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Abstract

The endowment and attachment e�ect are empirically well-documented in bilat-

eral trade situations. Yet, the theoretical literature has so far failed to formally iden-

tify these e�ects. We �ll this gap by introducing expectations-based loss aversion,

which can explain both e�ects, into the classical setting by Myerson and Satterth-

waite (1983). This allows us to formally identify the endowment and attachment

e�ect and study their impact on information rents, allowing us to show that, in

contrast to other behavioral approaches to the bilateral trade problem, the impossi-

bility of inducing materially e�cient trade persists in the presence of loss aversion.

We then turn to the design of optimal mechanisms and consider the problem of

maximizing the designer's revenue as well as gains from trade. We �nd that the de-

signer optimally provides the agents with full insurance in the money dimension and

with partial insurance in the trade dimension, thereby reducing ex-post variation in

agents' payo�s.
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1 Introduction

The bilateral trade setting describes a simple, yet economically important situation. There

is a seller, who owns a good and might be willing to sell it, and a buyer, who might be

interested in buying it. Di�erent parts of the economic literature have approached this

setting di�erently. In the �eld of mechanism design we assume that the agents' valuation

of the good is private information and study what outcomes a designer can achieve through

di�erent institutions. Famously, Myerson and Satterthwaite (1983) have shown that some

potential gains from trade will be left on the table as a rule. This impossibility result on

e�ciency constitutes a cornerstone within economics overall.

In the empirical literature, especially by means of experiments, we have studied how

people behave in such trade situations and how the institution a�ects behavior. Here, two

notable e�ects have been documented: the endowment e�ect, going back to Thaler (1980),

and, more recently, the attachment e�ect (Ericson and Fuster, 2011). The endowment

e�ect tells us that ownership of the good drives up the seller's valuation of the good. The

attachment e�ect tells us that a buyer can get attached to a good she does not own (yet)

and that this attachment drives up her valuation for it. Both of these empirical �ndings

can be explained by the model of expectations-based loss aversion by K®szegi and Rabin

(2006, 2007), which builds on the seminal work by Kahneman and Tversky (1979).1 In

their model, essentially, people compare an outcome to some reference point, which is

given by their initial, rational expectations of the outcome. In the case of the buyer, for

instance, it is the expectation that she will buy the good which leads to her attachment

to the good. Importantly, the neoclassical model which is employed in Myerson and

Satterthwaite (1983) cannot explain why these e�ects would materialize. The model by

K®szegi and Rabin, however, is a natural candidate to better understand these empirical

e�ects and their implications on trade situations from a theoretical perspective.

In this paper, we thus introduce expectations-based loss aversion into an otherwise

standard mechanism-design approach to the bilateral-trade problem. More speci�cally,

we augment the model by Myerson and Satterthwaite (1983) (henceforth MS), in which

both agents have quasi-linear utility over ownership of the good and money, by allowing

for both agents to have reference-dependent preferences as modeled in K®szegi and Rabin

(2006, 2007) (henceforth KR). We call the standard utility from ownership of the good

and money material utility, and, in addition, introduce gain-loss utility with respect to

both, money and ownership of the good, separately. The reference point, relative to

which agents evaluate an outcome, is formed endogenously as the rational expectations

1There is a substantial empirical evidence of loss aversion, e.g., Fehr and Goette (2007), Post, van den
Assem, Baltussen, and Thaler (2008), Crawford and Meng (2011) and Pope and Schweitzer (2011). In
particular, see Ericson and Fuster (2014) for an excellent review on the role of loss aversion in explaining
behavioral e�ects in exchange situations.
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over the outcome.2 We introduce the formal framework in detail in Section 2, where we

also characterize incentive compatible mechanisms.

We then begin our analysis in Section 3 by identifying the theoretical counterparts of

the endowment and attachment e�ect. In Proposition 1, we show that in any incentive

compatible mechanism, loss aversion, by means of the attachment and the endowment

e�ect, reduces the information rent of the buyer and increases the information rent of the

seller, respectively. To better understand this and to �x ideas, consider the mechanism

in which trade takes place whenever the buyer values the good more than the seller, i.e.,

whenever trade is materially e�cient. In the absence of loss aversion, the buyer has an

incentive to imitate a lower type, that is, pretend that she does not value the good as

much as she actually does, in order to drive down the price she has to pay for it. The

�ip side of this behavior, is that by doing so, she reduces the probability of trade actually

taking place. This is where expectations-based loss aversion kicks in. The possibility of

getting the good induces an attachment to the good, which, if trade was to not take place,

gives rise to a feeling of loss. In order to avoid this loss, which is felt more strongly than

a commensurate gain, the buyer is less eager to shade her valuation than in the absence

of loss aversion. Consequently, it is easier to induce truthful behavior from the buyer and

thus her information rent decreases due to the attachment e�ect. Turning to the seller,

we �nd that the endowment e�ect plays out in a similar fashion, but with the opposite

result. In the absence of loss aversion, the seller wants to imitate a higher type, in order

to receive a higher transfer. Loss aversion reinforces this behavior, as reporting a higher

type increases the chance of trade not taking place and hence keeping the good the seller

is endowed with. Thus, it becomes even harder to induce truthful behavior from the seller

and her information rent increases.

The result on the e�ect of loss aversion on the agents' information rent in Proposition

1 is of interest for two reasons. First, as we've already noted, it formally identi�es the

theoretical counterparts of the attachment and endowment e�ect. Second, it suggests an

interesting connection to Myerson and Satterthwaite's impossibility result. The standard

interpretation of the impossibility result is that the gains from trade cannot cover the

information rents that accrue to the agents in order to ensure incentive compatibility

given the participation constraints and budget balance. Since loss aversion reduces the

buyer's information rent, it could mitigate the severity of the impossibility problem or

even reverse it, thus enabling the implementation of materially e�cient trade. Indeed,

Proposition 2 shows that the presence of a loss-averse buyer can mitigate the impossibility

2Ericson and Fuster (2011), Abeler, Falk, Goette, and Hu�man (2011), Crawford and Meng (2011),
Gill and Prowse (2012), Karle, Kirchsteiger, and Peitz (2015), and Bartling, Brandes, and Schunk (2015)
provide evidence for the assumption that the reference point is determined by expectations. In contrast,
see He�etz and List (2014) and Gneezy, Goette, Sprenger, and Zimmermann (2017) for papers that show
the limits of this.
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result in the sense that a lower subsidy would be needed to induce materially e�cient

trade. However, a reversal is beyond reach, as loss aversion not only reduces the buyer's

information rent, but also her participation constraint becomes harder to satisfy, due to

the ex-post variation in payo�s, which lower expected utility.

We would like to note that the robustness of the impossibility result in the present

context is in stark contrast to other papers with non-standard preferences, which show that

the impossibility result can be reversed. In the case of intentions-based social preferences

the reversal is driven by the fact that the incentive compatibility constraints can be turned

slack by introducing an action which generates su�ciently strong feelings of kindness,

thereby essentially eliminating any tension between ex-post e�ciency and the agents'

incentives (Bierbrauer and Netzer, 2016). Similarly, as agents become more altruistic,

their utility becomes more aligned with the expected gains from trade, reducing the

tension between ex-post e�ciency and the agents' incentives (Kucuksenel, 2012). Thus,

in contrast to the present framework, the channel alleviating the impossibility problem

does not con�ict with the incentive compatibility or the participation constraints, meaning

that a reversal is possible.

In Section 4 we turn to the problem of designing optimal mechanisms and begin with

the problem of maximizing the designer's revenue. We show that in the presence of loss

aversion any revenue-maximizing mechanism features what we call interim-deterministic

transfers, that is, the transfer of an agent is independent of the other agent's report

and is thus deterministic given her own type. This reduces ex-post variations in pay-

o�s, thereby making loss-averse agents better o�. Turning to the optimal trade rule, we

impose the assumption that types are drawn from the uniform distribution to keep the

model tractable. In spite of this assumption it is not possible to obtain the optimal trade

rule using pointwise maximization because the agents' expected utilities endogenously

depend on the mechanism through the reference point. In order to nevertheless derive the

optimal trade rule we make use of the reduced-form approach. Border (1991) character-

ized which interim allocation probabilities are implementable by some ex-post allocation

rule in the case of single-unit auctions. Che, Kim, and Mierendor� (2013) substantially

generalized this result to multi-unit auctions, and also extended the reduced-form ap-

proach from auctions to the bilateral-trade setting. Thus, instead of maximizing over the

ex-post trade rule, we can maximize directly over the interim trade probabilities subject

to some feasibility constraints. The resulting problem is one of optimal control with pure

state constraints, which, however, is not concave in the state variable, so that standard

su�ciency results are not applicable. Relying on work by Sorger (1989) for non-convex

control problems with state constraints, we can derive the globally optimal trade rule and

show that the designer optimally induces less trade in the presence of loss aversion. Thus,

the designer eliminates all ex-post variation in the agents' transfers, thereby fully insur-

4



ing them against any losses in the money dimension, and partially insures them against

losses in the trade dimension by reducing the trade probability. Full insurance in the

trade dimension boils down to trade always or never taking place, which is generally not

optimal. For su�ciently high stakes and degrees of loss aversion, however, the designer

indeed provides the agents with full insurance by eliminating trade altogether. Intuitively,

as the stakes become larger, it becomes too costly to induce loss-averse agents to take on

any uncertainty.

Besides maximizing the designer's revenue, another natural question to ask is to how

the designer can maximize the gains arising from trade. However, in the presence of loss

aversion one needs to clarify what the relevant welfare criterion is and how to handle

gain-loss utility. The literature on behavioral welfare economics provides some guidance

and allows us to distinguish between model-based and model-less approaches (Manzini

and Mariotti, 2014). In a model-based approach (e.g. Rubinstein and Salant (2012),

Benkert and Netzer (2018)) the welfare criterion is developed based on an underlying

theory (or, a model) of mistakes. In contrast, in a model-less approach (e.g., Bernheim

and Rangel (2009), Apesteguia and Ballester (2015)) multiple inconsistent preferences are

being aggregated into a welfare criterion solely on the basis of observed choices. We �nd

that the distinction does matter in the present setting, but becomes irrelevant for high

degrees of loss aversion. In any case, irrespective of the criterion at hand, the designer

optimally provides agents with insurance by fully eliminating ex-post variation in transfers

and reducing the trade frequency.

1.1 Related literature

Most closely related to our paper is the literature on mechanism design with loss-averse

agents. Eisenhuth (2019) considers the problem of a risk-neutral seller who wants to

maximize revenue by selling a good to loss-averse buyers. Using the framework of KR, he

�nds that the optimal auction is an all-pay auction with reserve price when agents bracket

narrowly. This result corresponds to our �nding that transfers are interim deterministic

in optimal mechanisms and, as one can show, extends beyond the auction and bilateral

trade setting. Duraj (2018) considers mechanism design problems with agents who are

loss averse on news utility, that is, agents' utility depends on changes in their beliefs over

the outcome as in K®szegi and Rabin (2009). In an application to bilateral trade he shows

the robustness of the impossibility result in this setting.3

Also related is the (increasingly large) literature on behavioral industrial organization

3In an older version of that paper, which was made available by personal communication, Duraj
showed that the impossibility result can be reversed under some conditions in the presence of news utility
(Duraj, 2015). We thank Niccolò Lomys for making the connection.
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with loss-averse agents.4 Rosato (2017) considers a sequential bargaining model with a

risk-neutral seller and a loss-averse buyer.5 Also within the framework of KR, but as-

suming wide bracketing, he shows that the buyer's loss aversion softens the rent-e�ciency

trade o� for the seller. As in the present paper, this is driven by the attachment e�ect: the

buyer is willing to accept lower o�ers to avoid the risk of a breakdown of the negotiations.6

In contrast to the present paper, neither Rosato (2017) (nor Eisenhuth (2019) above)

feature loss-averse sellers, but only loss-averse buyers. Heidhues and K®szegi (2014) and

Rosato (2016) consider models with a monopolist selling to expectations-based loss-averse

consumers. In both papers the monopolist uses random prices to induce the attachment

e�ect, increasing the consumers willingness to pay and thus pro�ts. In contrast, in the

present paper agents are already confronted with uncertainty due to the private nature

of types and there is no need to further �inject� randomness to induce the attachment or

endowment e�ect. Indeed, the designer optimally insures agents fully against any varia-

tion in transfers and partially in the trade dimension in order to reduce ex-post variation

in payo�s.

