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Strength of Preference and Decisions Under Risk∗

Carlos Alós-Ferrer†1 and Michele Garagnani1

1Department of Economics, University of Zurich

Abstract

Influential economic approaches as random utility models assume a mono-

tonic relation between choice frequencies and “strength of preference,” in line

with widespread evidence from the cognitive sciences, which also document

an inverse relation to response times. However, for economic decisions un-

der risk, these effects are largely untested, because models used to fit data

assume them. Further, the dimension underlying strength of preference

remains unclear in economics, with candidates including payoff-irrelevant

numerical magnitudes. We provide a systematic, out-of-sample empirical

validation of these relations (both for choices and response times) relying

on both a new experimental design and simulations.

JEL Classification: D01 · D81 · D91

Keywords: Stochastic choice · Strength of preference · Decision errors ·

Risk attitude

1 Introduction

Economics has by now embraced the view that economic choices are subject to

noise (e.g., McFadden, 2001). Research in stochastic choice has provided extensive
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evidence that human beings often make different choices even when repeatedly

confronted with the same set of options1 (e.g., Hey and Orme, 1994; Ballinger and

Wilcox, 1997; Agranov and Ortoleva, 2017). There is, however, no universally-

accepted view on the origins and determinants of noise or errors in economic

decision making.2 How often do economic agents make mistakes, and what does

the number of mistakes depend on?

The key question is whether error rates are associated with directly or indirectly

measurable economic variables. Evidence from other disciplines suggests so. In

the domain of psychophysics, decades of research have concentrated on perceptual

discrimination tasks, where two stimuli are presented and human participants are

asked to estimate which one scores higher along an objective scale, for instance

which of two sounds is louder, which of two lights is brighter, or which of two

lines is longer. In such simple tasks, there is an objective, direct measure of choice

difficulty: choices become gradually harder as the difference between the stimuli

becomes smaller (along the objective scale). There are two firmly-established styl-

ized facts in this literature. The first is that the percentage of correct choices is

strictly decreasing with choice difficulty, that is, error rates are larger when stimuli

are more similar (Laming, 1985; Klein, 2001; Wichmann and Hill, 2001). The sec-

ond is that choices are slower for harder choices, that is, response times are larger

when the stimuli are more similar (Dashiell, 1937; Moyer and Landauer, 1967).

In this work, we ask the question of whether these gradual effects are relevant

for economic choices and, if so, which economic variables do determine them.

This question is obviously important for conceptual reasons, as the phenomena we

discuss imply a cardinal effect of economic variables on choices, as opposed to the

classical, purely-ordinal view of preferences.

Our main contribution is to empirically demonstrate the gradual relation be-

tween underlying economic variables (specifically, differences in expected utilities)

and both choice frequencies and response times relying in a confound-free, out-

of-sample approach. Previous work has already pointed at these relationships,

starting with Mosteller and Nogee (1951). However, those works have typically

employed within-sample, fitting approaches which are not appropriate to test the

1“Common experience suggests, and experiment confirms, that a person does not always make
the same choice when faced with the same options, even when the circumstances of choice seem
in all relevant aspects to be the same.” (Davidson and Marschak, 1959).

2If a normative view is adopted where (except for knife-edge indifference cases) only one choice
is considered correct (or consistent with underlying preferences), the statement that choice is
stochastic is equivalent to the empirically-ubiquitous observation of positive error rates. It is in
this sense that we speak of “errors” in this work. This is also in line with a positive-economics
view, where one aims to understand the extent to which economic decision makers will deviate
from choices deemed “rational.”
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basic hypothesis that gradual effects exist. The reason is that the estimation

method transforming utility differences into economic choices might create appar-

ent regularities where none exists. After all, a monotonic relation between utility

differences and error rates is already implicit in random utility models of stochas-

tic choice (McFadden, 1974, 2001; Anderson, Thisse, and De Palma, 1992), where

underlying utility differences for a choice pair (x, y) are perturbed by a noise term

ε and actual choice follows the realization u(x) − u(y) + ε. As a consequence,

the probability of a choice which goes against the underlying utility difference

(hence an error) is larger if u(x) − u(y) is closer to zero, that is, errors are more

likely as choice pairs are closer to indifference.3 Since applied work in discrete

choice microeconomics assume such a gradual, monotonic relation from the on-

set, fitting them to data will necessarily produce patterns in agreement with the

assumed relation just because the underlying dimension (e.g., imputed utilities

in random utility models, or fitted drift rates in evidence accumulation models;

see Fudenberg et al., 2020)4 is estimated in order to produce a good fit. While

these within-sample, fitting approaches are invaluable to compare the fit of dif-

ferent utility- or payoff-based models of choice, they assume (and hence do not

demonstrate) the gradual effects we are interested in. To drive this point home, in

Section 3.2 we conduct a simulation exercise showing that it is possible to obtain

apparently systematic, gradual effects from purely random choices. In contrast,

our analysis relies on an out-of-sample approach, where individual utilities are es-

timated using a set of choices, and the postulated gradual relationships are tested

using a different set of choices.

The second objective of our work is to compare different candidate explanatory

variables for the gradual effects of interest. A priori, it is by no means clear what

the gradual effects predicted by psychology and neuroscience should depend on for

economic choices, where a natural scale as weight, brightness, or length is usually

not part of the problem’s formulation, and utilities are neither directly observable

nor objective. For decisions under risk, expected utilities are a natural candidate,

but they involve a subjective underlying dimension, since widespread evidence

shows that risk attitudes are highly heterogeneous (e.g., Bougherara, Friesen, and

Nauges, 2021; de Oliveira, 2021; Mentzakis and Sadeh, 2021; Bandyopadhyay, Be-

3A similar implication follows from evidence accumulation models from cognitive psychology
and neuroscience. Those often imply logit choice probabilities, which can be rationalized through
a random utility model, and hence again already incorporate a gradual relation between the
differences in underlying utilities and error rates as a structural assumption.

