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Abstract

Fees are omnipresent in markets but, with few exceptions, are omitted in economic models—
such as Double Auctions—of these markets. Allowing for general fee structures, we show that
their impact on incentives and efficiency in large Double Auctions hinges on whether the fees
are homogeneous (as, e.g., fixed fees and price fees) or heterogeneous (as, e.g., bid-ask spread
fees). Double Auctions with homogeneous fees share the key advantages of Double Auctions
without fees: markets with homogeneous fees are asymptotically strategyproof and efficient. We
further show that these advantages are preserved even if traders have misspecified beliefs. In
contrast, heterogeneous fees lead to complex strategic behavior (price guessing) and may result
in severe market failures. Allowing for aggregate uncertainty, we extend these insights to market
organizations other than the Double Auction.
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1 Introduction

Many markets, e.g., for commodities and stocks, are organized by intermediaries such as trading
platforms, centralized clearing houses, designated liquidity providers, market makers, or brokers.
Such intermediaries typically charge fees for their services; a fee being any difference between the
prices that the buyers pay and the amounts that the sellers receive. Some markets operate with price
fees, that is, fees that are a set percentage of the price; examples include price fees set by governments
such as stamp duties and other transaction fees. Tobin taxes (implemented, e.g., in Sweden and
Latin America) are also examples of price fees. Private intermediaries use price fees as well. For
instance, Airbnb charges a service fee that is a percentage of the total price, and this percentage is
listed explicitly on hosts’ and guests’ invoices.1 Other private intermediaries use different fee models,
among which one popular option can be described as spread fees in which the fee is a percentage of
the difference between bid and ask. For instance, Robinhood, an online platform for stock trading,
earns money on transactions, because market makers pay Robinhood for order flow. Because market
makers in turn make money on the bid-ask spread, we can think of Robinhood’s fee model as making
money, indirectly, on the bid-ask spread too (how and what percentage exactly is unknown). Other
platforms, e.g., Charles Schwab and E-Trade, charge market makers for order flow in the same way.2

What consequences do different fee schemes have on the strategies of market participants? Despite
its importance for market design and regulation, the literature’s focus on markets without fees left
this question largely open.3 This paper aims to fill this gap. In Double Auctions (DAs) with general
fee structures, we investigate participants’ strategic behavior and resulting market efficiency. We
characterize optimal strategic behavior, and identify which classes of fees preserve—and which do
not—the desirable properties of DAs, that is asymptotic truthfulness and efficiency, that are familiar
from the analyses without fees (c.f., e.g., Rustichini et al. 1994). We also analyze the robustness of
these properties to market participants having misspecified beliefs.

Our main insight is that these desirable properties of DA markets crucially hinge on whether
the fees are homogeneous or heterogeneous. We say that a fee is homogeneous if, conditional on a
market participant trading in the market, the participant’s impact on the fee they pay vanishes
as the market grows large; else we say that the fee is heterogeneous.4 Price fees are examples of

1This fee is not only a transaction tax, as Airbnb’s fee also covers additional services such as insurances. Our
analysis applies equally to transaction taxes and fees covering additional services. Similar business models are pursued
by other platforms such as Uber, Lyft, etc.

2Market makers provide a service by providing liquidity and carrying associated risks. Robinhood imposes no
direct fees (commissions) on its users except for small transaction fees that it passes on from authorities such as from
the Financial Industry Regulatory Authority (FINRA). Market makers paying platforms for order flow is not universal
and it is actually illegal in some countries, including the United Kingdom.

3Below we discuss the notable exceptions: the analysis of efficiency under fixed fees in Tatur (2005), market entry
in Marra (2019), and platform revenues in Chen and Zhang (2020).

4The two fee types are close to partitioning but do not completely partition the set of possible fees; see Section
3.2. We study both large finite and continuum models. In continuum models, the definition simplifies and, conditional
on trade, the homogeneous fee paid by a participant is the same irrespective of the action of the participant, while the
heterogeneous fees depend on participant’s actions.
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homogeneous fees as, in the limit, the market participants impact on the fees vanishes (and, relatedly,
all participants who trade pay the same fee). Spread fees are examples of heterogeneous fees as,
in the limit, the spread and hence the fee paid depends on the trading participant’s action. Not
surprisingly, under homogeneous fees, the traders behave similarly to traders in no-fee markets
and they are approximately price-taking in large markets. In contrast, heterogeneous fees distort
incentives fundamentally, and, asymptotically, lead to what we call price-guessing behavior whereby
traders bid close to estimated market prices in order to try to minimize fee payments.

Homogeneous fees lead to some unavoidable welfare losses in finite markets that are due to
strategic behavior and unprofitability of trades whose surplus is insufficient to cover the fee.5 Because
price-taking behavior emerges in the limit, in large markets the outcomes are not much affected
when the fees are small; and the same obtains even when agents have misspecified beliefs.

In contrast, in large markets, heterogeneous fees lead to asymptotically full efficiency if the
beliefs are correctly specified, but even slight belief misspecification often leads to substantive market
failure. The risk of market failure occurs for all heterogeneous fees, and the degree of inefficiency
does not vanish with decreasing fee size.

Allowing for aggregate uncertainty, we show that the aforementioned results qualitatively hold
true for some market organizations other than the canonical DA. In particular, the insights continue
to hold true in any market organization in which the participants believe that they have no impact
on market prices, as in continuum markets and in Vickrey mechanisms.

Related literature

We know a lot about strategic behavior in DAs without fees as these mechanisms have been extensively
studied.6 Since the formal definition of the situation as one characterized by two-sided incomplete
information (Chatterjee and Samuelson, 1983), the analysis of DAs focused on large markets because
of the empirical relevance of this setting, and because in finite-size markets Myerson and Satterthwaite
(1983) showed that there generally exists no budget-balanced, incentive-compatible, and individually
rational mechanism that is Pareto efficient.7

In large DA markets, participants have incentives to be increasingly truthful, which results in
asymptotic efficiency [Roberts and Postlewaite 1976, Rustichini et al. 1994, Cripps and Swinkels 2006,
Reny and Perry 2006, Azevedo and Budish 2019]; any given participant’s influence on the market
price vanishes in larger markets, and market participants place increasing weight on maximizing their
trading probability (as opposed to influencing the price), which they do by bidding close to truthfully.

5For simplicity, we evaluate efficiency while ignoring the add-on services (such as aforementioned insurances)
provided by intermediaries. Note that even the second of the above mentioned types of inefficiency obtains when we
take costs of services by the intermediaries into account except if fees are perfectly aligned with the individual costs of
services provided by the intermediary.

6See Friedman and Rust (1993) for a survey of the DA as a market mechanism in history, theory and practice.
7The impossibility hinges on the quasilinearity of the preferences, which we also assume; see Garratt and Pycia

(2016).

3



Rustichini et al. (1994) established this key insight for DAs with independent private values (c.f.
Satterthwaite and Williams (1989b)). Their work assumes existence of symmetric equilibria, which
was later established by Fudenberg et al. (2007) under correlated but conditionally independent
private values.8

We know much less about DAs with fees, except for the case of fixed fees. Tatur (2005) analyzes
incentives and efficiency in DAs but only with fixed fees; unlike us he does not require budget
balance. Chen and Zhang (2020) study revenues in linear equilibria of DAs with fees; they allow fees
to depend on the size of individual trade but not on price, bid-ask spread, nor other parameters
of the market schemes. Marra (2019) studies market entry in DAs with fixed fees. Noussair et al.
(1998) provides experimental evidence that fixed fees lead to efficiency loss. Fixed fees have also
been the focus in the finance literature on limit order books [Colliard and Foucault 2012, Foucault
et al. 2013, Malinova and Park 2015].9 Where this literature focuses on specific fee structures (fixed
fees), we look at fees more generally and our classification of fees has no counterpart in the literature.
Our general incentive, efficiency, and robustness results are also new.

Our analysis also contributes to the burgeoning literature on market behavior in the presence
of misspecified beliefs. The impact of misspecified beliefs on mechanism design has been analyzed
by many authors, c.f., e.g., Ledyard (1978), Wilson (1987), Chung and Ely (2007), Bergemann and
Morris (2005), Chassang (2013), Bergemann et al. (2015), Carroll (2015), Wolitzky (2016), Carroll
(2017), Madarász and Prat (2017), Li (2017), Boergers and Li (2019), Pycia and Troyan (2019). The
main thrust of this literature is that robustness to misspecification requires the mechanism to be
simple. The impact of heterogeneous, misspecified, beliefs on Walrasian markets has been analyzed
e.g., by Harrison and Kreps (1978) and Eyster and Piccione (2013).10 We contribute to the studies
of misspecified models by analyzing how misspecification impacts the efficiency of DAs with fees.

2 The model

2.1 The market

We consider a two-sided market populated by traders belonging to sets B,S ⊂ R of buyers (b ∈ B)

and sellers (s ∈ S). Traders are interested in either buying or selling an indivisible good. We consider
both the finite case, with m buyers B = {1, 2, ...,m} and n sellers S = {1, 2, ..., n}, and the infinite
case, with B ⊂ R and S ⊂ R being two closed intervals. Denote the distributions of buyers and

8They also generalized the convergence results of Rustichini et al. (1994). Earlier work on equilibrium existence in
DAs includes Chatterjee and Samuelson (1983), Wilson (1985), Leininger et al. (1989), Satterthwaite and Williams
(1989a), Williams (1991), and Cripps and Swinkels (2006). See also Jackson and Swinkels (2005) who studied
equilibrium existence in a broad class of private value auctions that includes DAs.

9See also Shi et al. (2013) who study a numerical model of marketplace competition with fees.
10See also, e.g., (Heidhues et al., 2018) who study overconfidence in markets and (de Clippel and Rozen, 2018) who

study the misperception of tastes.
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sellers on B and S by µB and µS .11 By R = µB(B)
µS(S) we denote the ratio of buyers to sellers.

We are particularly interested in large markets. Say that a property P holds in sufficiently large
finite markets (write ISLFM) if there exist m,n ≥ 1 such that P holds in any finite market with
at least m buyers and n sellers. If the property also holds in infinite markets, say that it holds in
sufficiently large markets (write ISLM).

Every trader i ∈ B ∪ S has a type ti ∈ T = [t, t] giving valuation, reservation price or gross value.
T is called the type space. Denote by tB : B → T , tS : S → T measurable functions that assign
a type to each trader. Let µtB and µtS be the push-forward measures of µB and µS with respect
to tB and tS , i.e., µtB(·) = µB(t−1

B (·)) and µtS(·) = µS(t−1
S (·)). We call these the type distributions.

They are σ-additive and finite measures on T , and specify the mass of traders with types inside any
measurable subset of T .

Every trader i submits an action ai representing a buyer’s bid and a seller’s ask. Denote by
aB : B → AB with aB(b) = ab and by aS : S → AS with aS(s) = as functions that assign an
action for each trader. Let the action distributions µaB and µaS be two induced σ-additive and finite
measures on R≥0 with support in the action spaces AB = [aB, aB] and AS = [aS , aS ]. That is,
µaB(·) = µB(a−1

B (·)) and µaS(·) = µS(a−1
S (·)). Let a denote the joint distribution of bids and asks,

specifying the mass of buyers and sellers with actions inside any measurable subset of AB and AS .
We will often consider strategies ai : T → Ai, where ai(ti) specifies the action given i’s type.

In a finite market, a single trader influences the distribution of types and actions. Write, with
some abuse of notation, t = (ti, t-i) and a = (ai, a-i), where t-i and a-i are the type and action
distributions of all traders excluding trader i. In finite markets, t and a are obtained by adding a
point mass at ti and ai to t-i and a-i. Note that, in infinite markets, single traders do not change
the distributions, and thus t = t-i a = a-i.

2.2 The mechanism

Given action distributions a specifying bids and asks for buyers and sellers, the generalized k-double
auction with fees selects a market outcome defined by an allocation identifying subsets of B∗(a) ⊂ B
and S∗(a) ⊂ S who will be involved in trade together with a unique market price Π(a) for all deals
and fees Φ (a) for all active traders.12 Denote all active traders by A∗(a) = B∗ ∪ S∗.

It will be useful to consider the set of traders whose actions are (strictly) above or below price P ;
for a relation R ∈ {≥, >,=, <,≤}, we therefore introduce the shorthand notations BR(P ) = {b ∈
B : abRP} and SR(P ) = {s ∈ S : asRP}.

11These are counting measures for finite, and Lebesgue-measures for infinite.
12Whenever the dependence on the action distribution is clear, we will simply write Π, B∗ and S∗. When focusing

on a single trader with action ai, we will write e.g. Π(ai, a-i).

5



The generalized k-DA with fees

Market price. For k ∈ [0, 1] set the market price as

Π(a) = k ·minPMC(a) + (1− k) ·maxPMC(a),

where PMC(a) is the set of market clearing prices that equilibrate revealed demand and
supply.a

Allocation. Given Π(a), the following allocations are carried out:

S∗(a) = S<(Π(a)) ∪ S̃(a) and B∗(a) = B>(Π(a)) ∪ B̃(a),

where B̃(a) ⊂ B=(Π(a)) (respectively S̃(a) ⊂ S=(Π(a))) are uniformly random compact sets
selecting players to balance trade in case there is market excess.b

Fees. Each trader i who is involved in trade has to pay a fee Φi(a) ≥ 0.
aA detailed account of demand, supply, and market-clearing prices is in Appendix A.1.
bSee Appendix A.2 for details regarding the allocation and rationing.

We allow for general fees Φi. Commonly observed examples are price, spread, and constant fees :
given a percentage φi ∈ [0, 1] and constant ci ≥ 0, a fee Φi is a price fee if Φi(a) = φiΠ(a), a spread
fee if Φi(a) = φi|Π(a)− ai|, and a constant fee if Φi(a) = ci.13

2.3 Market performance

Here, we introduce various metrics that will be used to evaluate market outcomes (in Section 4).14

Demand and supply at a price P are defined as D(P ) = µB(B≥(P )) and S(P ) = µS(S≤(P )),
that is, by the mass of all traders who weakly prefer trading over not trading at P .15 The trading
volume at P is Q(P ) = min(D(P ), S(P )) and the trading excess is Ex(P ) = |D(P )− S(P )|.

The individual gains of trade for a buyer b with gross value tb are tb − Π. Similarly, for a
seller s with gross value ts, the gains of trade are Π − ts.16 The total gains of trade GoT are
GoT = E[

∫
B∗ (tb −Π) dµB(b) +

∫
S∗ (Π− ts) dµS(s)], where the expectation is taken with respect

to the random allocation in case of excess. If agents report their gross values truthfully, the total
gains of trade are maximized by market clearing at GoTΦ. In the absence of fees this coincides
with reporting their gross value, achieving the maximum total gains of trade, GoTid. We refer to

13If φi = 0 or ci = 0, the setting simplifies to the classical feeless DA. Further, for spread fees, if φi = 1 a trader
has to pay their bid/ask. This setting resembles, for example, Priceline.com’s Name-Your-Own-Price auction.

14Note that in these metrics we omit dependencies on types and action distributions, because those will not be
varied when evaluated.

15Analytic properties of demand and supply are formulated in the Appendix A.1, and proven for the feeless
generalized DA in Jantschgi et al. (2022).

16We focus on individually rational strategies aB(tb) ≤ tb and aS(ts) ≥ ts, so that the individual gains of trade are
non-negative.
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EΦ = GoT/GoTΦ as the efficiency ratio, which measures, how much of the achievable—subject to
individual rationality given fee considerations—gains of trade are realized.

The total fees collected are Fees =
∫
B∗ ΦbdµB(b)+

∫
S∗ ΦsdµS(s). Note that Fees is deterministic,

because the random allocation is only concerned with a set of traders with equal actions.
By the surplus generated by the traders we refer to the difference between the total gains

of trade and the total fees generated: Surplus = GoT − Fees. Similarly, by loss we refer to
Loss = GoTid −GoT , which measures how much gains of trade are lost due to fee considerations
and strategic behavior. GoTid can therefore be decomposed into total fees, total surplus generated
by the traders and the loss due to strategic behavior: GoTid = Surplus+ Fees+ Loss.

2.4 Probabilistic types

We assume that traders’ types are independent random variables on the type space T and that they
are identically distributed for each of the two market sides. Let (F tB, F

t
S) be the pair of corresponding

cumulative distribution functions, which are assumed to be differentiable with continuous derivative
(i.e., C1 functions). Let (f tB, f

t
S) be the corresponding probability density functions that have full

support on the type space T . In a finite market, realizations of these random variables induce type
distributions. Call the random empirical measures µtB =

∑m
j=0 δtjb

and µtS =
∑n

k=0 δtks . Letting n
and m tend to infinity, normalized versions of the random empirical measures converge uniformly to
deterministic probability measures with densities f tB and f tS . In an infinite market, these measures
are scaled to achieve the market ratio R. Strategies of traders induce random action distributions.
If all traders use a symmetric strategy profile (aB, aS), where both strategies are strictly increasing
C1-functions, then actions are distributed according to F tB,i(a

−1
B (·)) on AB and F tS,i(a

−1
S (·)) on AS .

Let (Ω,F ,P) be the probability space describing the randomness of sampling type distributions
and possible rationing.17 Denote by E [·] the expectation with respect to the probability measure P.

2.5 Incentives and beliefs

Write ub (tb, ab, a-b) = tb − Π (ab, a-b) − Φb (ab, a-b) for the utility of a buyer b when trading with
gross value tb given own action ab and all other actions a-b. Analogously, for a seller s who trades,
write us (ts, as, a-s) = Π (as, a-s)− ts − Φs (as, a-s).

In the feeless DA, bidding one’s gross value, that is, ai(ti) = ti, is the maximal bid for a buyer
(minimal ask for a seller) that constitutes an undominated action.18 The same is not necessarily the
case if a fee is charged. Indeed, for some fees (in particular, price fees and constant fees) bidding
one’s gross value ti is dominated. We therefore define the net value, tΦi , as the largest (smallest)
undominated action for a buyer (seller). Without fees and for spread fees the gross value equals the

17In finite markets, rationing is a probability zero event, because actions are assumed to have a continuous
distribution, see Appendix A.2 and Appendix A.3.1.

18We say that an action ai is undominated if it is not weakly dominated. That is, there exists no a′i such that for
all action distributions a-i ui(ti, ai, a-i) ≤ ui(ti, a′i, a-i).
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net value. By contrast, for price fees the net value scales the gross value to account for the fee, that
is, tΦb = tb/1 + φb and tΦs = ts/1− φs. Similarly, for constant fees, the net value shifts the gross value,
that is, tΦb = tb − cb and tΦs = ts + cs.19 In the presence of fee considerations, it is natural for us to
adapt the wording of truthful to mean that traders bid their net value. Without this scaling a trader
might be involved in a trade that leads to a negative utility. To exclude pathological fee scenarios,
and to allow for a meaningful analysis of market participation, we will assume that fee structures
under considerations are such that the net value exists, is increasing in the gross value with tΦb ≤ tb
and tΦs ≥ ts, and that the expected utility when bidding the net value is non-negative. Price, spread
and constant fees all satisfy these assumptions.

We assume traders know the market mechanism, but have incomplete information regarding the
number of other traders, the distribution of gross values, market behavior of other traders and what
fees are charged.20 Traders may have heterogeneous and incorrect beliefs. A given trader i believes
to be in market environment Mi with fees Φi and a ratio of buyers to sellers equal to Ri. We work
with traders’ beliefs that are specified directly over the distributions of actions.21 Actions of other
traders are assumed to be independent random variables, identically distributed for each of the two
market sides. Let (FB,i, FS,i) be the pair of corresponding C1 distribution functions, with densities
fB,i and fS,i that have full support on action spaces AB,i = [aB,i, aB,i] and AS,i = [aS,i, aB,i].22 Such
beliefs induce random empirical measures describing the distributions of actions in both finite and
infinite markets.23

In an infinite market, the market price is equal to the unique solution of the equation FB,i (·) +

RiFS,i (·) = 1. Call this solution the critical value Π∞i .24 This threshold will be of central importance
for the study of large markets, see Theorem 1.

