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logarithmic utility and time-consistent penalties

Daniel Hernández–Hernández and Alexander Schied∗

This version: July 5, 2006

Abstract: We propose a stochastic control approach to the dynamic maximization of

robust utility functionals that are defined in terms of logarithmic utility and a dynamically

consistent convex risk measure. The underlying market is modeled by a diffusion process

whose coefficients are driven by an external stochastic factor process. In particular, the

market model is incomplete. Our main results give conditions on the minimal penalty

function of the robust utility functional under which the value function of our problem

can be identified with the unique classical solution of a quasilinear PDE within a class of

functions satisfying certain growth conditions. The fact that we obtain classical solutions

rather than viscosity solutions is important for the use of numerical algorithms, whose

applicability is demonstrated in examples.

1 Introduction

One of the fundamental problems in mathematical finance and mathematical economics

is the construction of investment strategies that maximize the utility functional of a risk-

averse investor. In the majority of the corresponding literature, the optimality criterion is

based on a classical expected utility functional of von Neumann-Morgenstern form, which

requires the choice of a single probabilistic model P. In reality, however, the choice of

P is often subject to model uncertainty. Schmeidler [24] and Gilboa and Schmeidler [10]

therefore proposed the use of robust utility functionals of the form

X 7−→ inf
Q∈Q

EQ[ U(X) ], (1)

where Q is a set of prior probability measures. In analogy to the move from coherent

to convex risk measures, Maccheroni et al. [16] recently suggested to model investor

preferences by robust utility functionals of the form

X 7−→ inf
Q

(
EQ[ U(X) ] + γ(Q)

)
, (2)

where γ is a penalty function defined on the set of all possible probabilistic models.

∗Supported by Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.

1



2

Optimal investment problems for robust utility functionals (1) were considered, among

others, by Talay and Zheng [25], Quenez [20], Schied [21], Burgert and Rüschendorf [3],

Schied and Wu [23], Föllmer and Gundel [8], and the authors [12]. For the generalized

utility functionals of type (2), the most popular choice for the penalty function has so

far been the entropic penalty function γ(Q) = kH(Q|P) for a constant k > 0 and a

reference probability measure P; see, e.g., Hansen and Sargent [11] and Bordigoni et

al. [2] for studies of the optimal consumption problem. The duality theory for the

optimal investment problem with a general penalty function γ was developed by Schied

[22]. Robust utility maximization is also closely related to other optimization problems

involving convex and coherent risk measures, and these problems also received a lot of

attention recently; see, for instance, Barrieu and El Karoui [1], Jouini et al. [13], or

Klöppel and Schweizer [14, 15].

In this paper, we propose a stochastic control approach to the dynamic maximization

of robust utility functionals of the form (2). The penalty function γ will be defined in

a Brownian setting and, apart from certain basic requirements such as time consistency,

has a rather general form. In particular, we will go beyond the very particular situation

of entropic penalties and include the ‘coherent’ setting (1) as a special case. Our setting

will involve logarithmic utility U(x) = log x and an incomplete financial market model,

whose volatility, interest rate process, and trend are driven by an external stochastic factor

process.

Our goal consists in characterizing the value function and the optimal investment

strategy via the solution of a quasilinear Hamilton-Jacobi-Bellman PDE. As a byproduct,

we also obtain a formula for the least-favorable martingale measure in the sense of Föllmer

and Gundel [8]. In contrast to earlier approaches such as [25], we avoid the use of viscosity

solutions and concentrate our effort on obtaining strong regularity results, which allow

us to identify the value function as a unique classical solution of the PDE in question.

Regularity of solutions is important because it justifies the use of standard numerical

methods for solving the PDE, and we will use such methods in illustrating some interesting

qualitative properties of the optimal strategy.

Our method consists in combining the duality results from [22] with a PDE approach

to the dual problem of determining optimal martingale measures. This technique has

already been applied successfully by Castañeda-Leyva and Hernández-Hernández [4, 5] to

the maximization of von Neumann-Morgenstern expected utility and by the authors [12]

in the maximization of ‘coherent’ robust utility functionals of the form (1). It turns out,

however, that the introduction of the penalty function γ yields new types of problems,

in particular if certain measures Q with γ(Q) < ∞ have to be described by unbounded

control processes (this is the case, e.g., for entropic penalties). To deal with this case, we

have to introduce new arguments both on the probabilistic and on the analytic side of

the problem.

This paper is organized as follows. In Section 2 we describe the set-up of the problem

and state the theorems containing our main findings. These theorems will be proved in

the subsequent sections. Section 3 analyzes how certain classes of probability measures

Q ≪ P can be described by a suitable sets of control processes. The dual problem for our
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robust utility maximization problem is formulated in Section 4. In Section 5 we derive

the Hamilton-Jacobi-Bellman PDE for the value function via the dual problem and we

prove a verification result. This verification result will suffice to prove our results in the

special case where the effective domain of γ is a compact set of probability measures that

are all equivalent to the reference measure P. In Section 6 we consider the case in which

γ(Q) can be finite for measures Q that are not equivalent but only absolutely continuous

with respect to P. Since the market model may admit arbitrage opportunities under such

a measure Q, it is clear that the corresponding problem must become more involved, and

it turns out that complications also appear on the analytical side of the problem.

2 Statement of main results

We consider a financial market model with a locally riskless money market account

dS0
t = S0

t r(Yt) dt

and a risky asset defined under a reference measure P through the SDE

dSt = Stb(Yt) dt + Stσ(Yt) dW 1
t .

Here W 1 is a standard P-Brownian motion and Y denotes an external economic factor

process modeled by the SDE

dYt = g(Yt) dt + ρ dW 1
t + ρ dW 2

t , (3)

where ρ ∈ [−1, 1] is some correlation factor, ρ :=
√

1 − ρ2, and W 2 is a standard P-

Brownian motion, which is independent of W 1 under P. We suppose that the economic

factor cannot be traded directly so that the market model will typically be incomplete.

We assume that g(·) is in C2(R) with derivative g′ ∈ C1
b (R), and r(·), b(·), and σ(·)

belong to C2
b (R), where Ck

b (R) denotes the class of bounded functions with bounded

derivatives up to order k. The ‘market price of risk’ is defined via the function

θ(y) :=
b(y) − r(y)

σ(y)
,

and we will assume that σ(·) ≥ σ0 > 0 for some constant σ0. The assumption of time-

independent coefficients is for notational convenience only and can easily be relaxed.