4As pointed out by Webb (2019), there is a relation between drift-diffusion models and random
utility models, which in particular explains why the structural relation mentioned above is present
in both.
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gum, and Grossman, 2021). This subjective nature creates the need for out-of-

sample estimation. Alternatively, expected values provide an objectively-defined

candidate (which would not need any estimation). A third candidate is given

by differences in numerical magnitudes. A number of contributions in the cogni-

tive sciences (Moyer and Landauer, 1967; Dehaene, Dupoux, and Mehler, 1990;

Dehaene, 1992) show that people make more mistakes and take longer to decide

when asked whether 6 is larger than 5 than when asked whether 9 is larger than

2. This observation has been recently reproduced by Frydman and Jin (2022) and

has motivated the work of Khaw, Li, and Woodford (2021) (see Section 2).

To accomplish our objectives, we designed a new experimental task where we

can independently vary the (subjective) value of the options available to the par-

ticipant and the (payoff-irrelevant) numerical magnitudes of the stimuli. If we

would use a standard lottery choice task, as previously done in the literature, ev-

ery change in each numerical magnitude (payoffs or probabilities) would directly

translate into changes in expected payoffs and utilities. On the contrary, we imple-

ment a naturalistic environment where stimuli are represented using decks of cards

and participants need to decide whether to bet (or not) on whether a subsequent

extracted card is larger than another. In this way the values of the options are

not directly related to the numerical symbols represented on the cards, i.e., we can

vary independently the perceptual and the value-based dimensions of the stimuli.

Our results show that, in an economically relevant situation (betting choices),

choice frequencies and response times are monotonically related to cardinal dif-

ferences in expected utilities, where the latter are estimated out of sample. This

substantiates the claim that the gradual effects of psychophysics are relevant for

economic choices, in the sense that “strength of preference” drives error rates

and response times. At the same time, we show that these effects are mostly

determined by expected utility differences and not expected value differences or

(payoff-irrelevant) perceptual effects. This result validates the ideas and assump-

tions behind random utility models and other approaches. Crucially, we also show

that our results do not hinge on the particular functional form of the utility func-

tion or error specification. That is, we perform our analysis using random utility

and random parameter models as well as assuming different functional forms of

the utility functions (CARA or CRRA) and even present a robustness check which

relies on certainty equivalents. Further, the relation to response times shows that

the effects are more than “as if” accounts of decision making and might have

their origin in brain processes of a gradual nature, as assumed e.g. by evidence

accumulation models (Ratcliff, 1978; Fudenberg, Strack, and Strzalecki, 2018).
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The paper is structured as follows. Section 2 briefly reviews the related litera-

ture. Section 3 discusses the experimental design and the results of the experiment.

Section 4 concludes.

2 Related Literature

Our work is related to long-standing problems in economics and to several strands

of the recent literature. Classical studies of stochastic choice endorsed the view

that utilities should be understood as reflecting choice probabilities (e.g., Debreu,

1958; Luce, 1959), in direct opposition with the neoclassical view that they reflect

preferences of an exclusively ordinal nature (Hicks and Allen, 1934).

The gradual relation between underlying preferences and choice frequencies has

also been repeatedly illustrated in a domain which bridges the gap between psy-

chophysics and decisions under risk. In experimental studies on consumer choice

(typically snack food items), participants make choices based on their personal

preferences. Although they generally have a very different focus, several works

in this domain have illustrated a relation between differences in subjective, self-

reported ratings and choice frequencies (e.g., Krajbich, Armel, and Rangel, 2010;

Fisher, 2017; Clithero, 2018; Polania, Woodford, and Ruff, 2019). However, the

approach in those works is typically to fit an evidence accumulation model, which

assumes a relation of this sort (as discussed above) and is hence inadequate to test

for the postulated effects, and in any case does not extend to decisions under risk.

To the best of our knowledge, the first study to point at a connection between

utility differences and choice frequencies in decisions under risk was the inspiring

experiment of Mosteller and Nogee (1951) on poker dice gaming, which aimed to

“test the validity of the construct” represented by (expected) utility. Their analysis

included illustrations which suggested a sigmoidal relation between utility differ-

ences and choice frequencies, although, as the authors admitted, those were at the

individual level and cherry-picked among all experimental participants. While sug-

gestive, their illustrations were not a test for the presence of gradual effects (and

were actually not meant to be), because their utility functions were constructed

through an interpolation procedure relying exclusively on observed indifferences.

For instance, although their illustrations map zero utility difference to 50 per-

cent choice frequency, “this finding was built into the expected utilities by the

construction leading to the utility curves” (Mosteller and Nogee, 1951, p. 202).

