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Abstract

Recently, Diebold and Li (2003) obtained good forecasting results for
yield curves in a reparametrized Nelson-Siegel framework. We analyze similar
modeling approaches for price curves of variance swaps that serve nowadays
as hedging instruments for options on realized variance.

We consider the popular Heston model, reparametrize its variance swap
price formula and model the entire variance swap curves by two exponential
factors whose loadings evolve dynamically on a weekly basis. Generaliz-
ing this approach we consider a reparametrization of the three-dimensional
Nelson-Siegel factor model. We show that these factors can be interpreted
as level, slope and curvature and how they can be estimated directly from
characteristic points of the curves. Moreover, we analyze a semiparametric
factor model.

Estimating autoregressive models for the factor loadings we get term-
structure forecasts that we compare in addition to the random walk and the
static Heston model that is often used in industry. In contrast to the results
of Diebold and Li (2003) on yield curves, no model produces better forecasts
of variance swap curves than the random walk but forecasting the Heston
model improves the popular static Heston model. Moreover, the Heston
model is better than the flexible semiparametric approach that outperforms
the Nelson-Siegel model.

JEL classification: G1, D4, C5

Keywords: Term structure; Variance swap curve; Heston model; Nelson-
Siegel curve; Semiparametric factor model



1 Introduction

In the last 30 years we have witnessed major advances in the modeling of
option pricing models as well as their estimation. Although there are models
like the local volatility model of Dupire (1994) that permit in practice a good
and stable fit of observed plain vanilla surfaces these models imply dynamics
not observed on the markets. Hence, the dynamic evolution of the markets
has become a benchmark for models. The dynamics of implied volatility
surfaces have been analyzed and modeled often by factor approaches, see
Fengler (2005) or Cont and da Fonseca (2001). As modern approaches to
option pricing, see Bergomi (2005), are also based on the variance swap
market we analyze in this paper the dynamics of variance swap curves with
a focus on factor modeling.

Variance swap markets have become quite liquid and these products serve
hence - just like the plain vanilla options - as hedging instruments for some
modern options like calls on realized variance. Thus, the analysis of variance
curves is as important as the study of the evolution of implied volatility
surfaces. In addition, the variance swap market is connected to the implied
volatility surfaces by the results of Neuberger (1992), it is basically term
structure of the surfaces. Thus, understanding the evolution of variance
curves helps also modeling the plain vanilla market.

In this paper we analyze modeling approaches for variance curves focus-
ing on the forecasting perspective because the dynamics are nowadays the
essential model criterion in option pricing. First we consider the Heston
model that may be regarded as a standard benchmark in option pricing.
When we fix the mean reversion it leads to a two factor structure for the
variance swap curves. Moreover, we consider a generalization that gives a
reparametrization of the model of Nelson and Siegel (1987). In addition, we
fit a semiparametric model in order to check the structure of the parametric
models. The in-sample fit of the Heston model is of course worse than the
fit of the generalized model. The flexible semiparametric model outperforms
the Nelson-Siegel approach for long maturities. But the Heston model has
the best out-of-sample performance. The static Heston model that is often
used in industry leads to bigger forecasting errors than the Heston model
with parameter forecasts. But the random walk has the best out-of-sample
results. Hence, we can conclude that variance swap curve modeling seems
to be more difficult than yield curve forecasting. Moreover, we show that
the static Heston model leads to a wrong dynamic of variance swap curves.
Forecasting the parameters improves the variance swap curve dynamics in
the Heston model.

Although variance swaps are analyzed for some time there are only a
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few empirical works. Demeterfi et al. (1999) give a comprehensive survey
over the practical aspects of these products and Carr and Madan (1998)
consider the hedging and trading of volatility. Recently, Bergomi (2005)
proposed an option pricing model based on the variance swap market and
Bühler (2006) analyzed theoretical modeling questions for the joint plain
vanilla and variance swap market. Duffie and Kan (1996) and Diebold and
Li (2003) have analyzed similar forecasting problems for yield curves.