Finally, our paper also relates to the large literature on the bilateral trade problem,

which has followed Myerson and Satterthwaite (1983). Arguably, the departure from

the classical setting most closely related to our paper, is to consider risk-averse agents.

However, in contrast to loss aversion, risk aversion cannot explain the endowment and

attachment e�ect. Early on, Chatterjee and Samuelson (1983) showed that when agents

�become in�nitely risk averse� all material gains from trade can be realized using a double-

auction. More recently, Garratt and Pycia (2020) examine the bilateral trade problem

relaxing the assumption that the agents have quasi-linear utility.7 Allowing for risk aver-

sion and wealth e�ects, they provide conditions for the possibility of realizing all gains

of trade. The impossibility result can be reversed in this setting, because the presence

of risk aversion and wealth e�ects give rise to additional gains from trade, which then

su�ce to cover the agents' information rents. In contrast to Garratt and Pycia (2020) we

do not attempt to establish whether e�cient trade with respect to the total gains from

trade can be achieved, but approach the problem as one of �nding the trade mechanism

which maximizes the gains from trade from an ex-ante perspective, �nding that it mat-

ters whether one wants to maximize total or only material gains from trade, unless loss

4See for instance Karle and Möller (2020) and the references therein.
5See Shalev (2002) and Driesen, Perea, and Peters (2012) for other approaches incorporating loss

aversion to bargaining.
6The attachment e�ect also plays a role in a number of other papers, among others Karle and Schu-

macher (2017) in a model of advertisement or in Rosato (2021) who proposes expectations-based loss
aversion as an explanation for the �afternoon e�ect� observed in sequential auctions.

7See also the references in Garratt and Pycia (2020) for more work on the bilateral trade problem in
the classic framework with quasi-linear utility following Myerson and Satterthwaite (1983). Moreover,
see Wolitzky (2016) and Crawford (2021) for analyses of the bilateral trade problem with maxmin and
level-k agents, respectively.
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aversion is su�ciently strong.

2 Model

2.1 Utility, Social Choice Functions and Mechanisms

The set of agents is given by I = {S,B} where S and B denote seller and buyer,

respectively. It is commonly known that the type of agent i ∈ I has distribution

Fi with full support on the set Θi = [ai, bi] ⊂ R+, and is private information. Let

Θ = ΘS × ΘB and assume that ΘS and ΘB have a non-trivial intersection. We inter-

pret the type of an agent as her valuation of the good.8 A social alternative is given by

x = (y, tS, tB) ∈ X = {0, 1}×R2, where y indicates whether or not trade takes place and

tS and tB denote the respective transfers of the seller and buyer.

Following KR, we allow for the agents to be loss averse in the trade and in the money

dimension. That is, the buyer derives the standard material utility from obtaining and

paying for the good, and additionally, the buyer feels weighted gain-loss utility with

respect to getting the good as well as weighted gain-loss utility with respect to paying

for the good. Loss-aversion is captured by value functions in the sense of Kahneman and

Tversky (1979) given by

µk
i (x) =

x if x ≥ 0,

λk
i x else,

for some λk
i > 1, which re�ects the degree of loss aversion.9 Thus, the riskless total utility

is given by

uS(x, rS, θS) = (1− y)θS + tS + η1Sµ
1
S

(
r1SθS − yθS

)
+ η2Sµ

2
S(tS − r2S) (1)

uB(x, rB, θB) = yθB − tB + η1Bµ
1
B(yθB − r1BθB) + η2Bµ

2
B(r

2
B − tB) (2)

where ηki ≥ 0 are the weights put on gain-loss utility and ri = {r1i , r2i } ∈ R2 are the

so-called riskless reference levels. Following KR we will allow the reference point to be

the agent's rational expectations and therefore a probability distribution over all riskless

reference levels (see more below). We will refer to (1− y)θS + tS and yθB − tB as material

utility and to the other terms as gain-loss utility in the trade and money dimension,

8We could alternatively assume that the seller does not own the good but has to produce it. The
seller's type would then represent her marginal cost of production. All the results that follow would go
through in this case.

9We follow the literature by abstracting from diminishing sensitivity.
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respectively.

We adopt the following assumption from Herweg, Müller, and Weinschenk (2010):10

Assumption 1 (No Dominance of Gain-Loss Utility) Λi = η1i (λ
1
i − 1) ≤ 1, i ∈ I.

This assumption ensures that gain-loss utility does not dominate material utility and

plays an important role for incentive compatibility. In particular, KR show that this

condition ensures that agents will not choose stochastically dominated options. We will

maintain this assumption throughout the paper.11 We follow KR by assuming that there

is a separate gain-loss term for each of the two material utility dimensions, trade and

money utility.12

A social choice function (SCF) f : Θ → X assigns a collective choice f(θS, θB) ∈ X

to each possible pro�le of the agents' types (θS, θB) ∈ Θ. In the present bilateral trade

setting, a social choice function takes the form f = (yf , tfS, t
f
B). Let F denote the set

of all SCFs and Y the set of all trade mechanisms, i.e., the set containing all yf . A

mechanism Γ = (MS,MB, g) is a collection of message sets (MS,MB) and an outcome

function g : MS × MB → X. We denote the direct mechanism by Γd = (ΘS,ΘB, f).

Since agents privately observe their types, they can condition their message on their type.

Consequently, a pure strategy for agent i in a mechanism Γ is a function si : Θi → Mi.

Note that g(sS(θS), sB(θB)) ∈ X. Let Si denote the set of all pure strategies of agent

i. Further, we denote the truthful strategy sti(θi) = θi. Throughout, the operator E−i

denotes the expectation over the random variables θ̃−i taking the value θi as given.

2.2 Equilibrium Concept and Revelation Principle

We use the concept of an (interim) choice-acclimating personal equilibrium (CPE) in-

troduced in K®szegi and Rabin (2007).13 The set of all riskless reference levels is given

by the set of all social alternatives X. Essentially, the set X captures all the outcomes

that could materialize at the end of the agents' interaction. In a mechanism Γ, agent i's

10This condition is commonly imposed, see for instance de Meza and Webb (2007), Eisenhuth and
Grunewald (2018), Eisenhuth (2019), Karle and Peitz (2014), and Rosato (2021).

11We discuss the implications of relaxing the assumption after con�rming the impossibility result in
Section 3.

12The assumption that the loss aversion parameters are commonly known may seem restrictive. How-
ever, we are essentially assuming that the functional form of the utility function is common knowledge,
thereby following for instance Maskin and Riley (1984) who assume in their study of optimal auctions
with risk-averse buyers that the buyers' parameter of risk-aversion is commonly known. We brie�y discuss
relaxing the assumption in the conclusion.

13KR also introduce the unacclimating personal equilibrium (UPE). In the UPE the agent �maximizes
expected utility taking the reference point as given�, whereas in the CPE the agent �maximizes expected
utility given that it determines both the reference lottery and the outcome lottery�. KR note that the
CPE is more appropriate when the uncertainty is resolved after the agent's decision. We thus believe that
the CPE is the more natural equilibrium concept in our context, as the report of an agent determines
the uncertainty she feels about the outcome given her beliefs about the other agent's type.
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action induces a distribution over the set of social alternatives X, conditional on the other

agent playing s−i. It is this endogenously generated distribution over X that forms the

agent's reference point, or rather, reference distribution in a CPE. E�ectively, when an

agent evaluates an outcome, she is comparing it to all other possible social alternatives

that could have materialized given the distribution induced over them. Moreover, when

the agent takes an action in a CPE, she takes the action anticipating that it will not only

determine the outcome of the mechanism, but also the distribution over the set X and,

therefore, the reference point.

Moving to the interim stage and allowing the reference point to be the agent's rational

expectations, we can de�ne the interim expected utility of the seller with type θS, in the

mechanism Γ, when playing action m ∈ MB, given that the buyer plays strategy sB as

US(m,sB,Γ|θS) =∫ bB

aB

(1− yg(m, sB(θB)))θS + tgS(m, sB(θB)) dFB(θB)

+

∫ bB

aB

∫ bB

aB

η1Sµ
1
S

(
yg(m, sB(θ

′
B))θS − yg(m, sB(θB))θS

)
dFB(θ

′
B) dFB(θB) (3)

+

∫ bB

aB

∫ bB

aB

η2Sµ
2
S

(
tg(m, sB(θB))− tg(m, sB(θ

′
B))
)
dFB(θ

′
B) dFB(θB)

= θS

∫ bB

aB

(1− yg(m, sB(θB))) dFB(θB) +

∫ bB

aB

tgS(m, sB(θB)) dFB(θB)

+ θSη
1
S

∫ bB

aB

∫ bB

aB

µ1
S

(
yg(m, sB(θ

′
B))− yg(m, sB(θB))

)
dFB(θ

′
B) dFB(θB)

+ η2S

∫ bB

aB

∫ bB

aB

µ2
S

(
tgS(m, sB(θB))− tgS(m, sB(θ

′
B))
)
dFB(θ

′
B) dFB(θB).

The expression in (3) may require some explanation. The �rst line corresponds to

material utility, the second to gain-loss utility in the trade dimension and the third to

gain-loss utility in the money dimension. The double integral has a clear intuition. To

illustrate, consider the last line containing the money gain-loss utility. Fix any θB in the

domain of integration of the outer integral and suppose this was the actual realization

of the buyer's type. The seller would then receive a transfer of tgS(m, sB(θB)), which she

would compare to the reference point. The reference point is induced endogenously and

corresponds to the distribution of possible transfers. Thus, for every θ′B in the domain of

the inner integral we get a possible transfer tgS(m, sB(θ
′
B)) given the buyer's strategy and

the seller's message. The seller compares the actual transfer tgS(m, sB(θB)) with all these

other possible transfers and the value function µ2
S weights these comparisons di�erently,

depending on whether they result in a loss or a gain. The inner integral then aggregates

the gains and loss weighted by the induced probability distribution. Next, integrate over

all the values θB in the domain of the outer integral to get the familiar interim expected
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utility. In summary, the seller aggregates over each possible realization of transfers and

for each of these possible realizations she compares the outcome with all other possible

outcomes, aggregating gains and losses in each comparison.

Given our interpretation that the seller owns the good, her outside option is type-

dependent and given by θS. To simplify notation later, we will consider the seller's net

utility from trade, which, with some abuse of notation, allows us to compactly write

US(m, sB,Γ|θS) = −θS ṽS(m) + t̃S(m), where

ṽS(m) =

∫ bB

aB

yg(m, sB(θB)) dFB(θB)

− η1S

∫ bB

aB

∫ bB

aB

µ1
S (y

g(m, sB(θ
′
B))− yg(m, sB(θB))) dFB(θ

′
B) dFB(θB),

t̃S(m) =

∫ bB

aB

tgS(m, sB(θB)) dFB(θB)

+ η2S

∫ bB

aB

∫ bB

aB

µ2
S (t

g
S(m, sB(θB))− tgS(m, sB(θ

′
B))) dFB(θ

′
B) dFB(θB).