Given the beliefs of trader i, let (Ω-i,F-i,P-i) be the probability space describing the randomness
of action distributions and allocations in case of excess. Denote by E-i [·] the expectation with respect
to the probability measure P-i. Furthermore, for an action ai, let P-i [i ∈ A∗(ai, a-i)] denote the
probability of trading for trader i. Let A∗ (i, ai) denote the sub σ-algebra of F-i generated by these
events. Let E-i [·|A∗ (i, ai)] be the expectation conditional on trading. In infinite markets, the only
random influence on the trading probability is the fair lottery that is used to deal with excess. If a
trader is on the market side with no excess and their action is less aggressive then the critical value,
then the trading probability is equal to 1. Otherwise there is tie-breaking, and for one market side,

19See Appendices B.1 and B.2 for details.
20We actually treat both cases, when traders know the exact fee and when they only know the fee type.
21This streamlined approach permits beliefs about distributions of gross values and strategies of other traders, but

also more general beliefs.
22Assume that aS,i ≥ aB,i > tΦi > aS,i ≥ aB,i. That is, the action spaces intersect, which means that there are both

buyers and sellers who are in and out of the market, so that a trader believes that being truthful ensures competing
with both buyers and sellers.

23Note that infinite markets as a limit of finite markets have absolutely continuous action distributions. For some
applications, we allow general action distributions in limit markets, see e.g. Theorem 2.

24Existence and uniqueness are proven in Appendix B.4.
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the trading probability lies in [0, 1).25 Assume that a trader in an infinite market has beliefs about
the tie-breaking probability.

2.6 Solution Concept

Best responses maximize individual expected utility given beliefs. The two opposing forces are
increasing the utility conditional on trading by being more aggressive and increasing the probability
of trading by being less aggressive.26 Aggressiveness refers to the amount of a bid’s (or ask’s)
misrepresentation below a buyer’s (above a seller’s) gross value: A buyer’s bid a1

b is (strictly) more
aggressive than a2

b , write
<

(�), if a1
b
≥

(>) a
2
b and similarly a seller’s offer a1

s is (strictly) more aggressive
than a2

s, write
<

(�), if a1
s is (strictly) less than a2

s. Strategically optimal behavior finds the right
amount of aggressiveness. Given trader i’s market environmentMi and gross value ti, an action
ai is an ε-best response if E-i [ui (ti, ai, a-i)] ≥ supa′i∈R E-i [ui (ti, a

′
i, a-i)] − ε. For ε = 0 ai is a best

response.
The analysis of best responses includes the special case of symmetric Bayesian Nash equilibria. If

all buyers use the same strictly increasing strategy aB and all sellers use the same strictly increasing
strategy aS , call (aB, aS) a symmetric strategy profile. Given type distributions, the corresponding
action distributions are given by µaB(·) = µB

(
t−1
B (a−1

B (·))
)
and µaS(·) = µS

(
t−1
S (a−1

S (·))
)
. Assume

that beliefs over action distributions originate from beliefs over gross value distributions and over
the symmetric strategy profiles of the other traders (aB, aS). If, for every trader and every gross
value, the action specified by these strategies are best responses, then the strategy profile constitutes
a symmetric Bayesian Nash equilibrium.27

3 Large market asymptotics

3.1 Core properties of best responses

Underlying several of the key results that will follow in this section is the following observation: If
indeed others’ behaviors are consistent with a given trader’s beliefs, then that trader can compute
the market price with increasing accuracy as the market grows, and indeed precisely in the limit
market. With more traders on both market sides, actions approximate a continuum, the variance of
realized market prices decreases, and it becomes increasingly predictable who gets to trade. In the
limit, the following proposition holds for a given trader’s trading probability.

Proposition 1 (The trading probability converges to a step function at Π∞i ). Consider a trader i
with actions a1

i � Π∞i � a2
i . ∀ε > 0 ISLM P-i

[
i ∈ A∗(a1

i , a-i)
]
≤ ε, P-i

[
i ∈ A∗(a2

i , a-i)
]
≥ 1− ε.

25See Appendix A.3 for more details on the trading probability in the limit market.
26A detailed analysis of this trade-off for price and spread fees in finite markets via first order conditions can be

found in Appendix A.4.
27Therefore all of the results that we shall present in this paper about best responses directly apply to the study of

symmetric Bayesian Nash equilibria.
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Proof Outline. In infinite markets, the statement follows directly from the model. Growing market
size in finite markets is formalized with respect to a single parameter. Consider a sequence of
strictly increasing market sizes (m(l), n(l))l∈N with m(l), n(l) = Θ(l) and |R − n(l)

m(l) | = O(l−1) for
R ∈ (0,∞).28 A buyer b is involved in trade, if their action ab is greater (or equal, if they win
tie-breaking) than at leastm(l) actions of other traders, that is P-b [b ∈ A∗(ab, a-b)] = P-b

[
ab ≥ a

m(l)
-b

]
.

The probability that the action of any other buyer and seller is below ab is pab = FB,b(ab) and
qab = FS,b(ab). If Xpab

i and X
qab
i are Bernoulli random variables with parameters pab and qab ,

then the total number of traders with actions below ab has the same distribution as the sum
Sabl =

∑m(l)−1
i=1 X

pab
i +

∑n(l)
i=1 X

qab
i . It follows that P-b [b ∈ A∗(ab, a-b)] = P[Sabl ≥ m(l)] = 1−P[Sabl ≤

m(l) − 1]. By the Berry-Esseen Theorem (Tyurin, 2012) an appropriately normalized version of
Sabl converges in distribution to a standard normal random variable with CDF Φ. We show that
there exists a sequence (Aab(l))l∈N = Θ(

√
l) with |P[Sabl ≤ m(l) − 1] − Φ(Aab(l))| ∈ O(l−

1
2 ). For

ab ≺ Π∞b we show for sufficiently large l that Aab(l) < 0, which yields that Aab(l) ∈ Θ(−
√
l). Using

a concentration inequality for a standard Gaussian random variable gives Φ(Aab(l)) ∈ O(e−l). It
therefore holds that P[Sabl ≤ m(l)− 1] = O(l−

1
2 ). The statement for ab � Π∞b and for sellers can be

derived analogously.29

Note that, at the critical value, the trading probability in finite markets is determined by the
action distributions and lies strictly between 0 and 1.30 Next, we shall establish the existence of
best responses under mild conditions on fees.

Proposition 2 (Existence of best responses). Provided that the expected fee payment conditional on
trading, E-i [Φi(·, a-i)|A∗ (i, ·)], is almost surely continuous, a best response exists in finite market
environments and in infinite market environments without tie-breaking.

Note that standard types of fees, such as constant, price, and spread fees, satisfy the continuity
assumption of this proposition. For infinite markets, best responses might not exist for a player with
ti ≺ Π∞i . This is the case for certain fee types if there is rationing, e.g., spread fees. On the one
hand, it is optimal for a trader to approximate Π∞i in order to decrease the spread fee that is due,
but, on the other hand, a trader will not want to be too aggressive in order to avoid the risk of not
trading due to rationing.

We will sometimes focus on ‘in-the-market’ gross values ti with tΦi ≺ Π∞i . Such gross values
correspond to traders who are able to submit individually rational actions such that they are likely
to be involved in trade in large markets. By contrast, for an ‘out-of-the-market’ trader with gross
value tΦi � Π∞i , the probability of trade (and therefore also the expected utility) goes to zero.

28If there exists a parameter l, such that for every l′ ≥ l Proposition 1 holds in markets with m(l′) buyers and n(l′)
sellers, then the statement also holds ISLFM.

29The proof is relegated to Appendix B.5.
30For uniform action distributions and equally many buyers and sellers, the trading probability is independent of

the market size and equal to 1
2
(see Theorem 8).
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Proposition 3 (For ‘out-of-the-market’ gross values, truthfulness is close to optimal). Consider a
trader i with tΦi � Π∞i . ∀ε > 0, truthfulness is an ε-best response ISLM.

The proofs of Propositions 2 and 3 are relegated to Appendix B.6 and Appendix B.7.

3.2 Characterization of fees

We consider a general class of ‘well-behaved’ fees. What we require from a well-behaved fee is that it
is uniformly profit-permitting. That is, if a trader is likely to trade by being truthful in ISLM, then
this results in a strictly positive utility: For every gross value ti with tΦi ≺ Π∞i , there exists ε > 0

such that E-i
[
ui
(
ti, t

Φ
i , a-i

)]
≥ ε ISLM. As it turns out, optimal strategic behavior in large markets

depends crucially on whether or not the associated fee asymptotically depends on one’s own action
or not.

Definition (Homogeneous vs. heterogeneous fees). Two actions a1
i ≺ a2

i ≺ Π∞i lead to asymptotically
different fee payments, if there exists ε > 0 such that ISLM

E-i
[
Φi(a

1
i , a-i)|A∗

(
i, a1

i

)]
− E-i

[
Φi(a

2
i , a-i)|A∗

(
i, a2

i

)]
≥ ε (1)

almost surely. Otherwise, the two actions lead to asymptotically equal fee payments. Φi is heteroge-
neous, if every two actions a1

i ≺ a2
i ≺ Π∞i lead to asymptotically different fee payments. A fee Φi is

called homogeneous, if ∀ε > 0 ISLM almost surely

sup
a1
i≺a2

i≺Π∞i

E-i
[
Φi

(
a1
i , a-i

)
|A∗

(
i, a1

i

)]
− E-i

[
Φi

(
a2
i , a-i

)
|A∗

(
i, a2

i

)]
≤ ε. (2)

In an infinite market, the definitions simplify: For heterogeneity, the conditional expected fee
is strictly monotone for ai ≺ Π∞i . For homogeneity, the conditional expected fee is constant for
ai ≺ Π∞i . Homogeneity and heterogeneity are not mutually exclusive, as one can construct fee
schedules that are homogeneous in some price regions and heterogeneous at others. However, focusing
on these two cases (rather than on hybrids) allows us to study the key strategic differences that in
fact yield completely opposing behavior. In particular, the two canonical examples of fees, price
and spread fees, fall under the two definitions: Price fees are homogeneous, and spread fees are
heterogeneous. Fee structures may have significant strategic consequences.

Theorem 4 (Best responses ⇒ asymptotically equal fee payments). Given two gross values t1i , t
2
i ,

the best responses a1
i (t

1
i ) and a2

i (t
2
i ) result in asymptotically equal fee payments.

Proof Outline. Assume that two actions a1
i ≺ a2

i ≺ Π∞i lead to asymptotically different fee payments.
We show that ISLM, a trader can increase their expected utility, when switching from action a1

i to a
2
i ,

proving that a1
i is not a best response. Formally, as a1

i ≺ a2
i ≺ Π∞i , Theorem 1 yields ∀ε1 > 0 ISLM

P-i
[
i ∈ A∗(a1

i , a-i)
]
,P-i

[
i ∈ A∗(a2

i , a-i)
]
≥ 1− ε1. The difference in trading probability between a1

i
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and a2
i is upper bounded by ε1 ISLM. If ε1 is sufficiently small, the loss in trading probability and

possible influence on the market price is compensated by a decrease in expected fee payment by at
least some ε2 > 0 because of asymptotically different fee payments. For sufficiently small ε1, the
difference in expected utility between actions a1

i and a2
i is negative ISLM, proving that a1

i is indeed
not a best response.31

Note that for homogeneous fees the condition holds by definition. For heterogeneous fees, the
result is non-trivial and will be useful in later analyses (see Section 3.4).

3.3 Price-taking is approximately optimal with homogeneous fees

Strategic misrepresentation is driven by the incentive to influence market price and fee. Reporting
truthfully maximizes one’s trading probability. In large markets, the influence on the market price is
vanishing ‘faster’ than the influence on one’s trading probability, which is what drives the asymptotic
truthfulness result in the literature. Therefore, if the influence on one’s own fee payment is also
vanishing ‘fast’ as the influence on the market price, then it is close to optimal to maximize one’s
trading probability by acting as a price-taker, that is, by reporting truthfully. Exactly that is the
case for homogeneous fees, such as the price fee.

Theorem 5 (In large markets with homogeneous fees price-taking is an approximate best response).
Suppose a homogeneous fee is charged. If trader i’s best response is uniformly bounded away from
their critical value, then ∀ε > 0 truthfulness is an ε-best response ISLM.

Proof Outline. Consider a best response ai of trader i. If ai ≺ tΦi , then t
Φ
i is a best response by

weak domination. Suppose now that ai � tΦi . By assumption, there exists δ > 0, such that ISLM, (i)
ai ≺ Π∞i − δ or (ii) ai � Π∞i + δ holds. If (i) holds, then Theorem 1 implies that P-i [i ∈ A∗(ai, a-i)]

converges to zero as the market gets large. Therefore ∀ε > 0 the expected utility of ai is upper
bounded by ε ISLM, which also proves that that the net value is an ε-best response, because it leads
to a non-negative expected utility. If (ii) holds, consider E-i[ui(ti, ai, a-i)] − E-i[ui(ti, t

Φ
i , a-i)]. We

split the difference into two components and show that for every ∀ε > 0 both components are less or
equal than ε

2 ISLM: (a) Difference in expected fees and (b) Terms corresponding to a classical feeless
DA. To bound (a), we can use Theorem 1 and homogeneity. For (b), we will use that for a feeless
DA truthfulness is an ε-best response ISLM, see Theorem 6.2 with price fees equal to zero.32

31The proof is relegated to Appendix B.8.
32The proof is relegated to Appendix B.9.
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Price fees. Fixing a specific fee allows sharper results than Theorem 5. In particular, for a price
fee, any best response can be explicitly shown to be close to truthful in large markets.

Theorem 6 (In large markets with price fees best responses are approximately truthful and
truthfulness is an approximate best response). Suppose a price fee is charged. For every finite and
infinite market, there exists a best response. Further, ∀ε > 0 it holds that (1) all best responses are
ε-truthful ISLFM and (2) truthfulness is an ε-best response ISLM.

Proof Outline. Consider a buyer b. The expected fee is a percentage of the expected market
price, which is shown to be continuous in ai in the proof of Theorem 2. Therefore, the expected
utility is continuous in ai and the existence of a best response again follows from the Extreme
Value theorem. For (1), a best response satisfies the first order condition dE-b[ub(tb,ab,a-b)]

dab
= 0,

see Appendix A.4. Explicit calculations yield that there exists a constant κ > 0, such that
tb − (1 + φb) ab ≤ κq(n,m), with q(m,n) = max

{
1
n

(
1 + m

n

)
, 1
m

(
1 + n

m

)}
= O(max(m,n)−1), from

which the statement follows.33 For (2), we estimate E-b
[
ub(tb, t

Φ
b , a-b)

]
−E-b [ub(tb, ab, a-b)], where ab

denotes the best response. This difference is shown to be upper bounded by −2k(1 + φb)|tΦb − ab|.
It follows from (1) that ∀δ > 0 it holds that tΦb − ab ≤ δ ISLFM. If for a given ε > 0, δ > 0 is
chosen such that δ ≤ ε

2k(1+φb)
, it holds ISLFM that tΦb is ε-close to a best response ab. In infinite

markets, the expected utility is deterministic and truthfulness is a best response, as the only strategic
incentive is to be involved in trade.34

Example (Best responses and Bayesian Nash equilibria). Set the price fee to φi = 0.1 and consider
a finite market with sizes (i) 2 × 2 (that is, two buyers and two sellers) and (ii) 5 × 5. Figure 1
shows best response strategies (for uniform beliefs over others’ actions in [1, 2]) and a symmetric
Bayesian Nash Equilibrium for the two market sides (for uniform beliefs over gross values in [1, 2]).
In line with Theorem 6.1, optimal strategic behavior converges to truthfulness with growing market
size. In a small market (2× 2), traders have an incentive to be more aggressive and misrepresent
their net value, as can be measured by the distance between their respective best response (dashed
red/blue lines) and the net value (solid black lines). In contrast, and in line with Theorem 6.1, the
best responses (dotted red/blue line) in the larger market (5× 5) are approaching truth-telling.

33A similar proof technique has been used to show that Bayesian Nash equilibria are approximately truthful in
DAs without fees, see Rustichini et al. (1994, Theorem 3.1).

34The proof is relegated to Appendix B.10.
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Figure 1: Best responses (left) and a symmetric Bayesian Nash equilibrium (right) for buyers (red)
and sellers (blue) as functions of their gross value for 2× 2 (dashed lines) and 5× 5 (dotted lines)
markets. k=0.5, price fee φi=0.1, and uniform beliefs over actions (left) and gross values (right).

3.4 Price-guessing is approximately optimal with heterogeneous fees

If a trader can influence their fee payment, then there remains a (non-vanishing) incentive to act
strategically in large markets. Moreover, given a trader will almost certainly trade as long as
their action meets the required threshold of the critical value, the incentive to influence their fee
asymptotically outweighs the concern of loosing out on the deal. Therefore, it is optimal to bid close
to the critical value that corresponds to the predicted price, which is why we shall call such behavior
Price-Guessing.

Theorem 7 (In large markets with heterogeneous fees best responses are close to price guessing).
Suppose a heterogeneous fee is charged to a trader i with tΦi ≺ Π∞i . ∀ε > 0 all best responses are in
an ε-neighbourhood of the critical value ISLM.

Proof Outline. Consider a buyer with action ab > Π∞b . We show that if ab − Π∞b ≥ ε, then the
difference in expected utility from playing ab versus Π∞b + ε

2 is strictly negative ISLM, proving that
ab is not a best response ISLM. Similar to the proof of Theorem 4, we show that ISLM, the buyer
will be involved in trade with high probability with both actions. Using that the fee is heterogeneous,
the decrease of the fee when switching to the more aggressive action Π∞b + ε

2 outweighs the decrease
in trading probability.35

Spread fees. As a spread fee depends linearly on a trader’s action, it is an example of a heteroge-
neous fee. A best response exists given the spread fee is continuous and must be close to the critical
value. However, an analogous statement to Theorem 6.2, i.e. the utility at the critical value is close
to optimal, is not true in general. We show that there exist markets, such that bidding the critical
value is in general not ε-optimal in large markets.

35The proof is relegated to Appendix B.11.
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Theorem 8 (In large markets with spread fees best responses are close, but not necessarily equal, to
the critical value). Suppose a positive spread fee is charged to a trader i with tΦi ≺ Π∞i . For a finite
market and limit markets without rationing, a best response exists. In limit markets with rationing,
there exists no best response. Further:

1. ∀ε > 0 all best responses are in an ε-neighbourhood of the critical value ISLM.