We proceed as follows. In section 2 we give a detailed description and
derivation of the modeling framework, which comprises the popular Heston
model, a generalization of this model and a semiparametric approach, and we
analyze how these approaches can replicate stylized facts of variance curves.
In section 3 we conduct an empirical analysis, describing the data, estimating
the models and forecasting the variance curves. Moreover, we consider some
other natural approaches for forecasting. In section 4 we draw our conclusions
and compare our results with yield curve modeling.

2 Modeling the Term Structure

In this section we introduce variance swaps, explain the construction of vari-
ance swap curves and describe the approach that we use for fitting and
forecasting the variance swap curves. We start with the popular stochas-
tic volatility model of Heston (1993) and derive the corresponding model for
the variance curves. Besides this two parameter model we consider a gener-
alization with three parameters. A discussion of the factors is provided for
both models. Moreover, we describe a semiparametric factor model. Finally,
we see how good stylized facts are replicable in these models.

2.1 Constructing variance swap curves

Variance swaps are forward contracts on future realized volatility. They
exchange at expiration the realized annualized variance of the log returns of
an underlying against a predefined strike. These contracts vary in several
respects: they may or may not assume zero mean of the log returns, they
differ with respect to the annualization factor and it must be specified when
the underlying is sampled. We assume here a zero mean of the returns, use
c = 252 trading days for annualization with daily sampling and focus w.l.g.
on zero strikes.

Given an underlying S, the price of such a variance swap for the period

2



[0, T ] with business days 0 = t0 < . . . < tn = T is given by

σ2
R(T )

def
=

c

n

n∑
i=1

(log
Sti

Sti−1

)2.

At time t ∈ (0, T ), the first part of the variance is already realized while
the second is still uncertain. Hence, the prices are composed of the value
of the realized variance and the price of the uncertain variance. In our
analysis, we will focus on the uncertain part and denote the price for the not
annualized variance that still has to be realized by Vt(T ). This point of view
is supported by the usual quotation of variance swaps in volatility strikes,
i.e.

√
Vt(T )/(T − t).

Such price quotation indicates how closely variance swaps are related to
(zero strike) volatility swaps that have payoff profiles

√
σ2

R. Actually, there
is a variety of options that depend on realized variance, e.g. calls on realized
variance with payoffs max{σ2

R − K, 0}. Variance swaps are often used not
only for directly speculating on variance but also as hedging instruments for
such products.

At a point in time we observe the prices of variance swaps V (xi)/xi with
expiries x1, . . . , xn. The variance swap curve at this time is then given by
the mapping T → V (T )/T . We call V the variance curve and V ′ the forward
variance curve. The variance swap curve quoted in volatility strikes is given
by T →

√
V (T )/T . Many approaches for modeling variance swap curves are

based on forward variance curves, see e.g. Bergomi (2005). But in practice,
variance curves or forward variance curves are not observed. Instead, they
must be estimated from a discrete set of observed variance swap prices. It is
practice in industry to use (piecewise) polynomial functions for interpolation
between the observations. Although this gives a reasonable fit for the variance
curves the forward variance curves show a high variation. This instability of
the derivatives makes this approach seem unsuitable for theoretical analysis
of variance swaps.

We choose a non parametric method for constructing the curves, see e.g.
Härdle et al. (2004). We apply a local quadratic regression to the variance
prices V (xi) leading to the following minimization problem:

min
β

n∑
i=1

{V (xi)− β0 − β1(xi − x)− β2(xi − x)2}Kh(xi − x)

where the vector β = (β0, β1, β2) depends on x. The result β̂(x) is a weighted
least squares estimator where the variance curve is given by β̂0 and its first
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derivative by β̂1. We use the quartic kernel K and choose the bandwidth h by
a rule of thumb described in Fan and Gijbels (1996). Moreover, confidence
intervals can be constructed, see e.g. Härdle et al. (2004). Alternatively,
higher order kernels can be used but they have an inferior finite sample bias.