This compact notation highlights the fact that not only material utility, but also overall

utility is linear in the type. Moreover, it will turn out to be useful to further de�ne

t̄S(m) =

∫ bB

aB

tgS(m, sB(θB)) dFB(θB),

wS(m) =

∫ bB

aB

∫ bB

aB

µ2
B (tgS(m, sB(θB))− tgS(sS(θS), sB(θ

′
B))) dFB(θ

′
B) dFB(θB),

allowing us to write t̃S(m) = t̄S(m)+η2SwS(m). Similarly, we can write the buyer's utility

as UB(m, sS,Γ|θB) = θB ṽB(m) + t̃B(m), de�ning the functions ṽB and t̃B analogously.

We can now de�ne our equilibrium concept, which follows Eisenhuth (2019).14

De�nition 1 A strategy pro�le s∗ = (s∗S, s
∗
B) is a CPE of the mechanism Γ = (MS,MB, g)

if s∗i (θi) ∈ argmaxmi∈Mi
Ui(mi, s

∗
−i,Γ|θi) for all i ∈ I and θi ∈ Θi.

De�nition 2 A mechanism Γ implements a SCF f if there is a CPE strategy pro�le

s = (sS, sB) such that g(sS(θS), sB(θB)) = f(θS, θB) for all (θS, θB) ∈ Θ.

De�nition 3 A SCF f is CPE incentive compatible (CPEIC) if the truthful pro�le st =

(stS, s
t
B) is a CPE strategy in the direct mechanism Γd.

14In later work than Eisenhuth (2019), Dato, Grunewald, Müller, and Strack (2017) have developed
a framework to extend the equilibrium concepts in K®szegi and Rabin (2006, 2007) to study strategic
interaction in �nite games. The equilibrium concept they de�ne for the CPE coincides with the one in
Eisenhuth (2019) and here. Interestingly, they show that in a CPE players are unwilling to randomize
over pure strategies, implying that existence may fail and that restriction to pure strategies is without
loss.
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As a �rst result we note that the revelation principle for CPE holds in our setting.

Proposition 1 (Revelation Principle for CPE) A social choice function f can be

implemented in CPE by some mechanism Γ if and only if f is CPEIC.

The standard proof of the revelation principle goes through in spite of the presence of

an endogenous reference point. To see this, note that the reference point is determined

as the rational expectations over outcomes. Starting from an arbitrary mechanism which

induces some distribution of outcomes, the corresponding direct mechanism induces the

same distribution of outcomes and therefore also the same reference point. Henceforth,

we focus on direct mechanisms and no longer explicitly list the mechanism as an argument

in the utility function.

2.3 Incentive Compatibility and E�ciency

In this section we characterize the set of all CPEIC social choice functions and introduce

some familiar concepts, such as individual rationality and ex post budget balance. Further,

we introduce our notion of an interim deterministic mechanism.

Proposition 2 The SCF f = (yf , tfS, t
f
B) is CPEIC if and only if,

(i) ṽS is non-increasing and ṽB is non-decreasing, and

(ii) we can write utility as

US(θS, s
t
B|θS) = US(bS, s

t
B|bS) +

∫ bS

θS

ṽS(t) dt, (4)

UB(θB, s
t
S|θB) = UB(aB, s

t
S|aB) +

∫ θB

aB

ṽB(t) dt. (5)

The proof is standard and therefore omitted.15 Recall that the functions ṽB and ṽS

contain terms of gain-loss utility. Thus, while the incentive-compatibility conditions in

Proposition 2 seem similar as those in the absence of loss aversion, they are not and

thus the set of incentive-compatible SCF need not coincide either. We say that a SCF is

individually rational if for both agents i ∈ I

Ui(θi, s
t
−i|θi) ≥ 0 ∀θi ∈ Θi, (IR)

15In contrast to Carbajal and Ely (2016), who consider price discrimination using a di�erent model
of loss aversion than the one here, the standard integral representation obtains in our setting. This is
driven by the fact that, in contrast to Carbajal and Ely (2016), the report of an agent and not her type
determines her reference point. For instance, a high buyer type does not expect to get the good with
the probability corresponding to her true type when misreporting. Rather, she is aware that reporting a
lower type changes the probability of getting the good and this is re�ected in her reference point.
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and that it is ex post budget balanced if

tfS(θS, θB) = tfB(θS, θB), ∀(θS, θB) ∈ Θ. (BB)

Setting the outside option in (IR) equal to zero is without loss of generality.16 An agent

could choose to walk away and not participate in the mechanism as soon as she learns

her type. Doing so would rule out any possibility of trade and payment or receipt of

any transfers. Therefore, the reference points of the agent would be equal to zero, as she

anticipates that no trade or transfers can take place if she walks away. Consequently,

there would be no feelings of gain or loss, as well as zero material utility.

We say that a mechanism has interim-deterministic transfers, when, given her own

type, an agent's transfer does not depend on almost all types of the other agent. Similarly,

a trade rule is interim deterministic, when, given her own type, the trade rule coincides

for almost all types of the other agent. A mechanism with interim-deterministic transfers

and an interim-deterministic trade rule is called interim deterministic.

3 Attachment, Endowment and Information Rents

As noted in the introduction, the attachment and endowment e�ect have been empirically

documented in bilateral trade situations. However, the classical model with quasi-linear

utility as in Myerson and Satterthwaite (1983) cannot explain such e�ects, motivating the

inclusion of expectations-based loss aversion in the present paper. Our �rst step is thus

to formally identify these e�ects and their implications in our model.

Proposition 3 In any CPEIC mechanism, the information rent of the seller is increasing

in ΛS and the information rent of the buyer is decreasing in ΛB.

Put di�erently, the presence of loss aversion in the trade dimension increases the
information rent of the seller and decreases the information rent of the buyer. The proof
is straightforward as it su�ces to take the derivatives with respect to ΛS and ΛB from
equations (4) and (5), respectively. The key step is to note that

ṽB(θB)

=

∫ bS

aS

yf (θS , θB) dFS(θS) + η1B

∫ bS

aS

∫ bS

aS

µ1
B

(
yf (θS , θB)− yf (θ′S , θB)

)
dFS(θ

′
S) dFS(θS),

= yB(θB) + η1B

∫ bS

aS

∫ bS

aS

yf (θS , θB)(1− yf (θ′S , θB))− λ1
B(1− yf (θS , θB))y

f (θ′S , θB) dFS(θ
′
S) dFS(θS),

= yB(θB)(1− ΛB(1− yB(θB)))

16Recall that we are considering net utility and have thus already taken care of the seller's type-
dependent outside option.
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and analogously for the seller ṽS(θS) = yS(θS)(1 + ΛS(1− yS(θS))), where

yB(θB) =

∫ bS

aS

yf (θS, θB)dFS(θS), yS(θS) =

∫ bB

aB

yf (θS, θB)dFB(θB).

Thus, the attachment e�ect is captured by −ΛB

∫ θB
aB

yB(θB)(1 − yB(θB)dθB and the

attachment e�ect by ΛS

∫ bS
θS

yS(θS)(1 − yS(θS))dθS. As already noted, the respective de-

crease and increase in the rents stem from the loss aversion in the trade dimension. As

one would expect, loss aversion on the money dimension plays no role here. To simplify

exposition, we will use the term loss aversion as referring to loss aversion in the trade

dimension unless stated di�erently.

Having formally identi�ed the two e�ects as the impact of loss aversion on the infor-

mation rents, we can conduct an interesting bit of comparative statics. Does loss aversion

a�ect all types in the same way?

Corollary 1 The strength of the endowment and attachment e�ect is increasing in the

agents' type.

The result follows immediately as one takes the derivative with respect to ΛS and

θS from equation (4) and with respect to ΛB and θB from equation (5). To gain some

intuition for this result, consider the case of the buyer. Recall from the introduction that

misreporting to a lower type in order to pay a lower price increases the risk of not getting

the good at all, in which case the loss of not getting the good is felt due to loss aversion.

A high buyer type values the good more and thus feels the loss of not getting something

more valuable more strongly than a lower type who does not care as much about the good

in the �rst place. The analogous force strengthens the endowment e�ect for higher seller

types, who care about the good more strongly.

Our �nding about the impact of the endowment and attachment e�ect on the infor-

mation rents suggests that the presence of a loss-averse buyer could enable the designer

to implement materially e�cient trade subject to ex-post budget balance and the agents'

participation constraints, that is, to �reverse� the impossibility result by Myerson and

Satterthwaite (1983). To see this, recall the interpretation of the result, stating that the

gains from trade do not su�ce to cover the agents' information rents. Thus, seller loss

aversion, which increases the information rent, will make the problem only harder, while

buyer loss aversion could make it easier. However, there is a countervailing e�ect even for

the buyer. Loss aversion not only a�ects information rents as stated in Proposition 3, but

also decreases expected utility and hence makes satisfying the participation constraints

harder, too.17 Nevertheless, it su�ces to consider buyer loss aversion to check whether

17Loss aversion on the money dimension does not a�ect information rents but also reduces expected
utility, thus only making it harder to reverse the impossibility result.
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the impossibility result can be reversed. Making use of this insight, we can proceed analo-

gously to the proof in Myerson and Satterthwaite (1983). That is, impose budget balance

as well as incentive compatibility to obtain an expression for the sum of utilities of the

�worst� buyer and seller types in the materially e�cient mechanism and show that it is

strictly negative. Indeed, we obtain

UB(aB) + US(bS) =

−
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x)(1− ΛB(1− FS(x))) + ΛB(1− FS(x))FS(x)xfB(x) dx

(6)

< 0,

which violates individual rationality for any ΛB ≤ 1. This proves our next result (see

Appendix A.1 for the details).

Proposition 4 Given CPEIC, IR and BB, it is impossible to realize all material gains

from trade for any degree of loss aversion in the money or trade dimension.

The minimal subsidy needed to induce materially e�cient trade under CPEIC and

IR (see equation (6)) can be interpreted as a measure of the severity of the impossibility

problem and will generally depend on the degree of loss aversion and the distribution of the

agents' types. Indeed, taking the derivative of the minimal subsidy in equation (6) with

respect to ΛB, we can see that the attachment e�ect mitigates the impossibility problem

by dominating the diminishing e�ect of loss aversion on the participation constraints

whenever∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x)(1− FS(x))− (1− FS(x))FS(x)xfB(x) dx ≥ 0.

To get a feel for this condition, consider the families of distributions FS(x) = xs and

FB(x) = xb on [0, 1] for b, s > 0. Whenever b > 2s2 − 1 the buyer's loss aversion makes

the problem easier. In words, the likelier low seller types and high buyer types are, the

less severe is the impossibility problem. This is in line with the intuition underlying

the attachment e�ect. When low seller types are likely, a buyer puts a relatively high

probability on trade taking place and thus has a strong attachment to the good (a high

reference point). Hence, when low seller types and high buyer types are likely, on average

the buyer will have a high attachment e�ect, thereby mitigating the impossibility problem.

Note that in the absence of loss aversion, it is also true that the minimal subsidy is lower

the likelier low seller types and high buyer types are. In the presence of the attachment

e�ect, however, this is reinforced.
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Another noteworthy point is that for the extreme types, i.e., types who lie outside the

intersection of the intervals, loss aversion does not matter. This �nding is very intuitive.

To see this, observe that for these types trade is interim deterministic and hence there is

no gain-loss utility as there is no room for ex-post variations in payo�s. Put di�erently,

expectations-based loss aversion only has bite when there is unresolved uncertainty, which

is only the case for types lying strictly in the intersection of the type spaces.