2. For sufficiently small ε > 0, there exist beliefs, such that the critical value is not an ε-best
response ISLFM.

Proof Outline. We show that the expected fee is and therefore the expected utility is continuous
in ai. The existence of a best response again follows as in Theorem 6. Consider a buyer b with
tΦb > Π∞i . (1) is proven in complete analogy to Theorem 5.1. For (2), consider beliefs such that
the number of traders is equal to l for both market sides, where beliefs are uniformly distributed
over AB = AS = [0, 1]. It follows that Π∞b = 1

2 . We prove that for every l > 1 it holds that
P-b[b ∈ B∗(Π∞b , a-b)] = 1

2 . Therefore, for every bid ab > Π∞b and for every ε > 0, it follows from
Theorem 1 that the buyer can increase their trading probability by 1

2 − ε when switching from Π∞b
to ab. If ab is chosen close to Π∞b , then this outweighs the increase in spread fee payment.36

Example (Best responses and Bayesian Nash equilibria). Set the spread fee to φi = 1 and consider
finite markets with size (i) 2× 2 and (ii) 5× 5. Figure 2 shows best response strategies (for uniform
beliefs over others’ actions in [1, 2]) and a symmetric Bayesian Nash equilibrium (for uniform beliefs
over gross values in [1, 2]). Note that in line with Theorem 8.1, best responses converge towards
price-guessing with growing market size. In a small market with two buyers and two sellers traders
have an incentive to be aggressive and misrepresent their true net value in order to influence the price
and reduce their fee payment. In line with implications from Theorem 8, best responses in a larger
market with five buyers and sellers (dotted line) do not approach truth-telling, if ti ≺ Π∞i . Instead
traders remain aggressive as they aim to reduce their fee payment. In contrast, their influence on
the price diminishes which results in traders approximating the critical value Π∞i provided it is
individually rational.

4 Efficiency as a function of fees and beliefs

In this section, we evaluate efficiency of market outcomes under homogeneous and heterogeneous
fees when traders adopt best responses as were characterized in the previous section. We show that
homogeneous fees cause an inefficiency that scales with fee size and gets smaller in larger markets,
while heterogeneous fees result in knife-edge results with either no or substantial efficiency loss that
does not vanish asymptotically and does not scale in fee size.

36The proof is relegated to Appendix B.12.
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Figure 2: (left panel) and a symmetric Bayesian Nash equilibrium (right panel) for buyers (red)
and sellers (blue) as functions of their gross value for 2× 2 (dashed lines) and 5× 5 (dotted lines)
markets. k = 0.5, spread fee φi = 1, and uniform beliefs over actions (left) and gross values (right).

In our analysis, we shall speak of traders having belief systems F about the market, allowing for
heterogeneous beliefs in the population. F consists of two mappings, MB,MS , from type space T
into the space of market environments, with Mi(ti) denoting what trader i with type ti believes.

4.1 Homogeneous fees

Given beliefs F , for ε > 0, define Υε,opt
Φ,F as consisting of all strategies (aB, aS) that are strictly increas-

ing and ε-truthful. Given homogeneous fees Φ, we know that ε-truthfulness emerges asymptotically
(see Theorems 5 and 6).

Theorem 9 (In large markets with homogeneous fees, independent of the belief system, strategic
behavior leads to almost full efficiency). Suppose a homogeneous fee Φ is charged. For all ζ > 0, there
exists a sequence of ε > 0, such that for all strategies (aB, aS) in Υε,opt

Φ,F it holds that E[EΦ] ≥ 1− ζ
ISLM.

Proof Outline. We prove that E[GoTΦ−GoT ]
E[GoTΦ] ≤ ζ. First, consider large finite markets.37 We bound

the numerator by showing that E[GoTΦ] ∈ Θ (min(m,n)). Next, we will bound the numerator
E[GoTΦ−GoT ]. Denote by tΦ a sample of n+m net values. Denote by µ the distribution of the market
price Π(tΦ) and by L(tΦ) = GoTΦ−GoT the total value of trades that inefficiently fail to occur given tΦ

and the strategies aB, aS ∈ Υε,opt
Φ,F . It holds that E

[
L(tΦ)

]
=
∫∞
−∞ E

[
L(tΦ)|Π(tΦ,(m))

]
dµ(Π(tΦ,(m))).

The latter can be bounded by O(min(m,n)
1
2 + min(m,n) · ε)), thus yielding the result. In infinite

markets, we prove that for continuous and increasing strategies GoT can be represented as a
continuous and deterministic function GoT (·) evaluated at the trading volume Q. If strategies
converge to truthfulness, then demand and supply converge uniformly to DΦ and SΦ. This implies

37The proof follows the methods from Rustichini et al. (1994, Theorem 3.2).
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that also the market price and trading volume converge to ΠΦ and QΦ. As the efficiency ratio is
equal to GoT (Q)/GoT (QΦ, the statement follows.38

Example (Price fees in an infinite uniform market). Consider an infinite market with type space
T = [1, 2] and µtB and µtS the Lebesgue-measures.39 Assume that a symmetric price fee is charged,
that is φb = φs = φ, and, in line with the implications from Theorem 6, traders act as price-takers
and truthfully report their net value. The table on the left-hand side of Fig. 3 gives different
measures describing the outcome in a market with and without fees and the right-hand side shows
the decomposition of the maximum gains of trade GoTid = 1/4 as a function of the fee. Note that,
while the market price is independent of the fee and equal to 3/2, the market volume is strictly
decreasing in φ, equal to 1/2, when φ = 0, and complete market failure occurs at φ = 1/3. The gains
of trade are also strictly decreasing in the fee. From a market maker’s point of view, fee profits are
maximized at φ = 1/6, where individuals’ fee payments and market volume are balanced.

Buyer strategy xB(tb) tb/(1+φ)

Seller strategy xS(ts) ts/(1-φ)

Demand D(P ) 2-(1+φ)P

Supply S(P ) (1-φ)P -1
Market Price Π 3/2

Market Volume Q∗ (1-3φ)/2

Market Excess Ex∗ 0

Max. Gains of Trade GoTid 1/4

Gains of Trade GoT
(

1-9φ2
)
/4

Fees
(

3φ-9φ2
)
/2

Surplus
(

1-6φ+9φ2
)
/4

Loss 9φ2/4

Figure 3: A symmetric infinite market with T = [1, 2], R = 1, µtB and µtS the Lebesgue-measures,
symmetric price fees (φb = φs = φ) and the truthful strategy profiles tΦb and tΦs . Left. Market
characteristics. Right. Decomposition of the maximum gains of trade into Fees (blue), Surplus
(green), and Loss (red) as a function of the fee φ.

4.2 For heterogeneous fees, strategic behavior depending on beliefs can lead to
any level of efficiency

Efficiency results change when heterogeneous fees Φ are charged. Given beliefs F , denote by Π∞(ti)

the guess of the critical value of trader i with gross value ti. Our characterizations of best responses
under heterogeneous fees imply that price-guessing behavior approximates optimal strategic behavior
for traders expecting to be in the market in large markets (see Theorems 7 and 8).40 For ε ≥ 0,

38The proof is relegated to Appendix B.13.
39This is a setting with balanced market sides and uniformly distributed gross values.
40Recall best responses were such that traders chose actions equal to their belief of the critical value if this is

individually rational, and are truthful otherwise.
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define Ψε,opt
Φ,F , which consists of all strategy pairs (aB, aS), that are ε-close to price-guessing, which

we denote by (ρB, ρS). In contrast to price-taking which leads to full efficiency, price-guessing can
lead to arbitrary efficiency outcomes.

Theorem 10 (In large markets, depending on the belief system, strategic behavior can lead to any
level of efficiency with heterogeneous fees). Suppose a heterogeneous fee Φ is charged. ∀ε ≥ 0 and
∀ζ ∈ [0, 1], there exist beliefs F and strategies in Ψε,opt

Φ,F , such that the efficiency ratio is (1) equal to
0 ISLM and (2) equal to ζ in infinite markets.

Proof Outline. For (1), suppose that all buyers and all sellers identify the same critical value, that
is ∀tb ∈ T Π∞(tb) = Π∞B and ∀ts ∈ T Π∞(ts) = Π∞S . Suppose that Π∞B < Π∞S and traders act as
price-guessers. For any realization of gross values, no profitable trade is possible and GoT = 0, which
implies the result. For (2), we have that for continuous and strictly increasing strategies in an infinite
market, GoT can be represented as a continuous function G(·) evaluated at Q with G(QΦ) = GoTΦ

and G(0) = 0.41 E = G/GΦ can be represented as the continuous function E(Q) = G(Q)/GΦ with
E(QΦ) = 1 and E(0) = 0. ∀Q ∈ [0, QΦ], we construct strategies in Ψε,opt

Φ,F with this trading volume.
The result follows from the Intermediate Value Theorem.42

Example (Spread fees in an infinite uniform market). Consider an infinite market with type space
T = [1, 2], µtB and µtS the Lebesgue-measures and a symmetric spread fee, that is, φb = φs = φ.
Best responses divide the population into price-guessers choosing actions at the critical value and
price-takers. We suppose all buyers identify the critical value at β ∈ [1, 2], and all sellers at σ ∈ [1, 2].

Case (i) β ≥ 3/2 ≥ σ. The market is fully efficient with Π = 3/2, and Q = 1/2. The fee is strictly
increasing (decreasing) in ρB(ρS). The surplus increases, if traders act more aggressively. Areas (i)
in Fig. 4 illustrate these findings.

Case (ii) β ≥ σ > 3/2 . The market is partially efficient. Π = σ and Q = 2 − σ, which are
independent of β and strictly decreasing in σ. Because demand does not equal supply, tie-breaking
selects sellers with Lebesgue-measure 2− σ from all sellers asking for σ. The loss is increasing in σ,
so more aggressive price-guessing by sellers leads to an efficiency loss. Part of the inefficiency is due
to tie-breaking – see the dotted red lines in the figure. The generated fees depends on β − σ, but are
generated entirely by buyers, as all sellers who trade offered the market price. Therefore, as in case
(i), more aggressive behavior from both market sides leads to lower fees and a higher surplus. Areas
(ii) in Fig. 4 illustrate these findings.

Case (iii) 3/2 > β ≥ σ. This case is analogue to case (ii).
Case (iv) β < σ. Market failure emerges as the highest bid of any buyer is below the lowest

ask of any seller. Areas (iv) in Fig. 4 illustrate these findings.

41This was shown in the proof of Theorem 9.
42The proof is relegated to Appendix B.14.
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Case (i) Case (ii) Case (iii) Case (iv)
Buyer strategy xB(tb) β if tb ≥ β and tb if tb < β

Seller strategy xS(ts) σ if ts ≤ σ and ts if ts > σ

Demand D(P ) 2− P if P ≤ β and 0 if P > β

Supply S(P ) 0 if P < σ and P − 1 if P ≥ σ
Market Price Π 3/2 σ β ∈ (β, σ)

Market Volume Q∗ 1/2 2− σ β − 1 0

Market Excess Ex∗ 0 2σ − 3 3− 2β 0

Max. Gains of Trade GoTid 1/4

Gains of Trade GoT 1/4 3σ−σ2−2
2(σ−1)

3β−β2−2
2(2−β)

0

Fees
φ
(
(2-β)(β-3/2)+ (β-3/2)2

2

+(σ-1)(3/2-σ)+ (3/2-σ)2

2

) φ
(
(2-β)(β-σ)

+ (β-σ)2

2

) φ
(
(1-σ)(β-σ)

+ (β-σ)2

2

) 0

Surplus GoT − Fees GoT − Fees GoT − Fees 0

Loss 0 2σ2-5σ+3
4(σ-1)

2σ2-7β+6
4(2-σ)

1/4

Figure 4: An infinite market with T = [1, 2], R = 1, Lebesgue measures µtB and µtS , symmetric spread
fees – φb = φs = φ – and the strategy profiles corresponding to symmetric price-guessing (β, σ).
Top. Market characteristics. Bottom. Decomposition of the maximum gains of trade GoTid = 1/4
for φ = 0.5 as functions of β and σ into Surplus (green), Fees (blue), and Loss (red). The dotted
red line depicts, how much the green area could increase, if tie-breaking would be replaced by an
instrument choosing the optimal allocation. Left. β = σ varies in [1, 2]. Middle. β = 2 − x and
σ = 1 + x as functions of a single parameter x ∈ [0, 1] and therefore symmetrically varying both β
and σ. Right. β = 1.75 and σ varies in [1, 2].

5 Exogenous market price and aggregate uncertainty

Until now, our analysis was concerned with characterizing how individual behavior and best responses
in large DAs are determined by beliefs about market price. We obtained these results in the DA
context without uncertainty, but several of our core arguments remain valid for other non-DA
mechanisms with aggregate uncertainty. The class of mechanisms that we consider has in common
that individual buyers and sellers believe that what determines whether they are involved in trade is
determined by whether their bids (asks) are above (below) an exogenous critical value Π that we call
market price. When the trader bids or asks exactly the market price, they are involved in trade with
tie-breaking probability p ∈ [0, 1]. Write i ∈ A∗(ai,Π), if trader i is involved in trade with action ai,
given the market price Π. Every trader i who is involved in trade has to pay a fee Φi(ai,Π) that

19



may depend on the market price and on their action, assuming continuity in ai and Π.
In large DAs, the exogeneity of the market price emerged as individual traders had an asymptot-

ically vanishing influence on market outcomes. In this section, we directly assume that individuals
believe to have no direct influence on market prices, as would be the case in many continuum markets
and Vickrey (VCG) mechanisms with rational Bayesian agents, as well as in markets where players
believe to have no influence on the market for bounded rationality reasons.

The market price Π is not assumed to be deterministic and commonly known, but instead
distributed according to a CDF FΠ on [Π,Π] ⊂ R≥0 with Π ≤ Π and corresponding probability
measure PΠ. Every individual trader i has incomplete information regarding the market price
distribution, and believes that it is distributed according to some CDF FΠi. We assume these
distributions have convex support [Πi,Πi] with either Πi < Πi and continuous density function fΠi >

0, or Πi = Πi corresponding to deterministic beliefs. Additionally, traders also hold individual beliefs
about the tie-breaking probability pi ∈ [0, 1] with corresponding probability measure denoted by Pi.
The individual beliefs may be different, wrong and misspecified. Moreover, market participants may be
more or less certain about the market price, which, for some degree δ ≥ 0, we measure by δ-aggregate
uncertainty as follows: given δ ≥ 0, there exists a price Π∗i , such that Pi [Π ∈ [Π∗i − δ,Π∗i + δ] ≥
1− δ.43

In terms of individual trader i’s utility ui(ti, ai,Π) and net values, we follow the definitions from
Section 2.5, again assuming that net values exist with tΦi < ti and that tΦi is in the true and believed
support of the market price.

Homogeneous and heterogeneous fees are now defined as follows: A fee Φi is homogeneous if
Φi(ai,Π) ≡ Φi(Π) is independent of ai, and the functions x 7→ x + Φb(x) and x 7→ x − Φs(x) are
increasing for buyers and sellers. Examples include price and constant fees. The net values are equal
to the unique solutions of tΦb + Φb(t

Φ
b ) = tb and tΦs + Φs(t

Φ
s ) = ts for buyers and sellers respectively

(see Appendix B.16). A fee Φi is heterogeneous if, given the market price Π, it holds that Φi(ai,Π) is
strictly increasing for buyers on [Π,∞), and strictly decreasing for sellers on (−∞,Π] as a function
of the action ai as well as the following condition: For two actions a1

i � a2
i , there exists γ > 0,

such that for all Π ≺ a2
i it holds that Φi(a

1
i ,Π) − Φ(a2

i ,Π) ≥ γ. Spread fees are an example of a
heterogeneous fee.

As in Section 2.5, we assume the fee is profit-permitting, that is ∀ti with tΦi ≺ Π ∃ε > 0 such
that Ei

[
ui
(
ti, t

Φ
i ,Π

)]
≥ ε.

We now analyze best responses (analogous definition to Section 2.6) and efficiency to extend
our results from Section 3 and Section 4. As market prices are exogenous, there are now two
opposing strategic incentives in this model: maximizing the trading probability and minimizing the
fee payments.

For a trader i with gross value ti and action ai, we define—as in Section 2.3—the efficiency ratio
43δ = 0 describes the case of deterministic beliefs, which corresponds to the limit case of our DA model.
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as EΦ = PΠ[i∈A∗(ai,Π)]

PΠ[i∈A∗(tΦi ,Π)]
. EΦ measures the probability of a representative trader being involved in

trade given their action compared to the maximal probability when being truthful.
For homogeneous fees, our results from Theorems 5 and 9 directly extend:

Theorem 11 (For an exogenous market price and homogeneous fees, truthfulness is a best response
and fully efficient). Given δ-uncertainty, suppose a homogeneous fee is charged.

1. For δ > 0, truthfulness is the unique best response, and ε-best responses approximate truthfulness.
Therefore, all responses are fully efficient.

2. For δ = 0, truthfulness is a best response and is fully efficient.

The proof is relegated to Appendix B.17.
For heterogeneous fees, Theorems 7 and 10 also have their natural counterparts. In contrast to

homogeneous fees, beliefs (in particular about tie-breaking) have a non-negligible impact on strategic
incentives.

Theorem 12 (For an exogenous market price and heterogeneous fees best responses approximate
price-guessing, which, dependent on beliefs, leads to any efficiency level). Given δ-uncertainty,
suppose a heterogeneous fee is charged.

1. For δ > 0, there exists a best response that depends on the trader’s beliefs. If tΦi ≺ Π∗i and
δ > 0 is sufficiently small, best responses approximate price-guessing and there exist beliefs
such that the efficiency of best responses is zero.

2. For δ = 0 and tΦi ≺ Π∗i , price-guessing is the unique best response for pi = 1, and, for pi < 1,
there exists no best response and ε-best responses approximate price-guessing. If FΠ has a
continuous density function fΠ > 0 on [Π,Π], then ∀ζ ∈ [0, 1], there exist beliefs, such that the
efficiency of best responses is equal to ζ,

The proof is relegated to Appendix B.18.

6 Conclusion

Large markets, in particular large DAs, have been shown to be asymptotically efficient. However,
much of the preexisting literature on the topic has abstracted away from fees. Our paper brings
the importance of fees to the spotlight—they may fundamentally change incentives. In fact, fee
considerations may become more important in larger markets, not less important, unlike strategic
considerations related to prices. Different fee types—more so than their levels—have drastically
different implications for incentives. In particular, spread fees, or heterogeneous fees more generally,
even if small and charged implicitly, may alter bid/ask behavior and result in substantial market
inefficiency.
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Our results raise several natural empirical questions. What are the cost of strategic fee avoidance
in markets, e.g., those we discussed in the Introduction? Are more experienced, more sophisticated,
more informed traders better at avoiding fees? Charging the right kind and level of fee may have
substantive efficiency and fairness consequences, and is an important question for regulators and
intermediaries (e.g., platforms and brokers).
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A Additional results

A.1 Demand, supply, and market-clearing prices

In Appendix A.1 we clarify how the generalized k-DA chooses the market price. For a detailed
treatment of the k-DA and the proofs of Lemmas 13, 14, and 15 see Jantschgi et al. (2022).

Recall the following notation: For a relationR ∈ {≥, >,=, <,≤}, define BR(P ) = {b ∈ B : tbRP}
and SR(P ) = {s ∈ S : tsRP}.

Definition (Demand and supply functions). The demand and supply functions at price P are
defined as D(P ) = µB(B≥(P )) and S(P ) = µS(S≤(P )), that is, by the mass of all traders who
weakly prefer trading over not trading at price P .

We define a special class of action distributions, which arise in infinite markets, e.g., if they
are interpreted as the limit of finite markets where actions are modelled as independent random
variables. Say that action distributions µaB and µaS are continuous, if they are equivalent to the
Lebesgue-measure on AB and AS and moreover, their densities fB and fS are continuous, that is
µaB(·) =

∫
· fB(x)dx and µaS(·) =

∫
· fS(x)dx for A ⊂ R.

Lemma 13 (Analytic properties of demand and supply functions). The demand function is non-
increasing, left-continuous with right limits. The supply function is non-decreasing, right-continuous
with left limits. It holds that D(P+) = µB(B>(P )) and S(P−) = µS(S<(P )). If action distributions
are continuous, then demand is continuous and decreasing on AB and supply is continuous and
increasing on AS.