2.2 Modeling variance swap curves

On each day, we construct a variance curve to which we fit two paramet-
ric models and a semiparametric model. The resulting time series of factor
loadings are the basis for the forecasting. We use the functional form de-
rived from the Heston model and in addition we consider an extension that
leads to the form of Nelson and Siegel (1987). These model are convenient
and parsimonious exponential factor approximations. Moreover, we analyze
a semiparametric approach.

In the Heston model

dSt

St

= rdt +
√

ζtdW
(1)
t

dζt = κ(θ − ζt)dt + ν
√

ζtdW
(2)
t

with correlated Wiener processes W (1) and W (2) the prices of (annualized)
variance swaps V (T )/T are given by

θ + (ζ0 − θ)
1− exp(−κT )

κT
.

Hence, only the short variance ζ0, the long variance θ and the mean rever-
sion speed κ determine the variance swap prices. In the Heston model the
smile of the implied volatility surfaces is controlled by two parameters: The
correlation between the Brownian motions and the volatility of variance ν.
These two parameters do not enter the formula of variance swap price.

The corresponding model for the forward variance curve is given by

v(T )
def
= V ′(T ) = θ + (ζ0 − θ) exp(−κT ).

This forward variance curve model implies exactly the above variance swap
prices because of the constraint V (0) = 0. Reparametrizing this model and
writing it in factor notation we get for the prices of variance swaps V (T )/T :

z1 + z2
1− exp(−κT )

κT
. (1)
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where z = (z1, z2) are the two factor loadings. They correspond to the
model parameters (θ, ζ0− θ) for the volatility. The reparametrization can be
described formally in terms of a reparametrization matrix by(

1 0
−1 1

) (
θ
ζ

)
=

(
z1

z2

)
.

This model for forward variance curves is also called linearly mean-reverting
(forward) variance curve model, see Bühler (2006).

We want to compare our results on variance curve modeling with the re-
sults of Diebold and Li (2003) on yields curves. As Diebold and Li (2003)
apply the Nelson-Siegel parametrization we generalize the above model in
such a way that the resulting variance swap prices have a Nelson-Siegel para-
metrization:

v(T ) = z1 + z2 exp(−κT ) + z3κT exp(−κT )

This model is called the double mean-reverting (forward) variance curve
model. The variance swap prices V (T )/T are given in this model by

z1 + z2
1− exp(−κT )

κT
+ z3{

1− exp(−κT )

κT
− exp(−κT )}. (2)

because of

V (T )

T
=

1

T

∫ T

0

v(t)dt.

Thus, the generalized Heston model leads exactly to a Nelson-Siegel parame-
trization for the prices of variance swaps.

While the linearly mean-reverting model is basically the Heston model,
the second approach was considered by Bühler (2006) who analyzed condi-
tions for an arbitrage free joint market of variance swaps and stock. His
considerations imply that the mean reversion speed κ should be constant. In
practice, a constant mean reversion speed is important for stability of the
parameters. Because of these theoretical and practical reasons we fix this
parameter and use κ = 2 as in Bergomi (2004).

We interpret z1t, z2t and z3t as latent dynamic factor loadings for the
prices of variances swaps V (T )/T . As the two factors in the Heston parame-
trization (1) equal the first two factors in the generalized Heston model (2)
it is sufficient to discuss the generalized model.
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Figure 1: Factors for variance curves in the Heston model and its generaliza-
tion.

The factor on z1t is the constant 1. As this factor does not decay to zero
in the long run it can be interpreted as a long-term factor. The factor on z2t

is {1 − exp(−κT )}/(κT ). This function is monotonically decreasing from 1
to 0. As it influences only the short end of the curve it can be interpreted as
a short-term factor. Besides these two factor the generalized model controls
also the medium-term. The factor on z3t is {1−exp(−κT )}/(κT )−exp(−κT ).
This mapping increases monotonically from 0 to a peak and then decreases
to zero in the long-term in a similar way as the second factor. This form
explains the interpretation as a medium-term factor. These three factors are
presented in figure 1.