Conceptually, our work is also related to the studies of Khaw, Li, and Woodford

(2021) and Frydman and Jin (2022). The former carried out an experiment on risky
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choice where participants chose between a sure amount and lotteries with a single

non-zero outcome and a fixed probability of winning varying amounts (that is, the

winning probability was identical for all choices). By varying the sure amount

and the lottery outcome, Khaw, Li, and Woodford (2021) explored the reaction

of choice frequencies to changes in payoffs and argued that the data could be

explained assuming an imprecise internal representation of numerical magnitudes,

in line with Moyer and Landauer (1967) and Dehaene (1992). Hence, their work

speaks in favor of a direct effect of numerical magnitudes on error rates.5 However,

by design, their numerical magnitudes stand in a monotonic relation to payoffs:

each lottery is mapped to a single number, which in turn maps monotonically

to economic value. Further, because probabilities were fixed, participants only

needed to evaluate a single number for each lottery, hence making the type of

choices implemented in Khaw, Li, and Woodford (2021) and Frydman and Jin

(2022), by design, a perceptual discrimination task. In particular, in their data

it is not possible to disentangle the effects of numerical magnitudes and expected

values (or utilities) on choice frequencies and response times.

It should also be remarked that, for concreteness, Khaw, Li, and Woodford

(2021) concentrate on the perception of payoffs and assume probabilities to be

objective in their analysis. It is conceivable that an an extension of the models

proposed by Khaw, Li, and Woodford (2021) and Frydman and Jin (2022) to ac-

count for distortions in both payoffs and probabilities might provide a foundation

for the effects of subjective variables (expected utilities) that we demonstrate. We

follow a different approach by using a design such that different numerical mag-

nitudes are associated with the same expected payoffs and vice versa, allowing us

to study perceptual (but payoff-irrelevant) and utility effects separately. Further,

the choices in our experiment vary both payoffs and probabilities.

In a related paper, Alós-Ferrer and Garagnani (2021) consider decisions under

dominance, where what is correct is objectively defined and, in particular, indepen-

dent of risk attitudes. In that task, gradual effects as described by psychophysics

are also present, and can be shown to be determined by expected values. As in

our task, payoff-irrelevant numerical magnitudes play only a minor role.

5This is compatible with evidence from electroencephalography (EEG), which suggests that
the neural representations of numbers vary in a continuous, gradual way with numerical distance
(Spitzer, Waschke, and Summerfield, 2017).
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Figure 1: Each trial starts by extracting two black cards, a red card, and displaying
a prize. Participants then decide whether to bet or not (betting is costly). After a
bet, a black card is extracted, and the participant wins if and only if it is strictly
larger than the red card.

3 Design and Procedures

Participants were N = 96 (different) university students (66 females, age range

18 − 36, mean 24). Sessions lasted around 60 minutes and the average payoff was

EUR 13.45 (around USD 14.40 at the time of the experiment). Three participants

were unable to understand the task and were excluded from the analysis.

All decisions are embedded within a fixed, naturalistic environment using bet-

ting decisions (as, e.g., Mosteller and Nogee, 1951; Alós-Ferrer and Garagnani,

2021), and, in addition, the decision task allows us to disentangle numerical differ-

ences from economic incentives, which would not be possible using, e.g., a lottery
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choice task (because in the latter every change in each numerical magnitude in-

fluences payoffs). Further, in order to concentrate on the effects of strength of

preference, we again strive to streamline the choice environment to reduce possi-

ble additional sources of variability in choice frequencies. The experimental task

is as follows. Participants are confronted with two decks of cards, a red one (Dia-

monds) and a black one (Clubs), containing ten cards each (numbered 1 to 10). At

the beginning of each of the 170 trials, two cards are extracted from the black deck,

one red card is extracted from the red deck, and a monetary prize is displayed (see

Figure 1). The participants’ task is to decide whether to bet or to pass. After

this decision, a further black card will be extracted from the remaining eight cards

in the black deck, and the objective is to beat the red card with that new card.

Betting is costly: placing a bet costs EUR 0.10 (fixed for all trials), independently

of the outcome of the trial. If the participant bets and if the newly-extracted

black card is strictly larger than the displayed red card, the participant receives

the displayed monetary prize (minus the cost). Otherwise, the payment is zero

(resulting in a net loss equal to the cost of betting). If the participant does not

bet, there is neither a payment nor a cost (but the new black card is still extracted

and the participant observes the outcome). Before a new trial starts, all cards

are returned to their respective decks and those are reshuffled. Hence, each trial

reflects an independent decision situation. All trials were paid. In our particular

context, this payment mechanism is incentive-compatible under mild assumptions

on the participants’ preferences, as shown by Azrieli, Chambers, and Healy (2018,

2020).6

The set of initial stimuli (red card, first two black cards, and prize) was prede-

termined and pseudorandomized across trials to achieve adequate stimuli variance

with a manageable number of trials. Red cards were extracted in such a way

that there was always some probability of winning, so as to avoid trivial decisions.

Hence, there were eight possible distinct probabilities of winning, ranging from

12.5% to a sure win. Prizes ranged from 10 to 120 cents, and were determined

trial-by-trial as deviations from the actuarially-fair prize, the amount that leaves

a risk-neutral agent indifferent between betting and passing. Eleven different dis-

tortions from the fair prize were implemented, ranging from 50% below to 50%

6Specifically, the requirements are monotonicity and a weak condition called show-up fee

invariance, which Azrieli, Chambers, and Healy (2018, footnote 26) argue to be a reasonable
assumption in contexts as ours where choices are independent and feedback is given indepen-
dently of choices. This is because each decision problem can be considered independent, since
participants receive feedback on what would have happened for every choice they could have
made before, and hence incentives to experiment (hedge) are eliminated (Azrieli, Chambers, and
Healy, 2018).

8



above, in 10% steps. Stimuli were selected to ensure that every participant faced

every combination of winning probability and distortion from the fair prize at

least twice. The crucial third black card was randomly selected among the cards

remaining in the deck.