The following concept corresponds to prices that equilibrate demand and supply.

Definition ((Strong) market clearing prices). P is a market-clearing price if D(P ) ≥ S(P ) and
D(P+) ≤ S(P ) (type I ) or S(P ) ≥ D(P ) and S(P−) ≤ D(P ) (type II ). P is a strong market-clearing
price if D(P ) = S(P ). Denote the set of all quasi-market-clearing prices by PMC and the set of all
strong market-clearing prices by PSMC .

Using the analytical properties of demand and supply, we can characterize the topology of the
set of (strong) market clearing prices.

Lemma 14 (Topology of PSMC and PMC). The set PSMC is a convex subset of T . Every strong
market-clearing price is a market-clearing price (of type I and II). The set of market-clearing prices
is non-empty, convex and closed. The set PMC \ PSMC has Lebesgue-measure zero. More precisely,
if PSMC 6= ∅, then PMC = PSMC , and if PSMC = ∅, then PMC is a singleton.
If action distributions are continuous, and aS > aB, then there exists a unique strong market clearing
price with positive trading volume and it holds that PSMC = PMC .
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Lastly, in finite markets, the generalized k-DA coincides with the classical DA (Rustichini et al.,
1994), for which an explicit formula for the set of market-clearing prices is given. Let a(m) be the
m’th smallest action in the set of all actions a.

Lemma 15. In finite markets with m buyers and n sellers PMC = [a(m), a(m+1)]. If a(m) 6= a(m+1),
then P ∈ (a(m), a(m+1))⇒ P ∈ PSMC .

A.2 Allocation and Tie-breaking

If the generalized k-DA results in a strong market-clearing price Π, that is D(Π) = S(Π), then no
fair lottery is needed. The allocation is set as B∗ = B≥(Π) and S∗ = S≤(Π), which balances trade,
that is µB(B∗) = µS(S∗). Therefore, the allocation consists of all traders, who weakly prefer trading
over not trading at Π.

Next, suppose that generalized k-DA results in a market clearing price of type I, which is not a
strong market clearing price. Then, D(Π) > S(Π) and D(Π+) ≤ S(Π). Set S∗ = S≤(Π), that is all
sellers who, given their action, weakly prefer trading over not trading are involved in trade. Consider
the set of all buyers who strictly prefer to trade at Π, that is B>(Π). It follows from Theorem 13
that D(Π+) = µB(B>(Π)). Let x = S(Π)−µB(B>(Π)) ≥ 0 and let B̃ be a subset of B=(Π) with µB-
measure equal to x. Such a set exists becauseD(Π) = µB(B≥(Π)) = µB(B>(Π))+µB(B=(Π)) ≥ S(Π)

and D(Π+) = µB(B>(Π)) ≤ S(Π). Set B∗ = B>(Π) ∪ B̃. That is, all buyers who strictly prefer to
trade at Π are involved in trade, together with a subset of traders with bid equal to Π that are
indifferent in order to balance trade.

Finally, if a market clearing price of type II is chosen, the allocation is set in analogy: B∗ = B≥(Π)

and S∗ = S<(Π) ∪ S̃, where S̃ is a subset of S=(Π) that balances trade.
In order to ensure fairness, suppose that B̃ (respectively S̃) are chosen uniformly at random.

That is, they are random compact sets such that for all b ∈ B=(Π) it holds that P[b ∈ B̃] ≡ const
(respectively for all s ∈ S=(Π) it holds that P[s ∈ S̃] ≡ const). This constant is necessarily equal to
const = µB(B̃)/µB(B) (respectively const = µS(S̃)/µS(S)).

A.3 Explicit Formulas

In this section, we derive explicit formulas for some of the concepts introduced in the model in
Section 2 that will be used in subsequent proofs. We will sometimes differentiate between finite
markets with m buyers and n sellers and infinite markets.

Throughout this section, consider a buyer b with gross value tb and bid ab, and a seller s with
gross value ts and ask as. Let a denote an action distribution. Recall that in a finite market, a(k)

denotes the k’th smallest element in the set of all taken actions.
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A.3.1 Involvement in trade

Finite markets If ab < a
(m)
-b , then it is strictly smaller than the m+ 1’st smallest element in the

set of all actions a and buyer b is not involved in trade, because their bid is below the market price.
If ab > a

(m)
-b , then it is at least the m+ 1’st largest element and therefore sufficient to be involved in

trade. If ab = a
(m)
-b , then the buyer might be subject to tie-breaking.

If as > a
(m)
-s , then it is at least the m+ 1’st smallest element in the set of all actions and seller

s is not involved in trade, because his ask was above the market price. If as < a
(m)
-s , then it is at

most the m’th smallest action and therefore sufficient to be involved in trade. If as = a
(m)
-s s, then

the seller might be subject to tie-breaking.

Infinite Markets If there exists no demand excess, then a buyer is involved in trade, if ab ≥ Π(a).
If ab < Π(a), then the buyer is not involved in trade. If there exists demand excess, it is generated
by bids at Π(a). If ab > Π(a), then the buyer is involved in trade. If ab = Π(a), then the buyer
might be subject to tie-breaking.

If there exists no supply excess, then the seller is involved in trade, if as ≤ Π(a). If as > Π(a),
then the seller is not involved in trade. If there exists supply excess, it is generated by asks at Π(a).
If as < Π(a), then the seller is involved in trade. If as = Π(a), then the seller might be subject to
tie-breaking.

Given these considerations, we can now express the probability of trade, given the beliefs of a
trader.

A.3.2 Trading probabilities given beliefs

Finite Markets Given the belief that actions are random variables with continuous distribution,
tie-breaking is a probability zero event in finite markets. It follows from Appendix A.3.1 that

Pa-b [b ∈ B∗(ab, a-b)] = Pa-b

[
ab ≥ a

(m)
-b

]
and Pa-s [s ∈ S∗(as, a-s)] = Pa-s

[
as ≤ a(m)

-s

]
. (3)

In section Appendix A.5, explicit formulas for such probabilities are derived in a more general context
(see Equations (28) and (29).

Infinite Markets If there exists no excess demand at Π, then it holds that

Pa-b [b ∈ B∗(ab, a-b)] =

1 ab ≥ Π(a)

0 else
. (4)
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Suppose that there is strictly positive excess demand. That is µB(B≥(Π(a))) = Q(a) + x and
µB(B>(Π(a))) = Q(a)− y for x > 0 and y ≥ 0, see Appendix A.2. It holds that

Pa-b [b ∈ B∗(ab, a-b)] =


1 ab > Π(a)

y
x+y ab = Π(a)

0 else

. (5)

If there exists no excess supply, then it holds that

Pa-s [s ∈ S∗(as, a-s)] =

1 as ≤ Π(a)

0 else
. (6)

Suppose that there is strictly positive excess supply. Then µS(S≤(Π(a))) = Q(a)+x µS(S<(Π(a))) =

Q(a)− y for x > 0 and y ≥ 0. It holds that

Pa-s [s ∈ S∗(as, a-s)] =


1 as < Π(a)

y
x+y as = Π(a)

0 else

. (7)

Note that in the presence of strictly positive market excess, traders believe that if they are
involved in tie-breaking in an infinite market, they have a fair chance of being involved in trade.

A.3.3 Market Price

Finite markets Recall that by Theorem 15, it holds that Π(a) = ka(m)+(1−k)a(m+1). Interpreting
the market price as a function of a single action yields that

Π (ab, a-b) =

(1-k)a
(m)
-b +kab if a(m)

-b ≤ab≤a
(m+1)
-b

(1-k)a
(m)
-b +ka(m+1)

-b else
(8)

Π (as, a-s) =

(1-k)as+ka
(m)
-s if a(m-1)

-s ≤as≤a(m)
-s

(1-k)a
(m-1)
-s +ka(m)

-s else
. (9)

Note that Π (ab, a-b) depends only on a
(m)
-b and a

(m+1)
-b and Π (as, a-s) depends only on a

(m-1)
-s

and a
(m)
-s . In some proofs, this dependence will be of importance and we will for example write

Π
(
ab, a

(m)
-b , a

(m+1)
-b

)
instead of Π (ab, a-b)).

In addition, for a trader i, we will in some proofs consider Π̃ (ai, a-i), which is equal market price,
if the trader is involved in trade, but zero otherwise.
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Infinite Markets In an infinite market, a single trader cannot influence the market price. It
therefore holds for a trader i and for all actions ai and a′i that Π(ai, a-i) = Π(a′i, a-i). By abuse of
notation, we will in some proofs write Π(a-i).

A.3.4 Utility Functions

For a buyer the utility of being involved in trade is equal to the difference between their gross value
and the market price minus the additional fee:

ub (tb, ab, a-b)) =

tb-Π (ab, a-b) -Φb (ab, a-b) b ∈ B∗

0 else
(10)

For a seller the utility of being involved in trade is equal to the difference between the market price
and their gross value minus the additional fee:

us (ts, as, a-s)) =

Π (as, a-s) -ts-Φs (as, a-s) s ∈ S∗

0 else
(11)

A.3.5 Expected Utilities

Finite Markets Let µb (a-b) denote the distribution of a-b according to the beliefs of trader b. It
holds that

E-b [ub(tb, ab, a-b)] =∫
{ab≥a(m)

-b }

(tb-Π (ab, a-b) -Φb (ab, a-b)) dµb (a-b) =

tb · P-b[b ∈ B∗(ab, a-b)]−
∫

[aS,b,aS,b]
2

Π̃
(
ab, a

(m)
-b , a

(m+1)
-b

)
dµb(a

(m)
-b , a

(m+1)
-b )− E-b [Φb(ab, a-b)]

(12)

Note that both a(m)
-b and have support in [aS,b, aS,b]. That is because a-b consists of m− 1 bids and

n asks. So there must be at least one ask below or equal to a(m)
-b .

Let µs (a-s) denote the distribution of a-s according to the beliefs of a seller s. It holds that

E-s [us(ts, as, a-s)] =∫
{as≤a(m)

-s }

(Π (as, a-s) -ts − Φs (as, a-s)) dµs (a-s) =

∫
[aB,s,aB,s]

2

Π̃
(
as, a

(m-1)
-s , a(m)

-s

)
dµs(a

(m-1)
-s , a(m)

-s )− ts · P-s[s ∈ S∗(as, a-s)]− E-s [Φs(as, a-s)] .

(13)

Note that both a(m)
-s and have support in [aB,s, aB,s].

29



Infinite Markets. The expectation is only concerned with uniform rationing, as both the market
price and the fee are deterministic. Therefore,

E-b [ub(tb, ab, a-b)] = (tb −Π(ab, a-b)− Φb(ab, a-b))P-b [b ∈ B∗(ab, a-b)] (14)

and
E-s [us(ts, as, a-s)] = (Π(as, a-s)− ts − Φs(as, a-s))P-s [s ∈ S∗(as, a-s)] . (15)

Difference in expected utility for two actions a1
i and a2

i in finite markets In multiple
proofs, we will estimate the difference in expected utility in finite markets for two actions a1

i and a2
i .

The following Lemma yields and upper bound:

Lemma 16. For two bids a1
b > a2

b and for two asks a1
s < a2

s it holds that

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
≤

tb
(
P-b
[
b ∈ B∗(a1

b , a-b)
]
− P-b

[
b ∈ B∗(a2

b , a-b)
])
−
(
E-b
[
Φb
(
a1
b , a-b

)]
− E-b

[
Φb
(
a2
b , a-b

)])
.

(16)

E-s
[
us
(
ts, a

1
s, a-s

)]
− E-s

[
us
(
ts, a

2
s, a-s

)]
≤ 2aB,s (1− P-s [s ∈ S∗(as, a-s)])− ts

(
P-s
[
s ∈ S∗(a1

s, a-s)
]
− P-s

[
s ∈ S∗(a2

s, a-s)
])

−
(
E-s
[
Φs
(
a1
s, a-s

)]
− E-s

[
Φs
(
a2
s, a-s

)])
.

(17)

The proof of this Lemma is relegated to Appendix B.15.

A.4 Strategic incentives for price and spread fees

This section contains a detailed discussion of the opposing strategic incentives for the two main
examples of price and spread fees in finite markets: (i) Utility when trading versus (ii) probability of
trading.44

Recall that a trader i believes that actions are distributed in intervals AB,i = [aB,i, aB,i] and
AS,i = [aS,i, aB,i] with the assumption that aS,i ≥ aB,i > tΦi > aS,i ≥ aB,i.

Consider a buyer b with action ab. We can neglect the analysis of ab > aB,b and ab < aS,b. For
the first, such an action is by assumption not individually rational and strictly dominated by tΦb . For
the second, any action below aS,b has probability of trade equal to 0, because no seller is believed to
submit an action below it. Therefore, the expected utility at such a bid is equal to 0.

We therefore consider ab ∈ [aS,b, aB,b].
Recall that by Appendix A.3, the market price depends only on ab, a

(m)
-b and a(m+1)

-b . For ease of
notation, let y = a

(m)
-b and z = a

(m+1)
-b and denote by e(y, z) the joint density of y and z given the

beliefs of buyer b.
44The following section is closely related to methods used in Rustichini et al. (1994) to analyze strategic incentives

in DAs without fees.
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Price fees The expected utility of a buyer is of the form

E-b [ub(tb, ab, a-b)] =

aS,i∫
ab

ab∫
aS,b

(tb − (1 + φb) (kab + (1− k) y)) e(y, z)dydz+

ab∫
aS,b

z∫
aS,b

(tb − (1 + φb) (kz + (1− k) y)) e(y, z)dydz.

(18)

The expected utility is continuously differentiable as a function of ab over the interval [aS,b, aS,b].
Straightforward computation using Leibniz’s rule for differentiation under the integral sign yields

dE-b [ub(tb, ab, a-b)]

dab
= (tb − (1 + φb) ab) fy(ab)− (1 + φb) kP-b [y ≤ ab ≤ z] , (19)

where fy(ab) denotes the density function of y. If ab ∈ (aS,b, aS,b) maximizes the expected utility,
then the first order condition

dE-b [ub(tb, ab, a-b)]

dab
= 0, (20)

holds. fy(ab) is equal to dP-b[y≤ab]
dab

. A formula for P-b[y ≤ ab] is stated in Appendix A.5. Therefore,
we can explicitly state the first order condition in terms of distribution and density functions, see
Equation (24) below.

The first order condition for a seller can be derived in analogy, see Equation (25) below.

Spread fees The expected utility of a buyer is of the form

E-b [ub(tb, ab, a-b] =

aS,b∫
ab

ab∫
aS,b

(tb − φbab − (1− φb) (kab + (1− k) y)) e(y, z)dydz+

ab∫
aS,b

z∫
aS,b

(tb − φbab − (1− φb) (kz + (1− k) y)) e(y, z)dydz.

(21)

The expected utility is continuously differentiable as a function of ab over the interval [aS,b, aS,b].
Straightforward computation using Leibniz’s rule for differentiation under the integral sign yields

dE-b [ub(tb, ab, a-b]

dab
= (tb − ab) fy(ab)− φbP-b [y ≤ ab]− (1− φb) kP-b [y ≤ ab ≤ x] . (22)

where fy(ab) denotes the density function of y. If ab ∈ (aS,b, aS,b) maximizes the expected utility,
then the first order condition

dE-b [ub(tb, ab, a-b)]

dab
= 0, (23)
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holds. fy(ab) is equal to dP-b[y≤ab]
dab

. A formula for P-b[y ≤ ab] is stated in Appendix A.5. Therefore,
we can explicitly state the first order condition in terms of distribution and density functions, see
Equation (24) below.

The first order condition for a seller can be derived in analogy, see Equation (25) below.

First Order Conditions To explicitly state the first order conditions, we introduce additional
notation:

Define ai,j as an action distribution for i buyers and j sellers. In this notation, a as defined in
Section 2 corresponds to am,n and for any buyer b and seller s, a-b and a-s correspond to am−1,n and
am,n−1. Denote again by a(l)

i,j its l’th smallest element.

We say that an action ab satisfies the buyer’s first order condition for gross value tb if

(tb- (1+φb) ab)

(tb-ab)

·
(
nP-b

[
a

(m-1)
m-1,n-1≤ab≤a

(m)
m-1,n-1

]
fS,b(ab)+ (m-1)P-b

[
a

(m-1)
m-2,n≤ab≤a

(m)
m-2,n

]
fB,b(ab)

)
=


(1 + φb) kP-b

[
a

(m)
m-1,n-1 ≤ ab ≤ a

(m+1)
m-1,n

]
for price fees

φbP-b

[
a

(m)
m,n-1 ≤ ab

]
+ (1-φb) kP-b

[
a

(m)
m-1,n ≤ ab ≤ a

(m+1)
m-1,n

]
for spread fees

.

(24)

We say that an action as satisfies the seller’s first order condition for gross value ts if

((1-φs) as-ts)

(as-ts)

·
(

(n-1)P-s

[
a

(m-1)
m,n-2≤as≤a

(m)
m,n-2

]
fS,s(a)+mP-s

[
a

(m-1)
m-1,n-1≤as≤a

(m)
m-1,n-1

]
fB,s(a)

)
=


(1-φs) (1-k)P-s

[
a

(m-1)
m,n-1 ≤ as ≤ a

(m)
m,n-1

]
for price fees

φsP-s

[
a

(m)
m,n-1 ≥ as

]
+ (1-φs) (1-k)P-s

[
a

(m-1)
m,n-1 ≤ as ≤ a

(m)
m,n-1

]
for spread fees

.

(25)

Interpretation of a buyer’s first order condition Despite the extensive and complex form of
the condition, it has a natural interpretation: It balances between increasing the probability of trade
versus increasing the utility when trading. In particular, an incremental increase ∆ab in a buyer’s
bid has two opposing impacts: If the bid ab does not include the buyer amongst those who trade,
then by increasing it to ab + ∆ab, the buyer may surpass other bids and asks and be involved in
trade. If the bid ab is sufficient to include the buyer in trade, then increasing their bid by ∆ab leads
to the following effects, depending on the fee structure: For a price fee it may increase the fee by
k(1 + φb)∆ab through a change in the market price. For a spread fee it may simply increase the part
of the charged fee depending on the market price by k(1− φb)∆ab through the price setting rule
and it directly increases the part of the charged fee depending on ab by φb∆ab. In Equation (24)
the sum in brackets times ∆ab is the probability that the buyer enters the set of buyers who trade
as he incrementally raises his bid by ∆ab. The first term in the sum is the marginal probability
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of acquiring an item by passing a seller’s offer and the second term is the marginal probability of
acquiring an item by passing another buyer’s bid. For a price fee the profit from such a trade is
between tb− (1 +φb)ab and tb− (1 +φb)ab− (1 +φb)∆ab. Therefore the marginal expected profit for
a buyer who raises their bid is tb− (1 +φb)ab times the term in the brackets. In analogy, for a spread
fee the marginal expected profit for a buyer who raises their bid is tb − φbab times the term in the
brackets. On the contrary, P-b

[
a

(m)
m-1,n ≤ ab ≤ a

(m+1)
m-1,n

]
is the probability that a buyer who increases

their bid by ∆ab increases the market price by k(1 + φb)∆ab for a price fee and by k(1− φb)∆ab
for a spread fee. Additionally, for a spread fee P-b

[
a

(m)
m-1,n ≤ ab

]
is the probability that a buyer who

increases their bid by ∆ab increases the part of the charged fee depending on their bid by φb∆ab.
Therefore the right hand side in both Equation (24) correspond to a buyer’s marginal expected loss
from increasing his bid above ab.