The interpretation of these factors corresponds to their meaning in the
Heston model: z1 is the long variance and z1+z2 stands for the short variance.
Moreover, these quantities can be recovered from the variance swap curve:
from the limits limT→0 V (T )/T = z1 + z2 and limT→∞ V (T )/T = z1 we see
that z1 is the long variance (i.e. θ) and z1 + z2 is the short variance (i.e.
ζ0). Hence, we have used the parametrization ζ0 = z1 + z2 and θ = z1.
Thus, the “original” parameters of the Heston model (θ, ζ) can be recovered
by multiplying the invers of the reparametrization matrix with the factor
loadings (z1, z2).

Moreover, the parameters have interpretations as level, slope and curva-
ture of the curves. As an increase in z1 increases the whole curve by the
same amount the factor on z1 represents the level of the curve. An increase
of the short-term factor increases the curve more at the short end than at the
long end. Hence it controls the slope of the curve. Finally, the third factor
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moves the middle of the curve while keeping the ends (almost) fixed. In this
way it changes the curvature of the curve. Hence, the difference between the
Heston model and its three factor generalization is the capability to control
the curvature.

Besides these parametric approaches we analyze a semiparametric model
described in Fengler (2005). It offers a low-dimensional representation of
variance swap curves that are approximated by basis functions. These basis
functions are unknown and have to be estimated from the data. The dynam-
ics of the curves are described by the time series of the corresponding factor
loadings.

Let Yi,j be an observed price of a variance swap on day i with maturity
Tj ∈ {0.12, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0}. Let Xi,j be a one-dimensional vari-
able representing the time-to-maturity. Then the model regresses Yi,j on Xi,j

by

Yi,j = m0(Xi,j) +
L∑

l=1

βi,lml(Xi,j),

where m0 is an invariant basis function, ml (l = 1, ..., L) are the “dynamic”
basis functions and βi,l are the factor weights depending on time i. We
describe the estimation procedure and the obtained basis functions in section
3.2 where we use the data.

2.3 Stylized facts of variance swap curves

A model of variance swap curves should at least have a reasonable in-sample
fit, i.e. it should reproduce the variety of observed shapes of variance swap
curves. A good model should moreover correctly reflect the dynamics of the
curves, i.e. have a reasonable out-of sample performance. The goal is to
meet these two points in a parsimonious model.

We consider here some stylized facts of variance swap curves and see
how the described approaches can model these characteristic shapes: The
average variance swap curve is increasing and concave. The slope factor can
replicate the increasing structure easily. The concavity can be modeled in
the generalized model by the third factor. But in the Heston model control of
concavity is not directly possible. Variance swap curves show many different
shapes in different markets over the time: They can be upward- or downward
sloping and some have a hump. These shapes can be replicated by varying
the three factor accordingly. The short end of the curves is more volatile
than the long end. This is reflected in the models because two factors (z1
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and z2) control the short end while only one factor (z1) models the long
end. The Heston model can replicate many pattern but not the humps and
the curvature while the generalized model has in principle the capability to
replicate all stylized facts. The semiparametric model should better reflect
these stylized facts because of its more flexible structure.

3 Forecasting the Term Structure

In this section, we describe the data, estimate the factor loadings, model
them and compare the forecasted variance swap curves.

3.1 The data

The data set studied contains prices of variance swaps on the S & P 500
index between 1 October 2003 and 30 September 2005. These swaps use
daily closing prices of the index, have 252 business days as annualization
factor and assume a zero mean for the calculation of the variance of the
returns. The prices are quoted in volatility strikes and represent the mid
market prices of a large financial institution. Hence, we observe on every
trading day prices

√
V (xi)/xi, i = 1, . . . , n of variance swaps with times-to-

maturity x1, . . . , xn. We have around n = 7 observations in the mean per
day. Although variance swap prices can be generated synthetically our data
consists of real market prices.

Our analysis does not require the use of fixed maturities because we al-
ways model the entire variance swap curve. But we use fixed maturities in
order to simplify the following variance swap curve forecasts. Hence we first
create from the discrete data real curves by local quadratic smoothing as
described in section 2.1. Then we extract the data for the fixed maturities
1.5, 3, 6, 9, 12, 18 and 24 months.