In each trial, at the moment of the decision, the black deck contains eight cards,

and the two already-extracted cards are displayed. The probability to win when

betting depends on the magnitude of the red card and on whether the displayed

black cards are winning or losing cards. In the example depicted in Figure 1,

the red card is an 8 and the two extracted black cards are a 2 and a 4, hence

both are losing cards. That is, the black deck contains two winning cards and six

losing ones, yielding a probability of winning of 1/4. Since the cost of betting is 10

cents, the actuarially-fair prize is 40 cents, but the offered prize is 24 cents. Hence,

a risk-averse or risk-neutral agent should decline to bet, while a risk-loving one

might rationally decide to bet. That is, there are no objectively-correct decisions

in this task; rather, what is “correct” depends on the individual risk attitude.

Therefore, we hypothesized that the natural underlying dimension or subjective

economic distance would be the difference between the expected utilities of betting

and passing, referred to as EU distance for clarity, which requires us to estimate

the underlying individual utilities of money.

By design, however, the expected value of betting depends on the distortion of

the fair prize. For risk neutral individuals, the difference in expected value between

passing and betting reflects how far away from “indifference” the participants

were, and are hence a natural, alternative measure for “strength of preference.”

Therefore, another candidate determinant of gradual effects is simply the absolute

value of the expected value differences between betting and passing, which we refer

to as EV distance.

We remark also that the probability of winning does not depend on the numer-

ical distances between the black cards and the red one, but only on whether the

former are larger or smaller than the latter. Hence, numerical distances in them-

selves are payoff-irrelevant (but the sign of the numerical differences is not). This

allows us to disentangle the numerical closeness of stimuli as a further possible

determinant of choice frequencies, which is the closest one to standard measures

of perceptual similarity used in psychophysics. Since there are two black cards,

we have different possible candidates for numerical distance. We present here the

analysis using the distance between the red card and the second, more recent black

card, since a large literature has advocated the prominence of the recency effect

(Deese and Kaufman, 1957; Murdock Jr., 1962). There are ten possible perceived
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distances between the red card and the second black card, ranging from 0 to 9.

We refer to this magnitude as numerical distance. We also carried out analyses

with other definitions of numerical distance; the main results described below are

unaffected.7

3.1 Utility Estimation

We estimate out-of-sample risk attitudes for each subject. Specifically, we use

the choices made in odd trials to estimate risk attitudes and use this estimation

to predict the expected utility in the even trials, and vice versa.8 Crucially, our

results do not hinge on the particular functional form of the utility function or error

specification. Following a standard approach, we the main analysis estimates an

additive random utility model (RUM) which considers a given utility function

plus an additive noise component (e.g., Thurstone, 1927; Luce, 1959; McFadden,

2001). The estimation procedure employs well-established techniques as used in

many recent contributions (Von Gaudecker, Van Soest, and Wengström, 2011;

Conte, Hey, and Moffatt, 2011; Moffatt, 2015; Alós-Ferrer and Garagnani, 2020;

Garagnani, 2020; Alós-Ferrer, Buckenmaier, and Garagnani, 2019; Alós-Ferrer,

Jaudas, and Ritschel, 2020). We provide a short description in Appendix A.

For the functional form of the utility function, we adopt a normalized constant

absolute risk aversion (CARA) function, which is given by

u(x) =











1−exp(−rx)
1−exp(−rxmax)

, if r 6= 0

x

xmax

, if r = 0,

For the noise term, we consider normally-distributed errors. In Appendix C, we

repeat the analysis assuming CRRA utilities instead of a CARA functional form.

In Appendix D, and since random utility models have been recently criticized

(see Wilcox, 2011; Apestegúıa and Ballester, 2018), we again repeat the analy-

sis, this time using a random parameter model (RPM; Loomes and Sugden, 1998;

Apestegúıa and Ballester, 2018), which follows a different approach for the speci-

fication of noise. As a last robustness check, in Appendix E we repeat the analysis

7We also considered the distance between the highest black card and the red one, the distance
between the average of the two black cards and the red card, and the distance between the highest
or lowest black card and the red one, and the distances between log-transformed numbers.

8Our results do not change if we use different out-of-sample approaches, as e.g. using an initial
block of observations for the estimation and predicting the expected utility for the remaining
trials. An alternative would have been to estimate risk attitudes from a different task, e.g. a
multiple price list. However, such methods might introduce biases (Beauchamp et al., 2019) and
be generally less precise due to complexity considerations (Charness and Gneezy, 2010).
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Figure 2: Analysis of a dataset of random, simulated choices. Left-hand panel:
Choices as function of expected utility difference using a standard, within-sample
procedure. An appearance of order and gradual effects of expected utility dif-
ferences on error rates emerges, even though no regularity is present in the data.
Right-hand panel: The same choices as function of expected utility difference using
an out-of-sample procedure. No regularity can be identified. Gray areas indicate
95% binomial proportion confidence intervals.

using certainty equivalents instead of (CARA) utilities. In all cases, all our results

remain qualitatively unchanged.

The estimated risk propensities (absolute risk aversion) in our dataset using

CARA have an average r = 0.026 (SD = 0.016, median 0.025, min = −0.007,

max = 0.086; see Appendix A for details on the estimation). The risk propensity

estimated on odd trials (r = 0.027) is not significantly different from the one

estimated on even trials (r = 0.025; Wilcoxon Signed-Rank test, N = 93, z =

0.738, p = 0.463). Given the estimated risk attitudes, the majority of subjects

are estimated to be risk averse, with only 3 subjects classified as risk-seeking.