A.5 Probabilities in the first order conditions

In this section we derive explicit formulas for the probabilities arising in the first order conditions in
Equations (24) and (25), that are also used in the proof of Theorem 6 in Appendix B.10.
Instead of deriving expressions for all different probabilities, note that for general n,m, l all of them can
be expressed as one of the following three probabilities for different l,m, n: (i) P-i

[
a

(l)
m,n≤ai≤a(l+1)

m,n

]
,

(ii) P-i

[
a

(l)
m,n ≤ ai

]
and (iii) P-i

[
a

(l)
m,n ≥ ai

]
.

For (i) that is the probability that action ai lies between the l’th and l + 1’st smallest element
in a set of m bids and n asks. The probability that another buyer submits an action smaller or
equal ai is FB,i(ai). The probability that a buyer submits an action greater or equal ai is therefore
1− FB,i(ai). Replace FB,i by FS,i for sellers. The event that exactly l bids and asks are below ai

can be split up in the following way: Suppose that i buyers and j sellers bid and offer less or equal
than ai. i + j must be equal to l. Assuming that there are m buyers and n sellers in total, this
means that exactly m− i buyers and n− j sellers bid and offer more than ai. Selecting i buyers and
j sellers, the probability that exactly i+ j = l bids and offers are below or equal to ai is

FB,i (ai)
i FS,i (ai)

j (1-FB,i (ai))
m-i (1-FS,i (ai))

n-j , (26)

because the actions of traders are assumed to be independent. There are
(
m
i

)
possibilities to choose i

buyers and
(
n
j

)
possibilities to choose j sellers. Therefore, the total probability that exactly l traders

submit below ai is equal to

P-i

[
a(l)
m,n≤ai≤a(l+1)

m,n

]
=
∑
i+j=l

0≤i≤m
0≤j≤n

(
m

i

)(
n

j

)
FB,i (ai)

i
FS,i (ai)

j
(1-FB,i (ai))

m-i
(1-FS,i (ai))

n-j
. (27)

For (ii), that is the probability that ai is greater than the l’th action. That is, for some k ∈ [l,m+ n] the
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number of offers below ai is exactly equal to k. Summing over k yields that

P-i

[
a(l)
m,n ≤ ai

]
=

n+m∑
k=l

∑
i+j=k
0≤i≤m
0≤j≤n

(
m

i

)(
n

j

)
FB,i (ai)

i
FS,i (ai)

j
(1-FB,i (ai))

m-i
(1-FS,i (ai))

n-j
. (28)

For (iii), note that because distributions are assumed to be atomless, P-i

[
a

(l)
m,n = ai

]
= 0. It therefore holds

that
P-i

[
a(l)
m,n ≥ ai

]
= 1− P-i

[
a(l)
m,n ≤ ai

]
, (29)

which was computed above.

B Proofs.

B.1 Proof that for price fees the net values are tΦb = tb
1+φb

and tΦs = ts
1−φs .

Proof. Consider a buyer with gross value tb. To show that tΦb = tb
1+φb

, it suffices to prove two
statements: (1) If a bid a′b >

tb
1+φb

, then it is dominated by tb
1+φb

and (2) if a′b <
tb

1+φb
, then there

exists a-b such that ub
(
tb,

tb
1+φb

, a-b

)
> ub (tb, a

′
b, a-b). For (1), if a-b is such that both a′b and

tb
1+φb

are not involved in trade, then both have utility equal to zero. If a-b is such that the buyer is
involved in trade at a′b, but not at

tb
1+φb

, then the market price is greater or equal to tb
1+φb

. It follows
that ub (tb, a

′
b, a-b) = tb − (1 + φb) Π (ab, a-b) ≤ tb − (1 + φb)

tb
1+φb

= 0. If a-b is such that the buyer is
involved in trade with both bids, then it follows that

ub
(
tb, a

′
b, a-b

)
= tb − (1 + φb) Π

(
a′b, a-b

)
≤

tb − (1 + φb) Π

(
tb

1 + φb
, a-b

)
= ub

(
tb,

tb
1 + φb

, a-b

)
,

(30)

because Π (·, a-b) is non-decreasing, if a trader is involved in trade at the bid. For (2), consider
a′b <

tb
1+φb

. Consider a-b, such that a buyer is involved in trade at bid tb
1+φb

but not with a′b and it

holds that Π
(

tb
1+φb

, a-b

)
< tb

1+φb
. This yields

ub

(
tb,

tb
1 + φb

, a-b

)
= tb − (1 + φb) Π

(
tb

1 + φb
, a-b

)
> tb − (1 + φb)

tb
1 + φb

= 0. (31)

The statement for sellers is proven in analogy.

B.2 Proof that for spread fees the net values are tΦb = tb and tΦs = ts.

Proof. Consider a buyer with gross value tb. To show that tΦb = tb, it suffices to prove two statements:
(1) If a bid a′b > tb, then it is dominated by tb and (2) if a′b < tb, there exists a-b such that
ub (tb, tb, a-b) > ub (tb, a

′
b, a-b) holds. For (1), if a-b is such that at both bids a′b and tb the buyer is
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not involved in trade, then both have utility equal to zero. If a-b is such that the buyer is involved
in trade at a′b, but not at tb, then the market price is greater or equal to tb. It follows that

ub
(
tb, a

′
b, a-b

)
= tb −Π

(
a′b, a-b

)
− φb|a′b −Π

(
a′b, a-b

)
| ≤ tb − tb = 0. (32)

If a-b is such that the buyer is involved in trade with both bids, then it follows that

ub
(
tb, a

′
b, a-b

)
= tb −Π

(
a′b, a-b

)
− φb|a′b −Π

(
a′b, a-b

)
| ≤

tb −Π (tb, a-b)− φb|a′b −Π (tb, a-b) |ub (tb, tb, a-b) ,
(33)

because Π (·, a-b) is increasing, if a trader is involved in trade at the bid. For (2), consider a′b < tb.
Consider a-b, such that a buyer is involved in trade at bid tb but not with a′b and it holds that
Π (tb, a-b) < tb. This yields

ub (tb, tb, a-b) = tb −Π (tb, a-b)− φb|a′b −Π (tb, a-b) | > tb − tb = 0. (34)

The statement for sellers is proven in analogy.

B.3 Proof that for constant fees the net values are tΦb = tb − cb and tΦs = ts + cs.

Proof. Consider a buyer with gross value tb. To show that tΦb = tb − cb, it suffices to prove two
statements: (1) If a bid a′b > tb − cb, then it is dominated by tb − cb and (2) if a′b < tb − cb, there
exists a-b such that ub (tb, tb − cb, a-b) > ub (tb, a

′
b, a-b) holds. For (1), if a-b is such that both a′b and

tb − cb are not involved in trade, then both have utility equal to zero. If a-b is such that the buyer is
involved in trade at a′b, but not at tb − cb, then the market price is greater or equal to tb − cb. It
follows that ub (tb, a

′
b, a-b) = tb − Φb (ab, a-b) − cb ≤ tb − (tb − cb) − cb = 0. If a-b is such that the

buyer is involved in trade with both bids, then it follows that

ub (tb, ab, a-b) = tb − Φb (ab, a-b)− cb ≤

tb − Φb (tb − cb, a-b)− cb = ub (tb, tb − cb, a-b) ,
(35)

because Φb (·, a-b) is non-decreasing, if a trader is involved in trade at the bid. For (2), consider
a′b < tb − cb. Consider a-b, such that a buyer is involved in trade at bid tb − cb but not with a′b and
it holds that Π (tb − cb, a-b) < tb − cb. This yields

ub (tb, tb − cb, a-b) = tb −Π (tb − cb, a-b)− cb > tb − (tb − cb)− cb = 0. (36)

The statement for sellers is proven in analogy.
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B.4 Proof that the critical value Π∞i exists and is unique.

Proof. At the point aS,i, it holds that FB,i(aS,i) < 1. That is because FB,i has a strictly positive
density fB,i on [aB,i, aB,i] and aS,i < aB,i by assumption. Second, it holds that FS,i(aS,i) = 0,
because the corresponding density fS,i has support [aS,i, aB,i]. Therefore, at aS,i, it holds that

FB,i(aS,i) +RiFS,i(aS,i) < 1. (37)

A similar argument yields that at the point aB,i, it holds that FB,i(aB,i) = 1 and FS,i(aS,i) > 0.
This implies that

FB,i(aB,i) +RiFS,i(aB,i) > 1. (38)

Because FB,i and FS,i are both continuous, it follows from the Intermediate Value theorem, that
there exists Π∞i ∈ (aS,i, aB,i) with

FB,i(Π
∞
i ) +RiFS,i(Π

∞
i ) = 1. (39)

Because both FB,i and FS,i are strictly monotone on (aS,i, aB,i), the uniqueness of Π∞i follows.

B.5 Proof of Proposition 1

Proof. For this proof, we will consider growing market size with respect to a single parameter. For
trader i, consider a sequence of strictly increasing market sizes (m(l), n(l))l∈N with m(l), n(l) = Θ(l)

and |R− n(l)
m(l) | = O(l−1) for R ∈ (0,∞).45

Consider a buyer b. It follows from Appendix A.3 that P-b [b ∈ B∗(ab, a-b)] = P-b

[
ab ≥ a

m(l)
-b

]
.

This is equal to the probability that at least m(l) actions are below ab in a sample of actions from
m(l)− 1 buyers and n(l) sellers. Let pab = FB,b(ab) ∈ (0, 1) be the probability that another buyer’s
bid is below ab. In analogy, define qab = FS,b(ab) ∈ (0, 1) for sellers. For i > 0 let Xpab

i denote an
independent Bernoulli random variable with parameter pab and for j > 0 let denote an independent
Bernoulli random variable with parameter qab . Define

Sabl =

m(l)−1∑
i=1

X
pab
i +

n(l)∑
j=1

. (40)

Sabl has the same distribution as the number of traders in a sample of m(l) − 1 buyers and n(l)

sellers, whose actions are less or equal than ab. It follows that

P-b [b ∈ B∗(ab, a-b)] = P[Sabl ≥ m(l)] = 1− P[Sabl ≤ m(l)− 1]. (41)

45This means that both market sides are assumed to have linear growth with respect to a single parameter l, such
that neither side of the market dominates the other asymptotically and the ratio of buyers to sellers converges and
fluctuates only slightly in finite markets.
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Next, we will show that a properly normalized version of Sabl converges in distribution to a standard
normal random variable. This follows as an application of the following version of the Berry-Esseen
theorem, see Tyurin (2012):

Theorem 17 (Berry-Esseen). Suppose X1, X2, ... is a sequence of independent random variables
with (i) µi = E[Xi] <∞, (ii) σ2

i = E[(Xi − µi)2] <∞ and

(iii) ρi = E[|Xi − µi|3] <∞. Set rn =
∑n

i=1 ρi, s
2
n =

∑n
i=1 σ

2
i , Fn(x) = P

[∑n
i=1(Xi−µi)√

s2n
≤ x

]
and let

Φ(x) be the distribution function of a standard random variable. There exists a constant C = 0.5591

such that for all x ∈ R
|Fn(x)− Φ(x)| ≤ Crn

s3
n

(42)

In order to apply Theorem 17, we rewrite Sabl as a single sum of random variables and check
all requirements. Define Y pab

i =
∑m(i)−m(i−1)

j=0 X
pab
i,j for i ≤ l − 1 and Y pab

l =
∑m(l)−m(l−1)−1

j=1 X
pab
i,j

with Xpab
i,j independent Bernoulli random variables with parameter pab . In analogy, define Y qab

i =∑n(i)−n(i−1)
j=1 X

qab
i,j for i ≤ l independent Bernoulli random variables with parameter qab and Z

ab
i =

Y
pab
i + Y

qab
i . This yields that in distribution

Sabl
d
=

l∑
i=1

Zabi . (43)

Recall that a Bernoulli random variable with parameter p has expectation p and variance p(1− p).
Using linearity of expectation and, because the random variables are independent, linearity of
variance, it holds for i < l, that the random variables satisfy (i) and (ii) in Theorem 17, i.e.

µi = (m (i)−m (i− 1)) pab + (n (i)− n (i− 1)) qab <∞

σ2
i = (m (i)−m (i− 1)) pab (1− pab) + (n (i)− n (i− 1)) qab(1− qab) <∞.

(44)

For i = l it holds that

µl = (m (l)−m (l − 1)− 1) pab + (n (l)− n (l − 1)) qab <∞

σ2
l = (m (l)−m (l − 1)− 1) pab (1− pab) + (n (l)− n (l − 1)) qab (1− qab) <∞.

(45)

Furthermore, for i < l it holds that

ρi = E

∣∣∣∣∣
m(i)−m(i−1)∑

j=0

X
pab
i,j +

n(i)−n(i−1)∑
j=0

X
qab
i,j − (m (i)−m (i− 1)) pab − (n (i)− n (i− 1)) qab

∣∣∣∣∣
3


≤ ((m (i)−m (i− 1)) (1− pab) + (n (i)− n (i− 1)) (1− qab))
3

≤ K <∞.

(46)

The first inequality in Equation (46) holds, because Xpab
i,j ≤ 1 and Xqab

i,j ≤ 1 almost surely. The
second inequality follows for some finite K > 0 from the assumption supi≥1m(i)−m(i− 1) <∞
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and supi≥1 n(i)− n(i− 1) <∞. In analogy, for i = l it holds that

ρl ≤ K <∞, (47)

which proves that requirement (iii) is fulfilled. Finally, it holds that

s2
l = (m(l)− 1)pab(1− pab) + n(l)qab(1− qab). (48)

Next, define the sequence (Aab(l))l∈N via

Aab(l) =
m (l)− 1− ((m (l)− 1) pab + n (l) qab)√
(m(l)− 1) pab (1− pab) + n(l)qab (1− qab)

=
√
m(l)

(
1− 1

m(l)

)
−
((

1− 1
m(l)

)
pab + n(l)

m(l)

)
qab)√(

1− 1
m(l)

)
pab (1− pab) + n(l)

m(l)qab (1− qab)
.

(49)

Theorem 17 now implies that

|P[≤ m(l)− 1]− Φ(Aab(l))| ≤
Crl
s3
l

≤ CKl(
s2
l

)3/2 = O(l−
1
2 ). (50)

It follows from Equation (49) that |Aab(l)| = Θ(
√
l). We now argue that for ab > Π∞b and sufficiently

large l Aab(l) < 0. This follows, if we show that for sufficiently large l(
1− 1

m(l)

)
−
((

1− 1

m(l)

)
pab +

n(l)

m(l)
qab

)
< 0. (51)

Given that ab is strictly greater than the critical value Π∞b , there exists δ > 0, such that pab +Rqab =

1 + δ. By adding and subtracting Rqab it follows that Equation (51) is equivalent to

1− 1

m(l)
(1− pab)− (1 + δ) + (R− n(l)

m(l)
)qab < 0 (52)

and therefore to
R− n(l)

m(l)
<

1

qab
(δ +

(1− pab)
m(l)

) (53)

Because it is assumed that |R − n(l)
m(l) | = O(1

l ), Equation (51) holds for sufficiently large l. This
implies that Aab(l) = Θ(−

√
l). A standard concentration inequality for a standard Gaussian random

variable Z and x > 0 using the Chernoff bound gives

P |Z| ≥ x] ≤ 2 exp

(
−x2

2

)
(54)
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It follows that
Φ(Aab(l)) = O(e−l). (55)

Equation (50) therefore implies that P[Sabl ≤ m(l)− 1] = O(l−
1
2 ). Recalling Equation (41) finishes

the proof. The statements for ab < Π∞b and for sellers can be proven analogous.

B.6 Proof of Proposition 2

Proof. Consider a buyer b with private type tb.

Finite Markets. As was shown in Equation (12) in Appendix A.3, the expected utility is of the
form

E-b [ub(tb, ab, a-b)] = tb · P-b [b ∈ B∗(ab, a-b)]− E-b [Π(ab, a-b)]− E-b [Φb(ab, a-b)] . (56)

First, we will show that the expected utility is continuous in ab.46 The first summand tb ·
P-b [b ∈ B∗(ab, a-b)] is continuous by Equation (3) in Appendix A.3 and Equation (28). To show
that the expected market price is continuous, consider E-b [Π(a′′b , a-b)]− E-b [Π(a′b, a-b)] for two bids
a′′b ≥ a′b as a

′′
b − a′b approaches zero. The buyer increases the expected market price when raising

their bid if (1) they are involved in trade at a′′b , but not at a
′
b or (2) a

′
b influences the market price.

For (1), the market price is at most a′′b and for (2) the change in market price is at most a′′b − a′b.
This implies that

E-b
[
Π(a′′b , a-b)

]
− E-b

[
Π(a′b, a-b)

]
≤

a′′b
(
P-b
[
b ∈ B∗(a′′b , a-b)

]
− P-b

[
b ∈ B∗(a′b, a-b)

])
+ (a′′b − a′b).

(57)

The continuity of E-b [Π(·, a-b)] therefore follows from the continuity of
P-b [b ∈ B∗(·, a-b)]. To show that the expected fee is continuous, consider again E-b [Φb(a

′′
b , a-b)] −

E-b [Φb(a
′
b, a-b)] for two bids a′′b ≥ a′b as a′′b − a′b approaches zero. The buyer increases their fee

payment when raising their bid if (1) they are involved in trade at a′′b , but not at a
′
b or (2) they are

involved in trade for both bids. For (1), fee the payment is at most some finite number M . This
implies that

E-b
[
Φb(a

′′
b , a-b)

]
− E-b

[
Φb(a

′
b, a-b)

]
≤M

(
P-b
[
(b, a′′b ) ∈ B∗

]
− P-b

[
(b, a′b) ∈ B∗

])
+(

E-b
[
Φb(a

′′
b , a-b)|A∗(a′′b )

]
− E-b

[
Φb(a

′
b, a-b)|A∗(a′b)

]) (58)

The continuity of E-b [Φb(·, a-b)] therefore follows from the continuity of
P-b [b ∈ B∗(·, a-b)] that was proven above and E-b [Φb(·, a-b)|(·)], which was an assumption. Therefore,
the expected utility is indeed continuous.

46The same proof strategy for continuity is used in Williams (1991) for the expected utility in a buyer’s bid DA
without fees in the context of Bayesian Nash equilibria.
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Every bid ab < aS,b results in zero utility, as the buyer is almost surely not involved in trade.
For every bid ab > tΦb , it follows from weak domination ex post that the expected utility for ab is
smaller or equal than for tΦb ≤ tb. If tΦb ≤ aS,b, then tΦb is a best response with expected utility equal
to zero. Otherwise, in order to compute a best response, it is sufficient to consider the interval[
aS,b, t

Φ
b

]
. Because the expected utility is a continuous function on this compact set, it follows from

the Extreme Value theorem that the expected utility attains a maximum. Therefore, a best response
exists.

Infinite Markets. It was shown in Appendix A.3 that the expected utility is of the form

E-b [ub(tb, ab, a-b)] = (tb −Π(ab, a-b)− Φb(ab, a-b)) · P-b [b ∈ B∗(ab, a-b)] . (59)

In an infinite market, the market price Π(ab, a-b) and the fee Φb(ab, a-b) are deterministic. The
assumption that the conditional expected fee is continuous is therefore equivalent to the assumption
that Φb(ab, a-b) is continuous in the action ab. By Appendix A.3 the assumption, that there is no
tie-breaking implies that

P-b [b ∈ B∗(ab, a-b)] =

1 ab ≥ Π(a)

0 else
. (60)

If tΦb < Π(a), then buyer b has no undominated action with positive probability of trade. Therefore tΦb
is a best response with expected utility equal to zero. If tΦb = Π(a), then the only undominated action
with positive probability of trade is tΦb . If this results in a strictly positive utility, then it is a best
response. If not, then any bid below Π(a) is a best response. Therefore, consider the case tΦb > Π(a).
If there is no tie-breaking, then the trading probability is constant and equal to 1 on the compact
set [Π(a), tΦb ]. Note that any bid above tΦb is not a best response by weak domination. By similar
arguments as before, the expected utility on this interval is equal to (tb −Π(ab, a-b)− Φb(ab, a-b))

and therefore a continuous function. The Extreme Value theorem implies again that the maximum
is attained and a best response exists. The statement for sellers can be proven analogous.

