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Abstract

Short-time work - a wage subsidy conditional on hour reductions - has become an important tool
of labor market policy in many European countries. As the scope of these policies expanded, concerns
about side effects due to adverse selection increased.

We develop a model of job retention policies in the presence of asymmetric information to study
selection into these programs. The social planner wants to prevent excessive job destruction but cannot
observe which jobs are truly at risk. We do not restrict the social planner to use hour reductions a priori.
Instead, we show that hour reductions of short-time work policies act as a screening mechanism to
mitigate the adverse selection problem. This perspective of short-time work as a policy response to an
underlying adverse selection problem provides an entirely new rationale for these policies.

Our approach can be used to revisit recent empirical findings which rely on employment effects to
evaluate existing short-time work schemes. In our model, however, average employment effects across
groups are not sufficient to determine whether the policy is efficient. Indeed, we show that an optimal
short-time work policy cannot avoid a small degree of adverse selection. This is particularly important
in light of recent evidence that firms with small revenue shocks and no discernible employment effects
have participated in short-time work programs at large costs to the public. In our model, these costs are
information rents which are required to screen for jobs at risk.

We calibrate our model to German data before the financial crisis and find that the optimal short-time
work policy would have reduced separations by 1.2 - 2.4 percentage points.
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1 Introduction

Lockdowns and temporary closures in the wake of the recent Coronavirus pandemic have led many
governments to increase the scope and funding of job retention programs to prevent a sudden and mas-
sive rise in unemployment. A common characteristic of these programs is the introduction of short-time
work (STW), under which governments subsidize temporary hour reductions of firms. During reces-
sions, STW programs can become substantial in size. As an example, 6 million individuals or 13% of
the workforce have received subsidies from the German “Kurzarbeit” in April 2020 after the scope of
the existing program has been expanded quickly. In a similar fashion, the program has been used by 1.1
million German workers in the aftermath of the financial crisis in 2009.

As with general job retention policies, the explicit purpose of STW programs is to reduce unemploy-
ment by means of sustaining employment in existing jobs. In practice, however, an external policy maker
will find it difficult to determine which jobs are at risk of termination and should therefore receive subsi-
dies. Similarly, not all jobs are viable in the long-run and some existing jobs with low economic prospects
should rather be separated. The asymmetry of information between firms and the policy maker gives rise
to adverse selection: for a given STW policy, some firms will benefit from subsidies for hour reductions
without any benefit to the public in terms of saved jobs.

In this paper, we use a mechanism design approach to analyze the optimal job retention policy in the
face of asymmetric information about match productivity. Importantly, we do not restrict the optimal
solution to be an STW scheme a priori; instead, we allow the policy maker to choose any assignment of
hours and subsidies as long as private incentives are respected. We then show that hour reductions arise
as an optimal solution precisely because of the asymmetric information problem. The intuition for our result
is that more productive firms also stand more to lose when asked to reduce hours. Thus, hour reductions
of STW policies can be used to screen for jobs at risk and mitigate adverse selection.

Our explanation of STW as a screening tool is new compared to the existing literature, which mostly
emphasizes a combination of wage-bargaining and liquidity frictions to motivate why the government
should subsidize hour adjustments between firms and workers. Parts of the welfare-improving effects
of STW in these models therefore always stem from correcting inefficient hours. In our model, on the
other hand, firms and workers set efficient hours as long as they agree to continue the match. The
market inefficiency which the planner tries to correct only arises on the extensive margin. Too many
matches separate since the private and social costs of unemployment do not align, and a targeted subsidy
to reduce the separation rate is infeasible due to asymmetric information. Instead, the social planner
demands an hour-reduction to screen matches for their type. From the perspective of the planner, STW
only serves as a screening mechanism that trades off production efficiency with the value of retrieving
private information about matches.

Importantly, asymmetric information captures the problem that the planner cannot perfectly target
the recipients of the subsidy and instead has to accept a degree of welfare loss due to subsidizing the
wrong firms because of selection issues and private information. This is a commonly cited argument
against employment protection in general and STW in particular1 and our approach allows us to formal-
ize this trade-off.

Our model helps to understand the findings of recent empirical studies, which have mostly focused
on direct employment effects to evaluate short-time work policies. An insight from our model is that fo-
cusing only on employment across firms can be misleading about welfare and optimality. As an example,
consider the findings by Cahuc et al. (2021), who have documented that STW benefits are partly paid to
firms with lower revenue shocks and no discernible effects on employment. Yet given the asymmetry of

1See for example Cahuc et al. (2021) for an empirical discussion.
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information about the shock and the screening role of hour reductions, it is optimal to include jobs that
are not at risk of termination in the STW scheme. A lack of employment effects for some firms therefore
cannot be interpreted as evidence for an inefficient policy. In fact, in our calibrated optimal policy more
than 80% of matches in STW are adversely selected and exhibit no employment effects.

Our paper also relates to whether short-time work can serve as a natural extension to an existing
unemployment insurance (UI) scheme. While UI aims at the extensive margin of job creation and de-
struction, STW can be viewed as an extension through which the policy maker can adjust the intensive
margin of hours. In our model, offering STW allows the social planner to complement an existing UI
scheme by reducing overall fiscal costs while keeping the utility value of UI constant for all workers.

To quantify the extent to which an optimal STW scheme complements an existing UI system, we cal-
ibrate our model to moments of the German labor market prior to the Great Recession. Before 2009, the
scope of the German “Kurzarbeitsprogramm” was minuscule and a negligible factor in the overall labor
market policy. Our quantitative exercise shows that an optimal STW policy would have strongly inter-
vened in the labor market and would have reduced the separation rate by 16-33%, or 1.2-2.4 percentage
points.

Related Literature. A striking feature of the recent literature on STW is that there is no agreement on
the underlying market inefficiency that STW addresses. Different proposals include human capital ex-
ternalities (Tilly and Niedermayer, 2016) and liquidity constraints (Giupponi and Landais, 2018), all of
which require wage bargaining frictions that prevent matches from reaching the socially efficient out-
come privately. A main rationale for STW in their models is to alleviate these frictions. In contrast, we
introduce a completely different explanation of short-time work as a screening tool based on the fact that
the planner cannot distinguish job matches who need support from those who do not. The most im-
portant difference to these models is that we do not impose any frictions on the private decisions about
hours or wages. Without any policy intervention, hours of firms and workers which do not separate are
socially efficient, which is not the case in models with bargaining frictions.

Tilly and Niedermayer (2016) and Giupponi and Landais (2018) derive optimality conditions for re-
placement rates in linear STW policies. We take a more general approach by not restricting our policy
design to linear policies and allowing for arbitrary subsidy schedules as a function of hours instead. In
the estimation of Tilly and Niedermayer (2016), the optimal replacement rate is close to the boundary of
one, indicating that a larger optimization space as in our approach may be important. Our non-linear
solution space also reveals an important distinction vis-à-vis a linear policy. In order to facilitate reallo-
cation and prevent adverse selection of low types into the STW program, our optimal policy induces a
minimum threshold of hours worked. In our calibrated economy, for example, matches with a reduction
of more than 28-45% relative to full-time work are not subsidized and separate instead and the average
replacement rate relative to the unemployment benefit is 25.3-47%.

The setup of our model is closely related to Cooper et al. (2017) and most recently Cahuc et al. (2021),
who model a frictional labor market in which workers and firms jointly maximize the surplus derived
from a match without subject to bargaining constraints. Similar to our approach, worker-firm matches
which do not separate agree on socially efficient hours in the absence of any policy intervention. Dif-
ferently to our approach, these papers do not discuss which STW policy would be optimal, but rather
introduce a policy exogenously to study its effects quantitatively. In a similar fashion, Balleer et al. (2015)
study the effect of altering eligibility criteria for STW.

Many of the existing papers try to estimate the degree of adverse selection into STW programs; either
by low-productivity matches with negative effects on reallocation (Giupponi and Landais, 2018; Cooper
et al., 2017) or high productivity matches with excessive costs and no employment effects (Cahuc et al.,
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2021; Boeri and Bruecker, 2011). Those papers have in common that they observe negative selection ef-
fects from STW and compare it to the positive effect of saving jobs2. All of these papers highlight the
information asymmetry between firms and policy makers regarding productivity as important concerns
for efficiency of these programs. Yet as of today, no theoretical models have been proposed to study
whether the incentive problems outweigh potential benefits of the program. Our paper is the first to
account for adverse selection formally through a model of incomplete information. Because of that, we
are able to shed light on these recent empirical findings. Importantly, we show that a focus on employ-
ment effects can be misleading since participation of high-productivity types happens even in an optimal
policy and that a well designed STW policy is precisely the best way to mitigate adverse selection and
sustain jobs at the lowest costs.

In our model, hour reductions act as a mechanism to screen for matches which are not at risk of
termination. We therefore draw heavily from the theoretical screening literature initiated by Mussa and
Rosen (1978). In our context, the private information of matches matters for the outside option - whether
they would separate without any planner intervention. Our paper is therefore different to much of the
standard screening models where private information matters for the intensive margin (e.g. “taste” or
“ability”) and the outside option is held constant. The most closely related theoretical paper is Jullien
(2000), who was the first to study asymmetric information with varying outside options. We follow his
approach to state our model as an optimal control problem with state constraints. For a recent extension
to models with nontrivial participation constraints and discontinuous objective functions, see Martimort
and Stole (2020).

Our paper can be seen as an application of the screening literature to optimal labor market and job
retention policies. In particular, this paper relates to Blanchard and Tirole (2008), who study the joint
design of unemployment insurance and layoff taxes under different frictions, including unobserved
match heterogeneity. In contrast, our model lets the optimal policy depend on the hours worked and
imposes participation constraints for all types, therefore precluding any cross-subsidization from high-
to low-productivity matches. The use of work hours as a screening tool for productivity is recognized by
Stantcheva (2014). She studies optimal redistributive income taxation in the presence of adverse selection
where firms screen workers’ private information. In our model, the social planner uses hours worked as
a tool to screen firm-worker matches’ underlying productivity.

The rest of the paper is structured as follows. In section 2, we introduce a labor market model with
asymmetric information and socially excessive separations. We derive the solution under perfect infor-
mation as a comparison. Section 3 discusses the optimal STW policy in our model and contains our main
analytical results. Section 4 contains our calibration. Section 5 concludes.

2 Model

In this section, we present a model of a general job retention program with asymmetric information
about match productivity. A policy maker would like to save jobs at risk, but firms and workers have
private information about the viability of their match. In our model, the policy maker is free to offer
subsidies for each individual match in the economy to maximize welfare. In addition, the planner may
condition these subsidies on changes in working hours. Our model, therefore, spans a broad range of
labor market policies, ranging from unconditional employment subsidies to STW schemes with non-

2Two papers estimate the causal effects of STW policies on employment and calculate the fiscal externality through behavioral
responses. In Giupponi and Landais (2018) in the context of Italy, the estimate of the fiscal externality is larger than one, implying
that more than one dollar in revenue needs to be raised to pay for one dollar in short time work. They attribute this to moral hazard
effects of the policy. The results of Kopp and Siegenthaler (2021) for the case of Switzerland, on the other hand, point to a fiscal
externality of less than one, meaning the policy even pays for itself.
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linear replacement rates, as they are often observed in European countries. In particular, many European
countries limit STW by imposing both minimum and maximum reductions to working hours. 3

Unlike simple unconditional wage subsidies, STW has the potential to screen for productivity using
working hours. By requiring an hour reduction from firms participating in the program, the policy maker
aims to dissuade high-productivity matches from participating because those matches are not truly at
risk of separation. As an example, consider two worker-firm matches L (low) and H (high). Without an
intervention, L would separate but H would not. If the policy maker could distinguish between both
matches, she would offer L an employment subsidy to keep the match intact and would exclude H from
participating. However, if firm information is private and hours cannot be changed, the policy maker
would have to offer the same subsidy to both matches. With an STW policy, the policy maker could
use the hour reduction to design a policy able to distinguish between the matches and target only L 4.
Since the shape of the policy in our model is unrestricted in transfers and hours, it is not immediate that
the optimal policy resembles an STW program as they currently exist. For example, the optimal policy
could be an employment protection subsidy without changes on the intensive margin as in Blanchard
and Tirole (2008). As an extension in Appendix C, we show how an employment protection subsidy may
arise optimally as a special case of our framework.

2.1 Setup

Existing matches. Matches are jointly formed by workers and firms and a firm consists of one worker. It
is common knowledge to all agents that the match is subject to a productivity shock in the current period,
where the productivity parameter θ is drawn from a distribution that follows the CDF F with support
on [θ, θ̄] with θ ≥ 0. As a technical assumption, we assume that F has full support and an increasing
hazard rate, F is logconcave and twice continuously differentiable.5 It could be a severe disruption of
the economy with a large variance as in the case of the Covid-19 pandemic or the Great Recession, or it
could be a normal shock with less drastic effects. The production of a match further depends on hours n,
which the firm and worker have to agree upon.

Once productivity is drawn, the value of the match from the perspective of the firm is

J(θ, n) = θ × n − w(θ, n)

where production is linear in hours n and a match-specific wage w is paid to the worker. Additionally,
each firm may post vacancies to fill future jobs. Since there is free entry, the value of a vacancy V is
generally 0. This represents the outside option of the firm.

For the worker, the corresponding value of the match is

W(θ, n) = w(θ, n)− c(n)

where c(n) is the disutility that the worker bears for providing n hours of labor to the match. We assume
that c(0) = 0, c′, c′′ > 0.

3For example, around the Great Recession in 2008-2009, some countries required hours to be reduced by at least 10% (as in
Germany and Austria), or that hours be reduced by at most 50% (as in the Netherlands and Luxembourg). See figure B.1 in the
Appendix for an overview of STW hour ranges across OECD countries.

4Whether designing a policy that results in a subsidy to just L is indeed optimal depends on the distribution of productivity.
This is a question that we tackle in our general setting.