The fact that the impossibility result is not reversed is linked to the assumption that

ΛB ≤ 1, i.e., that gain-loss utility does not dominate. For instance, when types are drawn

from [0, 1] with distributions FS(x) = x and FB(x) = x10 the subsidy in equation (6)

turns into a surplus for ΛB ≥ 13/3. However, in this example ΛB ≤ 1 is a necessary

condition for the materially e�cient mechanism to be incentive compatible for the buyer.

Hence, incentive compatibility puts limits on the feasible degree of loss aversion, and, as

a consequence, on the strength of the attachment e�ect, meaning that the impossibility

result cannot be reversed. However, as we will discuss next, ΛB ≤ 1 is in general only a

su�cient condition for incentive compatibility and not always necessary.

The assumption that Λi ≤ 1 is commonly imposed in the literature for conceptual

as well as technical reasons. In particular, KR showed that the assumption ensures that

agents do not choose stochastically dominated options. In the present context, it is easy

to show that the assumption is a su�cient condition for the materially e�cient trade

rule to be incentive compatible in the presence of loss aversion. Moreover, whenever

FS(aB) = 0 the assumption is not only su�cient, but also necessary. That is, whenever

the smallest buyer type has a zero probability of trading, the materially e�cient trading

rule is CPEIC if and only if ΛB ≤ 1. In particular, this is true when the types of both

agents are drawn from the same support. It turns out, however, that when FS(aB) > 0 the

assumption is no longer necessary.18 Indeed, when FS(aB) < 1/2 the necessary condition

reads ΛB ≤ 1/(1 − 2FS(aB)) and when FS(aB) ≥ 1/2 no restrictions need to be put on

ΛB. In the light of the above result the question thus arises whether the impossibility

result persists when FS(aB) > 0 and the assumption is relaxed, as this would allow us

to strengthen the attachment e�ect and possibly set the required subsidy in equation (6)

equal to zero.

To this end, one can show that the impossibility result continues to hold for ΛB ≤
1/(1−FS(aB)). This condition ensures that the lowest buyer type aB is in fact the �worst�

buyer type. For ΛB > 1/(1 − FS(aB)), the worst buyer type is some intermediate type

and the above approach to proving the impossibility result fails: if the lowest buyer type

is no longer the worst type, satisfying individual rationality for the lowest buyer type

18In Herweg et al. (2010), who �rst introduced this assumption, the assumption plays a similar role
as here. It provides a su�cient but not necessary condition to satisfy incentive compatibility of certain
contracts.
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does no longer guarantee satisfying individual rationality for all types. The observation

that an intermediate type is the worst type is reminiscent of the related model of part-

nership dissolution (Cramton, Gibbons, and Klemperer, 1987; Fieseler, Kittsteiner, and

Moldovanu, 2003). In this model, the good is initially not exclusively owned by one agent

only, but by several agents. As a result, the worst type of an agent may be an intermediate

type. However, in spite of this similarity, the approach taken in that model cannot be

extended to the present context due to the endogeneity of the reference point. In sum,

although counterexamples have proved elusive, a reversal of the impossibility for when

ΛB > 1/(1−FS(aB)) cannot be ruled out. Note, however, that for su�ciently high degrees

of loss aversion the total gains from trade disappear completely. Thus, even if the buyer's

information rent can be reduced using the attachment e�ect, impossibility will obtain for

su�ciently high degrees of loss aversion because it will eliminate all the total gains from

trade.19

4 Optimal Mechanisms

The preceding section has formally identi�ed the endowment and the attachment e�ect

in an otherwise standard bilateral trade setting. In particular, we have seen how loss

aversion impacts the agents' information rents and the participation constraints, allowing

us to show that the impossibility of implementing materially e�cient trade extends to

the setting with loss-averse agents. We now turn to the problem of designing optimal

mechanisms. We begin by considering the problem of maximizing the designer's revenue

and then turn to the (conceptually) more nuanced question of maximizing the gains from

trade.

In both cases, we begin by maintaining our previous framework with general distri-

butions and prove that the designer insures the agents against ex-post variations in their

payo�s. More speci�cally, we show that in the presence of loss aversion optimal transfers

are interim deterministic. We then restrict attention to the case where both the seller and

buyer types are distributed uniformly on [0, 1]. The preceding, more general analysis of

the impossibility result suggests that the symmetry of the type spaces is not too restrictive

an assumption, as loss aversion does not matter for the extreme types for which trade is

interim deterministic. We focus on the uniform distribution for tractability and because

it allows us to derive the trade rule explicitly.

19In the above we have only discussed the degree of loss aversion of the buyer. Analogous arguments
regarding the necessity and su�ciency of ΛS ≤ 1 for incentive compatibility of the seller apply. However,
as loss aversion on the side of the seller makes the impossibility problem only harder, relaxing the
assumption that gain-loss utility does not dominate does not a�ect our result.
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4.1 Maximizing the Designer's Revenue

The revenue-maximizing designer's problem reads

max
(yf ,tfS ,t

f
B)∈F

∫ bB

aB

∫ bS

aS

(
tfB(θS, θB)− tfS(θS, θB)

)
dFS(θS) dFB(θB),

subject to CPEIC and IR. (RM)

We begin by rewriting this problem into a more accessible form which will allow us

to gain some intuition �rst.20 The �rst step is to impose the envelope representation of

the utility due to the CPEIC and the individual rationality constraint. The objective

function then reads∫ bB

aB

(
η2BwB(θB) + θB ṽB(θB)−

∫ θB

aB

ṽB(t) dt

)
dFB(θB)

+

∫ bS

aS

(
η2SwS(θS)− θS ṽS(θS)−

∫ bB

θS

ṽS(t) dt

)
dFS(θS).

In the absence of loss aversion, the envelope representation of utility would allow us to

maximize over the trade rule only instead of both the trade rule and transfers. With loss

aversion in the money dimension, however, this is not the case. Indeed, recall that we

de�ned

wS(θS) =

∫ bB

aB

∫ bB

aB

µ2
S

(
tfS(θS, θB)− tfS(θS, θ

′
B)
)

dFB(θ
′
B) dFB(θB),

and thus the objective function still depends on transfers. This expression and its analog
for the buyer collect all gain-loss utility with respect to money. Nevertheless, the problem
can be reduced to only choosing the optimal trade rule, because in any optimal mechanism
the transfers of the seller will not depend on the buyer's type, and vice versa. To see this,
note that

wS(θS) =

∫ bB

aB

∫ bB

aB

µ2
S

(
tfS(θS , θB)− tfS(θS , θ

′
B)
)

dFB(θ
′
B) dFB(θB)

=

∫ bB

aB

∫ bB

aB

(
tfS(θS , θB)− tfS(θS , θ

′
B)
)
1[tfS(θS , θB) > tfS(θS , θ

′
B)] dFB(θ

′
B) dFB(θB)

+

∫ bB

aB

∫ bB

aB

λ2
S

(
tfS(θS , θB)− tfS(θS , θ

′
B)
)
1[tfS(θS , θB) < tfS(θS , θ

′
B)] dFB(θ

′
B) dFB(θB)

=

∫ bB

aB

∫ bB

aB

(
tfS(θS , θB)− tfS(θS , θ

′
B)
)
1[tfS(θS , θB) > tfS(θS , θ

′
B)] dFB(θ

′
B) dFB(θB)

− λ2
S

∫ bB

aB

∫ bB

aB

(
tfS(θS , θ

′
B)− tfS(θS , θB)

)
1[tfS(θS , θ

′
B) > tfS(θS , θB)] dFB(θ

′
B) dFB(θB)

20The complete derivations and of this section are contained in Appendix A.2.
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= (1− λ2
S)

∫ bB

aB

∫ bB

aB

(
tfS(θS , θ

′
B)− tfS(θS , θB)

)
1[tfS(θS , θ

′
B) > tfS(θS , θB)]dFB(θ

′
B)dFB(θB),

where 1 denotes the indicator function. The key step in the above derivation lies in the

last equality. Comparing the two integrands on the third and second-to-last lines, we

notice that they look the same but that θB and θ′B are interchanged. To see the equality,

change the order of integration in the integral on the second-to-last line and perform

a change of variables for the resulting integral. This shows that the two integrals are

actually the same and allows us to sum them. Thus, since λ2
S > 1 we �nd wS(θS) ≤ 0.

As the expression enters the designer's maximization problem positively, she optimally

sets wS(θS) = 0. Note that a transfer achieves wS(θS) = 0 if and only if the transfer

is independent of almost all buyer types. Thus, interim deterministic transfers are the

only transfers that achieve wS(θS) = 0. The argument for the transfers of the buyer is

analogous.

Proposition 5 Any solution to the revenue maximization problem (RM) entails interim-

deterministic transfers.

Intuitively, loss-averse agents dislike ex-post variations in their payo�s. By making the

transfers independent of the other agent's type, the designer completely insures the agents

from any ex-post variation in the transfers. Thus, starting from any mechanism with non-

interim-deterministic transfers, the designer can extract more surplus from the agents by

choosing appropriate interim-deterministic transfers, e�ectively selling the agents insur-

ance. Note that interim-deterministic transfers are also a solution in the absence of loss

aversion. However, in the presence of loss aversion interim-deterministic transfers are the

only solution.21

For the remainder of this section we will assume that the seller and buyer types are

distributed uniformly on [0, 1] with and explicitly derive the optimal trade rule. The

assumption allows us to rewrite the maximization problem to

max
yf∈Y

∫ 1

0

(2θB − 1)yB(θB) (1 + ΛB [yB(θB)− 1]) dθB

−
∫ 1

0

2θSyS(θS) (1− ΛS [yS(θS)− 1]) dθS, (RM')

subject to yB(θB) being non-decreasing and yS(θS) being non-increasing,

21Eisenhuth (2019) proved an analogous result for the case of auctions. In fact, one can show that
Proposition 5 extends beyond the bilateral trade and auction setting. Further, the result is reminiscent
of the optimal mechanism found in Herweg et al. (2010), who augment a principal-agent setting with
moral hazard by assuming the agent is expectations-based loss averse as in the present paper. They �nd
that the principal optimally employs a binary payment scheme instead of a fully contingent contract in
the presence of loss aversion. Hence, loss aversion drastically reduces the ex-post variation in payments,
too, but, in contrast to the present setting, does not eliminate it fully to preserve incentives.

18



where yB(θB) =
∫ 1

0
yf (θS, θB) dθS and yS(θS) =

∫ 1

0
yf (θS, θB) dθB denote the interim trade

probabilities of the buyer and seller, respectively. Let us inspect the objective function in

(RM') more closely. The �rst integral corresponds to the expected payment the designer

receives from the buyer and the second integral to the expected payment the designer

makes to the seller. Note that the seller integral is always positive. The buyer integral is

positive whenever 2θB−1 ≥ 0. Clearly, any optimal mechanism will therefore only induce

trade for buyer types θB ≥ 1/2. Given this, both integrals are increasing in the trade

probabilities yB and yS, respectively. Thus, the designer faces the intuitive trade-o� that

inducing trade comes at a cost in the form of the payment due to the seller and with a

bene�t in the form of the payment from the buyer. Further, the form of the objective

function suggests that even in the presence of loss aversion the designer wants to induce

trade between high buyer and low seller types in particular. Put di�erently, the designer

wants to buy the good from a low-value seller and sell it to a high-value buyer, as this

yields a large pro�t margin. However, as a consequence of expectations-based loss aversion

it matters for an agent's utility whether trade takes place with only a few or many types

of the other agent, as this a�ects her expectations, which in turn determine the size of the

endowment and attachment e�ect. Thus, there are in some sense externalities between the

outcomes of di�erent types. Indeed, because the agents' expected utilities endogenously

depend on the mechanism through the reference point, pointwise maximization of the

objective function is not possible.