Appendix C reproduces the estimation on the basis of CRRA functions instead

and finds an average relative risk aversion parameter of r = 0.215 (SD = 0.190,

median 0.146, min = 0.011, max = 0.749).

3.2 Fitting is not Testing: A Simulation Exercise

Before we proceed to the analysis of the actual data, we report on a simulation

exercise that illustrates the need for out-of-sample estimation procedures as the

ones described above.

We simulated a dataset where each of 93 fictitious subjects randomly chose

170 times between accepting the bets. That is, the dataset contains the same

choice pairs for the same number of actual participants as in the experiment, but

actual choices in this dataset were fully random (50% probability for each choice)
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and unrelated to the options. We then treated the dataset as if it would come

from actual decision makers and used a standard fitting approach following the

same procedures described above, but using the entire data for each simulated

decision maker. That is, we estimated a CARA utility function using an additive

random utility model and heteroskedastic, normally-distributed errors, following

the specification and procedures explained in subsection 3.1.

The left-hand panel of Figure 2 plots the simulated choice frequencies against

the estimated utility differences following this within-sample, fitting approach.

That is, we used the estimated risk attitudes to compute, within sample, the

expected utility difference between the two options (betting minus passing), and

then plotted this difference against the proportion of times one option was chosen

over the other. We observe a regular sigmoidal curve (as in any logit or probit

model), which creates the appearance of order (and gradual effects arising from

utility differences) for the nonsensical dataset. Actually, this appearance is a mere

artifice of the method, as can be shown by estimating utility out of sample, i.e.,

using part of the choices for estimation purposes and plotting the rest of the

choices against the resulting estimated utility differences, as we will do for the

actual data from the experiment. The right-hand panel of Figure 2 depicts the

result of this out-of-sample estimation, performed exactly as our actual analysis

for the experiment. Specifically, we estimated a CARA utility function from even-

numbered choices and used it to plot data from odd-numbered choices, and vice

versa. As demonstrated by the figure, this approach shows that there is no actual

regularity in the dataset. We conclude that structural models where utility is

estimated can mistakenly create an appearance of gradual effects, and hence direct

tests are needed.9

In summary, the difference between within-sample (fitting) and out-of-sample

estimations shows that the estimation procedure might create apparent gradual

effects simply because they are assumed in the underlying random utility model.

Our out-of-sample procedure ensures that the regularities we uncover below cor-

respond to actual features of the data.

9The point that fitting a structural model can produce spurious findings is widely acknowl-
edged in the literature. Thus, various criteria have been proposed to examine the validity of
structural models, as the prominent Akaike’s Information Criterion (e.g. Akaike, 1974). How-
ever, measures of goodness of fit are intrinsically relative and do not provide an actual test of
the effects we target here.
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Figure 3: Proportion of betting decisions as a function of expected utility dif-
ferences (left) and expected value differences (right). Gray areas indicate 95%
binomial proportion confidence intervals. Shaded areas indicate the proportion of
errors.

3.3 Choices and Errors

We define an error as a choice which gives a negative expected utility, e.g. decid-

ing to bet when the expected utility (as estimated out of sample) of betting is

strictly smaller than the expected utility of passing. The mean error rate across

participants was 27.31%, with a median of 28.24% (SD = 8.44, max 44.12%, min

10.00%). Figure 3 plots the frequency of betting decisions for each possible value

of each variable. As in previous pictures, to facilitate the comparison, in all fig-

ures and regressions the various distances are normalized to be between 0 and 1.

The left-hand panel plots the dependence on expected utility differences.10 The

shaded areas correspond to errors with the definition above. We observe that the

relation between betting frequency and expected utility differences has a sigmoidal

shape resembling a cumulative normal distribution or a logistic curve. This shape

indicates that error rates decrease gradually as the difference in expected utilities

between the options becomes larger. For very large differences, error rates are close

to zero. For differences close to zero, error rates are close to 50%. This stands

in sharp contrast to deterministic, neoclassical models, which would predict that

subjects always bet when expected utility differences are positive and always pass

when they are negative.

Since the left-hand panel of Figure 3 pools utility differences of different sub-

jects on the same scale, raising questions of interpersonal comparability, in Ap-

10For ease of presentation, the left-hand panel uses a binning procedure over the x-axis, with
bins of width 0.01. That is, the y-value of each point represents an average for all observations
with expected utility differences in the same bin (choice frequencies). As in previous figures, the
depicted curves are estimated using a fractional regression with a polynomial of second degree.
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pendix E we reproduce this figure and the entire analysis using certainty equiva-

lents instead, which yield a monetary (hence comparable) scale for every subject.

The results are qualitatively unchanged. The right-hand panel of Figure 3 plots the

proportion of betting choices as a function of the differences in expected value (bet-

ting minus passing). We observe a positive but non-monotonic trend with greater

expected values corresponding roughly to a higher frequency of betting.11 This is

not surprising, since as long as utility is increasing on monetary amounts, there

will be some positive correlation between expected utility and expected values in

a dataset. However, the figure strongly suggests that expected utility differences

better explain gradual effects on error rates than differences in expected values.

This is noteworthy since, as commented above, the estimates of (absolute) risk

aversion parameters using CARA are relatively low. In other words, the fact that

our estimated risk aversion parameters are relatively low but still a clear differ-

ence between expected utility and expected value is observed supports the view

that strength of preference effects are better explained by expected utility differ-

ences.12 Appendix C carries out a robustness analysis assuming CRRA instead of

CARA and finds that the estimates of (relative) risk aversion are not close to risk

neutrality, but our results are qualitatively unchanged. The same applies when

considering random parameter models instead of RUMs (Appendix D).