The variance swap prices (not quoted in volatility strikes) and level, slope
and curvature of these curves are the basis for the following. In figure 2
we present the smoothed variance swap curves. The figure also shows the
variance swap curves quoted in volatility strikes. We estimate and forecast
the variance curves but in industry people quote these prices in volatility
strikes. In figure 3 we show the corresponding variance and forward variance
curves. The parametric models all start from the forward variance curve
and derive the variance curve. The variation of the level is clearly visible
for the variance swap curves, the changes in the slope and curvature are less
apparent.

We provide some descriptive statistics of the variance swap curves in
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Figure 2: Variance swap curves quoted in volatility strikes (left) and variance
swap curves (right), 01/10/03 - 30/09/05. The sample consists of weekly
curves from October 2003 to September 2005 at maturities 1.5, 3, 6, 9, 12,
18 and 24 months.

table 1. Here, we present also the level (defined as the 24 months price),
the slope (defined as the 24 months price minus the 1.5 month price) and
the curvature (defined as twice the 6 months price minus the 1.5 month price
minus the 24 months price). We see later that these empirical factor loadings
are highly correlated with the loadings of the parametric models. In figure
4 we show the median variance swap curve (and its quotation in volatility
strikes) together with pointwise interquartile ranges. The earlier-mentioned
upward sloping and concave form is clearly visible.

3.2 Fitting the variance swap curves

We estimate the Heston model and its generalization by minimizing the dif-
ference between the observed variance swap curves and the model prices. In
the Heston model, these prices are given by

z1 + z2
1− exp(−κT )

κT
.

and in the generalized Heston model by

z1 + z2
1− exp(−κT )

κT
+ z3{

1− exp(−κT )

κT
− exp(−κT )}.

The factor loadings z and the parameter κ can be estimated by nonlinear
least squares. In the approach of Nelson and Siegel (1987) for interest rates it
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Figure 3: Variance curves (left) and forward variance curves (right), 01/10/03
- 30/09/05. The sample consists of weekly curves from October 2003 to
September 2005 at maturities 1.5, 3, 6, 9, 12, 18 and 24 months.
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Figure 4: Median data-based forward variance curve quoted in volatility
strikes with pointwise interquartile range. For each maturity, we plot the
median along with the 25th and 75th quantiles.
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Maturity (Months) Mean Std.dev. Minimum Maximum ρ̂(1) ρ̂(4) ρ̂(12)
1.5 2.03 0.65 0.91 4.36 80.1 64.5 51.1

3 2.48 0.70 1.39 4.39 90.1 79.3 65.4
6 2.75 0.73 1.51 4.41 93.3 82.6 64.7
9 2.89 0.73 1.60 4.45 94.1 82.5 61.3

12 2.98 0.72 1.69 4.54 94.5 81.8 57.1
18 3.14 0.70 1.85 4.68 94.9 79.6 47.3
24 3.27 0.69 2.02 4.79 9.50 77.1 36.8

Slope 1.24 0.44 -0.24 2.21 74.1 38.8 -16.6
Curvature 0.20 0.31 -0.50 0.98 83.6 62.0 49.5

Table 1: Descriptive statistics of variance swap curves [E−2].

is common to fix the parameter κ. As the generalized Heston model leads to
variance swap prices in the form of the Nelson-Siegel it makes sense that we
also fix this parameter κ. Moreover, it is practice to fix this parameter in the
Heston model for the modeling, pricing and hedging of options. Hence, we
use κ = 2 as in Bergomi (2004). Keeping this parameter constant simplifies
considerably the numerics and increases the reliability of the results because
the factor loadings z are given by the OLS formula.

On every day we apply an ordinary least squares to the variance swap
curves. In this way we get we a time series of estimated factor loadings
(ẑ1, ẑ2, ẑ3)

>. As we do not use explicitly weights the short end is more im-
portant for the estimation because we sample more observation with short
maturities. We estimate the variance swap curves (and not the variance swap
curves quoted in volatility strikes) because the Heston model gives directly
a factor model for the variance swap curves.