In order to nevertheless explicitly derive the optimal trade rule, we make use of the

reduced-form approach developed �rst by Border (1991) and recently generalized by Che

et al. (2013). In the case of single-unit auctions, Border (1991) characterized which interim

allocation probabilities are implementable by some ex-post allocation rule. Che et al.

(2013) generalize this to the case of multi-unit auctions when agents may face capacity

constraints. In particular, the results in Che et al. (2013) extend to the bilateral trade

setting, allowing us to revert to this reduced-form approach. The conditions derived in

Che et al. (2013) allow us to maximize directly over the interim trade probabilities yB and

yS instead of the ex-post trade rule yf . Using the conditions that ensure that these trade

probabilities can actually be implemented by some ex-post trade rule, we can eliminate the

seller's trade probability from the problem, resulting in an optimal control problem with

pure state constraints, where yB is the state and y′B the control variable. The Hamiltonian

of the problem reads

H = (2t− 1)yB(t) (1− ΛB(1− yB(t)))− 2yB(t)(1− t) (1 + ΛSt) y
′
B(t) + λ(t)y′B(t),

where λ(t) is the adjoint variable. Notably, because of the presence of loss aversion, the

Hamiltonian is not concave in the state, so not even relatively weak Arrow-type su�ciency
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conditions22 are applicable. However, a general result by Sorger (1989) provides su�ciency

conditions for control problems with state constraints even in the absence of concavity,

so that we can derive for the global optimum.

Proposition 6 The revenue-maximizing trade rule is given by

yRM(θS, θB) =

1 if θS ≤ δRM(θB),

0 otherwise.

where δRM is non-decreasing in θB and non-increasing in the parameters ΛS and ΛB.

1

1

θB

θ S

ΛS = ΛB = 0

1

1

θB

ΛS = 1/3,ΛB = 0

1

1

θB

ΛS = 0,ΛB = 1/3

Figure 1: Illustration of the optimal trade rules. The shaded area indicates for which
pairs of types trade is taking place. As we can see in the panels in the middle and on the
right-hand side, less trade is induced in the presence of loss aversion than without loss
aversion as in the panel on the left-hand side.

This result, for which the explicit expression can be found in the proof of the result

in Appendix A.2, requires some discussion as it has several noteworthy features. First,

in the absence of loss aversion in the trade dimension, i.e., for ΛS = ΛB = 0, we obtain

the mechanism from Myerson and Satterthwaite (1983) given by δRM(θB) = θB − 1/2.

Second, the amount of trade taking place is monotonically decreasing in the degree of

loss aversion and for su�ciently high degrees of loss aversion no trade takes place at all.

Third, the trade-reducing e�ect of buyer loss aversion is stronger than the one of seller loss

aversion.23 This may come as a surprise in view of how the endowment and attachment

e�ect a�ect information rents. In particular, when con�rming the impossibility result

under loss aversion, the endowment e�ect made the problem unambiguously harder, while

the attachment e�ect had the potential to mitigate it, depending on the distribution of

22See Arrow (1968) or Seierstad and Sydsaeter (1987).
23With ΛB = 1 no trade takes place, whereas even with ΛS = 1 some trade still takes place.
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types. However, when types are distributed uniformly, the attachment e�ect does not

mitigate the impossibility problem. Moreover, as we saw in Corollary 1, the attachment

and endowment e�ect are stronger for higher types, as these types value the gain-loss

utility more strongly than low types. Further, as we already noted above, the designer

wants trade to take place in particular with high buyer types and low seller types. Hence,

among the types of agents which are attractive to the designer, the e�ect of loss aversion

is more pronounced for the buyers than the sellers. Put more succinctly, the adverse e�ect

of loss aversion is increasing in the type of the agents and since the designer cares most

about high buyer types and low seller types, buyer loss aversion has a stronger impact

on the trade frequency than seller loss aversion. Fourth, as already noted, by optimally

making transfers interim deterministic, the designer provides the agents with insurance in

the money dimension. Similarly, one can interpret the reduction in the trade dimension

as partial insurance. Full insurance in this dimension would correspond to trade always

or trade never taking place, which in general is not optimal. However, reducing the

probability for trade lowers expectations and, as a consequence, there is less room for

losses which bene�ts the agents.

As we have noted at the beginning of this section, restricting attention to the present

case with types distributed uniformly on [0, 1] allows us to derive the optimal trade rule

explicitly and renders the problem (more) tractable. Allowing for general distributions

should not change the qualitative results as long as we assume some standard regular-

ity conditions on the distributions ensuring that the virtual valuations are increasing. If

we are willing to assume that agents are not too loss averse we can derive the optimal

mechanism for the case when types are uniformly distributed on [a, a+ 1].24 This allows

for interesting comparative statics, as the optimal mechanism depends on the parameter

a, which, in the context of loss aversion, suggests that the size of the stakes matters. In

particular, for high stakes, i.e., high values of a, less trade takes place for any degree

of loss aversion. This is in sharp contrast to the case without loss aversion, where the

optimal mechanism is independent of the size of the stakes. Intuitively, the potential

material gains from trade remain the same even when the stakes are high, because only

the di�erence between valuation matters. However, as the stakes increase, the potential

losses increase. Since the designer needs to compensate the agents for these losses with

appropriate transfers to maintain participation, the losses eventually eat up all the po-

tential material gains. Hence, at some point the best the designer can do is to induce

no trade at all. Contrary to conventional wisdom, the behavioral e�ects of loss aversion

are not mitigated when the stakes are large. Rather, loss aversion has the biggest impact

precisely when the stakes are large.

24To be precise, we would need to assume ΛB ≤ 1/(1 + a) and ΛS ≤ min{1, (1 − ΛB(1 + a))/a}. See
Appendix A.2 for the derivations.
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4.2 Maximizing the Gains from Trade

In this section, we consider the problem of maximizing gains from trade. In the absence

of loss aversion, the objective function is given by the sum of ex-ante expected utilities

of the two agents. In the presence of loss aversion, however, it may not be clear what

constitutes an appropriate objective function. Naturally, one way to go about is to mirror

the case without loss aversion and to maximize the sum of ex-ante expected utilities. But

what if the designer is only interested in maximizing the material gains from trade, e.g.,

because she considers loss aversion a mistake?

In standard welfare economics, choice reveals a preference, which in turn should guide

any welfare considerations. When choices do not reveal a preference because of incon-

sistencies or, mistakes, the case is not so clear. Within the �eld of behavioral welfare

economics, we can distinguish between model-based and model-less approaches (Manzini

and Mariotti, 2014). In a model-based approach the welfare criterion is developed based

on an underlying theory (or, a model) of mistakes. In contrast, in a model-less approach

multiple inconsistent preferences are being aggregated into a welfare criterion solely on

the basis of observed choices. In analogy, when maximizing the trade from gains the

designer could �take loss aversion seriously� and include gain-loss utility in the objective

function, or �treat loss aversion as a mistake�, thus only considering material gains from

trade in the maximization problem. It is not always straightforward or uncontroversial to

determine the �right� approach in such situations. As we will see, the distinction matters

in the presence of loss aversion, but becomes irrelevant for high degrees of loss aversion.

In order to formulate the maximization problem, we impose a budget balance condition

in addition to CPEIC and IR. Namely, we do not want the designer to inject money in

the economy on average. This is in line with the preceding section, where we looked at

ex-ante revenue maximization. We say that a mechanism is ex-ante budget balanced if∫ bS

aS

∫ bB

aB

(
tfS(θS, θB)− tfB(θS, θB)

)
dFS(θS) dFB(θB) = 0. (AB)

We consider two maximization problems given by

max
(yf ,tfB ,tfS)∈F

∫ bS

aS

US(θS, s
t
B|θS) dFS(θS) +

∫ bB

aB

UB(θB, s
t
S|θB) dFB(θB),

subject to CPEIC, IR and AB. (TG)

and
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max
(yf ,tfB ,tfS)∈F

∫ bS

aS

(−θSyS(θS) + t̄S(θS)) dFS(θS) +

∫ bB

aB

(θByB(θB)− t̄B(θB)) dFB(θB),

subject to CPEIC, IR and AB. (MG)

In problem TG the designer includes gain-loss utility in the objective function and

thus maximizes what we call total gains from trade, whereas only material gains from

trade are maximized in problem MG. To solve either problem, we proceed as we did

before and also obtain the result that in any mechanism maximizing total or material

gains from trade agents are fully insured against any ex-post variation in transfers.

Proposition 7 Any solution to the problem (TG) or (MG) entails interim-deterministic

transfers.

The proof is analogous to the revenue maximization problem. To make further progress

we again impose that types are uniformly distributed on [0, 1]. However, the presence of

the budget constraint makes the problem less tractable, as we need to pin down the

Lagrange multiplier. As a consequence, we need to impose symmetric degrees of loss

aversion in the trade dimension, i.e., ΛB = ΛS = Λ. We then again make use of the

reduced-form conditions in Che et al. (2013) and su�ciency conditions in Sorger (1989) to

derive the optimal interim trade probabilities. From there we recover an ex-post allocation

rule which implements these probabilities and therefore is an optimal trade rule.

Proposition 8 The trade rules given by

yTG(θS, θB) =

1 if θS ≤ δTG(θB),

0 otherwise,
, yMG(θS, θB) =

1 if θS ≤ δMG(θB),

0 otherwise,

where δTG and δMG are non-decreasing in θB and non-increasing in the parameters Λ

maximize the problems (TG) or (MG), respectively.

Naturally, the two trade rules coincide when Λ = 0, as the two problems are identical

in that case. For intermediate degrees of loss aversion, the trade rule maximizing only

material gains induces less trade and for Λ = 1 the two once more coincide. Thus, just

as in the case with revenue maximization loss aversion impedes trade and the designer

optimally provides the agents with partial insurance in the trade dimension and with full

insurance in the money dimension. The
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5 Conclusion

The theoretical and empirical literature on bilateral trade have both become quite exten-

sive over time. However, the theoretical literature has so far failed to incorporate some

�ndings from the empirical literature, most prominently the well-documented endowment

and attachment e�ect. The present paper aims to �ll this gap by augmenting the stan-

dard model by Myerson and Satterthwaite (1983) with expectations-based loss aversion

as in K®szegi and Rabin (2006, 2007). In doing so, we also contribute to the literature

combining mechanism design and loss aversion (see K®szegi, 2014).

We �rst formally identify the endowment and attachment e�ect and study their impact

on the agents' information rents. Using these insights, we can show that buyer loss

aversion can mitigate the severity of the impossibility result, but that it remains impossible

to implement materially e�cient trade. Turning to the design of optimal mechanisms we

�nd that the designer optimally provides agents with insurance in order to reduce ex-post

variation in payo�s. More speci�cally, when maximizing revenue or gains from trade,

agents receive full insurance in the money dimension in the form of interim-deterministic

transfers, and partial insurance in the form of reduced trade frequency.

One may wonder whether other models than the one by K®szegi and Rabin can also

explain the attachment and endowment e�ect and thus constitute alternatives to the

present analysis. One obvious alternative is a model of loss aversion with a �xed reference

point, such as classical prospect theory by Kahneman and Tversky. Indeed, with an ap-

propriately chosen, �xed reference point, such a model can give rise to both attachment

and endowment e�ect. However, the innovation of K®szegi and Rabin was precisely to

determine the reference point endogenously, as otherwise the question of what the ap-

propriate reference point is, remains open. Yet, even with an endogenously determined

reference point there exist alternative ways to proceed. Indeed, K®szegi and Rabin (2007)

note that the models of disappointment aversion by Bell (1985) and Loomes and Sug-

den (1986) are very similar except that the endogenous reference point is given by the

certainty equivalent of a lottery rather than the full lottery. However, Masatlioglu and

Raymond (2016) �nd that the intersection of preferences induced by expectations-based

loss aversion with CPE and any of these disappointment-aversion models is only standard

expected utility, and thus while seemingly similar, the models are actually quite di�erent.