5Logconcavity will allow us to abstract from bunching issues. This assumption first appeared in Lewis and Sappington (1989)
in a slightly different formulation and later in Jullien (2000). Continuous differentiability can be relaxed, for instance to upper
semicontinuity of F, but makes the characterization of Theorem 1 technically more difficult.
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Reallocation. When unemployed, the worker receives unemployment benefits b and searches for new
employment options with an expected value of R. In our model, R embodies the idea that job search
leads to new options, which create value to the economy by reallocating resources. We therefore also
refer to R as the reallocation value. Unemployment benefits and the reallocation value jointly promise the
worker a value of unemployment U of

U = b + R.

For our purposes, we assume that the unemployment program is pre-existing and cannot be changed
and therefore benefits b > 0 are fixed. The parameter R is fixed, too, since we do not model the reallo-
cation value explicitly. Hence the value of unemployment U can be treated as a promise that the social
planner implicitly made to the worker.6

Laissez-faire outcome. To determine the wage, firms and workers enter into a bargaining game about
the surplus of the match, defined as

J(θ, n)− V + W(θ, n)− U

The specific details of the bargaining game between firm and worker are irrelevant for the allocation
in our model. Importantly, we assume that the value that each of the two receives is increasing in the
total surplus, which would for example be satisfied under the commonly used Nash-bargaining rule.
Therefore, we can assume that firm and worker jointly maximize the match value prior to bargaining.
The surplus captures the benefits that both parties jointly derive from staying in the match in the current
period. It is increasing in current productivity θ but decreasing in the value of unemployment U. The
agents can agree to exercise their outside options - unemployment and posting a new vacancy - and
dissolve the match. This decision is reflected by the choice of the inclusion variable ι. Evidently, this
happens in case the surplus becomes negative. We refer to the relevant surplus of the match in the
absence of an intervention by the policy maker as the (match) outside option SO and write

SO(θ) = max
n≥0,ι∈[0,1]

ι ∗ (J(θ, n)− V + W(θ, n)− U)

= max
n≥0,ι∈[0,1]

ι ∗ (θ n − c(n) − U)

The outside option surplus is SO(θ) increasing in θ with SO(θ) = 0. The maximization problem for
the outside option allows for stochastic match dissolution (i.e. ι ∈ [0, 1]) but it always takes deterministic
boundary values of either 1 or 0, depending on whether the surplus from maintaining the match is
positive or not. More precisely, hours n̂(θ) which matches of type θ set in the outside option are

n̂(θ) =

0 if θ < θ0

(c′)−1(θ) if θ ≥ θ0

(1)

and ι̂(θ) = 1{θ≥θ0}(θ) where θ0 satisfies θ0 (c′)−1(θ0)− c((c′)−1(θ0)) = U.7 Type θ0 is a threshold produc-
tivity that satisfies S(θ0) = 0. Matches with a productivity parameter below θ0 will exit whereas matches
with higher productivity will stay intact. Notably, the match outside option SO is always weakly positive

6We assume that the reason why unemployment insurance exists is exogenous to our model. To determine the joint design
of unemployment benefits and STW, one would have to be specific about the role of unemployment benefits in this economy, for
example as an insurance to idiosyncratic risk. Incorporating this into our model would be an interesting future extension.

7The exit cutoff θ0 is well defined because c is strictly convex.
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whereas the match surplus may turn negative.
To make our problem nontrivial, we assume that there would always be matches that exit absent a social
planner intervention. Formally, we assume that θ (c′)−1(θ)− c((c′)−1(θ)) < U.

Social planner objective. The decision to dissolve a match, however, is not necessarily socially efficient
even if it avoids a negative value of SO. The reason is that part of the outside option of the worker is
funded through an existing unemployment insurance scheme. We assume that unemployment benefits
have to be financed through general public funds at marginal costs larger than unity. This captures
the general fact that revenue of the government, derived through taxes, tariffs or other means, always
imposes additional social costs in collection. We impose therefore that any transfer t that the planner
makes to the match – including the exogenous unemployment insurance – enters the welfare function
with costs (1 + τ) × t, where 1 + τ are the marginal costs of public funds (Laffont and Tirole, 1990). The
marginal cost of these public funds is larger than one, capturing the fact that raising government revenues
always introduces some distortion. Unemployment insurance, therefore, induces additional social costs
and the policy maker has an incentive to lower the bill of unemployment.

The social planner can introduce a policy to address this issue of inefficient and costly Laissez-faire
separation. A policy in our model takes the form of a set of alternative contracts which the policy maker
offers to firms and workers.

Definition 1. A policy is a set of contracts {n(θ), ι(θ), t(θ)}θ∈[θ,θ̄] with n : [θ, θ̄] → R+, ι : [θ, θ̄] → [0, 1] and
t : [θ, θ̄] → R.

Intuitively, a policy consists of a schedule of social planner transfers which are conditional on hours
worked and the decision to separate or not.8 For a productivity type θ, a policy specifies i) hours n(θ) ∈
R+, ii) inclusion ι(θ) ∈ [0, 1], which determines whether a match is sustained or separated and iii)
transfers t(θ) ∈ R. A policy then induces a match specific policy surplus

SP(θ) = ι(θ)θn(θ) + t(θ)− c(n(θ)) + (1 − ι(θ))R − U

The exact bargaining protocol for how to share the surplus that includes social planner transfers
is irrelevant as long as worker and firm surplus are both monotone increasing in the match surplus. In
particular, whether transfers are directed to the worker or to the firm plays no role because the bargaining
dynamics completely absorb any such distinction.

The social planner objective consists of two components. On the one hand, the planner wants to
maximize the surplus of matches SP through its alternative offer. On the other hand, matches do not
internalize the costs of unemployment imposed by marginal costs of public funds and therefore the
planner would like to reduce transfers to matches. Total welfare is then given by

W =
∫ θ̄

θ
SP(θ)︸ ︷︷ ︸
Surplus

− (1 + τ)t(θ)︸ ︷︷ ︸
Cost of public funds

dF(θ). (W)

Participation constraint. We also impose that firms and workers participate voluntarily in the offered
policy. This assumption on individual rationality is an important distinction between employment subsi-
dies such as STW and other settings. Matches in our policy cannot be made worse off than if they refused

8If productivity types θ are public knowledge, the definition of a policy which conditions on productivity types is without loss
to maintain this intuitive interpretation as is the case under incomplete information by the revelation principle.
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to participate and continued on their own. Since the match outside option is increasing in productivity θ,
asking for voluntary participation of firms also precludes redistribution, which distinguishes our theo-
retical setting from e.g. the literature on optimal non-linear taxation. A further implication of individual
rationality is that the subsidy cannot simply work as an insurance for economic shocks, since matches
may always walk away ex-post. Formally, we write the individual rationality constraint as

SP(θ) ≥ SO(θ) ∀θ ∈ [θ, θ̄]. (IR)

An important aspect of the individual rationality constraint is that it imposes that the planner has to
keep her promise of delivering the outside option of unemployment. As an example, consider a single
match with productivity 0 and reallocation value R. The surplus of the match is S(0) = −U, i.e. if the
match continued it would forgo the flow value of unemployment this period. But the outside option of
the match is SO(0) = 0. The assumption of individual rationality requires that the planner has to make
the match indifferent.

To do so, the planner has - in essence - two options. She can either decide to save the match, in which
case she offers a contract with ι = 1 and t = U, compensating the value of unemployment through
transfers. The alternative option is to separate the match and release the worker into unemployment
by setting ι = 0 and t = b. Separating the match reduces the required transfer to b, since the worker
additionally receives the option value of a new job R.

2.2 Efficient hours and transfers under complete information

The inefficiency of private match decisions in the Laissez-faire setting comes from the fact that workers
and firms do not internalize the social costs of the unemployment insurance scheme and the motive for
government intervention is, therefore, to reduce these excess costs by reducing unemployment while
maintaining the promised unemployment utility of U for workers. To see how this objective relates
to STW, it is helpful to consider the simple case where productivity θ is observed and the planner can
assign working hours n and transfers t based on observed productivity directly. In addition, the social
planner can also make a recommendation of whether to maintain or dissolve the match captured by ι

in Definition 1 as is done by the match in the maximization problem for the outside option. Denote the
value of θ that solves θ(c′)−1(θ)− c((c′)−1(θ)) = R by θeff. Then, the social planner maximizes (W) by
assigning working hours

neff(θ) =

(c′)−1(θ) if θ ≥ θeff

0 else ,
(2)

setting ιeff(θ) = 1{θ≥θeff}(θ) and making transfers

teff(θ) =

b − (θneff(θ)− c(neff(θ))) if θ ≤ θeff

0 else
(3)

in order to fulfill the (IR) constraint.
We call neff the production-efficient working hours because they maximize output minus disutility of

labor. The transfers under complete information teff are such that (i) matches receive unemployment
benefits when production is inefficient (ii) matches receive the difference between unemployment bene-
fits and the value of efficient production to the match when the value of efficient production is positive
but below unemployment, and (iii) transfers are zero when matches prefer to work at the efficient level
instead of dissolving the match for unemployment benefits. Importantly, if R > 0, it holds that θeff < θ0.
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Since the value of reallocation R is not internalized by matches, there will be inefficient separation by
matches absent any policy intervention. The social optimum asks all matches to work at their efficient
level of hours and incentivizes them to do so by making everyone at least as good off as in unemploy-
ment.

Figure 1 provides a graphical comparison of the optimal social planner intervention under complete
information to working hours and transfers of matches in the outside option. Panel 1a shows that work-
ing hours coincide on [θ, θeff], when separation is efficient, and on [θ0, θ̄], when matches work at an effi-
cient level without intervention. Transfers to guarantee at least the value of unemployment can be seen
in panel 1b. Hence, policy {neff, ιeff, teff}[θ,θ̄] is not an STW policy and rather an unemployment policy
because it only shifts the extensive margin of unemployment, but does not change the intensive margin
of hours when matches are maintained.

n

θ θ̄θ0θeff

neff

n̂

(a) hours

t

θ θ̄θ0θeff

t̂b

teff

(b) transfers

Figure 1: Hours and transfers for matches in the outside option (solid) and the perfect-information allo-
cation (dashed). The example uses a quadratic function for the disutility of labor.

2.3 Introducing incomplete information

When match productivity is unobserved to the social planner, she cannot directly mandate the ideal
flexible unemployment policy from the previous section. Instead, the social planner needs to elicit the
productivity parameter of a match and can offer a policy based on the reported type.

In the presence of private information, the policy maker must offer all matches in the economy the
same conditions irrespective of their idiosyncratic productivity draw. Firms and workers then have
the option to select into a specific contract with accompanying hours and transfer that maximize their
surplus. From the perspective of the match, a contract {n(θ̃), t(θ̃), ι(θ̃)} implies a policy surplus depending
on the reported productivity type θ̃ and true type θ.

SP(θ̃|θ) = ι(θ)θn(θ̃) + t(θ̃)− c(n(θ̃)) + (1 − ι(θ̃))R − U (Policy surplus)

Note that with private information, the policy maker has to take into account the incentives of all
matches to misreport their productivity as θ̃ ̸= θ is generally possible. If the planner offers a high
subsidy to matches with low productivity, she has to take into consideration that matches with higher
productivity can misreport and claim the same transfers. Here, conditioning on a reduction of working
hours will help to differentiate since high productivity matches have more surplus to lose from an hour
reduction than low productivity matches. As the policy maker can strategically use the contract offers to
elicit private information, the tools available to the social planner are screening mechanisms. Part of the
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purpose to the policy maker of a job retention policy or STW, in particular, is therefore to improve the
allocation of funds by screening for private information of firms.9

By the revelation principle, it is without loss to focus on direct mechanisms that ask for the underlying
type θ instead of asking matches to select hours n from the offered policies such that we can still define a
policy as in Definition 1. All we need is to require that matches have no incentive to misreport their type.
This incentive-compatibility constraint takes the form

SP(θ) = SP(θ|θ) ≥ SP(θ̃|θ) ∀ θ, θ̃. (IC)

We believe that the participation (IR) and incentive-compatibility constraint (IC) capture key features
of labor market interventions such as employment subsidies and STW which are usually overlooked but
help to understand what challenges these policies face. On the one hand, individual rationality relates to
the fact that employment protection programs such as STW cannot be forced upon workers and firms. If a
firm has no interest in participating and rather continues its business as usual, little can or should be done
to change that. It further implies that such a program cannot act as an insurance, in which unaffected
firms foot the bill for their troubled competitors.10 Incentive compatibility, or private information, on the
other hand, relates to the fact that the recipients of subsidies can never be hand-picked individually, and
instead, the policy maker must consider private incentives of misreporting in the design of an optimal
policy.

To summarize, the social planner offers a policy in the form of a tuple of functions {n(θ), ι(θ), t(θ)}θ∈[θ,θ̄]

to the match. Both hours n and transfers t are unrestricted in shape and could take a non-linear form.
Layoffs can be stochastic and are governed by ι. As a restriction, however, they are feasible feasible if
only if they satisfy the incentive compatibility and participation constraints. Definition 2 formalizes the
concept.

Definition 2. Policy {n(θ), ι(θ), t(θ)}θ∈[θ,θ̄] with n : [θ, θ̄] → R+, ι : [θ, θ̄] → [0, 1] and t : [θ, θ̄] → R is
feasible if it satisfies (IC) and (IR).

The social planner looks to maximize the welfare objective via a feasible mechanism.

Definition 3. A feasible mechanism {n(θ), ι(θ), t(θ)}θ∈[θ,θ̄] is optimal if it maximizes (W).

2.4 Suboptimality of production efficient working hours

The efficient production that would be implemented under complete information is a key benchmark in
the model of incomplete information. The social planner wants to maximize the match surplus while
transfers come at a social cost. In addition, holding transfers constant, the match surplus increases if the
implemented working hours get closer to efficient production. A natural question to ask is whether the
social planner simply wants to implement efficient production under incomplete information as well.

The answer is no. Our next result states that it can never be optimal to implement production efficient
working hours if there are strictly positive unemployment benefits.

Proposition 1. For any optimal policy {n∗(θ), ι∗(θ), t∗(θ)}θ∈[θ,θ̄], it can never hold that n∗(θ) = neff(θ) and
ι∗(θ) = ιeff(θ) for all θ ∈ [θ, θ̄].