In most economic situations, investors typically face model uncertainty in the sense

that the dynamics of the relevant quantities are not precisely known. One common

approach to coping with model uncertainty is to allow in principle all probability models

corresponding to probability measures Q ≪ P and to penalize each such model with a

penalty γ(Q). To define γ(Q), we assume henceforth that everything is modeled on the

canonical path space (Ω,F , (Ft)) of W = (W 1, W 2). Then every probability measure

Q ≪ P admits a progressively measurable process η = (η1, η2) such that

dQ

dP
= E

( ∫
η1t dW 1

t +

∫
η2t dW 2

t

)
T

Q-a.s.,
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where E(M)t = exp(Mt −〈M〉t/2) denotes the Doleans-Dade exponential of a continuous

semimartingale M ; see Lemma 3.1 below. Such a measure Q will receive a penalty

γ(Q) := EQ

[ ∫ T

0

h(ηt) dt
]
, (4)

where h : R
2 → [0,∞] is convex and lower semicontinuous. For simplicity, we will suppose

h(0) = 0 so that γ(P) = 0. We will also assume that h is continuously differentiable on

its effective domain dom h := {η ∈ R
2 |h(η) < ∞} and satisfies the coercivity condition

h(x) ≥ κ1|x|
2 − κ2 for some constants κ1, κ2 > 0. (5)

The choice h(x) = |x|2/2 corresponds to the entropic penalty function considered in

Hansen and Sargent [11] and Bordigoni et al. [2]; see Remark 2.6 below. Again, our

assumption that h does not depend on time is for notational convenience only.

Let A denote the set of all progressively measurable process π such that
∫ T

0
π2

s ds < ∞

P-a.s. For π ∈ A we define

Xx,π
t := x · exp

( ∫ t

0

πsσ(Ys) dW 1
s +

∫ t

0

[
r(Ys) + πs

(
b(Ys)− r(Ys)

)
−

1

2
σ2(Ys)π

2
s

]
ds

)
. (6)

Then Xx,π satisfies

Xx,π
t = x +

∫ t

0

Xx,π
s (1 − πs)

S0
s

dS0
s +

∫ t

0

Xx,π
s πs

Ss

dSs

and thus describes the evolution of the wealth process Xx,π of an investor with initial

endowment Xx,π
0 = x > 0 investing the fraction πs of the current wealth into the risky

asset at time s ∈ [0, T ].

The objective of the investor consists in

maximizing inf
Q≪P

(
EQ[ U(Xx,π

T ) ] + γ(Q)
)

over π ∈ A, (7)

where the utility function U : (0,∞) → R will be specified in the sequel as a HARA

utility function with risk aversion parameter α = 0, i.e.,

U(x) = log x. (8)

Our goal is to characterize the value function

u(x) := sup
π∈A

inf
Q≪P

(
EQ[ log Xx,π

T ] + γ(Q)
)

of the robust utility maximization problem (7) in terms of the solution v of the quasi-linear

parabolic initial value problem

{
vt = 1

2
vyy + φ(vy) + gvy + r

v(0, ·) = 0,
(9)
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where the nonlinearity φ(vy) = φ(y, vy(t, y)) is given by

φ(y, z) := ψ(y, (ρ, ρ)z) y, z ∈ R.

for the function

ψ(y, x) := inf
η∈R2

{
η · x +

1

2
(η1 + θ(y))2 + h(η)

}
, y ∈ R, x ∈ R

2.

Here, η · x denotes the inner product of η and x. The easy case is the one in which the

effective domain of h is compact:

Theorem 2.1 Suppose that dom h is compact. Then the value function u of the robust

utility maximization problem satisfies

u(x) = log x + v(T, Y0),

where v : [0, T ]×R → R is the unique classical solution to (9) within the class of functions

in C1,2((0, T ) × R) ∩ C([0, T ] × R) satisfying a polynomial growth condition.

Suppose furthermore that η∗ : [0, T ]×R → R is a measurable function such that η∗(t, y)

belongs to the supergradient of the concave function x 7→ ψ(y, x) at x = (ρ, ρ)vy(t, y). Then

an optimal strategy π̂ for the robust problem can be obtained by letting

π̂t =
η∗

1(T − t, Yt) + θ(Yt)

σ(Yt)
, 0 ≤ t ≤ T.

Moreover, by defining a measure Q̂ ∼ P via

dQ̂

dP
= E

( ∫

0

η∗(T − t, Yt) dWt

)
T
, (10)

we obtain a saddlepoint (π̂, Q̂) for the maximin problem (7).

The regularity of the value function obtained in the preceding theorem is important,

because it justifies the use of standard numerical methods for solving the PDE (9). In

Example 2.7, we will use such methods in illustrating some qualitative properties of the

optimal strategy.

Remark 2.2 The proof of Theorem 2.1 will show that the probability measure P ∗ with

density
dP ∗

dP
= E

(
−

∫
θ(Ys) dW 1

s +

∫
η∗

2(T − s, Ys) dW 2
s

)
T

is a least favorable martingale measure in the sense of Föllmer and Gundel [8]. This will

also be true in the setting of Theorems 2.3 and 2.5.

The problem becomes more difficult when dom h is noncompact, because then we can

no longer apply standard theorems on the existence of classical solutions to (9). Other

difficulties appear when dom h is not only noncompact but also unbounded. For instance,
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we may have γ(Q) < ∞ even if Q is not equivalent but merely absolutely continuous with

respect to P, and this leads to difficulties when one tries to work directly on the primal

problem; see Remark 4.2. Moreover, since the optimal η∗ takes values in the unbounded

set dom h, one needs an additional argument to ensure that the stochastic exponential in

(10) is a true martingale and hence defines a probability measure Q̂ ≪ P. Our strategy to

get the necessary integrability of the process η∗
1(T − t, Yt) is to use qualitative properties

of solutions v to (9) as to control the growth of the gradient vy. In doing so, we have to

eliminate the possible competition between the linear term gvy and the nonlinear term

φ(vy) by imposing a growth condition on φ.

Theorem 2.3 Suppose that g is bounded and that there exists some ε > 0 such that

lim inf
|p|→∞

∣∣∣φ(y, p)

p

∣∣∣ ≥ ε + |g(y)|. (11)

Then the value function u of the robust utility maximization problem satisfies u(x) =

log x+ v(T, Y0) where v is the unique classical solution of (9) within the class of functions

in C1,2((0, T )×R)∩C([0, T ]×R) with bounded gradient vy. Under these conditions, also

the conclusions on the optimal strategy π̂ and the measure Q̂ in Theorem 2.1 remain true.