B.7 Proof of Proposition 3

Proof. Consider a buyer b with gross value tb, such that tΦb < Π∞b . A best response ab with ab ≤ tΦb
must exist. That is because if there is a best response ab with ab > tΦb , then by weak domination of
the net value, the expected utilities must be equal, proving that tΦb is a best response as well. By
the monotonicity of the trading probability, it then holds that

P-b [b ∈ B∗(ab, a-b)] ≤ P-b
[
b ∈ B∗(tΦb , a-b)

]
(61)
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For all γ > 0, it holds by Theorem 1 ISLMthat P-b
[
b ∈ B∗(tΦb , a-b)

]
≤ γ. The expected utility is

upper bounded by neglecting the payment of market price and fee, that is the gross value times the
probability of trade:

E-b [ub(tb, ab, a-b)] ≤ tbγ. (62)

Choose γ ≤ ε
tb
. This implies that ISLM , the expected utility of a best response is upper bounded by

ε. The expected utility of truthfulness is non-negative by assumption. This implies that truthfulness
is an ε-best response. The statement for sellers can be proven analogous.

B.8 Proof of Theorem 4

Proof. Consider a buyer b and two actions a1
b > a2

b > Π∞b that lead to asymptotically different fee
payments. We will prove ISLM that a buyer can improve his expected utility when switching from
action a1

b to a2
b . This in turn implies that best responses for two buyers with different gross values

must lead to asymptotically equal fee payments. Otherwise, there is a buyer with a certain gross
value, who has an incentive to switch ISLM to increase their expected utility.

By assumption, there exists ε > 0 such that ISLM almost surely

E-b
[
Φb(a

1
b , a-b)|A∗

(
b, a1

b

)]
− E-i

[
Φb(a

2
b , a-b)|A∗

(
b, a2

b

)]
≥ ε. (63)

We will show that ISLM a1
b cannot be a best response. Assume that it was a best response for

some gross value tb. The expected utility E-b
[
ub
(
tb, a

1
b , a-b

)]
is greater or equal than 0, otherwise it

is trivially not a best response. We will prove that ISLM

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
< 0, (64)

which proves that a1
b is not a best response, because a2

b increases the expected utility.
Using the law of total expectation, the expected fee difference can be lower bounded by

E-b
[
Φb
(
a1
b , a-b

)]
− E-b

[
Φb
(
a2
b , a-b

)]
= E-b

[
Φb(a

1
b , a-b)|A∗

(
b, a1

b

)]
P-b
[
b ∈ B∗(a1

b , a-b)
]
− E-b

[
Φb(a

2
b , a-b)|A∗

(
b, a2

b

)]
P-b
[
b ∈ B∗(a2

b , a-b)
]

≥ P-b
[
b ∈ B∗(a2

b , a-b)
] (

E-b
[
Φb(a

1
b , a-b)|A∗

(
b, a1

b

)]
− E-b

[
Φb(ab, a-b)|A∗

(
b, a2

b

)]) (65)

The inequality from the last line follows by the monotonicity of the trading probability, which imples

P-b
[
b ∈ B∗(a1

b , a-b)
]
≥ P-b

[
b ∈ B∗(a2

b , a-b)
]
. (66)

It follows from Theorem 1 that for every γ it holds ISLM that
P-b
[
b ∈ B∗(a2

b , a-b)
]
≥ 1− γ holds. Combining this with the assumption of asymptotically different

fee payments yields that ISLM

E-b
[
Φb

(
a1
b , a-b

)]
− E-b

[
Φb

(
a2
b , a-b

)]
≥ (1− γ)ε. (67)
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Using Equation (16) in Theorem 16 it holds ISLM that

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
≤ tbγ − (1− γ)ε. (68)

If we now choose γ < ε
tb+ε

, the difference in expected utility is strictly negative. The statement for
sellers can be proven analogous.

B.9 Proof of Theorem 5

Proof. Consider a buyer b with gross value tb, such that the best response ab is uniformly bounded
away from the critical value. That is there exists δ > 0, such that ISLM either (i) ab ≤ Π∞b − δ or
(ii) ab ≥ Π∞b + δ. It suffices to prove that for every ε > 0 it holds ISLM that

E-b
[
ub(tb, t

Φ
b , a-b)

]
− E-b [ub(tb, ab, a-b)] ≥ −ε, (69)

which implies that truthfulness is an ε-best response. If it holds that tΦb ≤ ab, it holds that

E-b
[
ub(tb, t

Φ
b , a-b)

]
= E-b [ub(tb, ab, a-b)] , (70)

because tΦb weakly dominates every larger bid and since ab is a best response, the expected utilities
must be equal. Therefore, assume that tΦb > ab.

If (i) holds, then Theorem 1 implies that for all γ > 0

P-b [b ∈ B∗(ab, a-b)] ≤ γ holds ISLM . If γ < ε
tb

it follows that

E-b [ub(tb, ab, a-b)] ≤ tbγ ≤ ε. (71)

By assumption it also holds that

E-b
[
ub(tb, t

Φ
b , a-b)

]
≥ 0. (72)

Combining Equation (71) and Equation (72) yields Equation (69).
If (ii) holds, then

E-b
[
ub(tb, t

Φ
b , a-b)

]
− E-b [ub(tb, ab, a-b)] ≥

tΦb
(
P-b
[
b ∈ B∗(tΦb , a-b)

]
− P-b [b ∈ B∗(ab, a-b)]

)
−
(
E-b
[
Π(tΦb , a-b)

]
− E-b [Π(ab, a-b)]

)
−
(
E-b
[
Φb(t

Φ
b , a-b)

]
− E-b [Φb(ab, a-b)]

)
,

(73)

because by assumption tΦb ≤ tb. It follows from Theorem 6 that for a DA without fees for every
ε1 > 0 truthfulness is an ε1-best response ISLM . Assume that a buyer has gross value equal to tΦb .
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It therefore holds ISLM that for any other bid, i.e. also the best response ab for gross value tb

tΦb
(
P-b
[
b ∈ B∗(tΦb , a-b)

]
− P-b [b ∈ B∗(ab, a-b)]

)
−
(
E-b
[
Π(tΦb , a-b)

]
−

E-b [Π(ab, a-b)] ≥ −ε1.
(74)

Using the law of total expectation, the expected fee difference in Equation (74) is equal to

E-b

[
Φb(t

Φ
b , a-b)

]
− E-b [Φb(ab, a-b)]

= E-b

[
Φb(t

Φ
b , a-b)|A∗

(
b, tΦb

)]
P-b

[
b ∈ B∗(tΦb , a-b)

]
−

E-b [Φb(ab, a-b)|A∗ (b, ab)]P-b [b ∈ B∗(ab, a-b)] .

(75)

Because both actions are by assumption greater or equal than Π∞b + δ, for every γ > 0 it holds
ISLM that P-b

[
b ∈ B∗(tΦb , a-b)

]
,P-b [b ∈ B∗(ab, a-b)] ≥ 1− γ. It therefore holds that

P-b
[
b ∈ B∗(tΦb , a-b)

]
− P-b

[
b ∈ B∗(tΦb , a-b)

]
≤ γ. (76)

This implies that ISLM

E-b
[
Φb(t

Φ
b , a-b)

]
− E-b [Φb(ab, a-b)] ≤

P-b [b ∈ B∗(ab, a-b)]
(
E-b
[
Φb(t

Φ
b , a-b)|A∗

(
b, tΦb

)]
− E-b [Φb(ab, a-b)|A∗ (b, ab)]

)
+

γE-b
[
Φb(t

Φ
b , a-b)|A∗

(
b, tΦb

)]
.

(77)

Homogeneity implies that for every ε2 > 0 the first term in Equation (77) is less or equal than ε2
ISLM and for every ε3 > 0 the second term can be chosen to be less or equal than ε3 ISLM by
choosing γ ≤ ε3

E-b[Φb(tΦb ,a-b)|A∗(b,tΦb )]
. If ε1, ε2 and ε3 are chosen such that their sum is less or equal

than ε, plugging Equation (74) and Equation (77) in yields that ISLM

E-b
[
ub(tb, t

Φ
b , a-b)

]
− E-b [ub(tb, ab, a-b)] ≥ −(ε1 + ε2 + ε3) ≥ −ε, (78)

which finishes the proof. The statement for sellers can be proven analogous.

B.10 Proof of Theorem 6

Proof. Consider a buyer b with private type tb.

Existence of a best response. The proof of the existence of a best response is closely related to
the proof of Theorem 2. Because the fee is a percentage of the market price, the expected fee is
a percentage of the expected market price, which is shown to be continuous in ai in the proof of
Theorem 2 in Appendix B.6. Therefore, the expected utility continuous in ai and the existence of a
best response again follows again from the Extreme Value theorem as in Appendix B.6.
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Best responses are close to truthfulness We will show that there exists a constant κ > 0,
such that

tb − (1 + φb) ab ≤ κq(n,m), (79)

with q(m,n) = max
{

1
n

(
1 + m

n

)
, 1
m

(
1 + n

m

)}
= O(max(m,n)−1), from which the statement follows.

It was proven in Appendix A.4, that a best response ab necessarily satisfies the first order condition
in Equation (24), which implies the following bound:

tb − (1 + φb) ab ≤
(1 + φb) kP-b

[
a

(m)
m−1,n ≤ ab ≤ a

(m+1)
m−1,n

]
(m− 1)P-b

[
a

(m−1)
m−2,n ≤ ab ≤ a

(m)
m−2,n

]
fB,b(ab)

. (80)

It can be proven analogous to Rustichini et al. (1994, Appendix) that

P-b

[
a

(m)
m−1,n ≤ ab ≤ a

(m+1)
m−1,n

]
P-b

[
a

(m−1)
m−2,n ≤ ab ≤ a

(m)
m−2,n

] ≤ 2

[
FB,b(ab) +

n

m

(1− FB,b(ab))FS,b(ab)
1− FS,b(ab)

]
. (81)

Defining

τb ≡ 2 max
x∈[aS,b,aB,b]

{
FB,b(x)

fB,b(x)
,
(1− FB,b(x))FS,b(x)

fB,b(x) (1− FS,b(x))

}
(82)

yields that

tb − (1 + φb) ab ≤
τbk (1 + φb)

m− 1

[
1 +

n

m

]
. (83)

To obtain the bounds in the theorem, note that n
n−1 and m

m+1 are both less than 2. Setting κ ≡ 2τbk

proves the statement for buyers. For a seller s with private type ts an analogous argument yields

(1− φs) as − ts ≤
τs(1-k)(1− φs))

n− 1

[
1 +

m

n

]
(84)

for τs with

τs ≡ 2 max

{
1− FS,s(x)

fS,s(x)
,
(1− FB,s(x))FS,s(x)

fS,s(x)FB,s(x)

}
. (85)

Truthfulness is an ε-best response We start by estimating the difference in utility when a
buyer switches from a bid a1

b to a smaller bid a2
b , i.e. E-b

[
ub(tb, a

1
b , a-b)

]
− E-b

[
ub(tb, a

2
b , a-b)

]
. The

expected utility is not dependent on the entirety of a-b, but only on a(m)
-b and a(m+1)

-b . We consider
all six possible cases for the realizations of a(m)

-b and a(m+1)
-b with respect to a1

b > a2
b .
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ub(tb, a
1
b , a-b) ub(tb, a

2
b , a-b)

I a1
b ≥ a

2
b ≥ a

(m+1)
-b ≥ a(m)

-b tb-(1+φb)
(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
tb-(1+φb)

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
II a1

b ≥ a
(m+1)
-b ≥ a2

b ≥ a
(m)
-b tb-(1+φb)

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
tb-(1+φb)

(
ka2
b+(1-k)a

(m)
-b

)
III a1

b ≥ a
(m+1)
-b ≥ a(m)

-b ≥ a2
b tb-(1+φb)

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
0

IV a
(m+1)
-b ≥ a1

b ≥ a
2
b ≥ a

(m)
-b tb-(1+φb)

(
ka1
b+(1-k)a

(m)
-b

)
tb-(1+φb)

(
ka2
b+(1-k)a

(m)
-b

)
V a

(m+1)
-b ≥ a1

b ≥ a
(m)
-b ≥ a2

b tb-(1+φb)
(
ka1
b+(1-k)a

(m)
-b

)
0

VI a
(m+1)
-b ≥ a(m)

-b ≥ a1
b ≥ a

2
b 0 0

Analogous, we consider the difference in utilities:

ub(tb, a
1
b , a-b)− ub(tb, a2

b , a-b)

I a1
b ≥ a2

b ≥ a
(m+1)
-b ≥ a(m)

-b 0

II a1
b ≥ a

(m+1)
-b ≥ a2

b ≥ a
(m)
-b -k(1+φb)

(
a

(m+1)
-b -a2

b

)
III a1

b ≥ a
(m+1)
-b ≥ a(m)

-b ≥ a2
b tb-(1+φb)

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
IV a

(m+1)
-b ≥ a1

b ≥ a2
b ≥ a

(m)
-b -k(1+φb)

(
a1
b-a

2
b

)
V a

(m+1)
-b ≥ a1

b ≥ a
(m)
-b ≥ a2

b tb-(1+φb)
(
ka1

b+(1-k)a
(m)
-b

)
VI a

(m+1)
-b ≥ a(m)

-b ≥ a1
b ≥ a2

b 0

We want to lower bound E-b
[
ub(tb, a

1
b , a-b)

]
−E-b

[
ub(tb, a

2
b , a-b)

]
. It is therefore sufficient to lower

bound the expression in II and IV, since they are negative and neglect the positive difference in
the other cases. In order to prove truthfulness is close to optimal, consider a1

b = tΦb and a2
b = ab a

best response. We show that for any ε > 0 it holds that ISLFM the difference in expected utility is
bounded from below by −ε. Because best responses are ε-close to truthfulness ISLFM , it holds
that for all δ > 0 tΦb − ab ≤ δ ISLFM . Therefore the difference in II and IV is lower bounded by
−k(1 + φb)δ. It follows that

E-b
[
ub(tb, t

Φ
b , a-b)

]
− E-b [ub(tb, ab, a-b)] ≤

−k(1 + φb)δ (P [II] + P [IV]) ≤ −2k(1 + φb)δ.
(86)

If for a given ε > 0, δ > 0 is chosen such that δ ≤ ε
2k(1+φb)

, it holds ISLFM that tΦb is ε-close to a
best response ab. In infinite markets, the expected utility is equal to

E[ub(tb, ab, a-b)] =

tb − (1 + φb)Π if ab ≥ Π

0 if ab < Π,
(87)

If tΦb ≥ Π, then the expected utility is equal to tb − (1 + φb)Π > 0, and therefore a best response. If
tΦb ≤ Π, then the expected utility is equal to 0. Because every action ab > tΦb is dominated, tΦb is
again a best response. Therefore truthfully reporting tΦb is a best response. The statement for sellers
can be proven analogous.
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B.11 Proof of Theorem 7

Proof. Consider a buyer b with a gross value tb and action ab, such that tΦb > Π∞b . First, assume
that ab > Π∞b . That is, there exists ε > 0 such that ab−Π∞b ≥ ε. We will prove that ISLM it holds
that

E-b [ub(tb, ab, a-b)]− E-b [ub(tb,Π
∞
b + ε/2, a-b)] < 0, (88)

which proves that ab is not a best response ISLM . Using the law of total expectation, the expected
fee difference can be lower bounded by

E-b [Φb (ab, a-b)]− E-b [Φb (Π∞b + ε/2, a-b)] =

E-b [Φb(ab, a-b)|A∗ (b, ab)]P-b [b ∈ B∗(ab, a-b)]−

E-b [Φb(Π
∞
b + ε/2, a-b)|A∗ (b,Π∞b + ε/2)]P-b [b ∈ B∗(Π∞b + ε/2, a-b)] ≥

P-b [b ∈ B∗(Π∞b + ε/2, a-b)] (E-b [Φb(ab, a-b)|A∗ (b, ab)]−

E-b [Φb(Π
∞
b + ε/2, a-b)|A∗ (b,Π∞b + ε/2)]

(89)

The inequality on the last line holds because the trading probability is monotone, which implies
P-b [b ∈ B∗(ab, a-b)] ≥ P-b [b ∈ B∗(Π∞b + ε/2, a-b)]. It follows from Theorem 1 that for every γ it holds
ISLM that P-b [b ∈ B∗(Π∞b + ε/2, a-b)] ≥ 1−γ. Combining this with the assumption of heterogeneity
yields that there exists δ > 0 such that it holds ISLM that

E-b [Φb (ab, a-b)]− E-b [Φb (Π∞b + ε/2, a-b)] ≥ (1− γ)δ. (90)

Using Equation (16) from Theorem 16, it therefore holds ISLM that

E-b [ub (tb, ab, a-b)]− E-b [ub (tb,Π
∞
b + ε/2, a-b)] ≤ tbγ − (1− γ)δ. (91)

If we now choose γ < δ/tb + δ, the difference is strictly smaller than 0, which proves that ab is not a
best response ISLM .

Second, assume that ab < Π∞b . We will show that it holds ISLM that

E-b
[
ub(tb, t

Φ
b , a-b)

]
− E-b [ub(tb, ab, a-b)] > 0, (92)

which again implies that ab is not a best response. It follows from uniform profitability that there
exists δ > 0 such that it holds ISLM that

E-b
[
ub(tb, t

Φ
b , a-b)

]
≥ δ. (93)
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It therefore suffices to show that for ab < Π∞b − ε it holds ISLM that

E-b [ub(tb, ab, a-b)] < δ. (94)

We can upper bound the expected utility by neglecting the expected market price and the expected
fee and get that

E-b [ub(tb, ab, a-b)] ≤ tbP-b [b ∈ B∗(ab, a-b)] . (95)

Theorem 1 implies that for any γ > 0 it holds ISLM that P-b [b ∈ B∗(ab, a-b)] ≤ γ. If we choose
γ < δ

tb
, the statement follows.

B.12 Proof of Theorem 8

Proof. For prove that best responses are in an ε-neighbourhood of the critical value ISLM , consider
a buyer b with a gross value tb and action ab, such that tΦb > Π∞b . First, assume that ab > Π∞b . That
is, there exists ε > 0 such that ab −Π∞b ≥ ε. We will prove that it holds ISLM that

E-b [ub(tb, ab, a-b)]− E-b [ub(tb,Π
∞
b + ε/2, a-b)] < 0, (96)

which proves that ab is not a best response ISLM . For two bids a1
b > a2

b Theorem 16 implies in the
presence of a spread fee that

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
≤
(
tb − φba1

b

)
P-b
[
b ∈ B∗(a1

b , a-b)
]
−
(
tb − φba2

b

)
P-b
[
b ∈ B∗(a2

b , a-b)
]
.