9A crucial assumption to make screening through hours possible is disutility from working of the employee. Otherwise the
decision to work becomes binary, which we show in the extension in Appendix C.

10Unemployment insurance is a counter-example of a common labor market policy with involuntary participation in most de-
veloped countries.
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The intuition for this result is that the implementation of efficient production is too costly for the
social planner. The cheapest policy that implements efficient production is by paying the same transfer
U to all matches. This just incentivizes all matches to operate at their efficient level of working hours.
We provide a constructive proof of suboptimality by suggesting a modified policy that sets hours to zero
for a sufficiently small share of match types for which it is just efficient to have positive hours. The
social planner can then save on transfers for all higher types. The loss in production on types that would
otherwise generate only just positive output is of second order. Hence, saving on incentive costs for high
types dominates the loss in production for types that are just on the margin of efficiently operating with
positive hours.

The suboptimality of implementing efficient production provides an insight on how a job retention
scheme can be misdirected. The social planner should not aim to set transfers such that the efficient
production is reached. Instead, the trade-off between the value of production through incentives via
additional transfers and the social cost of spending must be taken into account carefully. The result also
shows the key role of transfers. Their purpose is to incentivize matches to comply with the policy, but
they are costly and should be implemented with care. Most importantly, the social planner should try to
avoid making transfers to high types who would not need monetary incentives for efficient production
without the policy.

3 Optimal Policy

We now turn to the analysis of the optimal policy.

3.1 Characterization

Information rent. Before we state the formal characterization of the optimal job retention policy, we
want to provide some intuition for the result. First, we describe a necessary condition that relates optimal
hours n and policy inclusion ι to the incentive and participation constraints.

Proposition 2. Under incomplete information, hours n(θ) and inclusion ι(θ) in the optimal feasible policy satisfy

(n∗(θ), ι∗(θ)) ∈ arg max
(n,ι)∈[0,∞)×[0,1]

V =

{
ι n
(

θ − τ

1 + τ

Λ∗(θ)− F(θ)
f (θ)

)
− c(n) + (1 − ι)R − U

}
(4)

where Λ∗(θ) is a Lagrange multiplier on the participation constraint (IR).

This result is derived analogously as Theorem 1 in Jullien (2000).
The optimality condition in Proposition 2 is instructive about incentives in designing the optimal job
retention scheme. First, the policy inclusion variable ι takes a very simple structure. As V is linear in ι, it
will always take boundary values ι ∈ {0, 1}. There will be no stochastic layoffs and any optimal policy
is deterministic. Matches are not simply maintained when their social value of inclusion is higher than
the value of reallocation R. The decision to separate depends not only on output and direct payments
to a given type, but also on incentive costs that a type incurs on other types. The optimal policy is also
deterministic because transfers for given types are deterministic by assumption. In our model, transfers
do not depend on the realization of the inclusion variable ι, i.e. they are interim payments rather than
ex-post payments. A model where transfers can be conditional on the realization of inclusion would not
lead to different results because firms and workers are both risk-neutral expected utility maximizers.
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We can decompose the τ
1+τ -weighted marginal value of hours for type θ

θ − τ

1 + τ

Λ∗(θ)− F(θ)
f (θ)

(τ-MV)

=
1

1 + τ
θ − τ

1 + τ

(
θ − Λ∗(θ)− F(θ)

f (θ)

)
. (5)

which consists of the direct contribution of an increase in hours for type θ to production minus the in-
centive costs imposed on all types of higher productivity.11 The relative weight of production on a type’s
social value is 1

1+τ while the relative weight of transfers on the social value is τ
1+τ . An increase in ex-

penditures ∆t only comes at marginal social cost τ because it raises the surplus by ∆t and incurs costs of
public funds (1 + τ)∆t such that the net effect is −τ∆t.
The standard interpretation by Mussa and Rosen (1978) and its extension to a setting with nontrivial par-
ticipation constraints by Jullien (2000) still applies and we extend it for the trade-off of production and
costs of public funds in our model. A marginal increment ∆n in hours for a match of type θ increases
output by θ f (θ)∆n weighted at 1/(1 + τ). In addition, The social planner can reduce transfers to type θ

by θ∆n while (IC) is still satisfied for type θ which saves transfers of relative social value (τ/(1+ τ))θ∆n.
In short, an incremental increase in hours for type θ has relative social value θ f (θ)∆n because it changes
production and expenditures for type θ with the same magnitude.

The Lagrange multiplier Λ∗ also allows for an interpretation. In short, Λ will denote the share of
types that receive a transfer from the social planner, either through unemployment benefits or subsidies
through the policy. For any match type θ where the constraint on the lower bound of hours n ≥ 0 is not
binding, Λ∗(θ)− F(θ) denotes the mass of match types above θ for which the participation constraint (IR)
binds. If the hours’ constraint binds, i.e. n = 0, the incentive costs of a marginal increase in production
are not well-defined anymore and Λ∗ is not unique. This happens precisely for types at the bottom
of the productivity distribution which will be separated to exploit the value of reallocation. With an
understanding of Λ∗ at hand, the reformulation of costs θ − Λ∗−F(θ)

f (θ) becomes clear. Any marginal change
in hours ∆n incurs incentive costs as transfers need to be increased by ∆n for the mass Λ∗(θ)− F(θ) of
types above θ where the participation constraint (IR) is slack. Hence, expenditures from a marginal
change in hours for type θ are the savings from increased output minus incentive costs on all higher
types where the incentive constraint binds, i.e.

(
θ − Λ∗(θ)−F(θ)

f (θ)

)
∆n at relative weight τ

1+τ .
If Λ∗(θ) = F(θ), then a change in hours for type θ imposes no incentive costs above since the par-

ticipation constraint must bind for all higher types. A marginal change in hours ∆n will only allow to
reduce transfers on match type θ by ∆n as well (or even render transfers negative).

Moreover, on any interval where the incentive constraint binds rather than the participation con-
straint, we have Λ∗ since the mass of types above for which (IR) changes is the same on such an interval.
We will see that there is exactly one such interval for which the planner optimally implements STW to
interfere with the private decisions of firms and workers, i.e. hour decisions have to be changed through
monetary incentivization such that (IC) binds rather than (IR). Match types below separate into unem-
ployment while matches above are unaffected by the policy.

Characterization Result. The main result of this paper is a characterization of the optimal policy and
its implications for the design of job retention schemes. The following further characterization marks the
departure from Jullien (2000). Typically, only a subset of firm-worker matches select into existing STW

11As far as we know, the weighted virtual valuation was first introduced in ? where it appears through a Lagrange multiplier on
the condition of budget balancedness.

12



policies in practice. We show that an optimal policy induces a change in hours for a subset of intermediate
types [θ1, θ2] ⊂ [θ, θ̄] of types. This subset is an interval because only the highest and lowest types of the
productivity distribution are not affected by the optimal policy. On the one hand, the match types with
the highest productivity select hours at the efficient level and their incentives are maintained even with
the additional contractual options added by the policy. Incentive costs never lead to any distortion of
efficient production at the top and the highest productivity types would produce efficiently even in the
absence of a policy. On the other hand, types of lowest productivity still separate. Some layoffs at the
bottom of the productivity distribution are socially efficient and the social planner can maintain their
incentives to opt for separation. Not only would production by them be socially inefficient but a subsidy
would also only increase incentive costs for higher types.
However, there are still adverse selection issues for intermediately low and high types under the optimal
policy which we discuss after formally stating the main characterization result.

The policy designer, therefore, faces a decision to find the exact intermediate interval [θ1, θ2] where
the policy induced hours n∗ differ from the outside option to screen for types where the change in hours
has positive social value. As becomes evident from Theorem 1, given a lowest type θ1 above which the
policy assigns positive hours worked n∗ > 0, the incentive constraint tells us exactly the highest type θ2

below which the hours n∗ induced by the policy differs from the outside option n̂. This is related to how a
policy designer might intuitively approach the issue. How much unemployment is acceptable and what
job retention policy achieves this target? The structure of incentives then naturally determines which
share of the labor market selects into STW given the target on unemployment. Such an intuition also
applies to the optimal policy, but its characterization is a bit more involved since the target separation
rate is an endogenous parameter to our model. The choice of threshold values θ1 and θ2 is implicitly
performed through the choice of a single Lagrange multiplier constant Λ. This Lagrange multiplier
already appeared in Proposition 2 as a function Λ∗(θ) of θ. This function is constant on [θ1, θ2] and it
turns out that it suffices to find the value of Λ∗ on this interval to fully characterize the optimal policy.

We are now in a position to formally state the main characterization.

Theorem 1. An optimal feasible policy {n∗(θ), ι∗(θ), t∗(θ)}θ∈[θ,θ̄] exists and it is unique. It satisfies

n∗(θ) =


0 for θ ≤ θ1

c′−1
(

θ − τ
1+τ

Λ−F(θ)
f (θ)

)
for θ1 < θ < θ2

c′−1(θ) for θ > θ2,

(6)

ι∗(θ) =

0 if θ ≤ θ1

1 if θ > θ1

(7)

where θ1 is implicitly defined by

θ1 −
τ

1 + τ

Λ − F(θ1)

f (θ1)
= θeff (8)

while
θ2 = F−1(Λ) (9)

and Λ ∈ [0, 1] is the unique solution to

∫ F−1(Λ)

θ1

c′−1
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

)
dθ = SO(F−1(Λ)). (10)
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Then, (IR) binds on [θ, θ1] and [θ2, θ̄] while it does not bind on (θ1, θ2).

n

θ̄θ0θ1θeff θ2

n̂

neff n⋆

Figure 2: Optimal policy: hours n∗

Separation of low types. As should come at no surprise, matches below threshold θ1 are dissolved to
make use of the social reallocation value R. They would simply not be productive enough such that the
social planner rather pays unemployment benefits b to them. An illustration of this separation cutoff can
be found in Figure 3.

Cutoffs θ1, θ2. For match types above θ1, hours are such that the marginal disutility of labor equals the
τ/(1 + τ)-weighted marginal value of hours. Types above θ2 work efficient hours and receive no sub-
sidy such that their τ/(1 + τ)-weighted marginal value of hours is equal to their type, i.e. their marginal
productivity in hours. In practice, STW policies do not affect the highest types of the productivity distri-
bution and are more directed at lower parts of the productivity distribution where jobs are at risk. We
observe a similar feature for the optimal policy in this model in the sense that jobs in the upper parts of
the productivity distribution play no role in the policy design.
Incentive costs are a local property and a marginal change in hours incurs costs for all types above which
are already affected by the policy and types who are on the margin of being affected.
Hence, a social designer who constructs a job retention scheme only needs to look at incentives locally of
types whose behavior is changed by the policy and types on the margin of selecting into it.
In our setting, the share of agents at the top of the distribution which choose efficient hours according to
their outside option is 1 − Λ. Thus, Λ identifies the threshold θ2.
The other threshold θ1 below which matches are separated is identified through (8). Type θeff is defined

n

θ̄θ0θ1θeff θ2

n̂

n⋆

ι∗ = 1ι∗ = 0

Figure 3: Illustration of optimal inclusion (ι∗ = 1) and separation (ι∗ = 0)
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θ̄θ0θ1θeff θ2

n̂

n⋆

Mass of 1 − Λ

Mass of Λ = F(θ2) receive transfers

Figure 4: Optimal multiplier Λ

as the lowest type for which the social surplus with production weakly exceeds the value from realloca-
tion R. Under asymmetric information, the τ/(1 + τ)-weighted marginal value of type θ1 on the margin
must just equal θeff such that its social value is weakly larger than separation and reallocation.

Lagrange multiplier Λ. The key question is how to find the parameter Λ that determines cutoffs θ1, θ2

and the precise hours worked. For instance, an increase in Λ leads to an upward shift of both θ1 and θ2.
The identifying condition for Λ in the optimal policy is (10). To understand this condition, it is instructive
to understand the effects of Λ on incentives. If Λ were too low, then many jobs are saved (i.e. θ1 low),
but this incentivization of maintaining matches comes at a high price. All types which continue working
at the efficient level (i.e. types above θ2) would have to be paid a subsidy to maintain their incentives
to work efficient hours. If Λ were chosen too high, then too few jobs are saved and the policy loses its
positive implications from job retention (θ1 high). In addition, it would induce a large share of types
above θ0 to reduce working hours and therefore incur a high loss in output for high types as compared
to a world without the policy. Optimality condition (10) therefore states how to balance these tradeoffs
of costly job retention versus too much underproduction. Figure 4 illustrates the role of Λ.

Short-time work. The following observation motivates why the optimal policy here exhibits key simi-
larities with existing STW schemes.

Proposition 3 (Short-time work). For an optimal policy, it holds that n∗(θ) ≤ neff(θ) for all θ ∈ [θ, θ̄] with
n∗(θ) < neff(θ) whenever n∗(θ) ̸= n̂(θ).

The optimal policy always keeps hours worked weakly below the first-best. The inequality is strict
whenever the policy leads to a change in hours worked compared to the outside option. This motivates
the following terminology. We say that a match of type θ is in STW if n∗(θ) ̸= n̂(θ). Similarly, a match
of type θ is not in STW if n∗(θ) = n̂(θ). This case encompasses the two possibilities that either the
match is dissolved voluntarily or that the firm-worker work arrangement is unaffected by the policy.
Interestingly, no match will ever produce above the efficient level. Setting hours above the efficient level
is never optimal because it creates extreme incentive costs for higher types who actually prefer such
high hours in addition to the loss through inefficient hours. Hence, hours worked can only be below the
first-best because the reduction in hours also reduces incentive costs incurred by higher types.

Existence of Adverse Selection: The limits of short-time work. The following proposition follows
(almost) directly from Theorem 1.
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Figure 5: Underproduction through adverse selection

Proposition 4. It holds that θ2 > θ0, i.e. there will always be a non-zero mass of matches selecting into STW
although their outside option is to work efficient hours.