The most interesting case is the one in which both dom h and the function g are

unbounded. Here we need an additional condition on the shape of the function ψ. Note

that g is unbounded if, e.g., Y is an Ornstein-Uhlenbeck process.

Definition 2.4 Let f : R
2 → R be an upper semicontinuous concave function. We will

say that f satisfies a radial growth condition in direction x ∈ R
2 if there exist positive

constants p0 and C such that

max
{
|z|

∣∣ z ∈ ∂f(px)
}
≤ C

(
1 + |∂+

p f(px)| ∨ |∂−
p f(px)|

)
for p ∈ R, |p| ≥ p0,

where ∂f(px) denotes the supergradient of f in px and ∂+
p f(px) and ∂−

p f(px) are the

right-hand and left-hand derivatives of the concave function p 7→ f(px).

Note that if f is of the form f(x) = f0(|x|) for some convex increasing function f0,

then the radial growth condition is satisfied in any direction x 6= 0 with constant C = 1.

Theorem 2.5 Suppose that |φ(y, p)/p)| → ∞ as |p| → ∞ and assume that ψ(y, ·) satis-

fies a radial growth condition in direction (ρ, ρ), uniformly in y. Then the value function

u of the robust utility maximization problem satisfies u(x) = log x + v(T, Y0) where v is

the unique classical solution of (9) within the class of polynomially growing functions in

C1,2((0, T ) × R) ∩ C([0, T ] × R) whose gradient satisfies a growth condition of the form

∣∣∂−
p φ

(
y; vy(t, y)

)∣∣ ∨
∣∣∂+

p φ
(
y; vy(t, y)

)∣∣ ≤ C1(1 + |y|)

for some constant C1. Under these conditions, also the conclusions on the optimal strategy

π̂ and the measure Q̂ in Theorem 2.1 remain true.
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Remark 2.6 For q > 0, the choice h(x) = 1
2q
|x|2 corresponds to the penalty function

γ(Q) = 1
q
H(Q|P), where

H(Q|P) =

∫
dQ

dP
log

dQ

dP
dP = sup

Y ∈L∞

(
EQ[ Y ] − log E[ eY ]

)

is the relative entropy of Q with respect to P. Due to the classical duality formula

log E[ eX ] = sup
Q∈Q

(
EQ[ X ] − H(Q|P)

)
,

the above choices correspond to the utility functional

inf
Q≪P

(
EQ[ log X ] + γ(Q)

)
= −

1

q
log E

[
e−q log X

]
= −

1

q
log E[ X−q ].

In this case, the robust utility maximization problem (7) is equivalent to the maximization

of the standard expected utility E[ U(Xx,π
T ) ] for the HARA utility function U(x) = −x−q.

This standard utility maximization problem is covered as a special case of Theorem 2.5.

Indeed, the function ψ has the quadratic form

ψ(y, x) = −
1

2

( q

1 + q
(x1 + θ(y))2 + qx2

2 − θ(y)2
)
,

and it is easily checked that it satisfies the radial growth condition in any direction.

Example 2.7 Here we will give some numerical results for the case in which P is such

that Y is an Ornstein-Uhlenbeck process with g(y) = 100 − y and S follows the SDE

dSt = St

(1

2
dW 1

t +
1

10
Yt dt

)
.

We suppose that r = 0. Then θ is given by θ(y) = y/5. Let us first consider the ‘coherent’

case

h1(η) =

{
0 if |η1| ≤ 20 and η2 = 0,

∞ otherwise.

The corresponding penalty function γ1(Q) takes only the values 0 and ∞. If ρ = 0 then

the optimal η∗ is given by η∗
2(t, y) = 0 and

η∗
1(t, y) =

{
−θ(y) if |y| ≤ 100,

−20 sign(y) otherwise.

In particular, our formula for π̂ shows that there will be no investment into the risky asset

as long as the factor process Y stays in the interval [−100, 100]. This corresponds to the

fact that S has a local martingale dynamic under the ‘worst-case measure’ Q̂ as long as

−100 ≤ Yt ≤ 100.

A nonzero correlation factor ρ, however, can change the picture. This is illustrated

in Figure 1, which shows the function v for the ‘coherent’ penalty function h1 but with

nonzero correlation ρ = 1/2. This figure clearly exhibits a nonvanishing gradient of
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Figure 1: The function v for the choice h1.

v, which leads in turn to a nontrivial investment into the risky asset—despite the fact

that for −100 ≤ Yt ≤ 100 we can still turn S locally into a martingale by choosing

an appropriate probability measure Q with γ1(Q) = 0. This effect occurs as a tradeoff

between the tendencies of minimizing asset returns and driving Y further away from

‘favorable regions’ under the ‘worst-case measure’ Q̂.

Figure 2 shows the function v for the case in which we add to the relative entropy

H(Q|P) to the penalty function γ1. That is, we use the function

h2(η) =

{
1
2
η2

1 if |η1| ≤ 20 and η2 = 0,

∞ otherwise.

It can be compared to the value function for the standard utility maximization problem

with subjective measure P, which is plotted in Figure 3.

3 Control processes associated with absolutely con-

tinuous measure changes

The following lemma is well known, but we include it here since its statement and the

arguments employed in the proof will be important in the sequel.

Lemma 3.1 For any Q ≪ P there exists a progressive process η = (η1, η2) such that

∫ t

0

|ηs|
2 ds < ∞ Q-a.s. for all t (12)

and
dQ

dP

∣∣∣
Ft

= E
( ∫

0

η1s dW 1
s +

∫

0

η2s dW 2
s

)
t

Q-a.s. (13)
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Proof: If Q ≪ P is given, we let Dt := dQ/dP|Ft
and define τn := inf{t ≥ 0 |Dt ≤ 1/n}.

By representing the local P-martingale
∫ t∧τn

0
D−1

s dDs as a stochastic integral with respect

to W = (W 1, W 2), we obtain the existence of a progressive process η
(n)
s , s ≤ τn, such that∫ t∧τn

0
|η(n)

s |2 ds < ∞ and

Dt∧τn
= E

( ∫

0

η(n)
s dWs

)
t∧τn

P-a.s. for all t. Consistency requires that η
(n)
t = η

(n+1)
t dt ⊗ dP-a.e. on {t ≤ τn}. Using

that τn ր ∞ Q-a.s., we obtain a Q-a.s. defined process η, which is as desired.