(97)

Now set a1
b = ab and a2

b = Π∞b + ε/2. It follows from Theorem 1 that for any γ > 0 it holds ISLM
that P-b [b ∈ B∗(ab, a-b)] ,P-b [b ∈ B∗(Π∞b + ε/2, a-b)] ≥ 1− γ and therefore also

P-b [b ∈ B∗(ab, a-b)] ≤ P-b [b ∈ B∗(Π∞b + ε/2, a-b)] + γ. (98)

Combining Equation (97) and Equation (98) implies that it holds ISLM that

E-b [ub (tb, ab, a-b)]− E-b [ub (tb,Π
∞
b + ε/2, a-b)]

≤ −φb(1− γ)(ab − (Π∞b + ε/2)) + γ (tb − φbab) .
(99)

By assumption, it holds that ab − (Π∞b + ε/2) ≥ ε/2, which yields

E-b [ub (tb, ab, a-b)]− E-b [ub (tb,Π
∞
b + ε/2, a-b)]

≤ −φb(1− γ)
ε

2
+ γ (tb − φbab) ≤ −φb(1− γ)

ε

2
+ γtb.

(100)
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If γ is chosen such that γ < φbε
2tb+φbε

holds, then ISLM

E-b [ub (tb, ab, a-b)]− E-b [ub (tb,Π
∞
b + ε/2, a-b)] < 0, (101)

which implies that ab is not a best response ISLM .
Next, we prove that for sufficiently small ε > 0, there exist beliefs, such that the critical value is

not an ε-ISLFM. Consider a buyer b with gross value tΦb > Π∞b in a sequence of market environment
with m(l) = l, n(l) = l, tb = [0, 1] and uniformly distributed beliefs for both buyers and sellers.
In this case, the critical value Π∞b is equal to 1

2 . By assumption, there exists ε > 0, such that
tb = Π∞b + ε for ε > 0. We will show that it holds ISLM that

E-b [ub(tb,Π
∞
b + ε/4, a-b)]− E-b [ub(tb,Π

∞
b , a-b)] > 0, (102)

which proves that Π∞b is not a best response. In order to estimate the difference in expected utility
for two bids a1

b > a2
b , we use a table similar to the one in Appendix B.9 or Appendix B.10:

ub(tb, a
1
b , a-b) ub(tb, a

2
b , a-b)

I a1
b ≥ a

2
b ≥ a

(m+1)
-b ≥ a(m)

-b tb-φba1
b -(1-φb

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
tb-φba2

b -(1-φb
(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
II a1

b ≥ a
(m+1)
-b ≥ a2

b ≥ a
(m)
-b tb-φba1

b -(1-φb
(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
tb-φba2

b -(1-φb
(
ka2
b+(1-k)a

(m)
-b

)
III a1

b ≥ a
(m+1)
-b ≥ a(m)

-b ≥ a2
b tb-φba1

b -(1-φb
(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
0

IV a
(m+1)
-b ≥ a1

b ≥ a
2
b ≥ a

(m)
-b tb-φba1

b -(1-φb
(
ka1
b+(1-k)a

(m)
-b

)
tb-φba2

b -(1-φb
(
ka2
b+(1-k)a

(m)
-b

)
V a

(m+1)
-b ≥ a1

b ≥ a
(m)
-b ≥ a2

b tb-φba1
b -(1-φb

(
ka1
b+(1-k)a

(m)
-b

)
0

VI a
(m+1)
-b ≥ a(m)

-b ≥ a1
b ≥ a

2
b 0 0

Analogous, we consider the difference in utilities:

ub(tb, a
1
b , a-b)− ub(tb, a2

b , a-b)

I a1
b ≥ a2

b ≥ a
(m+1)
-b ≥ a(m)

-b −φb
(
a1
b − a2

b

)
II a1

b ≥ a
(m+1)
-b ≥ a2

b ≥ a
(m)
-b −φb

(
a1
b − a2

b

)
− k(1− φb

(
a

(m+1)
-b − a2

b

)
III a1

b ≥ a
(m+1)
-b ≥ a(m)

-b ≥ a2
b tb − φba1

b − (1− φb
(
ka

(m+1)
-b + (1-k)a

(m)
-b

)
IV a

(m+1)
-b ≥ a1

b ≥ a2
b ≥ a

(m)
-b −φb

(
a1
b − a2

b

)
− k(1− φb

(
a1
b − a2

b

)
V a

(m+1)
-b ≥ a1

b ≥ a
(m)
-b ≥ a2

b tb − φba1
b − (1− φb

(
ka1

b + (1-k)a
(m)
-b

)
VI a

(m+1)
-b ≥ a(m)

-b ≥ a1
b ≥ a2

b 0

In order to obtain a lower bound on the expected difference in utility, we bound all five non-zero
terms from below. We set a1

b = Π∞b + ε/4 and a2
b = Π∞b , which implies that there difference is equal

to ε/4. The expressions in I, II and IV are therefore greater or equal than −ε/4. For III and V, the
lower bound tb − (Π∞b + ε/4 = 3ε

4 holds, because tb = Π∞b + ε. Combining these bounds with the
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probabilities of each event, the following inequality holds:

E-b [ub(tb,Π
∞
b + ε/4, a-b)]− E-b [ub(tb,Π

∞
b , a-b)] ≥

− ε
4
P-b

[
Π∞b ≥ a

(m)
-b

]
+

3ε

4
P-b

[
Π∞b + ε/4 ≥ a(m)

-b ≥ Π∞b

]
=

− ε
2
P-b

[
Π∞b ≥ a

(m)
-b

]
+

3ε

4

(
P-b

[
a

(m)
-b ≤ Π∞b + ε/4

]
− P

[
a

(m)
-b ≤ Π∞b

]) (103)

By definition a(m)
-b is the m’th smallest submission in a set of m− 1 bids and n asks. Since buyer b

assumes that those are uniformly distributed and that there are m(l) = l and n(l) = l many buyers
and sellers, it follows from order statistics that a(m)

-b ∼ Beta(l, l). This distribution is symmetric
on [0, 1] for every l and therefore at the critical value Π∞b = 1

2 , it holds that P-b

[
a

(m)
-b ≤ Π∞b

]
= 1

2 .
Furthermore, it follows from Theorem 1 that for any γ > 0 it holds in sufficiently large markets that
P
[
a

(m)
-b ≤ Π∞b + ε/4

]
≥ 1− γ. It follows that

E-b [ub(tb,Π
∞
b + ε/4, a-b)]− E-b [ub(tb,Π

∞
b , a-b)] ≥

− ε
8

+
3ε

4

(
1

2
− γ
)
,

(104)

which is positive if γ is chosen to be smaller than 1
3 .

B.13 Proof of Theorem 9

Proof. Recall that EΦ = E[GoT ]
E[GoTΦ] . Because the allocation balances trade, that is µB(B∗) = µS(S∗),

it holds that

E[GoT ] = E

∫
B∗

(tb −Π) dµB(b) +

∫
S∗

(Π− ts) dµS(s)

 = E

∫
B∗

tbdµB(b)−
∫
S∗

tsdµS(s)

 . (105)

Finite Markets. In finite markets, the integral representation of the gains of trade simplifies to
the following sum:

E[GoT ] = E

[∑
B∗

tb −
∑
S∗

tsdµS(s)

]
(106)

To show that EΦ ≥ 1− ζ, it suffices to prove that E[GoTΦ−GoT ]
E[GoTΦ] ≤ ζ.47 We start by lower bounding

the denominator. We pair off each of min(n,m) buyers and sellers. The expected gains of trade
max(tb − ts, 0) of such a pair is equal to α > 0. It therefore holds that E[GoTΦ] ≥ α ·min(m,n).
However the value of trade is bounded by β = aB − aS , proving that E[GoTΦ] ≤ β ·min(m,n) and
therefore E[GoTΦ] ∈ Θ(min(m,n)).

In a next step, we will bound the numerator E[GoTΦ − GoT ]. Let and be the distribution
functions of net values on AB = [aB, aB] ⊂ R≥0 and AS = [aS , aS ] ⊂ R≥0. Denote by tΦ a sample

47The following proof is based on methods from Rustichini et al. (1994).
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of n+m net values. Denote by µ the distribution of the market price Π(tΦ) and by L(tΦ) the total
value of trades that inefficiently fail to occur given tΦ and the strategies aB, aS ∈ Υε,opt

Φ,F . It holds
that

E[GoTΦ −GoT ] = E
[
L(tΦ)

]
=

∫ ∞
−∞

E
[
L(tΦ)|Π(tΦ,(m))

]
dµ(Π(tΦ,(m))). (107)

We will bound the value of this integral over (i) (−∞, aS + δ),(ii) [aS + δ, aB− δ] and (iii) [aB− δ,∞]

for some δ > 0. δ is chosen small enough, such that aS + δ < Π∞ and aB − δ > Π∞, where Π∞

denotes the critical value of and . The same proof-technique as in Theorem 1 shows that

P[Π(tΦ,(m)) ≤ aS + δ],P[Π(tΦ,(m)) ≥ aB − δ] ∈ O(min(m,n)−
1
2 ). (108)

Because it holds that E[L(tΦ)|Π(tΦ,(m))] ≤ βmin(n,m), where β = aB − aS we get that the integral
in Equation (107) over (i) and (iii) is O(min(m,n)

1
2 ). Next we bound the integral over (ii). Consider

any symmetric strategy profile a = (aB, aS) ∈ Υε,opt
Φ,F for some ε > 0. Given a realization of net values

tΦ, consider the set of values, if traders use a, and denote it by . If a is ε-close to truthfulness, it
holds that

tΦ,(m) − ε ≤ t,(m) ≤ tΦ,(m) + ε. (109)

The value of a missed trade is at most some constant ζ > 0. A buyer with gross value tb and a
seller with gross value ts fail to trade under a, but would trade when being truthful, if tΦb ≥ tΦs ,
aB(tb) ≤ Π() ≤ t,(m) and aS(ts) ≥ Π() ≥ t,(m). We bound the expected number of missed trades
conditional on Π(). It is bounded by the expected number of net values in the 2ε-neighbourhood
of Π(). This is bounded by fixing Π() and summing over the number i of buyers with net values
above or equal to Π(). These i values are independently distributed according to (·)−(Π())

1−(Π()) with

density fB(·)
1−(Π()) . Similarly, the remaining n − i net values of sellers above or equal to Π() are

independently distributed according to (·)−(Π())
1−(Π()) with density fS(·)

1−(Π()) . Because Π() ≤ aB − δ (case
(ii)) and fB and fS are continuous, the densities are bounded from above by some number α(, , δ)
that is independent of m. Conditional upon Π(), the expected number of net values above and
within 2ε of Π() is thus no more than n · 2ε · α(, , δ). A similar argument shows that for some β(, , δ)
the expected number of net values below and within 2ε of tΦ,(m) is no more than m · 2ε · β(, , δ).
Thus the expected number of missed trades conditional on tΦ,(m) is bounded by min(n,m) · ε · γ(, , δ).
Therefore E[L(tΦ)|tΦ,(m)] ≤ min(m,n) · ζ · ε · γ(, , δ). Finally, we have that

E[GoTΦ −GoT ]

E[GoTΦ]
=∫

(i)+(iii)
E
[
L(tΦ)|Π(tΦ,(m))

]
dµ(Π(tΦ,(m)))

E[GoTΦ]
+

∫
(ii)

E
[
L(tΦ)|Π(tΦ,(m))

]
dµ(Π(tΦ,(m)))

E[GoTΦ]
.

(110)

Recall that the denominator is of order Θ(min(m,n)). The numerator of the first summand is of
order O(min(m,n)

1
2 ). Therefore the whole summand is of order O(min(m,n)−

1
2 ), so it goes to zero

in sufficiently large market. The numerator of the second summand is of order O(min(m,n) · ε).
Therefore the second summand is of order O(ε). Therefore, for any γ > 0 and for any sequence of ε
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that goes to zero, E[GoTΦ−GoT ]
E[GoTΦ] ≤ γ ISLFM .

Limit Markets. We consider symmetric strategy profiles (aB, aS) that are strictly increasing and
continuous.

Observation. Demand and supply are continuous. Furthermore, demand is strictly decreasing on
AB and supply is strictly increasing on AS .

Proof of Appendix B.13. It holds that

D(P ) =


0 if P < aB

µtB([a−1
B (P ), t]) if P ∈ AB

µtB(Θ) if P > aB

and S(P ) =


µtS(Θ) if P < aS

µtB([t, a−1
B (P )]) if P ∈ AS

0 if P > aS

, (111)

from which the observation directly follows.

Observation. If it holds that aS < aB, then there exists a unique market price, which lies in the
interval [aS , aB] equating positive demand and supply. Otherwise, if aS ≥ aB, then the trading
volume is equal to zero. Note that in both cases, there is zero market excess, implying that the gains
of trade GoT are deterministic.

Proof of Appendix B.13. This follows from Appendix B.13 and the Intermediate Value theorem.

Observation. GoT can be represented as a continuous function GoT (·) evaluated at the point Q,
if strategies are increasing and continuous.

Proof of Appendix B.13. Let B∗ and S∗ be the allocation and denote by T ∗B = tB(B∗) and T ∗S =

tS(S∗) the set of gross values involved in trade. First, note that

GoT =

∫
T ∗B

xdµtB(x)−
∫
T ∗S

xdµtS(x). (112)

Using that gross values are assumed to be continuously distributed, it holds that

GoT =

∫
Θ∗B

xfB(x)dx−
∫

Θ∗S

xfS(x)dx, (113)

where fB and fS are the strictly positive and continuous Radon-Nikodym derivatives. Because of
the strict monotonicity of strategies, the traders with the most profitable gross values are involved in
trade. Therefore T ∗B is of the form [a, t] for some a ∈ T and T ∗S is of the form [t, b] for some b ∈ T . If
the trading volume Q = 0, then a = t and b = t. If Q > 0, then a < t and b > t. It therefore holds
that

GoT =

∫ t

a
xfB(x)dx−

∫ b

t
xfS(x)dx. (114)
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Next, we prove that a and b can be expressed as continuous functions of the trading volume Q.
Because the allocation balances trade, it holds that µtB(T ∗B) = µtS(T ∗S) = Q. Let FB(x) =

∫ x
t fB(x)dx

denote the anti-derivative of fB, which is a continuous and increasing function. We can write
µtB(T ∗B) =

∫ t
a dµ

t
B = µtB(T )− FB(a) and µtS(T ∗S) =

∫ b
t dµ

t
S = FS(b). This yields

a(Q) =


t ifQ = 0

F−1
B (µtB(T )−Q) if 0 < Q < µtB(T )

t ifQ = µtB(Θ)

and b(Q) =


t ifQ = 0

F−1
S (Q) if 0 < Q < µtS(T )

t ifQ = µtS(T )

(115)

a(Q) is continuous on (0, µtB(T )), because FB is continuous and strictly decreasing on T . Because
limx↑t FB(x) = 0 and limx↓t FB(x) = µtB(T ), the continuity of a(Q) extends to Q = 0 and Q = µtB(T ).
Analogous reasoning yields that b(Q) is continuous on [0, µtS(t)]. The gains of trade corresponding
can therefore be represented as

GoT =

∫ t

a(Q)
xfB(x)dx−

∫ b(Q)

t
xfS(x)dx. (116)

Because the integrands xfB(x) and xfS(x) are continuous in x, it follows that GoT is continuous in
Q.

Observation. Consider two symmetric, strictly increasing and continuous strategy profiles a1 =

(a1
B, a

1
S) and a2 = (a2

B, a
2
S), such that for all t ∈ T it holds that aB1(t) < aB2(t) and aS1(t) � aS2(t).

Then it holds that GoTa1 ≥ GoTa2 .

Proof of Appendix B.13. By Appendix A.1 and Appendix B.13, for both strategy profiles the trading
volume TV is equal to demand and supply at their unique crossing point. It follows from Equa-
tion (111) that ∀P Da1(P ) ≥ Da2(P ) and Sa1(P ) ≥ Sa2(P ) holds, which implies that Qa1 ≥ Qa2 .
The observation now follows from Equation (116).

Define the symmetric strategy profile an, which is equal to tΦb −
1
n and tΦs + 1

n . Denote by the
subscripts n and Φ market characteristics, when traders use an and truthfulness respectively.

Assume that the trading volume QΦ at the market price ΠΦ is strictly positive, that is aSΦ < aBΦ.
Otherwise, it holds that GoTΦ = 0 and therefore also GoTn = 0.

Observation. For sufficiently large n, there exists a unique market price Πn with trading volume
Qn > 0.

Proof of Appendix B.13. According to Appendix B.13, demand Dn(P ) is continuous in P and strictly
decreasing on an interval ABn = [aBn, aBn]. Supply Sn(P ) is continuous in P and strictly increasing
on an interval ASn = [aSn, aSn]. aBn is for example the action of a buyer with gross value t. Because
limn→∞ an(x) = x, we can choose n large enough, such that also aSn < aBn. A unique market price
Πn ∈ [aSn, aBn] with trading volume Qn > 0 exists by Appendix B.13.
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Observation. It holds that

lim
n→∞

sup
P∈Θ
|Dn(P )−DΦ(P )| = 0 and lim

n→∞
sup
P∈Θ
|Sn(P )− SΦ(P )| = 0. (117)

Proof of Appendix B.13. Because larger n leads to a less aggressive strategy profile an, it follows that
for fixed P Dn(P ) ≤ Dn+1(P ) and Sn(P ) ≤ Sn+1(P ). Furthermore, it holds that limn→∞Dn(P ) =

DΦ(P ) and limn→∞ Sn(P ) = SΦ(P ). Because DΦ and SΦ are continuous on Θ, the observation
follows from Dini’s theorem (Bartle and Sherbert, 2000, p.238).

Observation. ∀δ1 > 0 and sufficiently large n, it holds that |ΠΦ −Πn| ≤ δ1.

Proof of Appendix B.13. ΠΦ is unique and equates demand and supply, and it was proven above
that Πn has the same properties for sufficiently large n. Define the two continuous functions

FΦ(P ) = DΦ(P )− SΦ(P ) and Fn(P ) = Dn(P )− Sn(P ). (118)

It holds that ΠΦ is the unique zero point of FΦ(·) and Πn is the unique zero point of Fn(·). Because
of the strict monotonicity of DΦ and SΦ, for every δ1 > 0 it holds that FΦ is strictly negative at
ΠΦ + δ1 and strictly positive at ΠΦ + δ1. Therefore, for small δ1, there exists γ1 > 0, such that

FΦ(ΠΦ + δ1) ≤ −γ1 and FΦ(ΠΦ − δ1) ≥ γ1. (119)

We will now prove that for every γ2 > 0 the distance between FΦ and Fn at the two points ΠΦ + δ1

and ΠΦ − δ1 is smaller or equal than γ2, if n is chosen sufficiently large. We have that

|FΦ(P )− Fn(P )| = |DΦ(P )− SΦ(P )−Dn(P ) + Sn(P )|

≤ |DΦ(P )−Dn(P )|+ |SΦ(P )− Sn(P )|.
(120)

If δ1 is chosen small enough, such that ΠΦ + δ1 and ΠΦ − δ1 are in Θ, then the uniform convergence
observation from above implies that for every γ2 > 0 and sufficiently large n

|FΦ(ΠΦ + δ1)− Fn(ΠΦ + δ1)| ≤ γ2 and |FΦ(ΠΦ − δ1)− Fn(ΠΦ − δ1)| ≤ γ2 (121)

If γ2 is chosen to be strictly less than γ1, it follows that also

Fn(ΠΦ + δ1) < 0 and Fn(ΠΦ − δ1) > 0. (122)

This then implies that Πn, which is the unique zero of Fn, lies in the interval (ΠΦ − δ1,ΠΦ + δ1),
which proves the observation.

Observation. ∀δ2 > 0 and sufficiently large n, it holds that |QΦ −Qn| ≤ δ2.
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Proof of Appendix B.13. QΦ is equal to DΦ(ΠΦ) and Qn is equal to Dn(Πn). By adding and
subtracting Dn(ΠΦ) and using the triangle-inequality, we get that

|QΦ −Qn| ≤ |DΦ(ΠΦ)−Dn(ΠΦ)|+ |Dn(Πn)−Dn(ΠΦ)|. (123)

The first term on the right-hand side is less or equal than δ2
2 for sufficiently large n by Appendix B.13.