The innocuously looking property θ2 > θ0 has a key implication for the limits of STW. Much of the
recent literature has been concerned with the trade-off between saving jobs at risk and adverse selection
by matches without need for government support. We show that there will always be adverse selection
into STW in any optimal policy, i.e. there are always matches which are in STW (θ < θ2) although they
would work efficient hours without the policy (θ > θ0). This adverse selection into underproduction is
highlighted by the shaded area in Figure 5. The cost of eliminating adverse selection entirely is too high
compared to the benefits it creates. As a consequence, the design of an optimal policy should always
compare the welfare loss through adverse selection to the additional jobs saved rather than try to avoid
adverse selection completely.

No distortion at the top (and at the bottom): The potential of short-time work. The well-known result
of no distortion at the top from contract theory and the optimal tax literature extends to our model in
a slightly modified way. In our setting, not only the highest productivity type produces at the socially
efficient level, but all matches on the interval [θ2, θ̄] do so. Hence, the optimal policy leads to no distortion
for an interval at the top. Nevertheless, the length of the mass of types with no distortion depends on the
policy itself.

In addition, we also obtain a no distortion at the bottom result from Proposition 3.

Proposition 5. It holds that θ1 > θeff, i.e. matches who cannot achieve a value from output larger than reallocation
value R will be dissolved.

No match whose productivity shock is such that any positive production is socially inefficient will
maintain the match. Matches are dissolved whenever it is socially efficient to rather opt for reallocation.
Our model, therefore, states that a well designed policy can achieve to dissolve all inefficient matches,
but not necessarily maintain all matches that are worth saving. Figure 6 gives an example of a suboptimal
policy where matches are maintained that should rather be separated. In particular, this hints towards
the fact that there is potential improvement for an STW policy whenever it suppresses reallocation below
the efficient level. Well designed STW eliminates this type of adverse selection. However, optimal STW
leads to too much unemployment rather than too little unemployment compared to the first-best.

Unemployment benefits b. The unemployment benefits b do not appear in our characterization in The-
orem 1 which might leave the reader wondering whether they are relevant to the optimal solution. It
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Figure 6: Example of suboptimal adverse selection in a short-time work policy

is therefore worth highlighting that the existence of unemployment benefits is the main inefficiency that
makes STW optimal in our model.

Corollary 1. If there are no unemployment benefits, i.e. b = 0, then the optimal policy is the laissez-faire policy
n∗ ≡ n̂, ι∗ ≡ 1{θ≥θ0}, t∗ ≡ 0.

If b = 0, the social planner’s and the firm/worker incentives are perfectly aligned such that there is
no need to intervene for the social planner. Firms and workers dissolve precisely the socially inefficient
matches.

Transfers. So far, we have only discussed the structure of hours under the optimal policy. As is standard
in such mechanism design models, the transfers can be immediately derived just from the incentive
constraint given optimal hours n∗ and inclusion ι∗.

Proposition 6. Transfers (or subsidies) under the optimal policy are

t∗(θ) =


b for θ ≤ θ1,

c(n∗(θ))− θn∗(θ) +
∫ θ

θ1
n∗(x)dx + b for θ ∈ [θ1, θ2],

0 for θ > θ2.

(11)

The social planner transfers are of a simple form. Low productivity types on the interval [θ, θ1] only
receive the unemployment benefit and work zero hours. These are the matches that are not worth main-
taining, but the social planner is still obliged to pay unemployment benefits due to the existing unem-
ployment insurance program. The high productivity types [θ2, θ̄] work at the efficient level as they would
do without the policy. The policy is designed precisely in a way that no additional subsidies have to be
paid for matches that do not select into STW. This is in contrast to a standard employment subsidy which
cannot screen for jobs at risk and would need to subsidize even matches of highest productivity. 12 In the
Appendix, we discuss how a classical employment subsidy is nested in our model. The key deviation
from the exposition presented here is that absent a convex disutility of labor, the planner can no longer
use hours to screen for productivity.

A straightforward calculation shows that t∗ is a decreasing function in productivity θ. Transfers to
matches in STW are therefore always below the unemployment benefit and gradually decrease to zero for
higher hours worked. At this point, it is worth highlighting that many STW policies employed in practice

12There have been efforts in countries like the Netherlands to target wage subsidies for those in need by conditioning the payment
on the loss in sales (see OECD (2020)). These efforts can be seen as an attempt to receive an imperfect signal of match productivity.
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are a wage subsidy equal to the reduction in hours times unemployment benefits.13 In our optimal policy,
unemployment benefits are indeed an optimal reference point for STW payments, although transfers are
not necessarily linear in hours worked as we need to carefully account for incentive costs.

Total output One key quantity in labor markets is total output because a social planner objective is
usually interested in high output.14 The optimal policy allows for a clear comparison to the outside
option in terms of total output. Under a technical assumption on the type distribution F that is a slightly
stronger version of logconcavity of F, we obtain the following result.

Proposition 7. Let the mapping x 7→ f (exp(x)) be (strictly) concave on [θ, θ̄].15 Then, total output under the
optimal policy is (strictly) smaller than output under the outside option policy, i.e.

∫ θ2

θ1

θn∗(θ)dF(θ) <
∫ θ2

θ0

θn̂(θ)dF(θ). (12)

The social planner deliberately reduces output today under the optimal policy. This is somewhat
surprising since the social planner incorporates that higher output increases the surplus of matches.
However, this result neatly demonstrates the true purpose of STW. The ultimate goal of STW is not to
maximize output today, but to retain jobs for the future when the economy recovers. It is indeed optimal
to reduce output today because incentivizing matches to work hours that increase output as compared
to the outside option is too costly.

3.2 Comparative Statics

The optimal policy depends on a number of exogenous parameters that we take as given. We now con-
sider exogenous changes in some parameters to illustrate their implications for the optimal policy. This
could also guide policy makers in their decision on how to design STW given the state of the economy.

Value of unemployment. If unemployment benefits increase, we observe that the optimal policy re-
quires the following adjustments.

Corollary 2. If b increases, the share of workers who go into unemployment increases (θ1 ↑) while the share of
high productivity matches which employ efficient working hours decreases (θ2 ↑) under the optimal policy.

An increase in b generally leads to higher incentive costs when moving matches from unemployment
in the outside option to STW in the optimal policy. In addition, more matches would resolve in favor of
unemployment of the worker (θ0 ↑). This results in a shift of optimal STW such that the productivity of
the lowest type in STW increases and to maintain incentives, less high productivity types do not select
into STW.

A similar statement can be made about a change in the value of reallocation R.

Corollary 3. If R increases, the share of matches that are dissolved increases (θ1 ↑) under the optimal policy.

As R increases, dissolving the match becomes more attractive for both the social planner and firms
and workers, hence leading to an increase in unemployment (θ1 ↑). However, we cannot conclude in

13For instance, in Germany, the initial STW subsidy of 60% of the foregone wage for hours not worked corresponds exactly to
the unemployment benefit.

14As is also the case in our model where the social planner seeks to obtain a high surplus which is increasing in total output.
15Equivalent expressions for this assumption are that θ f (θ) is increasing or that the mapping e(x) = Ex∼F [x̃|x̃ ≤ x] is convex.
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which direction the share of high productivity types which are unaffected by the policy moves. The
ambiguity arises from the two countering effects that (i) the increase in R makes the outside option more
attractive which positively affects incentive costs of STW while (ii) the increase in θ1 negatively affects
incentive costs of STW since STW incentive transfers have to be made to a lower share of low productivity
types.

Marginal costs of public funds. To further understand the role of marginal costs of public funds, it is
instructive to consider the model dynamics in the limit.

Corollary 4. If τ → 0, then

• n∗ converges uniformly to efficient production, i.e. limτ→0 supθ∈[θ,θ̄] |n∗(θ)− neff(θ)| = 0, and

• transfers converge uniformly to tCI , i.e limτ→0 supθ∈[θ,θ̄] |t∗(θ)− tCI(θ)| = 0.

An interpretation of the case when payments to matches come at no social cost is that it does not
matter to the social planner whether public funds are spent or not. It applies when there is no distortion
of the funds raised through taxation. Hence, when transfers are not costly to the social planner, transfers
have no disadvantage and are used to incentivize agents to implement the socially efficient working
hours.

Corollary 5. If τ → ∞, then the optimal policy converges to the transfer minimizing policy. Formally, n∗

converges to n∗(θ) = c′−1
(

θ − F(θ2)−F(θ)
f (θ)

)
for θ ∈ (θ1, θ2) and to the outside option n̂ otherwise.

When the marginal costs of public funds explode, the social planner simply seeks to minimize trans-
fers. Thus, the weighted virtual valuation resembles the virtual valuations known from revenue maxi-
mizing mechanisms. It is surprising to some extent that in this case, the social planner does not simply
pay unemployment benefits that she committed to in an earlier contractual agreement to all matches
who would have chosen it in the outside option. In fact, the optimal mechanism that minimizes transfers
also reduces hours of some types above θ0 and compensates them accordingly although transfers are
extremely costly. The reason is that this can be used to maintain incentives for types below θ0 to have
positive working hours such that the social planner can reduce transfers to those match types.

It is worth highlighting that the cost of public funds is expressed in terms of the cost of total transfers.
In particular, this means that we assign equal welfare weights to all matches and do not take issues of
inequality into consideration.

4 Calibration

In order to assess an optimal STW mechanism quantitatively vis-à-vis an existing job retention policy, we
calibrate our model to data on the German labor market before 2008. There are several reasons why we
choose this particular period of time.

First, it is important to calibrate the key labor market parameters to a context without any relevant
STW scheme. The reason is that in our framework, we only solve for moments of the labor market under
the assumption that the planner has already chosen an optimal policy. This is not only an unrealistic
assumption but also one which we would like to evaluate with our calibration. The German economy
before 2008 provides an ideal scenario, as STW played only a minor role for the country’s labor market
policy prior to the Great recession of 2009. The period before therefore serves as an ideal candidate to
quantitatively match a stationary labor market model without an STW policy. In our theoretical frame-
work, this corresponds to the hypothetical separation and hour decisions which matches may choose as
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Moment Value Corresponding model moment

Normalization of hours of active matches 1 E [n̂ | θ > θ0]

Share of firms with less than 5% adjustment of hours 0.538 E
[
1{|n̂−1|≤0.05} | θ > θ0

]
Separation rate 0.074 F(θ0)

Value of unemployment 0.387 U

Normalization of productivity 1 E [θ]

Efficient unemployment rate

Implied efficient separation rate (u∗ = 2%) 0.012 F(θeff)

Implied efficient separation rate (u∗ = 4%) 0.026 F(θeff)

Implied efficient separation rate (u∗ = 6%) 0.04 F(θeff)

Table 1: Overview of moments in the data and corresponding model moments. All values from the
data are on an annual basis. To experiment with the strength of the externality, we evaluate our model
for several values of a hypothetical efficient unemployment rate u∗ and calibrate the level of efficient
separations in our model accordingly.

an outside option. All our moments, therefore, target the hours n̂ which matches choose in the absence
of STW.

Second, Germany significantly extended the scope of its STW policy at the onset of the financial crisis
in 2009, which allows us to evaluate an important real-world policy vis-à-vis the hypothetical optimal
policy of our model.

Third, the same context has been used by Cooper et al. (2017) to match and evaluate a quantitative
labor market model of STW. Their model is richer and allows to match more moments of the data as it
explicitly models job creation and multi-worker firms. However, similar to other papers in the literature
they include STW with the intention to evaluate its effects, but without an optimal design approach
such that they cannot answer whether the observed policy was optimally chosen. Importantly for us,
they report moments of hour adjustments derived from confidential German firm data which are an
important ingredient for our calibration.

Our model is a parsimonious partial equilibrium model in the sense that we do not solve for match
creation. Instead, the interpretation of a shock in our model is that a certain fraction of the existing
stock of matches separate endogenously. STW attempts to alter the match separation decision. As a
first moment, we, therefore, match the parameters of the model without STW such that the separation
decision of existing matches corresponds to the observed separation rate into unemployment of 0.6%
monthly (7.4 % yearly) in Germany between 1993 and 2002. Together with a monthly job finding rate
for unemployed workers of 5.2%, these values imply a steady state unemployment rate of 10.3%. 16 The
optimal policy in our model further depends on the wedge between efficient and inefficient separations,
which quantifies the size of the market failure which the social planner aims to correct. For lack of a
concrete estimate for the efficient separation rate in the economy, we evaluate and compare the optimal
policy for several levels of a hypothetical “efficient unemployment rate”. When holding the monthly

16We take these estimates from Hartung et al. (2018), who use microdata from the Sample of Integrated Labour Market Biogra-
phies (SIAB).
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Parameter Description Estimate

Shared parameters ϕ Curvature of disutility of labor 6.53

A Scale of disutility of labor 0.152

σ Variance of productivity shock 0.378

µ Location parameter of distribution -0.074

u∗ = 0.02 R Value of job search 0.25

u∗ = 0.04 R 0.29

u∗ = 0.06 R 0.32

Table 2: Parameters of the calibrated model with heta ∼ LogNormal(µ, σ).

job-finding rate constant, these imply different counterfactual efficient separation rates which we then
target in our model.

We normalize the model by targeting that average hours E[n̂] are equal to 1. The important lever
for screening under our optimal policy is the response of hours to financial incentives governed by the
curvature of the disutility of labor. As expected, hours are not very responsive in the data. The moment
we target is the share of firms that adjust average hours by less than 5% in a given year, which we take
from Cooper et al. (2017). In their data, 53.8% of firms adjust average hours by less. In our model, this
maps into the share of matches with hour adjustments of less than 5% around the average hours.

We assume a log-normal distribution for the productivity shock and normalize the location such that
the expected productivity is 1. The remaining parameter σ governs the variability of θ. Given σ, the
location parameter can be set directly to satisfy E[θ] = 1, greatly reducing the difficulty of the calibration
exercise.

Lastly, we calibrate the exogenous value of unemployment which incentivizes match separation at
the cost of the public. We assume that this value is equal to the share of production that workers re-
ceive in unemployment, which we approximate by the production share of labor times the average net
replacement rate of unemployment. The former value is related to the average wage in a competitive
labor market while the latter is the average share of the wage that accrues to workers in unemployment.
The labor share in Germany averaged 0.63 over 1992-2004, while the average net replacement rate in 2004
was 0.69. We therefore calibrate the value of unemployment to be E[θ ∗ n̂] ∗ 0.63 ∗ 0.69. Since we do not
solve for a general equilibrium model, this moment choice is arguably the weakest. Specifically, through
the static nature of our model, the value of unemployment cannot capture any positive effects of finding
a future match. A potential extension would account for match creation to more accurately represent the
value of unemployment.