The following concept of a localized martingale measure is related to the extended

martingale measures recently introduced by Föllmer and Gundel [8]. We define as usual

F∞ := σ
( ⋃

t≥0 Ft

)
.

Definition 3.2 A localized martingale measure is a probability measure P̂ on F∞ for

which there exists an increasing sequence (τn) of stopping times, called a localizing se-

quence for P̂ , such that τn(ω) ր ∞ for all ω ∈ Ω and such that P̂ is equivalent to P on

each Fτn
. Moreover, the density process

Zt =
dP̂

dP

∣∣∣
Ft

, 0 ≤ t,

understood in the sense of the Lebesgue decomposition, is supposed to be P-a.s. strictly

positive and such that ZS/S0 is a local P-martingale. By P̂ we will denote the set of all

localized martingale measures.

In the sequel, M will denote the set of all progressive processes ν such that
∫ t

0
ν2

s (ω) ds <

∞ for all t and ω. Recall that we assume that everything is modeled on the canonical

path space (Ω,F , (Ft)) of W = (W 1, W 2). In the remainder of this section, all Radon-

Nikodym densities will be understood in the sense of the Lebesgue decomposition unless

otherwise mentioned.

Lemma 3.3 For every P̂ ∈ P̂ there exists some ν ∈ M such that

τn = inf
{

t ≥ 0
∣∣

∫ t

0

ν2
s ds = n

}
, n ∈ N, (14)

is a localizing sequence for P̂ , and the positive local P-martingale

Zν
t := E

(
−

∫
θ(Ys) dW 1

s −

∫
νs dW 2

s

)
t

(15)

is P-a.s. equal to the density dP̂ /dP|Ft
. Conversely, let ν ∈ M be given. Then there

exists a localized martingale measure P̂ such that dP̂ /dP|Ft
is P-a.s. equal to Zν

t and such

that τn defined via (14) is a localizing sequence.
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Proof: For P̂ ∈ P̂ the density process Zt, understood in the sense of the Lebesgue

decomposition, is a strictly positive local P-martingale and can be represented P-a.s. as

Zt = E(−
∫

µs dW 1
s −

∫
νs dW 2

s ) for certain µ, ν ∈ M. This follows as in the proof of

Lemma 3.1. The condition that ZS/S0 is a local P-martingale determines µt as θ(Yt)

dt ⊗ dP-a.s. and in turn yields Z = Zν . Hence, when defining τn as in (14), Zτn
is P-a.s.

strictly positive and satisfies E[ Zτn
] = 1, and this implies that P̂ ∼ P on Fτn

. Therefore,

(τn) is a localizing sequence for P̂ .

Conversely, let ν ∈ M be given, and define Zν as in the assertion. Then Zν is a

strictly positive local P-martingale and ZνS/S0 is a local P-martingale. Defining τn as

in (14) yields that Zν
τn

is the density of a probability measure P̂ n, which is equivalent to

P. Moreover, (Zν
τn

)n=1,2,... is a discrete-time P-martingale, and so P̂ n+1 coincides with P̂ n

on Fτn
. Hence, the Kolmogorov consistency theorem yields the existence of a probability

measure P̂ on F∞ = σ
( ⋃

n Fτn

)
whose restrictions to Fτn

are equal to P̂ n. Finally, it is

well known that limn Zν
t∧τn

= limn dP̂ /dP|Ft∧τn
is P-a.s. equal to the density dP̂ /dP on

σ(
⋃

n Ft∧τn
) = Ft, that is, Zν

t = dP̂ /dP|cFt
.

Let

HG(Q|P ) :=





EQ

[
log dQ

dP

∣∣∣
G

]
if Q ≪ P on G

+∞ otherwise,

denote the relative entropy of Q with respect to P on a σ-algebra G ⊂ F .

Lemma 3.4 Let P̂ be a localized martingale measure associated with ν ∈ M, define Zν

as in (15), and suppose that η is a progressive processes corresponding to some Q ≪ P

with density process Dt = dQ/dP|Ft
. Then Q ≪ P̂ on Ft and

EQ

[
log

Dt

Zν
t

]
= HFt

(Q|P̂ ) =
1

2
EQ

[ ∫ t

0

(η1s + θ(Y y
s ))2 + (η2s + νs)

2 ds
]
.

Proof: Since Zν
t = dP̂ /dP|Ft

> 0 P-a.s., it follows that Q ≪ P ≪ P̂ of Ft. Moreover,

dQ

dP̂

∣∣∣
Ft

= lim
n↑∞

dQ

dP̂

∣∣∣
Ft∧τn

= lim
n↑∞

Dτn∧t

Zν
τn∧t

=
Dt

Zν
t

Q-a.s.

Hence,

EQ

[
log

Dt

Zν
t

]
= EQ

[
log

dQ

dP̂

∣∣∣
Ft

]
= HFt

(Q|P̂ )

follows. Moreover, standard arguments based on uniform integrability show that

EQ

[
log

Dt

Zν
t

]
= sup

n↑∞
EQ

[
log

Dσn∧t

Zν
σn∧t

]
= sup

n↑∞
HFσn∧t

(Q|P̂ ), (16)

whenever (σn) is a sequence of stopping times that increases Q-a.s. to infinity. Now take

σn := inf
{

t ≥ 0
∣∣

∫ t

0

(ν2
s + |ηs|

2) ds ≥ n
}

.
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Then σn ր ∞ Q-a.s., and a straightforward computation shows that

EQ

[
log

Dσn∧t

Zν
σn∧t

]
=

1

2
EQ

[ ∫ t∧σn

0

(η1s + θ(Y y
s ))2 + (η2s + νs)

2 ds
]
.

Combining this fact with (16) and monotone convergence yields the second identity in

the assertion.

4 Formulation of the dual problem

In this section, we will first apply results from Schied [22] in preparation for the application

of stochastic control techniques. To check for the applicability of the results in [22], note

first that our utility function (8) belongs to C1, is increasing and strictly concave, and

satisfies the Inada conditions U ′(0+) = ∞ and U ′(∞−) = 0. It also has asymptotic

elasticity AE(U) = lim supx↑∞ xU ′(x)/U(x) = 0 < 1. The following lemma states that

the penalty function γ satisfies [22, Assumption 2.1], which is needed for the applicability

of the duality results in [22].