One can depict the proportion of betting decisions as a function of numerical

distances as defined above (errors, however, cannot be derived from numerical

distance alone in this experiment). For the sake of brevity, we omit this figure (see

Figure B.1 in Appendix B) and simply comment that a graphical representation

suggests a weak, noisy monotonic relation which might hint to second-order effects

but offers no strong evidence of an impact of purely numerical, payoff-irrelevant

perceptions on choice frequencies.

In summary, our data shows that there is a gradual relation between economic

distance and error rates, but the former now corresponds to differences in expected

utilities. Again, we remark that this and subsequent results do not hinge on the

specific functional form or error structure that we assume (Appendices C, D, E).

We now turn to a regression analysis. The data form a strongly balanced panel

with 170 trials for each of the 93 participants. We ran random-effects panel Probit

11Errors in this panel are defined as decisions which contradict expected value differences.
According to this risk-neutral definition, the mean error rate across participants was 36.29%,
with a median of 36.47% (SD = 6.60, min 19.41%, max 54.12%).

12The fact that expected utility nests expected value as the particular case of risk-neutral
agents is inconsequential for this comparison, because our analysis is not a fitting exercise. What
the comparison demonstrates is that the gradual effects on choice frequencies are better explained
by expected utilities estimated out of sample than by expected values.
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regressions where the dependent variable is 1 in case of a correct answer. For com-

pleteness, we provide separate analyses for expected utility (Table 1) and expected

value differences (Table 2), while controlling for numerical distance in both. Recall

that Expected Utility distance (EU distance), Expected Value distance (EV dis-

tance), and numerical distance are all normalized to range from 0 to 1. The various

regression models are built in a completely analogous way, and hence we discuss

them simultaneously below. The definitions of errors is the natural one in each

table, i.e. choices against expected utility differences in Table 1 and choices against

expected value differences in Table 2. Note that, for the models in Table 1, the

dependent variable specifies whether each actually-observed choice was consistent

with the estimated utility or not, but our out of sample approach guarantees that

the utility function used for each given choice has been estimated using different

choices only (that is, not including the given choice).

In Model 1 of both tables we see that larger economic distances lead to less

errors, confirming the basic prediction. However, there is a considerable difference

in the magnitude of the estimated coefficients, with EU distance having a coeffi-

cient almost 30 times bigger than EV distance. To conduct a proper comparison,

we calculated the relative elasticities. A 1% variation in EU distance increases

the probability of a correct answer by an average of 0.183%, while the analogous

percentage for EV distance is only 0.120%. This confirms the message from Figure

3 that differences in expected utility, and not in expected value, are the relevant

dimension of strength of preference in this context.13

Model 2 in both tables introduces numerical distance as an additional con-

trol. In the presence of EU distance, numerical similarity does not seem to play a

role. The effect is also insignificant when controlling for the interaction between

numerical distance and EU distance (Model 3), and when controlling for gender,

age, native language, and other characteristics (Model 4; Table B.2 in Appendix B

contains the details on the controls). In the presence of EV distance, numerical ef-

fects are not statistically significant. They only become significant when we further

control for the interaction between numerical distance and EV distance (Model 3)

as well as other controls (Model 4). The results for numerical distance should

be attributed to the fact that there is a (mechanical) correlation between the ex-

pected value and numerical distance across all decisions in the dataset (Spearman’s

ρ = 0.145; N = 170, p = 0.059), but there is no correlation between numerical

distance and expected utility (Spearman’s ρ = 0.093, N = 170, p = 0.227). In

13The same conclusion is obtained in regressions using utilities estimated with a CRRA func-
tional form (Appendix C), considering random parameter models instead of RUM (Appendix
D), or using certainty equivalents instead of utilities (Appendix E).
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Table 1: Random-effects Probit regressions on correct answers for expected utility.
EU Dist is the distance between the expected utilities of the options. A correct
answer is passing or betting when that option has larger expected utility. We
further control for numerical distance (Num Dist), defined as the absolute value
of the difference between the numerical values of the red card and the second black
card.

Correct Model 1 Model 2 Model 3 Model 4
EU Dist. 13.854∗∗∗ 13.881∗∗∗ 16.345∗∗∗ 16.277∗∗∗

(0.443) (0.463) (0.625) (0.639)
Num Dist 0.008 0.006 0.003

(0.044) (0.043) (0.044)
Num Dist × EU Dist −5.544∗∗∗ −5.332∗∗∗

(0.924) (0.907)
Trial 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)
Constant −0.130∗∗∗ −0.131∗∗∗ −0.139∗∗∗ 0.536∗∗

(0.040) (0.038) (0.038) (0.257)
Controls No No No Yes
Log L. -8392 -8392 -8379 -8320
Wald test 984.525∗∗∗ 985.811∗∗∗ 1024.929∗∗∗ 1041.316∗∗∗

Obs. 15810 15810 15810 15810

Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

all models we control for learning effects. Participants appear to improve as the

experiment advances (Trial, 1–170).

3.4 Response Times and the Underlying Processes

The previous section shows that differences in expected utilities are the best can-

didate as an explanatory determinant of gradual effects on errors. Expected value

differences and numerical differences also display significant effects, but those are

of a smaller magnitude and appear less robust. In this section, we further compare

the gradual effects of all three variables by focusing on response times. The main

objective is to show that, while there appears to be a strong, clear correspondence

between expected utility differences and actual human decision processes as re-

flected by response times, that relation is far from clear when it comes to other

alternative variables.