Table 1 provides an overview of the moments in the data and their corresponding definition in our
model. After setting U and the location parameter of the distribution directly, there are 4 remaining
parameters to calibrate: the curvature and constant of the disutility of labor ϕ and A, the value of reallo-
cation and search R, as well as the shape parameter of the distribution σ. We solve for these parameters
via a general optimization framework to minimize the distance to the moments. Since the model is just
identified, a near perfect match between data and model moments can be achieved. Table 2 reports the
corresponding parameter estimates, with separate estimates for R depending on the hypothetical natural
unemployment rate u∗ in our counterfactual scenario.
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Figure 7 shows the numerical solution to our optimal policy problem with calibrated parameters,
marginal costs of public funds 1 + τ = 1.3 and a hypothetical natural unemployment rate of 1.2%. Be-
cause of adverse selection and screening of the optimal policy, panels 7a and 7b show that a large share
of the economy reduces hours by a small amount and is compensated with transfers. Panel 7c shows the
change in the observed distribution of hours under an optimal STW policy. Compared to the economy
without STW, many more matches work at hours below 1 (the full-time equivalent in the model).

We use our calibrated model to derive counterfactual moments under a hypothetical STW policy that
is optimal according to our model. How firmly the social planner would intervene depends on the social
costs that she associates with transfers to firms. Depending on the marginal costs of social funds τ and
the strength of the separation inefficiency captured by the implied natural unemployment rate u∗, the
optimal policy differs significantly. We let these parameters vary, with implied natural unemployment
rates of 2%, 4% and 6% respectively and values of τ of 0.3, 0.5 and 0.7 as estimated in the literature (Kleven
and Kreiner, 2006).

Our optimal STW often assigns small hour reductions of 0-5% and thus includes between 30% and
87% of all labor market matches in the policy (see table B.1 in the appendix). This is theoretically justified
by the small responsiveness of hours to financial incentives, which we calibrated in order to match the
rigidness of labor supply. For practical reasons, however, such a policy is unlikely to be relevant. In
order to report reasonable moments to give insights into the practical design of an optimal STW policy,
we adjust the definition of STW to matches that reduce hours by 5 percentage points or more relative to
the full-time equivalent in our model.

Table 3 summarizes the results of our calibration exercise. According to our model, an optimal STW
policy in Germany prior to the Great Recession would have interfered strongly in the labor market and
would have reduced the annualized separation rate by at least a fifth, from 7.4% to 4.8% to 6.1%. In
line with proposition 1, the optimal separation rate is less than the implied efficient separation rate in all
scenarios, since it is too costly to implement production efficient hours.

An important qualitative of the optimal STW policy from our model is the existence of an hours cutoff,
i.e. a minimum working time that is still supported by the policy. In our calibrations, matches separate
whenever hours fall below 54 − 72% of full-time equivalent working hours whereas small reductions
occur very frequently. This stands in stark contrast to existing policies, which often stipulate a minimum
reduction of working time. In Germany in 2009, for example, STW applications required a reduction of
working hours by at least 10%. Of course, there are some reasons outside of our model (e.g. administra-
tive costs) why such a requirement would be necessary.

Overall, the optimal STW reduces hours of participants by little. Even with our adjusted definition
of STW, the average reduction of matches in STW is between 9% and 11%. In comparison, matches that
are saved from separation reduce hours by 15 − 24% on average. Overall, matches on average receive a
transfer corresponding to 24.6% to 47.7% of the unemployment benefit b.

Perhaps surprisingly, the optimal STW policy exhibits a lot of adverse selection. Between 8.3 and
13.2% of matches in the economy participate in the policy even though they would not have separated
without an intervention. In comparison, the policy only saves between 1 to 2.4% of matches at risk from
separation and as a consequence, the majority of matches in the optimal STW policy do not exhibit any
measurable employment effects. This indicates that focusing on the employment effects of STW policies
can be uninformative on the welfare effects of these policies, since employment effects may be very small
in an optimal setting.

However, the results from our calibrations should be taken with a grain of salt since our model sim-
plifies the economy to a great extent. In particular, we assume that the value of finding a job is homoge-
neous across matches in the economy and that there are no spill-overs between workers, both of which
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(a) Hours (b) Transfers

(c) Distribution of hours

Figure 7: Hours, transfers and distribution of hours in a calibrated optimal policy (red, dotted) and
without a policy (black, solid). The economy is calibrated to the moments from Table 2, with u∗ = 0.02
and τ = 0.3.

could have a large impact on the quantitative features of an optimal policy. Moreover, we abstract from
on-the-job search and instead assume that only separated matches contribute to reallocation.

A final important limitation arises from the fact we matched the curvature of disutility of labor in
order to match the rigidity of hours in the economy, which implied a very low elasticity of hours with
respect to productivity. Alternatively, the elasticity of existing matches could be low due to bargaining
frictions between the firm and worker, whereas a government policy could circumvent these frictions.
An ambitious quantification of STW through our model would therefore need to incorporate frictions on
the labor market.

23



(a) (b)

Figure 8: Transfers relative to unemployment benefit as a function of hours (top) and as a function
of hours over first-best hours (bottom). The economy is calibrated to the moments from table 2, with
u∗ = 0.02 and τ = 0.3.

Counterfactual moments

τ u∗ Separation rate Hours cutoff Av. hours
reduction

Av. hours
reduction

(saved matches)

Av. transfer
relative to UI

benefit

0.3 0.02 0.048 0.55 0.1 0.21 31.3%

0.04 0.053 0.65 0.09 0.18 39.0%

0.06 0.058 0.72 0.08 0.15 47.7%

0.5 0.02 0.054 0.54 0.1 0.23 25.7%

0.04 0.057 0.66 0.09 0.18 32.3%

0.06 0.062 0.72 0.08 0.15 39.9%

0.7 0.02 0.055 0.55 0.11 0.24 24.6%

0.04 0.059 0.65 0.1 0.19 31.1%

0.06 0.062 0.72 0.09 0.16 39.7%

Table 3: Descriptive moments of the counterfactual optimal short-time work policy. We adjust our defi-
nition of short-time work to matches which change hours by more than 0.05 units relative to hours in the
outside option. Full-time work is normalized to 1.

5 Conclusion

Recent public debates and the academic literature on STW largely have in common that they provide a
positive analysis of STW policies. It is commonly agreed upon that STW schemes in different countries
have helped to save jobs especially during times of crisis such as the Great Recession or the Coronavirus
pandemic. At the same time, there is a potential deadweight loss from negative selection into STW.
Apparent types of adverse selection include (i) viable firm-worker worker matches that select into STW
to benefit from government subsidies although they would be maintained without government inter-
vention, (ii) worker layoffs which a social planner would like to prevent, and (iii) take-up of STW that

24



Counterfactual moments

τ u∗ Adversely selected matches Share of transfers Average hour reduction

0.3 0.02 12.8% 21.5% 0.08

0.04 11.3% 23.2% 0.08

0.06 8.8% 22.7% 0.07

0.5 0.02 13.2% 24.4% 0.08

0.04 10.9% 25.0% 0.08

0.06 8.3% 23.6% 0.07

0.7 0.02 12.6% 23.7% 0.09

0.04 10.8% 25.2% 0.08

0.06 8.4% 24.7% 0.07

Table 4: Adverse selection of types under a counter-factual optimal short-time work policy. We adjust
our definition of short-time work to matches which change hours by more than 0.05 units relative to
hours in the outside option. Full-time work is normalized to 1.

induces inefficient labor hoarding.
In this paper, we have taken a normative mechanism design approach to ask how to design an optimal
job retention policy that addresses precisely the aforementioned issues in the presence of firm-worker
private information about their need for government support. In particular, we allow for arbitrary cou-
pling of transfers/subsidies to hours worked. Our main result is strikingly simple: A carefully designed
STW scheme that respects firm-worker incentives is the optimal policy. STW uses hours worked as a
screening tool to avoid unnecessary adverse selection.
Our theoretical results have several practical policy implications. First, even under the optimal STW
policy, there exists adverse selection of high productivity matches into STW. Hence, it should not be the
ultimate goal of an STW designer to eliminate all adverse selection into STW but rather to balance it
well with the positive effects from saving jobs. The structure of our optimal policy suggests that firms
and workers should be allowed to even marginally reduce their hours worked. Second, any policy that
leads to inefficient layoffs can be improved upon. Well designed STW should set subsidies high enough
especially for high hours reductions such that no workers are laid off which would be worth retaining.
However, there should be a positive lower bound above zero on hours worked to avoid labor hoarding.
The exact optimal design of subsidies and policy targets evidently depends on the precise parameters of
the economy and the shape of a shock on productivity. Our calibration of the German economy offers a
natural starting point for parameterization.
After its recent widely regarded success, STW policies have most likely been established as an important
tool for policymakers in Europe and elsewhere for the years to come. With our theoretical demonstration
of STW as a screening mechanism, we hope to facilitate the design of future policies.
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A Appendix

A.1 Optimal Policy: Proof of Proposition 2 and Theorem 1

A.1.1 Notation and Problem Setup

For convenience throughout the proofs, we define

y :

[max{c′(0), θ}, θ̄] −→ R,

θ 7−→ (c′)−1(θ).
(13)
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The following Lemma modifies a standard observation in mechanism design to including the variable
ι.

Lemma 1. Incentive compatibility (IC) for a feasible policy with hours n(·) and inclusion variable ι(θ) holds if
and only if

dSP(θ)

dθ
= ι(θ)n(θ) and (IC’-1)

ι(θ)n(θ) is weakly increasing. (IC’-2)

Proof. We let θ̃ > θ.
Let policy {n(θ), ι(θ), t(θ)}θ∈[θ,θ̄] be feasible and satisfy (IC). Then,

SP(θ) ≥ ι(θ̃)θn(θ̃) + t(θ̃)− c(n(θ̃))− U + (1 − ι(θ̃))R = SP(θ̃) + ι(θ̃)(θ − θ̃)n(θ̃) (14)

and
SP(θ̃) ≥ ι(θ)θ̃n(θ) + t(θ)− c(n(θ))− U + (1 − ι(θ))R = SP(θ) + ι(θ)(θ̃ − θ)n(θ) (15)

which, together, implies

ι(θ̃)n(θ̃) ≥ SP(θ̃)− SP(θ)

θ̃ − θ
≥ ι(θ)n(θ). (16)

This implies (IC’-1) and (IC’-2) follows from letting θ̃ approach θ.
For the other direction, let (IC’-1) and (IC’-2) be true. Then,

SP(θ̃)− SP(θ) =
∫ θ̃

θ
ι(s)n(s)ds ≥

∫ θ̃

θ
ι(θ)n(θ)ds = (θ̃ − θ)ι(θ)n(θ).

Rearranging, we obtain (14) and (15) can be derived in a similar way.

This is a standard observation in mechanism design and follows from the envelope theorem.
A standard manipulation using (IC), integration by parts allows us to restate the social planner objec-

tive as

W ′ =
∫ θ̄

θ
(θι(θ)n(θ) + t(θ)− c(n(θ))− U + (1 − ι(θ))R − (1 + τ)t(θ) dF(θ) (W’)

=
∫ θ̄

θ
(1 + τ)

(
ι(θ)n(θ)

(
θ − τ

1 + τ

1 − F(θ)
f (θ)

)
− c(n(θ)) + (1 − ι(θ))R − U

)
dF(θ)− τSP(θ) (W”)

The problem allows for a statement as an optimal control problem with state constraints. In the
following, we mostly follow optimal control solution techniques presented in Seierstad and Sydsæter
(1987) and Sethi and Thompson (2000). The use of inclusion variable ι as a control variable is also closely
related to optimal control problems of switching systems, see e.g. Bengea and DeCarlo (2005). Jullien
(2000) introduces an approach to these techniques in models with nontrivial participation constraints
and we closely follow his approach.

The state variable in our setting is the match surplus SP(·). Control variables are hours n(·) and
inclusion ι(·). Their relationship is pinned down via (IC’-1), i.e. ṠP = ιn.

The individual rationality constraint (IR) translates into two state constraints. First, we require SP ≥ 0
and second we need that SP ≥ SO on [θ0, θ̄]. We split (IR) into two constraints to only deal with continu-
ously differentiable state constraint. The fact that SO is continuously differentiable on [θ0, θ̄] follows from
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Milgrom and Segal (2002).

A.1.2 An Optimal Control Problem with State Constraints

In summary, the optimal control problem states

max(W ′′), s.t. ṠP = ιn, SP ≥ 0, SP ≥ SO on [θ0, θ̄], (17a)

ι ∈ [0, 1], n ∈ [0, ∞). (17b)

Note that, as is standard, we have dropped the monotonicity constraint on ιn and will later verify that
the solution to this generalized problem fulfills the constraint.
We can write the Lagrangian as

L(SP, n, ι, φ, λ1, λ2, µ, ν1, ν2, θ) =H(SP, n, ι, φ, θ) + λ1(SP − SO) + λ2SP + µn, ν1ι + (1 − ν2)ι (18)

= (−τSP + (1 + τ)(θιn − c(n)− U + (1 − ι)R) f (θ) + φιn (19)

+ λ1(SP − SO) + λ2SP + µn + ν1ι + (1 − ν2)ι (20)

where H is the Hamiltonian.

We can state the following necessary conditions for an optimal control.
By the Pontryargin principle, for (S∗

P, n∗) to be optimal, it must hold

ṠP
∗
= ι∗n∗ (21a)

φ̇ = −∂L(S∗
P, n∗, ι∗, ∆)/∂SP (21b)

φ(θ̄) = 0 (21c)

H(S∗
P, n∗, ι∗, φ, θ) ≥ H(S∗

P, n, ι, φ, θ) (21d)

for all (n, ι) ∈ [0, ∞)× [0, 1].
The transversality condition (21c) states that changing the match surplus of the highest firm type

SP(θ̄) does not change the value of the social planner objective. In addition, we must have φ(θ) = −τ

because marginally increasing the state variable (i.e. match surplus) at θ will decrease the social planner
objective function by a factor τ given the optimal control (n∗, ι∗). To understand this intuitively, given
the optimal control (n∗, ι∗), the surplus of the lowest type match can only be increased through a transfer
which will then have to be made to all higher types as well to maintain incentive compatibility and comes
at a cost τ.