Lemma 4.1 The penalty function γ(Q) defined in (4) is the minimal penalty function of

the convex risk measure

ρ(X) := sup
Q≪P

(
EQ[−X ] − γ(Q)

)
,

that is, γ satisfies the biduality relation

γ(Q) = inf
X∈L∞

(
EQ[−X ] − ρ(X)

)
, Q ≪ P.

Moreover, ρ is continuous from below on L∞(P).

Proof: By the biduality theorem and the general representation theory for convex risk

measures on L∞(P) as described in [9], γ will be identified as the minimal penalty function

of ρ once we have shown that it is convex and lower semicontinuous for the strong (and

hence the weak) topology on L1(P).

We first show convexity. Take Q, Q̃ ≪ P such that both γ(Q) and γ(Q̃) are finite

and let Qλ := λQ + (1 − λ)Q̃ for λ ∈ [0, 1]. To this end, suppose that η and η̃ are two

progressive processes associated via (12) and (13) with Q and Q̃, respectively. Let Dt and

D̃t denote the corresponding density processes. Since

∞ > γ(Q) ≥ κ1E

[ ∫ T

0

Dt|ηt|
2 dt

]
− Tκ2

due to (5), we have Dt|ηt| < ∞ dt ⊗ dP-a.e., and so we can define the process

ξt :=
λDtηt + (1 − λ)D̃tη̃t

λDt + (1 − λ)D̃t

· 1I
{λDt+(1−λ)D̃t>0}

.
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We use next that (x, y) 7→ xh(y/x) is a convex function on (0,∞) × [0,∞); see, e.g., [23,

Equation (21)]. Hence,

EQλ

[ ∫ T

0

h(ξt) dt
]
≤ λγ(Q) + (1 − λ)γ(Q̃) < ∞,

where we have used that Dλ := λD + (1 − λ)D̃ is the density process of Qλ with respect

to P. In particular, we get
∫ T

0
|ξt|

2 dt < ∞ Qλ-a.s. Moreover, one easily checks that Dλ

satisfies dDλ
t = Dλ

t ξt dWt, and we obtain the identity γ(Qλ) = EQλ

[ ∫ T

0
h(ξt) dt

]
. This

proves the convexity of γ.

Next, we will show the lower semicontinuity of γ for L1-convergence. To this end,

let Dn
T := dQn/dP be a sequence of probability densities converging to DT := dQ/dP

in L1(P). Then supt≤T |Dn
t − Dt| → 0 in P-probability. A localization argument then

shows that
∫

1
Dn

t
dDn

t converges to
∫

1
Dt

dDt uniformly in Q-probability. It follows that

the sequence (ηn) associated to (Qn) via (12) and (13) converges in dt ⊗ dQ-measure to

the process η associated with Q. Fatou’s lemma now yields lim infn γ(Qn) ≤ γ(Q).

Let us now show that ρ is continuous from below. Due to our coercivity assumption

(5), we have γ(Q)+κ2 ≥ 2κ1H(Q|P) = 2κ1E
[

dQ

dP
log dQ

dP

]
for Q ≪ P. Hence, the level sets{

dQ

dP
| γ(Q) ≤ c

}
are uniformly integrable. Therefore continuity from below follows from

[17, Lemma 2] together with [9, Corollary 4.35] and the Dunford-Pettis theorem.

Remark 4.2 Given the preceding lemma, it follows from [22, Theorem 2.4] that the value

function u of the primal problem satisfies

u(x) = sup
π∈A

inf
Q≪P

(
EQ[ log Xx,π

T ] + γ(Q)
)

= inf
Q≪P

sup
π∈A

(
EQ[ log Xx,π

T ] + γ(Q)
)
.

Due to (6), one might thus guess that

sup
π∈A

EQ[ log Xx,π
T ] = log x +

1

2

∫ T

0

EQ[ (η1t + θ(Yt))
2 + r(Yt) ] dt, (17)

if η is associated with Q ≪ P via (12) and (13). Moreover, this argument suggests that

the optimal strategy for Q is given by

πQ
t =

η1t + θ(Yt)

σ(Yt)
. (18)

Minimizing over Q ≪ P would then formally yield the HJB equation (9) for our value

function. There are, however, some subtleties associated with this approach. First of all,

one needs a proper localization argument to justify (17). While this localization argument

can be carried out via similar arguments as those in Lemma 3.4, another difficulty arises

from the fact that the strategy in (18) is defined Q-a.s. only. Therefore one would have to

check whether it can be extended to a P-a.s. defined strategy in A. In fact, if a strategy is

admissible under some Q ≪ P but not under P itself it may be an arbitrage opportunity

in the model Q; see [23, Example 2.5]. For these reasons, we do not pursue further the

control approach on the primal problem and work on the dual problem instead.
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It follows from [22, Theorems 2.4 and 2.6] that the dual value function of the robust

utility maximization problem is given as

ũ(λ) := inf
ν∈M

inf
Q≪P

(
E

[
DQ

T Ũ
( λZν

T

DQ
T S0

T

) ]
+ γ(Q)

)
, (19)

where Ũ(z) = supx≥0(U(x)−zx) is the Fenchel-Legendre transform of the convex function

−U(−x). Due to [22, Theorem 2.4], the primal value function

u(x) = sup
π∈A

inf
Q≪P

(
EQ[ log Xx,π

T ] + γ(Q)
)

can then be obtained as

u(x) = min
λ>0

(ũ(λ) + λx). (20)

In our specific setting (8), we have Ũ(z) = − log z − 1. Thus, we can simplify the duality

formula (20) as follows. First, the expectation in (19) can be computed as

E

[
DT Ũ

( λZν
T

DT S0
T

) ]
= E

[
DT log

DT S0
T

Zν
T

]
− log λ − 1 =: ΛQ,ν − log λ − 1.

Hence,

u(x) = log x + inf
Q≪P

inf
ν∈M

(ΛQ,ν + γ(Q))

Lemma 4.3 For Q ∼ P such that γ(Q) < ∞, we have ΛQ,0 < ∞. In particular, condition

(12) in [22] is satisfied.

Proof: Our conditions on h yield that κ1H(Q|P) ≤ γ(Q) + κ2 < ∞. Let P ∗ be the

equivalent local martingale measure defined by dP ∗/dP = Z0
T . Then

E

[
DT log

DT

Z0
T

]
= H(Q|P ∗) = H(Q|P) + EQ

[
log

dP

dP ∗

]

= H(Q|P) + EQ

[ ∫ T

0

θ(Yt) dW 1
t +

1

2

∫ T

0

θ(Yt)
2 dt

]

= H(Q|P) + EQ

[ ∫ T

0

(
θ(Yt)η1t +

1

2
θ(Yt)

2
)

dt
]
.

