 0.43 0.56 0.42 0.21 0.75 0.63 0.76

S̃R 0.42 0.35 0.40 0.25 0.02 0.56 0.42 0.47

MDD 56.97 51.37 29.31 28.26 23.69 25.94 22.54 21.04

Table 7: Additional performance measures for various estimators of the Markowitz portfolio

with momentum signal. TO stands for average turnover; GL stands for average gross leverage;

PL stands for average proportion of leverage; ĨR stands for the information ratio net of transaction

costs (5 bps); S̃R stands for the Sharpe ratio net of transaction costs (5 bps); and MDD stands

for maximum drawdown (in percent). All measures are based on 240 monthly weight vectors.

For the DCC models and the rows labeled TO, GL, PL, and MDD, the lowest (and thus best)

number appears in bold face, whereas for the row labeled ĨR, the highest (and thus best)

number appears in bold face.
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B Detailed Description of IDR-DCC(-NL) Models

First, compute the regularized returns for a suitable scaling factor κ:14

r̃i,t−1 ..= stanh(ri,t−1, κ)
√
v̂i,t−1 , (B.1)

where stanh(·, ·) is the ‘scaled’ hyperbolic tangent function defined in eEquation (3.2) and v̂i,t−1

denotes a generic volatility proxy based on OHLC price data; see Section 4 for specific proposals.

Second, for modeling conditional covariances, use a GARCH(1,1) model with squared

regularized returns, instead of squared returns, as innovations:

d2i,t = ωi + δ1,ir̃
2
i,t−1 + δ2,id

2
i,t−1 , (B.2)

where (ωi, δ1,i, δ2,i) are the asset-specific GARCH(1,1) parameters. Then use the conditional

variances to devolatize the regularized returns: si,t ..= r̃i,t/di,t.

Third, for modeling the conditional (pseudo) correlation matrix use the DCC model with

correlation targeting:

Qt = (1− δ1 − δ2)C + δ1st−1s
′
t−1 + δ2Qt−1 , (B.3)

where (δ1, δ2) are the DCC parameters and C ..= Cor(r̃t) = Cov(st) denotes the unconditional

correlation matrix of the regularized returns. Note that Qt cannot be used directly because its

diagonal elements, although close to one, are typically not exactly equal to one Therefore, the

conditional correlation matrix, and from it the conditional covariance matrix, are obtained as

follows:

Rt ..= Diag(Qt)
−1/2 Qt Diag(Qt)

−1/2 (B.4)

Σt
..= DtRtDt . (B.5)

Finally, if the portfolio is held for more than one day use the ‘averaged-forecasting’ approach

of De Nard et al. (2021): At portfolio-formation date k, forecast the covariance matrix for

all L days of the holding period, that is, for t = k, k + 1, . . . , k + (L − 1); then average those

L forecasts and use this ‘averaged’ forecast to construct the portfolio at date k; see Section 2.2:

Σ̂k
..=

1

L

L−1∑
l=0

E[Dk+l|Fk−1] E[Rk+l|Fk−1]E[Dk+l|Fk−1] . (B.6)

In practice, the parameters in Equations (B.2)–(B.3) need to be estimated. To this end,

follow the same prescriptions as in Section 2.3, just with regularized returns r̃t in place of

returns rt. In particular, if the correlation-targeting matrix C of Equation (B.2) is estimated

using the sample covariance matrix of the devolatized regularized-returns {st}, the IDR-DCC

model obtains; if instead C is estimated by applying nonlinear shrinkage to the {st}, with

post-processing analogous to (B.4), the IDR-DCC-NL model obtains.
14We suggest the choice κ = 100 for returns in percent, which corresponds to the choice κ = 10, 000 for raw

returns.
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