The variable of interest is the time participants took to decide whether to bet or

to pass. The average across individual average response times for this decision was
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Table 2: Random-effects Probit regressions on correct answers for expected value.
EV Dist is the distance between the expected values of the options. A correct
answer is passing or betting when that option has larger expected value. We
further control for numerical distance (Num Dist), defined as the absolute value
of the difference between the numerical values of the red card and the second black
card.

Correct Model 1 Model 2 Model 3 Model 4
EV Dist 0.463∗∗∗ 0.464∗∗∗ 1.100∗∗∗ 1.113∗∗∗

(0.053) (0.053) (0.069) (0.070)
Num Dist −0.013 0.628∗∗∗ 0.639∗∗∗

(0.030) (0.061) (0.062)
Num Dist × EV Dist −1.552∗∗∗ −1.600∗∗∗

(0.116) (0.124)
Trial 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
Constant −0.011 −0.006 −0.285∗∗∗ −0.159

(0.021) (0.025) (0.035) (0.258)
Controls No No No Yes
Log L. -10170 -10170 -10102 -10037
Wald test 223.538∗∗∗ 223.868∗∗∗ 453.437∗∗∗ 466.95∗∗∗

Obs. 15810 15810 15810 15810

Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

2.051 seconds (SD = 0.150, median = 2.090, min = 1.354, max = 2.200). Figure 4

plots average response times as a function of expected utility differences (left) and

of expected value differences (right).14 Response times and EU distance clearly

show an inverted U-shaped relation. Decisions associated with smaller expected

utility differences result in longer response times. However, the figure shows no

systematic relation with EV differences (the corresponding coefficient is not signif-

icantly different from zero, coef. = 0.012, z = 0.85, p = 0.393). Analogously, there

is no relation with numerical distance (coef. = 0.017, z = 0.25, p = 0.803; see Fig-

ure B.1 in Appendix B). This provides an independent confirmation of the relation

between a larger strength of preference, in the sense of larger subjective economic

distance, and smaller error rates reflects fundamental characteristics of the un-

derlying decision process (and, in particular, is not an artifact of the econometric

estimation). Again, the results are robust to using alternative utility functions,

specifications of noise, or certainty equivalents instead of utilities (Appendices C,

D, and E). We remark that comparable results for response times as a function of

14As in Figure 3, the left panel uses a binning procedure.
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Figure 4: Average response times as a function of expected utility differences
(left) and expected value differences (right). Gray areas indicate 95% confidence
intervals.

estimated utility differences where found by Moffatt (2005) in an experiment on

lottery choice using rank-dependent expected utility, and by Chabris et al. (2009)

in an experiment on intertemporal choice with utility differences estimated using

a functional form with hyperbolic discounting.

We conducted a panel regression analysis for log-transformed response times.

Tables 3 and 4 report the corresponding regressions using expected utility distances

and expected value distances as a measure of strength of preference, respectively.

In all models with further control for individual differences in mechanical swiftness

using the log of the response time for pressing the space bar to move to the next

trial.

Response times are significantly shorter for larger EU distances across all mod-

els in Table 3. This effect is robust to controlling for numerical distance and

additional controls. Additionally, numerical distance does have an effect on re-

sponse times, validating the view from psychophysics (Moyer and Landauer, 1967;

Dehaene, Dupoux, and Mehler, 1990) that even payoff-irrelevant perceptual dif-

ferences might influence the choice process. That is, in addition to the effects

of subjective economic distance, response times are shorter for more perceptually

distinguishable stimuli (larger numerical distance).

In contrast, the effect of expected value differences is less clear. In Model 1 of

Table 4, we observe larger response times for higher values of EV distance, contrary

to expectations if EV distance was taken to explain the gradual effects of strength

of preference. However, the effect becomes non-significant when we control for

the relation between EV distance and numerical distance as well as other controls

(Models 3 and 4; Table B.3 in Appendix B adds details on the controls). Again,

the analysis is consistent with the view that expected utility differences are the
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Table 3: Random-effects regressions on log response times for expected utility.
EU Dist is the distance between the expected utilities of the options. We further
control for numerical distance (Num Dist), defined as the absolute value of the
difference between the numerical values of the red card and the second black card.

Log RT Model 1 Model 2 Model 3 Model 4
EU Dist −1.286∗∗∗ −1.482∗∗∗ −1.149∗∗∗ −1.154∗∗∗

(0.223) (0.214) (0.206) (0.206)
Num Dist −0.055∗∗∗ −0.136∗∗∗ −0.136∗∗∗

(0.013) (0.019) (0.019)
Num Dist × EU Dist 1.823∗∗∗ 1.824∗∗∗

(0.286) (0.285)
Trial −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)
Constant 1.313∗∗∗ 1.320∗∗∗ 1.317∗∗∗ 1.268∗∗∗

(0.040) (0.040) (0.040) (0.309)
Controls No No No Yes
R2 overall 0.135 0.136 0.140 0.159
Wald test 458.704∗∗∗ 523.572 ∗∗∗ 559.366∗∗∗ 579.216 ∗∗∗

Obs. 15810 15810 15810 15810

Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

key variable explaining the gradual effects that we investigate. In all models we

control for time trends, reproducing the standard observation that subjects become

slightly faster over time. Other controls deliver no additional insights.