In addition, the Lagrange multipliers must satisfy the complementary slackness conditions

λ1 ≥ 0, λ1(SP − SO) = 0 (22a)

λ2 ≥ 0, λ2SP = 0 (22b)

µ ≥ 0, µn = 0 (22c)

ν1 ≥ 0, ν1ι = 0 (22d)

ν2 ≥ 0, (1 − ν2)ι = 0. (22e)
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There is one more necessary condition to ensure hours n and ι remain within their defined boundaries.

∂L
∂(n, ι)T

∣∣
(n,ι)=(n∗(θ),ι∗(θ)) = 0 (23)

Importantly, the necessary conditions (21), (22) and (23) are also sufficient conditions for optimality.
This follows from Theorem 3, Chapter 5, Seierstad and Sydsæter (1987) since the Hamiltonian is linear in
the state variable SP and therefore weakly concave.

The domain of n can be restricted to a compact set without loss of generality. Any feasible pol-
icy with n(θ) > neff(θ̄) can be improved upon by modifying the control variable of hours to ñ(θ) ≡
min{n(θ), neff(θ̄)} while holding control ι as is. Intuitively, it is strictly dominated to have hours above
the efficient level of the most productive match.
With this observation at hand, it suffices to consider a compact domain for the control variables ι and n.
Existence of a solution then follows from Neustadt’s Existence Theorem for Mayer Problems (see Cesari
(2012)).

Lemma 2 (Existence). An optimal policy exists.

A.1.3 Characterization

The conditions (21), (22), and (23) can be rewritten further to arrive at a solution candidate.
First, the adjoint equation (21b) tells us that λ1 + λ2 − τ f (θ) = −φ̇. Let λ ≡ λ1 + λ2. Define Λ̃(θ) ≡∫ θ

θ λ(θ̃)dF(θ̃). Then, by (21b), we have

Λ̃(θ)− τF(θ) + m = τ − φ(θ) (24)

and it is without loss to set m = τ 17. Let also Λ(θ) ≡ Λ̃(θ)/τ.
Then, (21) can be stated as

(n∗(θ), ι∗(θ)) ∈ arg max
(n,ι)∈[0,∞)×[0,1]

V(n, ι) =

{
ιn
(

θ − τ

1 + τ

Λ∗(θ)− F(θ)
f (θ)

)
− c(n) + (1 − ι)R − U

}
(25)

with Λ∗(θ) = (
∫ θ

θ λ∗(θ̃)dF(θ̃) − φ(θ))/τ for optimal Lagrange multipliers λ∗
1 + λ∗

2 = λ∗. The initial
condition on φ and equation (24) ensure that Λ∗(θ) ∈ [0, 1] for all θ ∈ [θ, θ̄]. This yields the result as
stated in Proposition 2.

This result holds although we have a free initial condition, i.e. SP(θ) is not fixed (see Note 9, p. 347,
Seierstad and Sydsæter (1987)) with the only additional condition that φ is absolutely continuous. This
is unlike the standard nonlinear pricing model such as Mussa and Rosen (1978) where the monopolist
can always hold the payoff of the lowest type down to the outside option, i.e. to zero. In our case,
the participation constraints are involved. The participation constraint could potentially be binding for
higher types and jointly with (IC) imply that (IR) does not bind at θ, but we later show that this is not the
case.

Lemma 3. The participation constraint only binds on at most two intervals [θ, θ1] and [θ2, θ̄] with θ ≤ θ1 ≤ θ0 ≤
θ2 ≤ θ̄.

Proof. Let θ < θ̂.
Case 1 (interval at the bottom): Let SP(θ̂) = SO(θ̂) = 0 with θ̂ < θ0. Suppose SP(θ) > SO(θ), i.e.

17See Note 3, Chapter 5, Seierstad and Sydsæter (1987).
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SP(θ) > 0. Then 0 < SP(θ) = θι(θ)n(θ) + t(θ)− c(n(θ)) + (1 − ι(θ))− U ≤ θ̂ι(θ)n(θ) + t(θ)− c(n(θ)) +
(1 − ι(θ))− U = SP(θ|θ̂) which contradicts incentive compatibility for type θ̂.
Case 2 (interval at the top): Suppose that (IR) binds for θ > θ0 but not for θ̂ such that SO(θ) = SP(θ).
Now let θ† = inf{θ ∈ [θ, θ̂]|SP(θ) − SO(θ) > 0}. Then, SP(θ

†) = SO(θ
†) by continuity of SP and

SO. From the envelope theorem, we also know that ∂SO
∂θ (θ†) = n(θ†). Together with (IC’-1), it follows

that SP(θ
‡) ≤ SO(θ

‡) for θ‡ in some sufficiently small neighborhood around θ† which contradicts the
definition of θ†.

In the following, we will denote the binding intervals as described in Lemma 3 by Θ1 = [θ, θ1] and
Θ2 = [θ2, θ̄].

Lemma 4. For any optimal policy, the firm participation constraint (IR) must bind for type θ̄ or for θ.

Proof. Suppose that policy P = {n(θ), ι(θ), t(θ)}θ∈[θ,θ̄] is optimal, but (IR) is not binding for any match
type, i.e. SP(θ)− SO(θ) > 0 for all θ ∈ [θ, θ̄]. Define d(θ) : [θ, θ̄] −→ R, θ 7→ SP(θ)− SO(θ). Since SP(·)
and SO(·) are continuous functions, d is a continuous function on a compact interval [θ, θ̄]. Thus, d attains
a global minimum which we denote by dmin. Consider now the modified mechanism {n(θ), ι(θ), t(θ)−
dmin}θ∈[θ,θ̄] which decreases the transfers to all matches by dmin. This policy is still feasible, i.e. SP(θ)−
SO(θ) ≥ 0, but increases welfare by τdmin which leads to a contradiction to the optimality of P . Hence,
the participation constraint must bind for some type θ ∈ [θ, θ̄]. The claim now follows from Lemma
3.

Lemma 5. For any optimal policy, the firm participation constraint (IR) must bind for θ.

Proof. The proof is by contradiction. We assume that a policy for which (IR) does not bind at θ is optimal
and construct another policy that leads to a welfare improvement.

Suppose policy P = {n(θ), ι(θ), t(θ)}θ∈[θ,θ̄] is optimal with SP(θ) > 0. Lemma 3 and 4 imply that (IR)
then binds if and only if θ ∈ [θ̃, θ̄] for some θ̃ ∈ (θ0, θ̄]. It cannot be that θ̃ = θ0, i.e that (IR) binds for
all θ ≥ θ0 but does not bind for θ < θ0. The reason is that SP must be monotone increasing by its law of
motion (IC’-1, IC’-2) and if SP(θ0) = SO(θ0) = 0 were true, then SP would be bounded from above by 0
on [θ, θ0) which means that SP would have to coincide with the outside option SO(θ) = 0 on this interval
if θ̃ = θ0.

Thus, SP(θ) > SO(θ) for any θ < θ̃ with θ̃ > θ0. This, in particular, implies that for θ < θ̃ with θ̃ − θ <

ϵ and ϵ > 0 sufficiently small, n(θ) < n̂(θ) = neff(θ). To see this, note that SP(θ̃) = SP(θ) +
∫ θ̃

θ ι(s)n(s)ds

and SO(θ̃) = SO(θ)+
∫ θ̃

θ n̂(s)ds. Then, SP(θ̃) = SO(θ̃) and SP(θ) > SO(θ) yield
∫ θ̃

θ ι(s)n(s)ds <
∫ θ̃

θ n̂(s)ds.
Since this argument also applies for any ϵ̃ < ϵ, it follows that ι(θ)n(θ) < n̂(θ) = neff(θ) for θ − θ̃ < ϵ

sufficiently small. Hence, there is underproduction on an interval just below θ̃.
We now construct a modified policy which saves on transfers while bringing production closer to the

efficient level, leading to a welfare improvement. Let 0 < η < ϵ such that δ =
∫ θ̃

θ̃−η neff(θ)− ι(θ)n(θ)dθ <

SP(θ). Consider the following policy P δ = {nδ(θ), ιδ(θ), tδ(θ)}θ∈[θ,θ̄] with

nδ(θ) =


n(θ) if θ ≤ θ̃ − η

neff(θ) if θ̃ − η < θ < θ̃

n(θ) if θ ≥ θ̃.

(26)

and

ιδ(θ) =

ι(θ) for θ ∈ [θ, θ̃ − η] ∪ [θ̃, θ̄]

1 else.
(27)
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For the policy to be feasible, the envelope condition in integral form then states that transfers are

tδ(θ) =


t(θ)− δ if θ ≤ θ̃ − η

c(nδ(θ))− θnδ(θ) +
∫ θ

θ ιδ(s)nδ(s)ds + U − (1 − ι(θ))R + (SP(θ)− δ) if θ̃ − η < θ < θ̃

t(θ) if θ ≥ θ̃.

(28)

To make a welfare comparison, let us first compare the expenses of the social planner.
For θ ∈ (θ̃ − η, θ̃),

t(θ)− tδ(θ) =

(
c(n(θ))− θι(θ)n(θ) +

∫ θ

θ
ι(s)n(s)ds + (1 − ι(θ))RSP(θ)

)
(29)

−
(

c(nδ(θ))− θnδ(θ) +
∫ θ

θ
ιδ(s)nδ(s)ds + (SP(θ)− δ)

)
(30)

= (c(n(θ))− θι(θ)n(θ)− (1 − ι(θ))R − c(neff(θ)) + θneff(θ)) (31)

+
∫ θ

θ̃−η
ι(s)n(s)− neff(s)ds + δ (32)

> 0 (33)

where the last inequality follows from the fact that (31) is positive by the definition of efficient production
neff and (32) is positive because of the construction of δ and neff(·) > n(·) on (θ̃ − η, θ̃).

In addition, transfers tδ(·) and t(·) coincide on [θ̃, θ̄]. Hence,

∫ θ̄

θ
t(θ)− tδ(θ)dF(θ) =

∫ θ̃

θ̃−η
t(θ)− tδ(θ)dF(θ) + δF(θ̃ − η) > 0. (34)

The difference in total welfare is then

W δ −W =
∫ θ̃

θ̃−η
θneff(θ)− c(neff(θ))− (θι(θ)n(θ)− c(n(θ)) + (1 − ι(θ))R)dF(θ)︸ ︷︷ ︸

>0 by efficiency of neff

(35)

+ τ

(∫ θ̄

θ
t(θ)− tδ(θ)dF(θ)

)
︸ ︷︷ ︸

>0 by (34)

> 0. (36)

Hence, P δ leads to higher welfare than P which contradicts optimality of P and concludes the proof.

An important consequence of Lemma 5 is that it is without loss to assume the initial condition SP(θ) =

0 on the state variable. So far, we were studying a program with free initial condition which can now be
simplified to fixing the initial value of the state variable.

The further derivation of the optimal policy largely relies on the simple structure as derived in Lemma
3. A useful observation on the intervals where (IR) binds is that the hours n̂ chosen absent a social planner
intervention are identical to the hours mandated by the optimal policy.

Lemma 6. For any θ ∈ [θ, θ̄], it holds that if SP(θ) = SO(θ), then n∗(θ) = n̂(θ) and ι(θ) = 1 if θ ≥ θ0 and
ι(θ) = 0 if θ < θ0.

Proof. The constraint (IR) can only bind on two intervals Θ1 and Θ2 by Lemma 3.
Let θ ∈ Θ1. Then, n̂ = 0. Since SP(θ) ≡ 0 on Θ1, we must have ṠP = 0 and the envelope condition
(IC’-1) then requires ι∗(θ)n∗(θ) = 0. To see that this implies that ι∗(θ) = 0 and n∗(θ) = 0, first suppose
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that n∗(θ) > 0 and ι∗(θ) = 0. This is in contradiction to the optimality condition (25) since saving costs
c(n∗(θ)) by setting n(θ) = 0 is an improvement. Second, suppose that n∗(θ) = 0 while ι∗(θ) > 0. Again,
an immediate improvement would be to increase the value of the maximand in (25) by R by setting
ι∗(θ) = 0.
Now let θ ∈ Θ2. The envelope condition on the outside option requires ṠO = n̂ > 0 on Θ2. Then,
together with (25), it must hold that

ι∗n∗ = ṠP = ṠO = n̂. (37)

To see that this implies ι∗ = 1 and n∗ = 1, suppose that (37) holds true with ι∗ < 1, n∗ > 1. Since n̂ > 0,
we must have ι∗ ∈ (0, 1). Linearity in ι of the maximand of the necessary condition (25) requires for
ι ∈ (0, 1) to be optimal that R = n∗

(
θ − τ

1+τ
Λ∗−F(θ)

f (θ)

)
. The value of the maximand is then R − c(n∗)−U.

A direct improvement would be to set ι = 0 and n = 0 which has a value of R − U > R − c(n∗)− U.
This is a contradiction to optimality of (ι∗, n∗) which proves the claim.

Lemma 7. For any optimal policy, the participation constraint (IR) must bind for θ̄.