For the second term, note that Dn is a continuous function. Appendix B.13 implies that for
sufficiently large n, such that the distance between ΠΦ and Πn gets small enough, the second term
is also bounded from above by δ2

2 , which proves the observation.

Observation. For all δ3 > 0 and sufficiently large n, it holds that |GoTΦ −GoTn| ≤ δ3.

Proof of Appendix B.13. Because reporting the net-value is by assumption a continuous and increas-
ing function, it was proven above that GoTΦ and GoTn can be represented as a continuous function
GoT (·) evaluated at the two points QΦ and Qn. If n is chosen sufficiently large, Appendix B.13 and
the continuity of GoT (·) imply that the distance between QΦ and Qn gets small enough to ensure
that Gn = G(Qn) is close to GΦ = G(QΦ).

Observation. For all ζ > 0 and sufficiently large n, it holds that En ≥ 1− ζ.

Proof of Appendix B.13. For the efficiency ratio En, it holds that

En =
Gn
GΦ

= 1− GΦ −Gn
GΦ

. (124)

If n is now chosen large enough, such that by Appendix B.13 |GΦ − Gn| ≤ ζGΦ, the statement
follows.

Observation. ∀ζ > 0, there exists ε ∈ (0, 1], such that inf(aB ,aS)∈Υε,optΦ,F
Ea ≥ 1− ζ.

Proof of Appendix B.13. Define εn = 1
n . By Appendix B.13, it holds for any strategy profile

(aB, aS) ∈ Υε,opt
Φ,F that GoTεn ≤ GoTa. Therefore, if n is sufficiently large, it holds that Ea ≥ Eε ≥

1− ζ.

Appendix B.13 finishes the proof for infinite markets.

B.14 Proof of Theorem 10

Proof. For finite markets, we construct the following beliefs F . Assume that all buyers believe that
they are facing the same market environment, independent of their gross value, which implies that
they have the same belief about the critical value, that is ∀tb ∈ T it holds that Π∞(tb) = Π∞B .
In analogy, assume that all sellers have the same beliefs, implying that ∀ts ∈ T it holds that
Π∞(ts) = Π∞S . Suppose that Π∞B < Π∞S . For any ε ≥ 0, consider the strategy-profile corresponding
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to price-guessing (ρB, ρS) ∈ Ψε,opt
Φ,F . Recall that for this strategy-profile, a buyers and sellers actions

are equal to Π∞B and Π∞S respectively, if it is individually rational, and truthful otherwise. That is
all buyers submit an action less or equal to Π∞B and all sellers submit an action greater or equal to
Π∞S . Therefore, for any realization of gross values, no profitable trade is possible and the gains of
trade are equal to zero almost surely. Therefore, the efficiency is equal to zero almost surely and
therefore also in expectation.
For infinite markets, it was proven in Appendix B.13 in Appendix B.13 that for continuous and
strictly increasing strategy profile in an infinite market, the gains of trade GoT can be represented
as a continuous function G(·) evaluated at Q with G(QΦ) = GoTΦ and G(0) = 0. Therefore the
efficiency ratio E = G

GΦ
can be represented as the continuous function E(Q) = G(Q)

GΦ
. For Q = QΦ

the efficiency ratio is equal to 1, for Q = 0, the efficiency ratio is equal to zero. If we show that for
every Q ∈ [0, QΦ], it is possible to construct increasing strategies, such that the trading volume is
equal to Q, the theorem follows from the Intermediate value theorem, because for every ζ ∈ [0, 1],
there exists Q ∈ [0, QΦ] with E(Q) = ζ. One possible construction is as follows: For a, b ≥ 0,
consider beliefs F such that Π∞(tb) = tΦb − a and Π∞(ts) = tΦs + b. For any ε ≥ 0, consider the
strategy-profile (ρB, ρS) ∈ Ψε,opt

Φ,F , which is continuous and strictly increasing. Note that for every
trader, their belief about the critical value is individually rational. For any Q ∈ [0, QΦ], choose a ≥ 0,
such that D(ΠΦ) = DΦ(rho−1

B (ΠΦ)) = DΦ(ΠΦ +a) = Q. Such a constant exists in [0, t−ΠΦ)] by the
Intermediate value theorem, because DΦ is continuous and decreasing on T with DΦ(ΠΦ) = QΦ and
DΦ(ΠΦ + (t−ΠΦ)) = QΦ. Next, choose P̃ as a price with SΦ(P̃ ) = Q. This price exists in [t,ΠΦ]

by the Intermediate Value theorem, because SΦ is continuous and increasing on T with SΦ(t) = 0

and SΦ(ΠΦ)) = QΦ. If we set b = ΠΦ − P̃ ≥ 0, then S(ΠΦ) = SΦ(P̃ ) = Q, which proves that the
market price is equal to ΠΦ and the trading volume is equal to Q. This finishes the proof.

B.15 Proof of Theorem 16

Recall that Π̃ denotes the market price, is a trader is involved in trade, and zero otherwise.
For a buyer b with private type tb, Equation (12) yields that

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
=

tb
(
P-b
[
b ∈ B∗(a1

b , a-b)
]
− P-b

[
b ∈ B∗(a2

b , a-b)
])
−∫

[aS,b,aS,b]
2

(
Π̃
(
a1
b , a

(m)
-b , a

(m+1)
-b

)
− Π̃

(
a2
b , a

(m)
-b , a

(m+1)
-b

))
dµ(a

(m)
-b , a

(m+1)
-b )−(

E-b
[
Φb

(
a1
b , a-b

)]
− E-b

[
Φb

(
a2
b , a-b

)])
.

(125)

Note that the integral in the difference above is non-negative, because Π̃(ab, a
(m)
-b , a

(m+1)
-b ) is increasing

in ab for a fixed a(m)
-b and a(m+1)

-b . Equation (16) follows by neglecting the term corresponding to the
change in expected market price.
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For a seller s with private type ts, Equation (13) yields

E-s
[
us
(
ts, a

1
s, a-s

)]
− E-s

[
us
(
ts, a

2
s, a-s

)]
=∫

[aB,s,aB,s]
2

(
M̃P

(
a1
s, a

(m-1)
-s , a(m)

-s

)
− Π̃

(
a2
s, a

(m-1)
-s , a(m)

-s

))
dµ(a(m-1)

-s , a(m)
-s )−

ts
(
P-s
[
s ∈ S∗(a1

s, a-s)
]
− P-s

[
s ∈ S∗(a2

s, a-s)
])
−
(
E-s
[
Φs

(
a1
s, a-s

)]
− E-s

[
Φs

(
a2
s, a-s

)])
.

(126)

ts
(
P-s
[
s ∈ S∗(a1

s, a-s)
]
− P-s

[
s ∈ S∗(a2

s, a-s)
])
≥ 0 holds, because the trading probability is decreasing for a

seller in their ask. To see that the integral in Equation (126) is bounded from above by 2ts
(
1− P-s

[
s ∈ S∗(a2

s, a-s)
])
,

we split up the integral into all six possible cases for the realizations of and a(m-1)
-s with respect to a1

s < a2
s.

which is shown in the following table. 48

Π̃
(
a1
s, a

(m-1)
-s , a

(m)
-s

)
M̃P

(
a2
s, a

(m-1)
-s , a

(m)
-s

)
I a

(m)
-s ≥ a(m-1)

-s ≥ a2
s ≥ a1

s ka
(m)
-s +(1-k)a

(m-1)
-s ka

(m)
-s +(1-k)a

(m-1)
-s

II a
(m)
-s ≥ a2

s ≥ a
(m-1)
-s ≥ a1

s ka
(m)
-s +(1-k)a

(m-1)
-s ka

(m)
-s +(1-k)a2

s

III a2
s ≥ a

(m)
-s ≥ a(m-1)

-s ≥ a1
s ka

(m)
-s +(1-k)a

(m-1)
-s 0

IV a
(m)
-s ≥ a2

s ≥ a1
s ≥ a

(m-1)
-s ka

(m)
-s +(1-k)a1

s ka
(m)
-s +(1-k)a2

s

V a2
s ≥ a

(m)
-s ≥ a1

s ≥ a
(m-1)
-s ka

(m)
-s +(1-k)a1

s 0

VI a2
s ≥ a1

s ≥ a
(m)
-s ≥ a(m-1)

-s 0 0

For I, II, IV and VI, the difference between Π̃
(
a1
s, a

(m-1)
-s , a

(m)
-s

)
and Π̃

(
a2
s, a

(m-1)
-s , a

(m)
-s

)
is less

or equal than 0. It follows that∫
[aB,s,aB,s]

2

(
Π̃
(
a1
s, a

(m-1)
-s , a(m)

-s

)
− Π̃

(
a2
s, a

(m-1)
-s , a(m)

-s

))
dµ(a(m-1)

-s , a(m)
-s )≤∫

III
(ka(m)

-s + (1− k)a(m-1)
-s )dµ∗s(a

(m-1)
-s , a(m)

-s )

+

∫
V

(ka(m)
-s + (1− k)a1

s)dµ(a(m-1)
-s , a(m)

-s )

(127)

Because both integrands in Equation (127) are less or equal than aS,s, it follows that∫
[as,
¯
s]2

(
Π̃
(
a1
s, a

(m-1)
-s , a(m)

-s

)
− Π̃

(
a2
s, a

(m-1)
-s , a(m)

-s

))
dµ(a(m-1)

-s , a(m)
-s )

≤ aS,sP[III] + aS,sP[V]

≤ 2aS,sP[a(m)
-s < a2

s] = 2aS,s
(
1− P-s

[
(s, a2

s ∈ S∗
])
,

(128)

which finishes the proof.
48Different to Π̃b (ab, y, z) it holds that Π̃s (as, y, z) is not increasing in as for fixed y and z.
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B.16 Proof that for homogeneous fees in Section 5 the net values satisfy tΦb +

Φb(t
Φ
b ) = tb and tΦs + Φs(t

Φ
s ) = ts

Proof. Consider a buyer with gross value tb. To show that the net value satisfies tΦb + Φb(t
Φ
b ) = tb,

it suffices to prove two statements for the solution tΦb of that equation: (1) If a bid a′b > tΦb , then
it is dominated by tΦb and (2) if a′b < tΦb , then there exists Π such that ub

(
tb, t

Φ
b ,Π

)
> ub (tb, a

′
b,Π)

holds. For (1), if Π is such that both a′b and t
Φ
b are not involved in trade, then both have utility

equal to zero. If Π is such that the buyer is involved in trade at a′b, but not at tΦb , then the
market price is greater or equal to tΦb . Because x 7→ x + Φb(x) is increasing, it follows that
ub (tb, a

′
b,Π) = tb − Π − Φb(Π) ≤ tb − tΦb − Φb(t

Φ
b ) = 0. If Π is such that the buyer is involved in

trade with both bids, then it follows in analogy that

ub
(
tb, a

′
b,Π
)

= tb −Π− Φb(Π) ≤ tb − tΦb − Φb(t
Φ
b ) = ub

(
tb, t

Φ
b ,Π

)
. (129)

For (2), consider a′b ≤ tΦb . Consider Π, such that a buyer is involved in trade at bid tΦb but not with
a′b and it holds that Π < tΦb . This yields

ub
(
tb, t

Φ
b ,Π

)
= tb −Π− Φb(Π) > tb− > tb − tΦb − Φb(t

Φ
b ) = 0. (130)

The statement for sellers is proven in analogy.

B.17 Proof of Theorem 11

Proof. Consider a buyer b with gross value tb and action ab. First, suppose that δ > 0. Tie-breaking
is a probability zero event. The expected utility is equal to

Eb[ub(tb, ab,Π)] =

∫ ab

Πb

(tb − x− Φb(x)) fΠ(x)dx. (131)

Recall, that it holds that tb − tΦb − Φb(t
Φ
b ) = 0, and x 7→ x+ Φb(x) is strictly increasing. Therefore,

for x ∈ [Πb, t
Φ
b ), the integrand is strictly greater than zero. For x ∈ (tΦb ,Πb], the integrand is

strictly negative. Hence, the expected utility is maximized at the unique point tΦb .
49 The function

ab 7→ Eb[ub(tb, ab,Π)] is continuous, increasing on [Πb, t
Φ
b ] and decreasing on [tΦb ,Πb]. ε-therefore

approximate tΦb . As truthfulness is the unique , it holds that EΦ = PΠ[b∈B∗(,Π)]

PΠ[b∈B∗(tΦb ,Π)]
=

PΠ[b∈B∗(tΦb ,Π)]

PΠ[b∈B∗(tΦb ,Π)]
= 1.

49Alternatively, this can be proven via the first order condition by differentiating the expected utility using Leibniz’s
rule and setting the derivative zero.
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Second, suppose that δ = 0. The expected utility is of the form

Eb[ub(tb, ab,Π)] =


tb −Π− Φb(Π) if ab > Π

pb(tb −Π− Φb(Π)) if ab = Π

0 if ab < Π,

(132)

where pb ∈ [0, 1] depends on tie-breaking beliefs. If tΦb > Π, then the expected utility is equal to
tb−Π−Φb(Π) > tb− tΦb −Φb(t

Φ
b ) = 0, and therefore a . If tΦb ≤ Π, then the expected utility is equal

to 0, regardless of tie-breaking assumptions. Because every action ab > tΦb is dominated, tΦb is again
a . Therefore truthfully reporting tΦb is a for every gross value and as argued above, the efficiency
ratio of truthfulness is equal to 1. The proof for sellers is analogous.

B.18 Proof of Theorem 12

Proof. Consider a buyer b with gross value tb and action ab. First, consider δ > 0. Tie-breaking is a
probability zero event. The expected utility is equal to

Eb[ub(tb, ab,Π)] =

∫ ab

Πb

(tb − x− Φb(ab, x)) fΠ(x)dx. (133)

The expected utility is therefore continuous in ab on [Πb,Πb] and therefore attains a maximum by
the Extreme Value theorem, which proves the existence of a . Suppose that tΦb > Π∗b . First, consider
an action ab with ab − Π∗b ≥ ε for some ε > 0. We will show that if δ is chosen sufficiently small,
than ab is not a best response, proving that best responses must be ε-close to Π∗b . More specifically,
we prove that a buyer can increase their expected utility when switching to Π∗b + ε/2. For δ < ε/2 it
holds that

Eb[ub(tb, ab,Π)]− Eb[ub(tb,Π∗b + ε/2,Π)] =

ab∫
Πb

(tb − x− Φb(ab, x)) dµΠ(x)−

Π∗
b+ε/2∫
Πb

(tb − x− Φb(Π
∗
b + ε/2, x)) dµΠ(x) =

ab∫
Π∗
b
+ε/2

(tb − x) dµΠ(x)−

 Π∗
b+ε/2∫
Πb

(Φb(ab, x)− Φb(ε/2, x)) dµΠ(x) +

ab∫
Π∗
b
+ε/2

Φb(ab, x)dµΠ(x)


(134)

It follows from heterogeneity, that there exists a constant γ > 0, such that ∀P ∈ [Πb,Π
∗
b + ε/2] it

holds that (Φb(ab, x)− Φb(Π
∗
b + ε/2, x)) ≥ γ. Together with δ-aggregate uncertainty, we get that

Π∗b+ε/2∫
Πb

(Φb(ab, x)− Φb(ε/2, x)) dµΠ(x) ≥ (1− δ)γ. (135)

58



Moreover it holds that
ab∫

Π∗
b+ε/2

(tb − x) dµΠ(x) ≤ δtb and

ab∫
Π∗
b+ε/2

Φb(ab, x)dµΠ(x) ≥ 0. (136)

Combining Equation (134) with Equation (135) and Equation (136) yields

Eb[ub(tb, ab,Π)]− Eb[ub(tb,Π∗b + ε/2,Π)] ≤ tbδ − (1− δ)γ. (137)

If δ < γ
tb+γ

, then the difference in expected utility is strictly negative, proving that ab is not a best
response. Second, assume that ab < Π∗b . We will show that it holds for sufficiently small δ that

Eb
[
ub(tb, t

Φ
b ,Π)

]
− Eb [ub(tb, ab,Π)] > 0, (138)

which again implies that ab is not a best response. It follows from uniform profitability that there
exists γ > 0 such that

Eb
[
ub(tb, t

Φ
b ,Π)

]
≥ γ. (139)

It therefore suffices to show that for ab < Π∗b − ε it holds for sufficiently small δ > 0 that

Eb [ub(tb, ab, a-b)] < γ. (140)

We can upper bound the expected utility by neglecting the expected market price and the expected
fee and get that

Eb [ub(tb, ab,Π)] ≤ tbPb [b ∈ B∗(ab,Π)] . (141)

δ-aggregate uncertainty implies that Pb [b ∈ B∗(ab,Π)] ≤ δ. If we choose δ < γ
tb
, ab is not a .

Next, we construct beliefs, such that the efficiency of is zero. Suppose again that tΦb > Π∗b . For
sufficiently small δ, are ε-close to Π∗b . It holds that t

Φ
b > Π and suppose that beliefs are such that

Π∗b < Π. That is, the buyer’s prediction of the market price is not in the actual support of the
market price, but their net value is. For small ε, Π∗ + ε < Π. Therefore, the buyer is involved in
trade with positive probability K when bidding truthful, but is almost surely not involved in trade
with their , which is ε-close to Π∗. It follows that EΦ = PΠ[b∈B∗(,Π)]

PΠ[b∈B∗(tΦb ,Π)]
= 0

K = 0.
Second, suppose that δ = 0. The expected utility is of the form

Eb[ub(tb, ab,Π)] =


tb −Π− Φb(ab,Π) if ab > Π

cb(tb −Π− Φb(ab,Π)) if ab = Π

0 if ab < Π,

(142)

where pb ∈ [0, 1] depends on tie-breaking assumptions. Consider a market without tie-breaking, that
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is pb = 1. The minimum of Φb(·,Π) on [Π,∞) is attained at Π. Therefore, the best response is equal
to Π, if tΦb ≥ Π. With tie-breaking, that is pb ∈ [0, 1), the fee payment Φb(·,Π) decreases when ab
approximates Π. However, because Φb(ab,Π) is continuous, there exists ε > 0, such that

tb −Π− Φb(Π + ε,Π) > pb (tb −Π− Φb(Π,Π)) . (143)

Therefore it follows that Π is not a best response. Furthermore, because for any a1
b > a2

b > Π it holds
that Φb(a

1
b ,Π) > Φb(a

2
b ,Π) and therefore also Eb[ub(tb, a1

b ,Π)] < Eb[ub(tb, a2
b ,Π)], no best response

exists, but ε-best responses approximate Π.
Finally, suppose that FΠ has a continuous density function fΠ > 0 on [Π,Π]. For all ζ ∈ [0, 1], we

construct beliefs, such that the efficiency of is equal to ζ. First, pb = 1, that is the buyer believes that
there is no tie-breaking. Then the unique is equal to their deterministic belief Π∗b of the market price.
Therefore, for any value x, beliefs can be constructed, such that the is equal to x. The efficiency
ratio is then equal to EΦ = PΠ[b∈B∗(x,Π)]

PΠ[b∈B∗(tΦb ,Π)]
= 1−FΠ(x)

1−FΠ(tΦb )
with 1− FΠ(tΦb ) and therefore continuous for x

∈ [Π,Π]. If x is equal to Π, the efficiency ratio is equal to 0, and if it is equal to tΦb , the efficiency
ratio is equal to 1. By the Intermediate value theorem, ∀ζ ∈ [0, 1] there exists x ∈ [Π,Π], such that
EΦ = x. The proof for sellers is analogous.
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