4 Discussion

Homo oeconomicus does not play dice (but homo sapiens might). A fully ratio-

nal economic agent would be consistent, choosing an option 100% of the time if it

delivered a slightly larger payoff than the alternative, and 0% if a minute payoff re-

duction left it worse than the alternative. However, considerable evidence suggests

that the implementation of decision processes in the human brain follows processes

of a more gradual nature (e.g., Shadlen and Kiani, 2013). Using an out-of-sample

approach, we have demonstrated the existence of a stable, gradual relation be-

tween error rates in decisions under risk and an underlying, cardinal “strength of

preference,” and shown that the latter is best represented by integrated variables

of an exclusively economic nature. That is, decisions become more error-prone

as the economic distance between the alternatives becomes smaller in line with

firmly-established facts from psychophysics (e.g., Weber’s Law). This is true even
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Table 4: Random-effects regressions on log response times for expected value.
EV Dist is the distance between the expected values of the options. We further
control for numerical distance (Num Dist), defined as the absolute value of the
difference between the numerical values of the red card and the second black card.

Log RT Model 1 Model 2 Model 3 Model 4
EV Dist 0.054∗∗∗ 0.068∗∗∗ 0.009 0.009

(0.015) (0.015) (0.023) (0.023)
Num Dist −0.149∗∗∗ −0.211∗∗∗ −0.211∗∗∗

(0.018) (0.024) (0.024)
Num Dist × EV Dist 0.145∗∗∗ 0.145

(0.044) (0.043)
Trial −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)
Constant 1.231∗∗∗ 1.288∗∗∗ 1.315∗∗∗ 1.290∗∗∗

(0.037) (0.039) (0.040) (0.310)
Controls No No No Yes
R2 overall 0.132 0.136 0.136 0.154
Wald test 472.772∗∗∗ 607.972∗∗∗ 665.532∗∗∗ 687.710∗∗∗

Obs. 15810 15810 15810 15810

Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

in the standard economic context of decisions under risk (betting), which are an

example of preferential choice where there is no objectively correct alternative.

Moreover, these effects are robust and obtain even though we use a strictly out-

of-sample approach, that is, they are not an artifice of the estimation method. The

results are unaffected by the particular utility function assumed (CARA or CRRA),

the error specification adopted (RUM vs. RPM), as well as by whether choice

difficulty is represented by differences in utilities or certainty equivalents. Further,

the link to response times shows that the relationship between expected utility

differences and choice frequencies reflects the characteristics of actual decision

processes, rather than being just “as if” modeling. Numerical distance, seen as

a more perceptual dimension influencing choice frequencies, plays a minor role.

The effects of this dimension on choices are small and not robust to the addition

of controls. Response times suggest that a second-order effect is present, but

expected utility differences are the major determinant of the effects we study.

Of course, our experiment is (on purpose) stylized and, by design, shuts down

a number of additional determinants of choice frequencies that are bound to also

play a role in economic decisions. Those range from the complexity of the op-

tions’ description to the presence of transparent relationships (e.g., dominance)

and whether the decision environment cues in cognitive shortcuts or not. Our
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claim is merely that strength of preference is one of the relevant dimensions in-

fluencing choice frequencies, and in particular that it is a dimension that can be

characterized by measurable variables with an explicitly economic content.

Conceptually, our results agree with earlier studies as Mosteller and Nogee

(1951) and with recent contributions as Khaw, Li, and Woodford (2021). Both

report gradual increases in the proportion of risky choices in lottery experiments

as the reward increases. Khaw, Li, and Woodford (2021) argue these effects are

due to an imprecise perception of stimuli and not to an intrinsically economic

variable such as differences in expected utilities or certainty equivalents. However,

the experiment of Khaw, Li, and Woodford (2021) concentrates on the perception

of payoff-relevant numerical magnitudes. Their task varies only payoff magnitudes,

which in turn determine expected payoffs and utilities; hence the former and the

latter cannot be disentangled. In contrast, we show that perceptual effects of

payoff-irrelevant numerical magnitudes add little to the effects of expected utility

differences. It is conceivable that an extension of the model of Khaw, Li, and

Woodford (2021) allowing for noisy perception of both payoffs and probabilities

might be used to provide a perceptual foundation of the effects of expected utilities

that we demonstrate here, but our evidence suggests that such a foundation should

build upon the perception of payoff-relevant magnitudes.

Our results are further aligned with the neuroscience literature, which has

repeatedly found direct evidence for the neural encoding of cardinal differences

between options (e.g., Padoa-Schioppa and Assad, 2006; Kurtz-David et al., 2019;

Ballesta et al., 2020). In turn, those vindicate pre-neoclassical views from economists

as Daniel Bernoulli, Adam Smith, and Jeremy Bentham (Niehans, 1990), who pro-

posed that economic choices rely on the computation and comparison of subjective

values.

For response times, our findings are aligned with Chabris et al. (2009), who

found similar effects for intertemporal decisions (using a hyperbolic-discounting

utility function), and with Moffatt (2005), who viewed response times as reflecting

cognitive effort. They are also aligned with the theoretical argument of Fuden-

berg, Strack, and Strzalecki (2018), which implies that it should take longer to

distinguish utilities if they are closer, and with the assumptions in Alós-Ferrer,

Fehr, and Netzer (2020), which postulate a decreasing relation between utility

differences and response times.

The implications of our results are of broad significance for economic model-

ing. First, the systematic demonstration of the gradual relation between economic

integrated variables and errors provides a foundation for theories of stochastic
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choice and empirical approaches to preference revelation alike. Second, the fact

that these effects are a natural extension of those observed in psychophysics pro-

vides a tangible bridge to other disciplines, most notably neuroscience, through

which new techniques and ideas can travel (in both directions). Third, the results

pose a significant conceptual challenge to traditional, neoclassic as if modeling,

because the latter is based on deterministic and, more importantly, purely ordinal

preferences.
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