Using again γ(Q) < ∞ one sees that the last term is finite, and this implies the assertion.

Due to the preceding lemma, we may now apply [22, Theorem 2.6]. It yields that,

if the pair (Q̂, ν̂) minimizes (19), then there exists an optimal strategy π̂ ∈ A, whose

terminal wealth is given by

Xx,π̂
T = I

( λ̂Z ν̂
T

DQ̂
T S0

T

)
, (21)

where I(y) := −Ũ ′(y) = log y + 1 and λ̂ > 0 minimizes (20).
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5 HJB approach to the dual problem

In this section, we will describe the dual problem by stochastic control techniques. Our

aim is to maximize ΛQ,ν over Q ∈ Q and ν ∈ M. Let us first heuristically derive the HJB

equation for the dual problem; a rigorous argument will be provided at a later stage. To

this end, we will use Lemma 3.1 to write the density process of Q ≪ P as

Dη
t = E

( ∫
ηs dWs

)
t

Q-a.s.

and denote by N the set of all processes η arising in this way. Note that the stochastic

exponential need not be not defined under P if Q is not equivalent to P. We will use both

η ∈ N and ν ∈ M as control processes. Let us write (Y y
t )t≥0 to indicate the starting

point y = Y y
0 of the solution to the SDE (3). We then introduce the function

J(t, y, η, ν) := E

[
Dη

t log
Dη

t S
0
t

Zν
t

]
+ E

[
Dη

t

∫ t

0

h(ηs) ds
]
,

where Zν and S0 depend on y via Y y. In particular, J(T, Y0, η, ν) = ΛQ,ν + γ(Q). Our

aim is to study the value function

V (t, y) := inf
η∈N

inf
ν∈M

J(t, y, η, ν).

Remark 5.1 The process dW (η) := dWt+ηt dt is a two-dimensional Q-Brownian motion.

Hence, if the processes η and ν are sufficiently bounded, then their stochastic integrals

with respect to W (η) are Q-martingales, and we get

J(t, y, η, ν) = EQ

[ ∫ t

0

(1

2
|ηs|

2 + r(Y y
s ) + θ(Y y

s )η1s + νsη2s +
1

2

(
θ2(Y y

s ) + ν2
s

)
+ h(ηs)

)
ds

]
.

Under Q, the process Y y follows an SDE of the form

dY y
t = g(Y y

t ) dt + ρη1t dt + ρη2t dt + dW̃
(η)
t , (22)

where W̃ (η) is a one-dimensional Q-Brownian motion. Standard control theory now sug-

gests that the function V is (formally) a solution to the Hamilton-Jacobi-Bellman (HJB)

equation

vt =
1

2
vyy + gvy + r + inf

ν∈R

inf
η∈R2

([
ρη1 + ρη2

]
vy +

1

2
(η2 + ν)2 +

1

2
(η1 + θ)2 + h(η)

)

with initial condition

v(0, y) = 0. (23)

Eliminating the control parameter ν by taking ν = −η2 yields the reduced equation

vt =
1

2
vyy + gvy + r + inf

η∈R2

([
ρη1 + ρη2

]
vy +

1

2
(η1 + θ)2 + h(η)

)
(24)

=
1

2
vyy + gvy + r + φ(vy).
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The preceding heuristic argument is made precise by the following verification result.

Proposition 5.2 (Verification result) Suppose the PDE (24)–(23) admits a classical

solution v ∈ C1,2((0, T ) × R) ∩ C([0, T ] × R) satisfying a polynomial growth condition in

y and suppose that one of the following three conditions is satisfied:

(a) dom h is bounded;

(b) vy is bounded;

(c) ψ(y, ·) satisfies a radial growth condition in direction (ρ, ρ), uniformly in y, and vy

satisfies ∣∣∂−
p φ′

(
y; vy(t, y)

)∣∣ ∨
∣∣∂+

p φ
(
y; vy(t, y)

)∣∣ ≤ C1(1 + |y|)

for some constant C1.

Then v = V . Suppose furthermore that η∗ : [0, T ] × R → R is a measurable function

realizing the infimum in (24). Then η̂t := η∗(T − t, Yt) belongs to the set N , ν̂t := −η̂2t

belongs to M, and we have V (T, y) = J(T, y, η̂, ν̂).

Proof: Let ν ∈ M and η ∈ N be control processes such that J(t, y, η, ν) < ∞ and

consider the localized martingale measure P̂ associated with ν and let η ∈ N be associated

to Q ≪ P. Then

J(t, y, η, ν) = EQ

[
log

Dη
t

Zν
t

]
+ EQ[ log S0

t ] + EQ

[ ∫ t

0

h(ηs) ds
]
.

The control process ν occurs only in the first term on the right, which according to Lemma

3.4 is given by

EQ

[
log

Dη
t

Zν
t

]
=

1

2
EQ

[ ∫ t

0

(η1s + θ(Y y
s ))2 + (η2s + νs)

2 ds
]
.

This term is minimized by taking νs(ω) := −η2s(ω) for s ≤ t and ω ∈ {
∫ t

0
η2

2s ds < ∞}

and νs(ω) := 0 otherwise. Thus, we arrive at

J̃(t, y, η) := inf
ν∈M

J(t, y, η, ν) = EQ

[ ∫ t

0

1

2
(η1s + θ(Y y

s ))2 + r(Y y
s ) + h(ηs) ds

]
. (25)

Due to (22), we have under Q that

dv(u − t, Y y
t ) = vy(u − t, Y y

t ) dW̃
(η)
t

+
{

vy(u − t, Y y
t )

(
g(Y y

t ) + ρη1t + ρη2t

)
− vt(u − t, Y y

t ) +
1

2
vyy(u − t, Y y

t )
}

dt

≥ vy(u − t, Y y
t ) dW̃

(η)
t −

{1

2

(
η1t + θ(Y y

t )
)2

+ r(Y y
t ) + h(ηt)