Proof. The proof is by contradiction. Suppose that (IR) does not bind for type θ̄ for an optimal policy
P = {n(θ), ι(θ), t(θ)}θ∈[θ,θ̄]. Lemma 3 and Lemma 4 then imply that (IR) binds on an interval [θ, θ1] with
θ1 ≤ θ0 but never binds on (θ1, θ̄]. We first argue that there must be underproduction, i.e n < neff, on
[θ1, θ̄). Since Λ∗(θ̄) = 1 and Λ∗ is constant on an interval where (IR) does not bind, we have Λ∗(θ) = 1
for θ ∈ [θ1, θ̄]. By the optimality condition (25), for θ ∈ (θ1, θ̄), we have n(θ) = y

(
θ − τ

1+τ
1−F(θ)

f (θ)

)
<

y(θ) = neff(θ) where the inequality follows from the fact that c′ is monotone increasing and thus also
(c′)−1, i.e. y. In addition, n(θ̄) = neff(θ). In short, it must hold that

n(θ) ≤ neff(θ) a.e. on [θ1, θ̄] (38)

On the other hand, if (IR) does not bind for θ̄, this means that SP(θ̄) > SO(θ̄). Using the envelope
condition for the maximization problem in the outside option and for the policy surplus, we obtain

∫ θ̄

θ1

n(θ)dθ = SP(θ) > SO(θ1) =
∫ θ̄

θ1

neff(θ)dθ (39)

which implies that neff > n on some set with positive measure. However, this contradicts (38) which
concludes the proof.

We now proceed to find the optimal Λ∗ which will fully characterize the optimal policy jointly with
(25).

The variable Λ∗ is the critical multiplier. The Lagrange multiplier µ which ensures that n ≥ 0 shall
always be satisfied when the (IR) constraint is satisfied as well. This leads us to set µ ≡ 0 for now and
we will later verify that the constraint n ≥ 0 is never violated.
Lemma 5 states that SP(θ) = SO(θ) = 0. Hence, n∗(θ) = 0 by Lemma 6.

Lemma 8. The (τ-MV) is an increasing function in θ, i.e.

θ − τ

1 + τ

Λ − F(θ)
f (θ)

(40)

is increasing in θ for any fixed Λ ∈ [0, 1]
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Proof. This follows from the technical assumptions on F, i.e. the increasing hazard rate and f (θ)/F(θ) is
also increasing.

Lemma 9 (ι-bang-bang). In an optimal policy, ι∗ ≡ 0 on [θ, θ1] and ι∗ ≡ 1 on [θ1, θ̄].

Proof. We have already argued in the proof of Lemma 6 that ι∗(θ) = 0 for all θ ∈ [θ, θ1] and ι∗(θ) = 1 for
all θ ∈ [θ2, θ̄]. Now let θ ∈ (θ1, θ2).
First, suppose that ι∗ ∈ (0, 1). We can partially repeat an argument from Lemma 6. Linearity in ι of the
maximand of the necessary condition (25) requires for ι ∈ (0, 1) to be optimal that R = n∗

(
θ − τ

1+τ
Λ∗−F(θ)

f (θ)

)
.

The value of the maximand is then R − c(n∗)−U. A direct improvement would be to set ι = 0 and n = 0
which has a value of R − U > R − c(n∗)− U. This is a contradiction to optimality of (ι∗, n∗).
Second, suppose that ι∗(θ) = 0. Then, as is outlined in the first part of the proof of Lemma 6, we have
n∗(θ) = 0. Next, we argue that we then have n∗ι∗ = 0 on (θ1, θ). If not, there would be θ̃ ∈ (θ1, θ)

with n∗(θ̃), ι∗(θ̃) > 0 such that R − U ≤ ι∗(θ̃)n∗(θ̃)
(

θ̃ − τ
1+τ

Λ∗(θ̃)−F(θ̃)
f (θ̃)

)
− c(n∗(θ̃)) + (1 − ι∗(θ̃))− U <

ι∗(θ̃)n∗(θ̃)
(

θ − τ
1+τ

Λ∗(θ)−F(θ)
f (θ)

)
− c(n∗(θ̃)) + (1− ι∗(θ̃))−U. Hence, (n∗(θ̃), ι∗(θ̃)) would be an improve-

ment for type θ over (n∗(θ), ι∗(θ)) = (0, 0) in (25), a contradiction. Therefore, n∗ι∗ ≡ 0 on [θ, θ] and by
(IC’-1), SP ≡ 0 on [θ, θ], which contradicts that SP > SO on (θ1, θ).

Summary of Necessary and Sufficient Conditions. Thus far, we have derived conditions of optimality
for optimization problem that simplify its structure. The state constraints bind on two intervals [θ, θ1]

and [θ2, θ̄] where θ1 ≤ θ2. Condition 22 implies that Λ∗(·) is constant on (θ1, θ2). Together with (25), the
optimization problem reduces to find optimal threshold values θ1, θ2 and a constant Λ∗

(θ1,θ2)
. Then,

Λ∗(θ) =


(θ − θeff) f (θ) + F(θ) for θ = θ1,

Λ∗
(θ1,θ2)

for θ1 < θ < θ2,

F(θ) for θ ≥ θ2

(41)

In addition, Λ∗ needs to satisfy

Λ∗(θ) > (θ − θeff) f (θ) + F(θ) for θ < θ1. (42)

Hence, Λ∗ is not uniquely defined on [θ, θ1], but all admissible values induce the same optimal policy.
However, we can further characterize the threshold values θ1 and θ2. By Berge’s maximum theorem,

V(n∗, ι∗)(θ) from (25) must be continuous in θ. This is only possible if Λ∗ is continuous at θ1 and θ2.
Hence,

F(θ2) = Λ∗
(θ1,θ2)

and (θ1 − θeff) f (θ1) + F(θ1) = Λ∗
(θ1,θ2)

. (43)

For given Λ∗
(θ1,θ2)

, an optimal policy then takes the form

n∗(θ) =


0 if θ ≤ θ1

y
(

θ − τ
1+τ

Λ∗
(θ1,θ2)

−F(θ)

f (θ)

)
if θ1 < θ < θ2

y(θ) if θ ≥ θ2,

(44)

ι∗(θ) =

0 if θ < θ1

1 if θ ≥ θ1

(45)
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with Lagrange multipliers (as derived from (23)) are

φ∗(θ) = τ
(

F(θ)− Λ∗
(θ1,θ2)

(θ)
)

, (46)

λ∗
1(θ) = 1{θ∈[θ,θ1]}(θ) ·

∂Λ∗

∂θ
, (47)

λ∗
2(θ) = 1{θ∈[θ2,θ̄]}(θ) ·

∂Λ∗

∂θ
, (48)

ν∗1 (θ) = 1{θ∈[θ,θ1]}(θ) · [(1 + τ)R f (θ)], (49)

ν∗2 (θ) = 1{θ∈[θ2,θ̄]}(θ) · [(1 + τ)(θn∗(θ)− R) f (θ) + φ∗(θ)n∗(θ)], (50)

µ∗(θ) = 1{θ∈[θ,θ1]}(θ) · (1 + τ)c(n∗(θ)) f (θ). (51)

With the characterization at hand, we can restate problem (17) as

max
Λ∈[Λ,Λ̄]

W ′′′ =

{∫ θ1

θ
R − UdF(θ) (52a)

+
∫ F−1(θ)

θ1

y
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

) [
θ − τ

1 + τ

Λ − F(θ)
f (θ)

]
− c

(
y
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

))
− UdF(θ)

(52b)

+
∫ θ̄

F−1(Λ)
θy(θ)− c(y(θ))− UdF(θ)

}
(52c)

s.t. (i)θ1 is the root of (52d)

ξΛ(θ) ≡ y
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

) [
θ − τ

1 + τ

Λ − F(θ)
f (θ)

]
− c

(
y
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

))
− R

(52e)

if Λ < 1 while θ1 = θ0 if Λ = 1, (52f)

(ii)
∫ F−1(Λ)

θ1

y
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

)
dθ = SO(F−1(Λ)), (52g)

(iii) Λ = F(θ0) and Λ̄ = min{F(θ0) + f (θ0)(θ0 − θeff), 1}. (52h)

In essence, this modified optimization problem is constructed by plugging in the necessary functional
form of optimal controls (n∗, ι∗) as in (44) and (45) into the objective (W”) and adjusting the constraints
accordingly. It captures the fact that the problem reduces to finding an optimal value Λ∗

(θ1,θ2)
that governs

where the state constraints bind.
We first simplify condition (52f). The function ξ̃(x) ≡ y(x)x − c(y(x))− R has at most one root since

ξ̃ ′(x) = y(x) > 0. By definition of θeff, the root exists and is implicitly defined by ξ̃ ′(θeff) = 0. Hence,
any root of ξΛ(θ) needs to satisfy θ − τ

1+τ
Λ−F(θ)

f (θ) = θeff. If F(θ0) + f (θ0)(θ0 − θeff) ≤ 1, then θ1 ∈ [θeff, θ0].
In short, (52f) can be rewritten to

θ1

 solves θ1 − τ
1+τ

Λ−F(θ1)
f (θ1)

= θeff if Λ < 1

= θ0 if Λ = 1.
(53)

Let χ(Λ) ≡
∫ F−1(Λ)

θ1
y
(

θ − τ
1+τ

Λ−F(θ)
f (θ)

)
dθ − SO(F−1(Λ)).

Lemma 10. There exists a unique Λ′′′ ∈ [Λ, Λ̄] that satisfies (52f) and (52g).
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Proof. Applying the Leibniz integral rule, we have

χ′(Λ) =
d

dΛ

(
F−1(Λ)

)
· y(F−1(Λ))− dθ1

dΛ
· y
(

θ1 −
τ

1 + τ

Λ − F(θ1)

f (θ1

)
(54)

+
∫ F−1(Λ)

θ1

d
dΛ

y
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

)
dF(θ)− d

dΛ

(
F−1(Λ)

)
· y(F−1(Λ)) (55)

=− dθ1

dΛ
· y
(

θ1 −
τ

1 + τ

Λ − F(θ1)

f (θ1

)
+
∫ F−1(Λ)

θ1

d
dΛ

y
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

)
dF(θ) (56)

Define hτ(θ, Λ) = θ − τ
1+τ

Λ−F(θ)
f (θ) . We now decompose (56). Total differentiation of hτ(θ1, Λ) w.r.t. Λ has

to equal 0 in order to maintain that hτ(θ1, Λ) = θeff as required by (53). Then,

dθ1

dΛ
=

[
∂hτ(θ1, Λ)

∂θ1

]−1

·
[

∂hτ(θ1, Λ)

∂Λ

]
=

[
∂hτ(θ1, Λ)

∂θ1

]−1

·
[

τ

1 + τ

1
f (θ1)

]
> 0 (57)

where ∂hτ(θ1,Λ)
∂θ1

> 0 is a consequence of Lemma 8. In addition, an application of the inverse function
theorem to y′ yields

d
dΛ

y
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

)
=

[
− 1

f (θ)

]
y′
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

)
(58)

=

[
− 1

f (θ)

]
c′′
(

y
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

))
< 0 (59)

Hence, χ′(Λ) < 0.
We proceed to calculate the boundary values χ(Λ) and χ(Λ̄). We have

χ(Λ) =
∫ θ0

θ1

y
(

θ − τ

1 + τ

F(θ0)− F(θ)
f (θ)

)
dθ ≥ 0 (60)

Also, Λ̄ = F(θ0) + f (θ0)(θ0 − θeff) ≤ 1, then θ1 = θ0 as is also the case if Λ̄ = 1. Hence,

χ(Λ̄) =
∫ θ̄

θ0

(
y
(

θ − τ

1 + τ

Λ̄ − F(θ)
f (θ)

)
− y(θ)

)
dθ ≤ 0 (61)

since θ − τ
1+τ

Λ̄−F(θ)
f (θ) ≤ θ. The result follows from the Poincaré-Hopf index theorem.

As Λ∗ remains to be the only candidate that satisfies the constraint (52g), it is also the unique solution
to the program (52). It is left to formally argue that the solution space of (52) coincides with the solution
space of (17).

A solution to (17) consists of controls (n∗(·), ι(·)){[θ,θ̄]} and constant Λ∗
(θ1,θ2)

that induces Lagrange
multipliers (41) and (46).
We denote the set of solutions by Ω′′ = {(n∗, ι∗, Λ∗

(θ1,θ2)
)|(41), (44), (45), (43) are satisfied }.

Besides, a solution to (52) is constant Λ′′′ and we denote the set of solutions by Ω′′′. This is a singleton as
argued before.
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Lemma 11. The mapping

ω :



Ω′′′ → Ω′′,

Λ′′′ 7→




0 if θ ≤ θ1

y
(

θ − τ
1+τ

Λ′′′−F(θ)
f (θ)

)
if θ1 < θ < θ2

y(θ) if θ ≥ θ2,

ι∗(θ) = 1{[θ1,θ̄]}(θ),

Λ′′′,


with F(θ2) = Λ′′′ = (θ1 − θeff) f (θ1) + F(θ1)

(62)

is a bijection.

Proof. Consider a solution (∗, ι∗) to (17) which take the form as in (44) and (45) for Λ∗
(θ1,θ2)

. Hence, the
mapping is well defined. (IR) binds above θ2 = F−1(Λ∗

(θ1,θ2)
) which implies that (52g) applies for Λ∗

(θ1,θ2)
.

In addition, Λ∗
(θ1,θ2)

∈ [Λ, Λ̄]. If θ < F(θ0), then θ2 < θ0 and if Λ̄ > F(θ0) + f (θ0)(θ0 − θeff), then θ1 > θ0

which contradicts Lemma 3 in either case. In addition, we know Λ∗
(θ1,θ2)

≤ 1. Hence, Λ∗
(θ1,θ2)

is an admis-
sible in the program (52). We showed in Lemma 10 that it is then also a solution to (52).
Now consider a solution Λ′′′ ∈ Ω′′′. The functions n∗ and ι∗ that ω(Λ′′′) maps to satisfy (25) (or equiv-
alently (21) if we assume that Lagrange multipliers are constructed as in (46)). In addition, the surplus
condition (52g) implies that SP(F−1(Λ′′′)) = SO(F−1(Λ′′′)). Since Λ∗ is constant on (F−1(Λ∗

(θ1,θ2)
), θ̄] by

construction in (41), the complementary slackness conditions (22) are satisfied. Thus, the necessary (and
also sufficient) conditions for optimality are satisfied and ω(Λ′′′) indeed induces a solution for (17).

Note that it is immediate from (44), (45) jointly with (41) and Lemma 8 that n∗ι∗ is monotone increas-
ing in θ so that it was without loss to drop the monotonicity constraint.
Lemma 11 states that it is sufficient to find solution to the simplified problem (52). The surplus condition
(52g) in (52) therefore allows us to fully characterize the optimal solution. This concludes the proof of
Theorem 1.