Nevertheless, Benkert (2022) shows that the optimal mechanisms for the two types of

models are equivalent across a range of mechanism design settings. In particular, the

optimal mechanisms derived in the present paper are also optimal if we instead work with

a model of disappointment aversion as in Bell (1985) and Loomes and Sugden (1986).

This �nding is of practical relevance, as the designer of some economic institution may

have evidence that individuals are loss averse, but be unsure about the precise forma-
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tion process of the reference point, be it �xed, as a full lottery over outcomes or as the

certainty equivalent of the lottery. There appears to be some robustness, which suggests

that lacking this information may not be too much of a problem, as long as loss-averse

individuals are provided with insurance as derived above.

Finally, we have assumed throughout our analysis that the degree of loss aversion is

commonly known. If, instead, we assumed that these parameters are private information,

a hard multi-dimensional mechanism design problem arises. Our analysis nevertheless

provides some insights into this problem. We could relax the assumption that the loss-

aversion parameters in the money dimension are commonly known and allow them to

be distributed arbitrarily, as the designer optimally eliminates any ex-post variation in

the transfers irrespective of the degree of loss aversion. We leave the question of pri-

vate information regarding the degree of loss aversion in the trade dimension for further

research.
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A Proofs

A.1 Impossibility Result

We begin by noting that

ṽB(θB)

=

∫ bS

aS

yf (θS , θB) dFS(θS) + η1B

∫ bS

aS

∫ bS

aS

µ1
B

(
yf (θS , θB)− yf (θ′S , θB)

)
dFS(θ

′
S) dFS(θS),

= yB(θB) + η1B

∫ bS

aS

∫ bS

aS

yf (θS , θB)(1− yf (θ′S , θB))− λ1
B(1− yf (θS , θB))y

f (θ′S , θB) dFS(θ
′
S) dFS(θS),

= yB(θB)(1 + ΛB(yB(θB)− 1))

and analogously ṽS(θS) = yS(θS)(1− ΛS(yS(θS)− 1)), where

yB(θB) =

∫ bS

aS

yf (θS, θB)dFS(θS), yS(θS) =

∫ bB

aB

yf (θS, θB)dFB(θB).

Imposing CPEIC we can write the sum of the agents' ex ante expected utilities as∫ bB

aB

UB(θB)fB(θB)dθB +

∫ bS

aS

US(θS)fS(θS)dθS

= UB(aB) +

∫ bB

aB

∫ θB

aB

yB(t)(1 + ΛB(yB(t)− 1))dtfB(θB)dθB

+ US(bS) +

∫ bS

aS

∫ bS

θS

yS(t)(1− ΛS(yS(t)− 1))dtfS(θS)dθS

= UB(aB) +

∫ bB

aB

yB(θB)(1 + ΛB(yB(θB)− 1))(1− FB(θB))dθB

+ US(bS) +

∫ bS

aS

yS(θS)(1− ΛS(yS(θS)− 1))FS(θS)dθS .

Note that the monotonicity constraints are satis�ed due to Assumption 1, i.e., ΛB,ΛS ≤ 1.

Further, from the discussion in the main text we know that we can set the loss aversion

in the money dimension to zero, as it only makes the problem harder. This allows us to

express the sum of the agents' ex ante expected utilities as∫ bB

aB

UB(θB)fB(θB)dθB +

∫ bS

aS

US(θS)fS(θS)dθS

=

∫ bB

aB

∫ bS

aS

(θB − θS)y(θS, θB)fS(θS)fB(θB)dθSdθB

+

∫ bS

aS

θSyS(θS)ΛS(yS(θS)− 1)fS(θS)dθS +

∫ bB

aB

θByB(θB)ΛB(yB(θB)− 1)fB(θB)dθB

26



where we used CPEIC and integration by parts towards the end. Putting these two
equations together we get

UB(aB) + US(bS)

=

∫ bB

aB

∫ bS

aS

(θB − θS)y(θS , θB)fS(θS)fB(θB)dθSdθB

+

∫ bS

aS

θSyS(θS)ΛS(yS(θS)− 1)fS(θS)dθS +

∫ bB

aB

θByB(θB)ΛB(yB(θB)− 1)fB(θB)dθB

−
∫ bB

aB

yB(θB)(1 + ΛB(yB(θB)− 1))(1− FB(θB))dθB −
∫ bS

aS

yS(θS)(1− ΛS(yS(θS)− 1))FS(θS)dθS .

Individual rationality requires UB(aB)+US(bS) ≥ 0. We will now show that this condition

is never satis�ed for any combination of buyer and seller loss aversion. From our discussion

in the main text, we know that it is su�cient to consider the case ΛS = 0, i.e., no loss

aversion on the trade-dimension for the seller. This allows us to simplify and rewrite to

UB(aB) + US(bS)

=

∫ bB

aB

∫ bS

aS

([
θB − 1− FB(θB)

fB(θB)

]
−
[
θS +

FS(θS)

fS(θS)

])
y(θS, θB)fB(θB)fS(θS)dθSdθB

+ ΛB

∫ bB

aB

yB(θB)(yB(θB)− 1)

[
θB − 1− FB(θB)

fB(θB)

]
fB(θB)dθB.

Myerson and Satterthwaite (1983) show in their proof of Theorem 1 (p. 269) that∫ bB

aB

∫ bS

aS

([
θB − 1− FB(θB)

fB(θB)

]
−
[
θS +

FS(θS)

fS(θS)

])
y(θS, θB)fB(θB)fS(θS)dθSdθB

= −
∫ bS

aB

(1− FB(x))FS(x) dx.

Further, we have yB(θB) = FS(θB) since we are considering the ex-post e�cient mecha-

nism. Putting this together yields

UB(aB) + US(bS) = −
∫ bS

aB

(1− FB(x))FS(x) dx

+ ΛB

∫ bB

aB

FS(x)(FS(x)− 1)

[
x− 1− FB(x)

fB(x)

]
fB(x)dx.

Careful inspection of the limits of the integrals shows that

UB(aB) + US(bS) = −
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x) dx

+ ΛB

∫ min{bS ,bB}

max{aB ,aS}
FS(x)(FS(x)− 1)

[
x− 1− FB(x)

fB(x)

]
fB(x)dx
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= −
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x) + ΛB(1− FS(x))FS(x)

[
x− 1− FB(x)

fB(x)

]
fB(x)dx

= −
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x)(1− ΛB(1− FS(x))) + ΛB(1− FS(x))FS(x)xfB(x) dx

< 0,

violating individual rationality. To conclude the proof, recall from our discussion of

the information rents, that loss aversion in the money dimension makes the problem

unambiguously harder, as it reduces the gains from trade without a�ecting the information

rents. Thus, impossibility in the absence of loss aversion in the money dimension implies

impossibility in the presence of loss aversion in the money dimension.

A.2 Maximizing the Designer's Revenue

Step 1. We begin by imposing CPEIC. In order for the CPEIC constraint to be satis�ed,

conditions (i) and (ii) from Proposition 2 must be satis�ed. Using the utility functions

given in equations (4) and (5) from condition (ii), we can rewrite the objective function

in the problem (RM) to∫ bB

aB

(
η2BwB(θB) + θB ṽB(θB)− UB(aB, s

t
S|aB)−

∫ θB

aB

ṽB(t) dt

)
dFB(θB)

+

∫ bS

aS

(
η2SwS(θS)− θS ṽS(θS)− US(bS, s

t
B|bS)−

∫ bB

θS

ṽS(t) dt

)
dFS(θS).

From the IR constraint we have UB(aB, θS|aB) ≥ 0 and US(bS, θB|bS) ≥ 0, which enter the

objective function negatively. Since we are maximizing the objective function, we choose

transfers such that UB(aB, θS|aB) = 0 and US(bS, θB|bS) = 0. If the expected utility of

these �worst� types was not equal to zero in the optimal mechanism, we could modify the

transfers by adding lump-sum transfers and reduce their expected utility to zero without

a�ecting CPEIC. Moreover, wB and wS, which are negative by the arguments in the main

text, enter positively. Thus, we impose an additional restriction on transfers, namely that

they are interim deterministic, which leads to wB(θB) = wS(θS) = 0 for all θB, θS ∈ [a, b].

Note that these two restrictions on transfers do not contradict each other. Given this, the

problem reduces to

max
yf

∫ bB

aB

(
θB ṽB(θB)−

∫ θB

aB

ṽB(t) dt

)
dFB(θB)

+

∫ bS

aS

(
−θS ṽS(θS)−

∫ bS

θS

ṽS(t) dt

)
dFS(θS)

subject to ṽS being non-increasing, ṽB being non-decreasing,
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which proves Proposition 5.

Step 2. We next impose that types are uniformly distributed on [a, a + 1], thus proving

a more general result than stated in Proposition 6 but justifying the statements in the

discussion following the proposition and in particular in footnote 24, and rewrite the

objective function in this reduced problem. Using integration by parts we get∫ a+1

a

(
θB ṽB(θB)−

∫ θB

a

ṽB(t) dt

)
dθB +

∫ a+1

a

(
−θS ṽS(θS)−

∫ a+1

θS

ṽS(t) dt

)
dθS

=

∫ a+1

a

(2θB − 1)ṽB(θB) dθB −
∫ a+1

a

2θS ṽS(θS) dθS.

Further, we can write

ṽB(θB) =

∫ a+1

a

yf (θS, θB) dθS + η1B

∫ a+1

a

∫ a+1

a

µ1
(
yf (θS, θB)− yf (θ′S, θB)

)
dθ′S dθS

= yB(θB) + η1B
[
yB(θB)(1− yB(θB))− λ1

B(1− yB(θB))yB(θB)
]

= yB(θB) + yB(θB)ΛB (yB(θB)− 1)

= yB(θB)(1− ΛB (1− yB(θB)) ,

where
∫ a+1

a
yf (θS, θB) dθS = yB(θB). Analogously, we can write ṽS(θS) = yS(θS)(1 +

ΛS(1 − yS(θS))). Note that therefore the constraints that ṽS is non-increasing and ṽB

non-decreasing are equivalent to yS being non-increasing and yB being non-decreasing

given the assumption that gain-loss utility does not dominate. Thus, we have reduced the

maximization problem to

max
yf∈Y

∫ b

a

(2θB − 1− a)yB(θB)(1 + ΛB (yB(θB)− 1) dθB

−
∫ b

a

(2θS − a)yS(θS)(1− ΛS(yS(θS)− 1)) dθS, (RM')

subject to yB being non-decreasing and yS being non-increasing.

Step 3. We will make use of the reduced-form approach as in Che et al. (2013) to maximize

directly over the interim trade probabilities yB and yS instead of the ex-post allocation

rule yf . First, we perform a change of variables to rewrite the objective function to

max
yf∈Y

∫ 1

0
(2x− 1 + a)qB(x)(1 + ΛB (qB(x)− 1) dx−

∫ 1

0
(2x+ a)qS(x)(1− ΛS(qS(x)− 1)) dx,

where qi(x) = yi(x+ a) for all x ∈ [0, 1]. Making use of Corollary 6 in Che et al. (2013),

we maximize directly over qB and qS subject to an allocation and an aggregate constraint.
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The problem then reads

max
qB ,qS

∫ 1

0
(2x− 1 + a)qB(x)(1 + ΛB (qB(x)− 1) dx−

∫ 1

0
(2x+ a)qS(x)(1− ΛS(qS(x)− 1)) dx,

subject to qB being non-decreasing, qS being non-increasing, the allocation constraint∫ 1

θS

(1− qS(t)) dt+

∫ 1

θB

qB(t) dt ≤ 1− θBθS

for all (θB, θS) ∈ [0, 1]2 and the aggregate constraint∫ 1

0

(1− qS(t)) dt+

∫ 1

0

qB(t) dt = 1.