}
dt, (26)

where we have used (24) in the latter inequality. Letting σn := inf{t ≥ 0 | |Y y
t | ≥ n}, by

the continuity of vy and the boundedness of the process Y y
t for 0 ≤ t ≤ σn, we get

v(u, y) ≤ EQ

[ ∫ u∧σn

0

1

2

(
η1t + θ(Y y

t )
)2

+ r(Y y
t ) + h(ηt) dt + v(u − u ∧ σn, Y

y
u∧σn

)
]
. (27)
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Since σn ↑ ∞ Q-a.s., we obtain v(u, y) ≤ J̃(u, y, η) and in turn v ≤ V . Here we have also

used the initial condition v(0, ·) = 0, the fact that r is bounded, and the assumption that

v satisfies a polynomial growth condition in y together with dominated convergence and

Theorem 4.7 in [19], which states that

sup
0≤t≤T

E
[

exp{δ|Yt|
2}

]
< ∞ for some δ > 0. (28)

Now we shall prove the reverse inequality. The coercivity condition (5) and the lower

semicontinuity of h(·) imply that for each t and y there exists

η∗(t, y) ∈ arg min
η∈R2

[
(ρη1 + ρη2)vy(t, y) +

1

2
(η1 + θ(y))2 + h(η)

]
.

By a measurable selection argument, η∗(t, y) can be chosen as a measurable function of t

and y. To prove that η̂s := η∗(u − s, Ys) is an admissible Markov control, i.e., η̂ ∈ N , we

need to verify that

Dη̂
t := E

( ∫
η̂1s dW 1

s +

∫
η̂2s dW 2

s

)
t
, 0 ≤ t ≤ u,

is a P-martingale. Once this has been proved, we get an equality in (26) and hence in

(27).

According to Liptser and Shiryayev [19], p.220, Dη̂ is a martingale if we can show that

for some ε > 0

sup
0≤t≤u

E
[

exp{ε|η̂t|
2}

]
< ∞. (29)

This is clear when dom h is bounded or when vy is bounded, i.e., under conditions (a)

or (b). Assuming condition (c), note that η∗(t, y) belongs in fact to the supergradient

of x 7→ ψ(y, x) at x = (ρ, ρ)vy(t, y). Hence, the radial growth condition together with

the estimate on ∂±
p φ(y; vy(t, y)) implies that |η∗(t, y)| ≤ c(1 + |y|) for some constant c.

Therefore (29) now follows from (28).

Proof of Theorem 2.1: If dom h is compact, we can restrict the infimum in (24) to

controls η in the compact set dom h, and Theorem IV.4.3 and Remark IV.3.3 in [7] yield

the existence of a classical solution v to the PDE (24)–(23) satisfying a polynomial growth

condition. Thus, condition (a) of Proposition 5.2 is satisfied, and we get the identification

v = V . The form of the optimal strategy π̂ and the fact that (Q̂, π̂) is a saddlepoint follow

immediately from (6), (21), and the results in [22].

6 Existence of a classical solution for a noncompact

control domain

In this section, we will derive existence results for the PDE (24)–(23) in case of a non-

compact effective domain dom h. We will need the following estimate.
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Lemma 6.1 For δ > 0, the value function V satisfies

K− ≤
V (t + δ, y) − V (t, y)

δ
≤ K+,

where

K− = −‖r−‖∞ and K+ =
1

2
‖θ‖2

∞ + ‖r+‖∞.

In particular, we have tK− ≤ V (t, y) ≤ tK+.

Proof: To obtain the lower bound, note that by (25)

V (t + δ, y) − V (t, y) ≥ inf
η

(
J̃(t + δ, y, η) − J̃(t, y, η)

)

= inf
η

E

[
Dη

t+δ

∫ t+δ

t

(1

2

(
η1s + θ(Y y

s )
)2

+ r(Y y
s ) + h(ηs)

)
ds

]

≥ −‖r−‖∞δ.

To prove the upper bound, take a process η̂ such that V (t, y) ≥ εδ + J̃(t, y, η̂) and

η̂s = 0 for s ∈ [t, t + δ]. It follows that

V (t + δ, y) − V (t, y)−εh ≤ J̃(t+δ, y, η̂)−J̃(t, y, η̂) ≤ E

[
Dη̂

t+δ

∫ t+δ

t

(1

2
θ(Y y

s )2+r(Y y
s )

)
ds

]
,

which gives the upper bound.

For n ∈ N, let us introduce the auxiliary functions

hn(η) :=

{
h(η) if h(η) ≤ n,

+∞ otherwise.

Then hn also satisfies the assumptions made on h, and its effective domain dom hn is

compact. Thus, according to Theorem 2.1 and its proof, the value function V n obtained

by replacing h with hn coincides with the unique bounded classical solution vn of the

corresponding HJB equation. Based in the preceding lemma we now deduce an estimate

on the growth of the gradients vn
y .

Lemma 6.2 Suppose first that p 7→ φ(y; p) has superlinear growth. Then for every R > 0

there exist CR > 0 and n0 ∈ N, both depending only on R, T , and the model parameters,

such that |vn
y (t, y)| ≤ CR whenever n ≥ n0, |y| ≤ R, and 0 < t < T .

If, alternatively, g is bounded and (11) holds, then n0 can be chosen independently of

R, and vn
y (t, y) can be bounded uniformly for n ≥ n0, t ∈ (0, T ), and y ∈ R.
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Proof: Let R > 0 be given. Recall from Lemma 6.1 that −K ≤ vn(t, y) ≤ K for some

constant K depending only on the model parameters and T . Therefore, due to the mean

value theorem, there exist yn
+ ∈ (R, R + 1) and yn

− ∈ (−R − 1,−R) such that

|vn
y (t, yn

±)| ≤ 2K.

If |vn
y (t, ·)| exceeds 2K in (yn

−, yn
+), and hence in [−R, R], this implies the existence of

a local maximum of the continuous function |vn
y (t, ·)|. Hence, it is enough to estimate

|vn
y (t, y)| in critical points y of vn

y (t, ·), which are located in [−R−1, R+1]. In such points

y, vn satisfies the equation

vn
t = φn(vn

y ) + gvn
y + r, (30)

where φn corresponds to hn. Due to Lemma 6.1, the left-hand side is bounded in absolute

value by K+ − K−. Next, let cR be an upper bound for |g(y)| when |y| ≤ R + 1. Due to

the superlinear growth assumption on p 7→ φ(y; p), there exists some n0 such that

lim inf
|p|→∞

∣∣∣φ
n(y; p)

p

∣∣∣ ≥ cR + 1 for n ≥ n0 and all y. (31)

But in view of (30) and the uniform bound on vn
t , this clearly implies a uniform bound of

the form |vn
y (t, y)| ≤ c0 whenever n ≥ n0, 0 ≤ t ≤ T , and y is a critical point of vn

y with

|y| ≤ R + 1. Taking CR := c0 ∨ (2K) yields the first part of the result.