A.2 Proofs of other results

Proof of Proposition 1.

Proof. Suppose policy Peff = {n(θ), ι(θ), t(θ)}θ∈[θ,θ̄] is optimal with

n(θ) =

y(θ) if θ ≥ θeff

0 else
(63)

and ι(θ) = ιeff(θ). A feasible policy has to satisfy (IC) which by Lemma 1 implies that transfers can be
written as

t(θ) = c(n(θ))− θι(θ)n(θ) +
∫ θ

θ
ι(s)n(s)ds + SP(θ) + U − (1 − ι(θ))R. (64)

Plugging in from (63), we have t(θ) ≡ S(θ) + U − R = S(θ) + b for θ ∈ [θ, θeff]. For θ ∈ (θeff, θ̄],

t′(θ) = c′(y(θ))y′(θ)− y′(θ)θ − y(θ) +
d
dθ

∫ θ

θ
n(s)ds = θy′(θ)− y′(θ)θ = 0. (65)
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Hence, t(θ) ≡ SP(θ) + b a.e. and for (IR) to be binding for some type as required by Lemma 4, set
S(θ) = 0 such that t(θ) ≡ b.

Now consider the following alternative policy Pϵ = {nϵ(θ), ιϵ(θ), tϵ(θ)}θ∈[θ,θ̄] with

nϵ(θ) =

y(θ) if θ ≥ θeff + ϵ

0 else,
(66)

ιϵ(θ) = 1{θ≥θeff+ϵ}(θ) and

tϵ(θ) =

b − Cϵ if θ ≥ θeff + ϵ

b else
(67)

where Cϵ = (θeff + ϵ)y(θeff + ϵ) − c(y(θeff + ϵ)) − R for some small ϵ > 0. It is immediate from the
definition of θeff that Cϵ > 0 for small ϵ > 0. This policy is feasible as can be seen from the fact that
transfers are chosen in a way just so that (IC) is fulfilled.
Total welfare for the efficient production implementation is

Weff =
∫ θ̄

θeff

θy(θ)− c(y(θ))dF(θ)− τb + F(θeff)R (68)

and total welfare of policy Pϵ is

Wϵ =
∫ θ̄

θeff+ϵ
θy(θ)− c(y(θ))dF(θ)− τb + F(θeff + ϵ)R + τ[1 − F(θeff + ϵ)]Cϵ (69)

Comparing total welfare then gives

Wϵ −Weff = τ[1 − F(θeff + ϵ)]Cϵ + (F(θeff + ϵ)− F(θeff))R −
∫ θeff+ϵ

θeff

θy(θ)− c(y(θ))dF(θ)︸ ︷︷ ︸
≤(θeff+ϵ)y(θeff+ϵ)−c(y(θeff+ϵ))(F(θeff+ϵ)−F(θ))

(70)

≥

τ[1 − F(θeff + ϵ)]︸ ︷︷ ︸
ϵ→0−−→ τ(1−F(θeff))

− (F(θeff + ϵ)− F(θ))︸ ︷︷ ︸
ϵ→0−−→ 0

 Cϵ︸︷︷︸
>0 for ϵ>0

(71)

for sufficiently small ϵ. This shows that policy Pϵ is an improvement over policy Peff and that concludes
the proof.

Proof of Proposition 3.

Proof. Consider hours n∗(·) in an optimal policy. From Theorem 1, we see immediately that n∗(θ) =

neff(θ) for θ ∈ [θ, θ1] ∪ [θ2, θ̄]. For θ ∈ (θ1, θ2), where ι∗(·) = 1, we have F(θ2) > F(θ) and therefore
θ > θ − τ

1+τ
F(θ2)−F(θ)

f (θ) . The result follows from the fact that c′−1 is monotone increasing, (6) and neff(θ) =

c′−1(θ).

Proof of Proposition 5.

Proof. This is a direct consequence from the fact that θ2 > θ1 such that Λ = F(θ2) > F(θ1) and condition
(8).
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Proof of Corollary 1.

Proof. If b = 0, then θ0 = θeff.
Suppose θ1 < θeff. Then, by (8), F(θ2) = Λ < F(θ1) which means that θ1 > θ2. This contradicts Lemma 3.
Hence, θ1 = θeff = θ0 and F(θ1) = Λ = F(θ2). With θ1 = θ2, the interval with STW is at most a singleton
of measure zero and the outside option binds almost everywhere.

Proof of Proposition 7.

Proof. (Strict) concavity of f (exp(·)) implies that θ f (θ) is (strictly) increasing.
Combining this fact with (10), it follows that

∫ θ2

θ0

θn̂(θ) f (θ)dθ −
∫ θ2

θ0

θι∗(θ)n∗(θ) f (θ)dθ (72)

> θ0 f (θ0)

(∫ θ2

θ0

n̂(θ)dθ −
∫ θ2

θ0

ι(θ)n∗(θ)dθ

)
(73)

= θ0 f (θ0)
∫ θ0

θ1

n∗(θ)dθ (74)

≥
∫ θ0

θ1

ι(θ)θn∗(θ) f (θ)dθ (75)

which can be rearranged to ∫ θ2

θ1

ι(θ)θn∗(θ)dF(θ) <
∫ θ2

θ0

θn̂(θ)dF(θ). (76)

Proof of Corollary 2. The arguments in the proofs of the comparative statics results are all a simple
application of the implicit function theorem.
In addition, define

G(θ1, Λ, θ0) =
∫ F−1(Λ)

θ1

c′−1
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

)
dθ − SO(F−1(Λ)). (77)

Proof. Equation (10) in Theorem 1 states that

∂G
∂b

= 0. (78)

Differentiating G w.r.t. b gives

∂G
∂b

= −∂θ1

∂b
· y(θeff)−

∫ F−1(Λ)

θ1

∂Λ
∂b

τ

1 + τ

1
f (θ)

y′
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

)
dθ +

∂θ0

∂b
y(θ0). (79)

By the definition of θ0, an increase in b leads to an increase in θ0. Hence, ∂θ0/∂b > 0.
In addition, we claim that

∂θ1

∂b
> (<) ⇔ ∂Λ

∂b
. (80)

To see this, note that θeff is unaffected by any change in b. By condition (8), it must then hold that

∂hτ(θ1, Λ)

∂θ

∂θ1

∂b
+

∂hτ(θ1, Λ)

∂Λ
∂Λ
∂b

= 0 (81)
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Since ∂hτ(θ1,Λ)
∂θ > 0 by Lemma 8 and ∂hτ(θ1,Λ)

∂Λ < 0, claim (80) follows.
Now, plugging (79) and ∂θ0/∂b > 0 into (78) and applying (80), it follows that ∂θ1/∂b > 0 as well as
∂Λ/∂b > 0 which implies ∂θ2/∂b > 0.

Proof of Corollary 3.

Proof. First note from the definitions of θ0 and θeff that ∂θ0/∂R, ∂θeff/∂R > 0.
By condition (10), it must hold that

∂G
∂R

= −∂θ1

∂R
· y(θeff)−

∫ F−1(Λ)

θ1

∂Λ
∂R

τ

1 + τ

1
f (θ)

y′
(

θ − τ

1 + τ

Λ − F(θ)
f (θ)

)
dθ +

∂θ0

∂R
y(θ0) = 0. (82)

Now suppose that ∂θ1/∂R ≤ 0 which we will lead to a contradiction. By condition (8), we then have

∂hτ(θ1, Λ)

∂θ

∂θ1

∂R
+

∂hτ(θ1, Λ)

∂Λ
∂Λ
∂R

− ∂θeff
∂R

= 0. (83)

Following the argument as in the proof of Corollary 2, we obtain ∂Λ/∂R > 0. But then, ∂G/∂R > 0, a
contradiction. Hence, ∂θ1/∂R > 0.

Proof of Corollary 4 and Corollary 5.

Proof. The results follow directly from the observation that limτ→0
τ

1+τ = 0 and limτ→∞
τ

1+τ = 1 respec-
tively, and the fact that all endogenous variables n, ι and Λ in Theorem 1 can be chosen from compact
intervals.
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B Further figures and tables

Counterfactual moments

τ u∗ Average
hour

reduction

Share in
STW

Share of
transfers to

STW

Average
hour

reduction
(adjusted)

Share in
STW

(adjusted)

Share of
transfers to

STW
(adjusted)

0.3 0.02 0.04 87.5% 67.8% 0.1 15.3% 32.4%

0.04 0.03 77.7% 67.2% 0.09 13.4% 32.6%

0.06 0.03 62.9% 64.5% 0.08 10.4% 30.4%

0.5 0.02 0.05 54.9% 51.4% 0.1 15.2% 35.9%

0.04 0.04 47.6% 51.8% 0.09 12.6% 34.4%

0.06 0.04 38.8% 50.3% 0.08 9.5% 30.7%

0.7 0.02 0.05 43.5% 46.1% 0.11 14.5% 35.5%

0.04 0.05 38.5% 47.1% 0.1 12.3% 34.4%

0.06 0.04 32.3% 47.6% 0.09 9.6% 32.6%

Table B.1: Moments under a counter-factual optimal short-time work policy. In columns 6-8, we adjust
our definition of short-time work to matches which change hours by more than 0.05 units relative to
hours in the outside option. Full-time work is normalized to 1.
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Figure B.1: Range of working hours relative to full-time work under STW policies in selected OECD
countries in 2008-2009. Source: Hijzen and Venn (2011), based on reports to OECD delegates
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C Comparison with an employment subsidy without reduction of

hours

STW aims to sustain employment through a combination of transfers and a reduction of work hours.
A common and related labor market policy are direct employment subsidies, which promise a transfer
conditional on employment but without making amends for hours. In this section, we consider a special
case of our model to understand under what conditions this simpler policy is preferable to STW. The
example highlight the limits of hours as a screening tool and further illustrates the mechanism of our
model.

In contrast to our standard model, we assume that the worker does not incur a convex disutility
of labor. Instead, labor is provided at no cost up to an upper bound n̄ = 1. Alternatively, one could
assume that the disutility of labor becomes prohibitively large when hours are highter than the bound.
We further simplify the model and assume that there is no benefits to reallocation, i.e. R = 0. In this
scenario, the surplus in the outside option for the match becomes

S̃O(θ) = max
n∈[0, n̄]

1{n>0} (J(θ, n)− V + W(θ, n)− U)

= max
n∈[0, 1]

1{n>0} (θ × n − U )

with solution ˆ̃n

ˆ̃n(θ) =

0, if θ ≤ U

1, if θ > U

The planner instead offers surplus S̃P = θ × n + t(θ)− U and solves

W̃ =
∫

θ

[
S̃P(θ)− (1 + τ)t(θ)

]
dF(θ) (W̃)

subject to the usual incentive and participation constraints. Moreover, the planner also has to respect the
hour constraint n ∈ [0, 1].

When the planner implements the outside option, the value of the problem is

Ŵ =
∫ θ̄

U
θ dF(θ) − τ × U × F(U),

where a mass 1 − F(U) of matches produce at maximal hours n̄ = 1 and a mass of F(U) of exiting
matches cause excess costs to public funds of τ × U. Moreover, the outside option satisfies the incentive
compatibility constraint since unemployment benefits U provide no improvement for matches with θ ≥
U.

As an improvement over this allocation, the planner could implement an incentive-compatible and
individually rational employment subsidy by offering a policy

(ñ(θ), t̃(θ)) =

(0, U) if θ < U − Ũ

(1, Ũ) if θ ≥ U − Ũ
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with payoff for the planner of

W̃(Ũ) =
∫ θ̄

U−Ũ
θ dF(θ) − τ × Ũ − τ × (U − Ũ)F(U − Ũ)

All matches would participate in the program. Since the subsidy is flat in productivity θ, all matches
reveal their productivity truthfully. The planner solves for this trade-off by finding the optimal employ-
ment subsidy Ũ that maximizes

W̃ = max
Ũ ∈[0,U]

W̃(Ũ).

Whether or not the employment protection program is an improvement depends on the relative weight
of matches 1 − F(U) above the exit-threshold who benefit from an employment subsidy without being
at risk of termination, and matches below the exit-threshold F(U) which would have been terminated
without an employment subsidy. For an interior solution, the optimal subsidy Ũ is implicitly defined
through the first order condition

(1 + τ)(U − Ũ⋆) f (U − Ũ⋆) = τ[1 − F(U − Ũ⋆)]

where the assumption of monotone hazard rates guarantees a unique solution Ũ⋆. Intuitively, the right
hand side displays the marginal benefit the production plus the reduction in costs of unemployment
of type U − Ũ, whereas the term on the right represents the incentive costs. Since higher types can be
neither excluded nor screened, a marginal extension of the subsidy Ũ has to be offered to all higher types.

This simple example highlights that the mass of matches which exit under autarky are an important
statistic for the efficiency of short time work . In the presence of asymmetric information, an employ-
ment subsidy is only beneficial if many matches need support or, equivalently, few matches have to be
compensated for truth-telling. Figure C.2 provides intuition for two cases. In panel C.2a on the left,
a large mass of matches 1 − F(U) do not exit without an employment subsidy and therefore have to
be compensated for their private information. The incentive costs are too high and the social planner
does not intervene. Formally, the optimal decision of the planner is to implement the outside option of
the matches. In panel C.2b, a sufficiently large mass of matches F(U) would exit absent any subsidy.
The planner finds it optimal to subsidize matches up to a threshold productivity U − Ũ at the cost of
compensating all producing matches with a flat subsidy Ũ.
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n

θ

n̂ = ñ

0

1

Ũ = 0

1 − F(θ)

(a) Low unemployment. Most matches are allocated
to the right of U.

n

θ

n̂

0

ñ

1 − F(θ)

1

Ũ

(b) High unemployment. Most matches are to the
left of U.

Figure C.2: Example of a flat employment subsidy. In the left panel, the mass of firms that continues
without a subsidy is large and incentive costs prevent the planner from saving matches. On the right, the
mass of firms that would exit is large. The planner preserves matches up to cutoff U − Ũ at the costs of
compensating high-productivity matches.
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