The allocation constraint is the condition known from Border (1991) and aggregate con-

straint ensures that the good is either allocated to the buyer or the seller.

Step 4. We next show that the optimal mechanism is such that y′B(θB) > 0 for θB with

yB(θB) > 0. That is, once the designer induces trade with strictly positive probability

for some type, the trade probability increase strictly (and not only weakly, as required by

CPEIC). Suppose there is an optimal mechanism with yB and yS such that there exists

an interval I = [i, ī] ⊂ [a, a + 1] with yB(θB) = c > 0 for all θB ∈ I. We only consider

c < 1 and will show in Step 6 that this is without loss, as inducing trade with probability

1 is never optimal. Consider the interval Ĩ = [i− ε, ī+ δ] for some su�ciently small ε > 0

and choose δ > 0 such that∫ ī+δ

i−ε

yB(t)dt =

∫ ī+δ

i−ε

ỹB(t)dt,

where ỹB is given by the straight line connecting yB(i − ε) and yB (̄i + δ) (which has by

construction a strictly positive slope). Clearly, such a δ exists for ε > 0 su�ciently small.

To complete the construction of ỹB let yB = ỹB for all θB ∈ [a, a + 1] \ Ĩ. The function

ỹB thus coincides with yB except on the interval Ĩ where we have eliminated the constant

part of the function yB by shifting trade probability from lower values to higher values

of θB while keeping the total trade probability constant. It follows directly, that the pair

(ỹB, yS) satis�es the aggregate constraint. Moreover, since trade probability has been

shifted from lower to higher values we have∫ a+1

θB

yB(t)dt =

∫ a+1

θB

ỹB(t)dt
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for θB ∈ [a, a+ 1] \ Ĩ and∫ a+1

θB

yB(t)dt ≥
∫ a+1

θB

ỹB(t)dt

for θB ∈ Ĩ so that the allocation constraint is satis�ed, too. Finally, since (2x − 1 +

a)yB(x)(1− ΛB (1− yB(x)) is increasing in yB we have∫ 1

0

(2x− 1 + a)yB(x)(1 + ΛB (yB(x)− 1) dx <

∫ 1

0

(2x− 1 + a)ỹB(x)(1 + ΛB (ỹB(x)− 1) dx

showing that the initial pair (yB, yS) did not constitute an optimal mechanism.

Step 5. Following the proof of Lemma 4 in Mierendor� (2016) we can rewrite the allocation

constraint to∫ 1

θS

(1− qS(t)) dt ≤ min
θB∈[0,1]

[
1− θSθB −

∫ 1

θS

qB(t) dt

]
for all θB ∈ [0, 1] and since we are minimizing a convex function on the right-hand side,

we obtain∫ 1

θS

(1− qS(t)) dt ≤ 1− q−1
B (θS)θS −

∫ 1

y−1
B (θS)

qB(t) dt

for all θS ∈ [0, 1]. This constraint is satis�ed with equality when q∗S(t) = 1 − q−1
B (t),

where q−1
B denotes the generalized inverse. In what follows, we will show that for a given,

non-decreasing function qB, the function q∗S(t) = 1− q−1
B (t) minimizes∫ 1

0

(2x+ a)qS(x)(1− ΛS(qS(x)− 1)) dx

subject to the allocation and aggregate constraint and to qS being non-increasing. This

implies that is enough to maximize over the set of all non-decreasing trade probabilities

qB such that qS(t) = 1− q−1
B (t). Consider some other candidate to the solution, q̃S which

satis�es the allocation constraints and is di�erent from q∗S on a set of positive measure.

Then there must exist an interval [
¯
u, ū] such that∫ 1

θS

(1− q̃S(t)) dt <

∫ 1

θS

(1− q∗S(t)) dt

for all θS ∈ [
¯
u, ū]. We will now construct a function q̂S which does better than the

candidate q̃S, thereby proving that q∗S is indeed optimal. To do this, we show that there

exist p̄,
¯
p ∈ [0, 1] and p ∈ (

¯
p, p̄) such that (1) q̂S(t) = q̃S(t) for all t /∈ [

¯
p, p̄], (2) q̂S(t) ≥ q̃S(t)
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for all t ∈ [p, p̄], (3) q̂S(t) ≤ q̃S(t) for all t ∈ [
¯
p, p), (4)∫ p̄

¯
p

q∗S(t)− q̃S(t) dt = 0,

and (5)∫ 1

θS

(1− q̂S(t)) dt ≤
∫ 1

θS

(1− q∗S(t)) dt

for all θS ∈ [0, 1]. Fix some p̄ ∈ [
¯
u, ū] and de�ne q̂S(t) = q̃S(t) for all t > p̄. Note that by

the aggregate constraint there must exist 0 ≤ p < p̄ such that∫ 1

p

(1− q̂S(t)) dt =

∫ 1

p

(1− q∗S(t)) dt

when q̂S(t) = q̃S(p̄) for all t ∈ [p, p̄]. This construction satis�es the monotonicity and

the allocation constraint. If there now exists a 0 ≤
¯
p < p such that q̂S(t) = q̃S(

¯
p) for all

t ∈ [
¯
p, p) and q̂S(t) = q̃S(t) for all t <

¯
p with∫ p̄

¯
p

q̂S(t)− q̃S(t) dt = 0

we are done. If not, then we must have even with
¯
p = 0 that∫ p̄

p

q̂S(t)− q̃S(t) dt+

∫ p

0

q̂S(t)− q̃S(t) dt > 0.

If ∫ p̄

p

q̂S(t)− q̃S(t) dt−
∫ p

0

q̃S(t) dt < 0,

then there must exist c > 0 such that q̂S(t) = c for t ∈ [0, p) yields∫ p̄

p

q̂S(t)− q̃S(t) dt+

∫ p

0

q̂S(t)− q̃S(t) dt = 0.

If not, then increase p until∫ p̄

p

q̂S(t)− q̃S(t) dt−
∫ p

0

q̃S(t) dt = 0.

Such a p exists and the such constructed q̂S satis�es the above (1) to (5). Thus, we have

constructed q̂S from q̃S by shifting trade probability from high types to low types, while
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satisfying the allocation constraint. This was possible, because q̃S is di�erent from q∗S on

a set of positive measure and the aggregate constraint needs to be satis�ed.

We will now show, that∫ 1

0

(2x+ a)q̂S(x) (1− ΛS [q̂S(x)− 1]) dx ≤
∫ 1

0

(2x+ a)q̃S(x) (1− ΛS [q̃S(x)− 1]) dx,

implying that q̃S cannot be a minimizer. We have∫ 1

0

(2x+ a) (q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

=

∫ p̄

¯
p

(2x+ a) (q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

by our construction of q̂S. Furthermore, whenever q̂S(x) > q̃S(x), we also have

q̂S(x) (1− ΛS [q̂S(x)− 1]) > q̃S(x) (1− ΛS [q̃S(x)− 1]). Thus, we obtain∫ p̄

¯
p

(2x+ a) (q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

≤ (2p+ a)

∫ p̄

¯
p

(q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

because the di�erence in the brackets is positive until p and then negative. Rewrite this

di�erence to obtain∫ p̄

¯
p

(q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

= (1 + ΛS)

∫ p̄

¯
p

(q̂S(x)− q̃S(x)) dx+ ΛS

∫ p̄

¯
p

(q̃S(x)− q̂S(x)) (q̂S(x) + q̃S(x)) dx.

The �rst integral is equal to zero by construction. In the second integral, note that the

�rst bracket is negative until p and then positive and the second bracket is a decreasing

function. Thus,

ΛS

∫ p̄

¯
p

(q̃S(x)− q̂S(x)) (q̂S(x) + q̃S(x)) dx

≤ (q̂S(p) + q̃S(p)) ΛS

∫ p̄

¯
p

(q̃S(x)− q̂S(x)) dx

= 0.
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Overall, we have showed that∫ 1

0

(2x+ a) (q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx ≤ 0

proving that q̃S was not a minimizer and that q∗S indeed is the solution to the problem.
Step 6. We next note that no optimal mechanism will induce trade with probability 1 for
some set of types. Suppose (yB, yS) are a optimal with yB(θB) = 1 for θB ∈ [a+1−δ1, a+1]
for some δ1 > 0 such that yB(θB) < 1 for all θB < a + 1 − δ1. We will now construct an
alternative pair (ỹB, ỹS) which does better, showing that the original mechanism was not
optimal. Suppose yB is continuous on [a+1−δ1−δ2, a+1−δ1] for some δ2 > 0, so that yB
does not jump to 1, although there may be jumps before that. Let ỹB(θB) = yB(θB) for
θB ∈ [a, 1−δ1−δ2] and ỹB(θB) = yB(1−δ1−δ2) = 1−ε < 0 for θB ∈ [a+1−δ1−δ2, a+1].25

Thus, we have reduced the trade probability on the interval on which it was equal to 1
and a bit before that, thus maintaining monotonicity. Similarly, let ỹS(θS) = yS(θS) for
θS ∈ [a, 1 − ε] and ỹS(θS) = 0 for θS ∈ [a + 1 − ε, a + 1], where we have accordingly
reduced trade while maintaining monotonicity.26 Evaluating the objective function on
the intervals where the pairs (yB, yS) and (ỹB, ỹS) di�er we obtain∫ a+1

a+1−δ1−δ2

(2θB − 1 + a)(ỹB(θB))(1− ΛB(1− ỹB(θB)))− (2θB − 1 + a)yB(θB)(1− ΛB(1− yB(θB)))dθB

−
∫ a+1

a+1−ε

(2θS + a)ỹS(θS)(1 + ΛS(1− ỹS(θS)))− (2θS + a)yS(θS)(1 + ΛS(1− yS(θS)))dθS

≥
∫ a+1

a+1−δ1−δ2

(2θB − 1 + a)(1− ε)(1 + ΛBε)− (2θB − 1 + a)dθB

+

∫ a+1

a+1−ε

(2θS + a)(δ1 + δ2)(1 + ΛS(1− δ1 − δ2))dθS

≥(δ1 + δ2)(1 + δ2 + δ2 − ε)ε

The last inequality follows as the previous expression is increasing in both ΛB and ΛS.

As we are considering small δ2 and ε the �nal term is greater than zero, showing that the

constructed pair yields a higher revenue. One can easily verify that the above approach

also works if instead of yB being continuous on [a+1− δ1 − δ2, a+1− δ1] we had a jump

to 1 at a+1−δ1. Simply construct a ỹB which only jumps to 1−ε with the corresponding

ỹS.

Step 7. Having eliminated the seller's interim trade probability from the problem using

the allocation and aggregate constraints, the maximization problem reads

max
yB

∫ 1

0
(2t− 1 + a)yB(t) (1− ΛB(1− yB(t))) dt−

∫ 1

0
(2t+ a)(1− y−1

B (t))
(
1 + ΛSy

−1
B (t)

)
dt

subject to yB being non-decreasing. Steps 4 and 6 above imply that there exists an

25If the original yB is always equal to one can treat it in the same way as we would a jump, see at the
end of Step 6.