If g is bounded and (11), then cR can be chosen independently of R, and (31) holds

with cR + ε/2 instead of cR + 1, where ε is taken from (11).

Note that the functions vn decrease pointwise to a function v, which also satisfies the

bounds

tK− ≤ v(t, y) ≤ tK+.

Lemma 6.3 Suppose that p 7→ φ(y; p) has superlinear growth or g is bounded and (11)

holds. Then, for any β ∈ (0, 1), v(t, y) = limn vn(t, y) is a bounded classical solution in

C1+β

2
,2+β((0, T ) × R) ∩ C([0, T ] × R) to the Cauchy problem

{
vt = 1

2
vyy + φ(vy) + gvy + r

v(0, ·) = 0.
(32)

Moreover, |vt(t, y)| ≤ K+ − K−.

Proof: Take R > 0 and let CR be as in Lemma 6.2. Note then that for |p| ≤ CR there

exists some n1 such that φn(y; p) = φ(y; p) for n ≥ n1 and all y. Hence, Lemma 6.2 yields

that for n ≥ n0 ∨ n1 and |y| ≤ R

vn
t =

1

2
vn

yy + φ(vn
y ) + gvn

y + r. (33)

Since the terms vn
t , φ(vn

y ), gvn
y , and r are uniformly bounded, the same must be true of

vn
yy. Hence, the Arzela-Ascoli theorem yields the existence of a subsequence (nk) such that
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vnk
y converges locally uniformly in C([0, T ] × R) to some function w, and the pointwise

convergence of vnk(t, y) implies that w is equal to the y-derivative vy of v. Moreover, the

uniform bounds on vn
t and vn

yy imply that vy is locally Lipschitz continuous on [0, T ]×R.

In particular, v belongs to W 1,1
2,loc([0, T ] × R) and satisfies |vt(t, y)| ≤ K+ − K−.

Taking ϕ ∈ C∞((0, T ) × R) and writing (33) in integral form yields

∫ ∫ (
vnkϕt −

1

2
vnk

y ϕy +
[
gvnk

y + r + φ(vnk
y )

]
ϕ
)

dy dt = 0.

Taking the limit when k ↑ ∞ it follows that v is a generalized solution of the parabolic

equation

vt =
1

2
vyy + gvy + f,

where the free term f is equal to φ(vy) + r and satisfies a local Lipschitz condition in

[0, T ]×R. In view of standard regularity results for parabolic equations (see, for instance,

Theorem 12.2 in Chapter III of [18]) we conclude that v ∈ C1+β

2
,2+β((0, T ) × R) for any

β ∈ (0, 1). The fact that v solves (32) is now obvious.

Proof of Theorem 2.3: It follows from Lemma 6.2, Lemma 6.3, and its proof that there

exists a bounded classical solution v with a bounded gradient vy. Hence, Proposition 5.2

(b) applies, and the first part of Theorem 2.3 follows. The part on Q̂ and π̂ follows as in

Theorem 2.1.

The application of our verification result in Proposition 5.2 requires a growth condition

on the gradient of v.

Lemma 6.4 Suppose that p 7→ φ(y; p) has superlinear growth. Then there exists a con-

stant C1, depending only on T and the model parameters, such that

∣∣∂−
p φ

(
y; vy(t, y)

)∣∣ ∨
∣∣∂+

p φ
(
y; vy(t, y)

)∣∣ ≤ C1(1 + |y|).

Proof: The C2-function y 7→ v(t, y) is bounded from above and below by the two

constants TK+ and TK−, which are independent of t ≤ T . Therefore, the function

y 7→ |vy(t, y)| cannot increase to its supremum, and we conclude that it is enough to

estimate |vy(t, y)| in such points y that are critical points of vy(t, ·). In these points y,

vyy(t, y) vanishes, and we obtain vt = φ(vy) + gvy + r. Dividing by |vy|, we hence get that

for |vy| ≥ 1
∣∣∣
φ
(
y; vy(t, y)

)

vy(t, y)

∣∣∣ ≤ K+ − K− + |g(0)| + ‖g′‖∞|y| + ‖r‖∞.

and the right-hand side can be bounded by c1(1 + |y|) for an appropriate constant c1.

The coercivity condition (5) implies that the concave function p 7→ φ(y; p) grows at

most quadratically as |p| → ∞. Hence, there are constants p0, c2 ≥ 1 such that

|∂+
p φ(p)| ∨ |∂−

p φ(p)| ≤ c2|∂
+
p φ(p/2)| ∨ |∂−

p φ(p/2)| for |p| ≥ p0.
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Next, choose p1 such that φ(y; p) ≤ 0 and ∂−
p φ(y; p) ≤ 0 for p ≥ p1/2. Such a p1 exists

due to concavity. Then we obtain that for p ≥ p0 ∨ p1

∣∣1
p
φ(p)

∣∣∣ ≥ −1

p
(φ(p) − φ(p/2)) ≥

1

2
|∂+

p φ(p/2)| ≥
1

2c2

|∂+
p φ(p)|.

An analogous inequality holds for p less than some p2 ≤ 0 and ∂−
p φ. Putting everything

together yields the assertion.

Proof of Theorem 2.5: From Lemma 6.3 we know that there exists a classical solution

v to the equation (13). Lemma 6.4 gives the conditions to apply part (c) of Proposition

5.2. This proposition then implies the uniqueness of v, while the rest of the theorem

follows as before.
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[9] Föllmer, H., Schied, A. Stochastic Finance: An Introduction in Discrete Time. Berlin:
de Gruyter Studies in Mathematics 27 (2002). Second edition (2004).

[10] Gilboa, I., Schmeidler, D. Maximin expected utility with non-unique prior. J. Math.
Econ. 18, 141-153 (1989).

[11] Hansen, L., Sargent, T. Robust control and model uncertainty. American Economic
Review 91, 60-66 (2001).

[12] Hernández-Hernández D., Schied, A. Robust utility maximization in a stochastic
factor model. Stat. Decisions 24 (2006).

[13] E. Jouini, W. Schachermayer, N. Touzi: Optimal risk sharing with law-invariant
monetary utility functions. Working paper, Université Paris Dauphine (2005).
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