26Here we use that yS = 1− y−1
B .
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t̃ ∈ [a, a+1] such that the optimal yB is equal to zero on [a, t̃] and then strictly increasing

and that it never reaches 1. Therefore, yB has an actual inverse on [t̃, a+1]. We can thus

eliminate y−1
B from the problem and we also reverse our initial substitution from Step 3

to obtain∫ a+1

t̃
(2t− 1− a)yB(t) (1− ΛB(1− yB(t))) dt−

∫ 1

t̃
(2yB(t) + a)(a+ 1− t) (1 + ΛS(t− a)) y′B(t) dt

Note that yB is di�erentiable almost everywhere and therefore the substitution is well-

de�ned. Thus, we can now write the maximization problem as

max
yB

∫ a+1

t̃
(2t− 1− a)yB(t) (1− ΛB(1− yB(t)))− (2yB(t) + a)(a+ 1− t) (1 + ΛS(t− a)) y′B(t) dt.

Step 8. We now have a problem of optimal control

max
u

∫ 1

t̃

F (x, u, t) dt

with state variable x(t) = yB(t), control variable u(t) = y′B(t) > 0, initial condition

x(a) = 0 and a free terminal condition subject to the pure state constraint x(t) ∈ [0, 1]. In

particular, this problem is not concave in the state variable and thus standard su�ciency

conditions are not applicable. We thus revert to Theorem 4.1 in Sorger (1989) who

provides appropriate conditions for the present case. To simplify things, we will ignore

the constraint that x(t) ≤ 1 and verify it later.

The Hamiltonian reads

H(x, u, λ, t) = F (x, u, t) + λu

and the Lagrangian is given by

L(x, u, λ, η, t) = H(x, u, λ, t) + ηx.

Consider the candidate solution with state

x∗(t) =

0 t ∈ [a, t̃)

2a2ΛS+a(ΛB−2ΛSt+ΛS−2)−2ΛBt+ΛB+2t−1
2(ΛB(a−2t+1)+ΛS(−2a+2t−1)+1)

t ∈ [t̃, a+ 1]

control u∗(t) = x∗′(t), adjoint

λ∗(t) =

−a(a− t+ 1)(aΛS − ΛSt− 1) t ∈ [a, t̃)

(aΛB+ΛB−1)(a−2t+1)(a−t+1)(aΛS−ΛSt−1)
−ΛB(a−2t+1)+2aΛS−2ΛSt+ΛS−1

t ∈ [t̃, a+ 1]
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and multiplier

η(t) =

−2a2ΛS − a(ΛB − 2ΛSt+ ΛS − 2) + (ΛB − 1)(2t− 1) t ∈ [a, t̃)

0 t ∈ [t̃, a+ 1]

where

t̃ =
−1 + ΛB + 2a2ΛS + a(ΛB + ΛS − 2)

2(−1 + ΛB + aΛS)
.

First, note that the Theorem is indeed applicable, that is, (H1)-(H3) hold. For con-

dition (a), note that Q is a real-valued function in our case and thus trivially constitutes

a symmetric matrix and that there are no points of discontinuity for the functions λ and

Q. Further, one can directly verify that conditions (b) and (c) hold by plugging in the

relevant expressions. To see that the weak concavity condition (d) holds, some more work

is needed. The Hessian of the Lagrangian is given by(
α β

γ δ

)
=

(
2ΛB(2t− 1− a) −2(a+ 1− t)(1 + ΛS(t− a))

−2(a+ 1− t)(1 + ΛS(t− a)) 0

)
.

Moreover, Hxλ(t) = Hλx(t) = 0, Huλ(t) = Hλu(t) = 1 so that the set M (notice the typo

in Sorger (1989), which mistakenly refers to some set U) consists of a single matrix given

by

M =

(
Q′(t) + 2ΛB(2t− 1− a) Q(t)− 2(a+ 1− t)(1 + ΛS(t− a))

Q(t)− 2(a+ 1− t)(1 + ΛS(t− a)) 0

)
.

This matrix is non-positive de�nite if and only if its determinant is non-negative and if

Q′(t) + 2ΛB(2t − 1 + a) ≤ 0. The determinant is non-negative if and only if Q(t) =

2(a + 1 − t)(1 + ΛS(t − a)), implying Q′(t) = 2(−1 + ΛS − 2ΛSt + 2ΛSa). Note that M

is diagonal and thus non-positive de�nite if and only if its �rst entry is weakly negative,

that is, if and only if for all t ∈ [a, a+ 1] we have

g(t) = −1 + ΛS − 2ΛSt+ 2ΛSa+ ΛB(2t− 1− a) ≤ 0.

Given that g is linear in t it su�ces to verify

g(a) = −1 + ΛS + ΛB(a− 1) ≤ 0

and

g(a+ 1) = −1− ΛS + ΛB(a+ 1) ≤ 0.
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For the result in Proposition 6 we have a = 0 and thus both inequalities are satis�ed

for ΛB,ΛS ≤ 1. For the statement in the discussion following the result including footnote

24, we need to consider a > 0 and ΛB ≤ 1/(1 + a) and ΛS ≤ min{1, (1− ΛB(1 + a))/a}.
We have

g(a+ 1) = −1− ΛS + ΛB(a+ 1)

≤ −1− ΛS + 1

≤ 0,

because ΛB ≤ 1/(1 + a). Further, for a ≤ 1 we obviously have g(a) ≤ a because ΛS ≤ 1.

For a > 1 ΛB ≤ 1/(1 + a) and ΛS ≤ min{1, (1− ΛB(1 + a))/a} imply

g(a) ≤ −1 +
1− ΛB(1 + a)

a
+ ΛB(a− 1)

≤ −1 +
a− 1

a+ 1

≤ 0.

Thus, condition (d) of Theorem 4.1 in Sorger (1989) is also satis�ed. To see that the

complementary slackness condition (e) is satis�ed, note that it is linear on in t on [a, t̃)

and that η(t̃) = 0. Further,

η(a) = 1 + ΛB(a− 1)− aΛS

≥1 + ΛB(a− 1)− amin{1, (1− ΛB(1 + a))/a}

≥1 + ΛB(a− 1)(1− ΛB(1 + a)) = 2aΛB ≥ 0.

To verify the transversality condition (f) let γ = 0 which then immediately implies that

(f1)-(f3) are satis�ed since λ(a+ 1) = Q(a+ 1) = 0 since the set of matrices N1 is simply

the scalar 0 and the set of matrices N2 the scalar 1. Finally, since there are no jumps,

condition (g) is trivially satis�ed. Given that the constraint x(t) ≤ 1 which we ignored is

satis�ed and all conditions from Theorem 4.1 in Sorger (1989) are satis�ed, it follows that

our candidate compromises a global maximizer. Step 9. One can easily verify that the

IR constraints are satis�ed. Step 10. What remains to be done is to recover the ex-post

allocation rule. It is straightforward to obtain

yRM(θS, θB) =

1 if θS ≤ δRM(θB),

0 otherwise,
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where

δRM(θB) =

0 θB ≤ t̃

2a2ΛS+a(ΛB−2ΛSt+ΛS−2)−2ΛBt+ΛB+2t−1
2(ΛB(a−2t+1)+ΛS(−2a+2t−1)+1)

θB > t̃.

and in the case of Proposition 6 with a = 0 this yields

δRM(θB) =

0 θB ≤ 1/2

(2θB−1)(ΛB−1)
2(ΛB(2θB−1)−2ΛSθB+ΛS−1)

θB > 1/2.

A.3 Maximizing the Gains from Trade

The derivations of the mechanisms maximizing the total and the material gains from trade

proceed analogously. We here present the derivations for the case of maximizing the total

gains from trade.

Step 1. We consider the problem of maximizing the total gains from trade. The analysis

for the problem of maximizing the material gains from trade is analogous. We �rst rewrite

the problem as a function of the trade rule only. We can rewrite the objective function

to (imposing ΛB = ΛS = Λ)∫ b

a

UB(θB, s
t
S|θB) dFB(θB) +

∫ b

a

US(θS, s
t
B|θS) dFS(θS)

=

∫ b

a

(
θByB(θB)(1 + Λ(yB(θB)− 1))− t̄B(θB) + η2BwB(θB)

)
dFB(θB)

−
∫ b

a

(
θSyS(θS)(1− Λ(yS(θS)− 1))− t̄S(θS)− η2SwS(θS)

)
dFS(θS).

Note that by the budget constraint (AB) we have∫ b

a

t̄B(θB) dFB(θB) =

∫ b

a

t̄S(θS) dFS(θS).

Further, wB(θB) and wS(θS) enter the objective positively and both are negative. Hence,

we optimally set both terms to zero by choosing interim deterministic transfers. We

assume that types are uniformly distributed on [0,1]. This yields

∫ 1

0

UB(θB, s
t
S|θB) dθB +

∫ 1

0

US(θS, s
t
B|θS) dθS

=

∫ 1

0

θByB(θB)(1 + Λ(yB(θB)− 1)) dθB −
∫ 1

0

θSyS(θS)(1− Λ(yS(θS)− 1)) dθS.

38



Mirroring the arguments in the proof of the revenue maximizing mechanism, the budget

constraint AB and the CPEIC can be jointly written as∫ 1

0

(2θB − 1)yB(θB) (1− Λ (1− yB(θB))) dθB

=

∫ 1

0

2θSyS(θS) (1 + Λ (1− yS(θS))) dθS,

as well as the monotonicity constraints. Thus, the maximization problem is a function of

the trade rule only.

Step 2. We can set up the Lagrangian as

L(yf , γ) =
∫ 1

0

(θB + γ(2θB − 1))yB(θB) (1− Λ (1− yB(θB))) dθB

−
∫ 1

0

(θS + 2γθS)yS(θS) (1 + Λ (1− yS(θS))) dθS.

Note that we must have γ ≥ 0, because relaxing the budget constraint (i.e., allowing the

designer to run a de�cit) can only increase the objective. Hence, (θB + γ(2θB − 1)) and

(θS + γ2θS) are strictly increasing in θB and θS, respectively. Therefore, the arguments in

the proof of the revenue maximizing mechanism carry through and we can again maximize

over the interim trade probabilities directly and eliminate yS from the problem.

Step 3. We can mirror the derivations for the revenue-maximizing mechanism up and

including to Step 7, leaving us with the Hamiltonian given by

H(x, u, λ, t)

= (t+ γ(2t− 1))x(t)(1− Λ(1− x(t)))− (x(t) + 2γx(t))(1− t)(1 + Λt)u(t) + λ(t)u(t)

We can use the Euler-Lagrange equation in order to determine our candidate solution

and pin down the Lagrange multiplier γ, yielding γ = (1 + Λ)/4. We can now once more

apply Theorem 4.1 in Sorger (1989). We ignore the constraints in x(t) and verify them

later. The candidate optimal path and control are given by

x∗(t) =
((2t− 1)Λ + 6t− 1)(1− Λ)

2(3− Λ)
,

and u∗(t) = x∗′(t). The adjoint is de�ned by

λ(t) = −(Λ2 + 2Λ− 3) (t− 1) (Λ2t(2t− 1) + Λ (6t2 + t− 1) + 6t− 1)

4(Λ− 3)
.

Step 4. As noted above, the derivations for the maximization of the material gains from
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trade proceeds in exactly the same way. The optimal trade rules are then given by

yTG(θS, θB) =

1 if θS ≤ δTG(θB),

0 otherwise,
, yMG(θS, θB) =

1 if θS ≤ δMG(θB),

0 otherwise,

where

δTG(θB) =

0 θB ≤ (1 + Λ)/(6 + 2Λ)

((2θB−1)Λ+6θB−1)(1−Λ)
2(3−Λ)

o.w.

and

δMG(θB) =

0 θB ≤ (1 + Λ)/(6− 2Λ)

(1+Λ−6t+2Λt)(1−Λ)
6Λ−6−4Λ2 o.w.
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