We estimate the factors in the semiparametric model from the first year of
our time series. The factors or basis functions m̂l and the factor loadings β̂i,l

are estimated by minimizing the following least squares criterion (βi,0 = 1):

I∑
i=1

Ji∑
j=1

∫ {
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}2

Kh(u−Xi,j) du,

where Kh denotes a kernel function. The minimization procedure searches
through all functions m̂l : R −→ R (l = 0, ..., L) and time series β̂i,l ∈ R (i =
1, ..., I; l = 1, ..., L) by an iterative procedure. Afterwards the estimates are
orthogonalized and normalized, see Fengler (2005) for details. The estimated
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Figure 5: Factors in the semiparametric model estimated from the variance
swap curves 01/10/03 - 30/09/04.

factors are plotted in figure 5. They can be interpreted as in the parametric
models as level, slope and curvature (see section 2.2). A comparison with
the parametric factors in figure 7 reveals that the estimated factors have a
different scaling and they become negative. The positivity of the parametric
factors allows to ensure the positivity of the resulting curve by imposing
simple constraints on the loadings. After the factors have been estimated
the factor loadings can be estimated by ordinary least squares as in the
parametric models.

Information about the in-sample fit of the models is presented in figure
6. It shows that the Heston and the semiparametric model have problems
fitting the short end of the curves. This systematic deviation holds also for
the generalized model but is less pronounced. The prices for long maturities
show no systematic error for all models. The semiparametric model leads to
the smallest errors in this region while the Heston model still has big errors.
In table 2 we present descriptive statistics of the variance swap curve residuals
that support the above interpretation. Although the semiparametric model
is quite flexible it has problems fitting the short maturities. This can be
explained by the fact that the semiparametric model puts less weight on the
short maturities than the other models. Another reason can be seen in the
numerically more involved estimation procedure.

In figure 7 we show the time series of the estimated factor loadings in the
Heston model, in the generalized Heston model and in the semiparametric
factor model. In the figure we have plotted the negative slope loadings of
the models and we have scaled curvature loadings of the models by 0.3. As
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Maturity (months) Mean Std.dev. Minimum Maximum MAE
Heston

1.5 -0.17 0.12 -0.46 0.06 0.17
3 0.10 0.05 -0.03 0.22 0.10
6 0.11 0.08 -0.04 0.30 0.11
9 0.05 0.06 -0.08 0.19 0.06

12 0.00 0.03 -0.09 0.07 0.03
18 -0.05 0.03 -0.11 0.01 0.05
24 -0.04 0.07 -0.22 0.13 0.07

generalized Heston
1.5 -0.09 0.04 -0.18 0.02 0.09

3 0.11 0.05 -0.03 0.24 0.11
6 0.04 0.02 -0.01 0.08 0.04
9 -0.03 0.02 -0.07 0.01 0.03

12 -0.06 0.03 -0.11 0.01 0.06
18 -0.03 0.01 -0.05 0.01 0.03
24 0.05 0.02 -0.01 0.09 0.05

semiparam. model
1.5 -0.26 0.12 -0.53 0.07 0.26

3 0.09 0.05 -0.03 0.22 0.09
6 0.10 0.04 -0.03 0.20 0.10
9 0.01 0.01 -0.00 0.02 0.01

12 0.04 0.01 -0.01 0.06 0.04
18 0.00 0.00 -0.01 0.01 0.00
24 0.01 0.01 -0.02 0.02 0.01

Table 2: Descriptive statistics of variance swap curves residuals [E−2].
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Figure 6: Variance swap curve residuals, 01/10/03 - 30/09/05. left: Heston,
middle: generalized Heston, right: semiparametric model.

the factors have interpretations as level, slope and curvature we compare
them to the empirical level, slope and curvature as defined in section 3.1.
The graphs proof that our interpretations are correct because the empirical
and the estimated factor loadings are highly correlated in all cases. The
empirical level factor is very similar to the level loadings in the generalized
Heston model. The corresponding loadings of the Heston model lie above,
the loadings of the semiparametric model below the empirical levels. The
empirical slope is a good estimator for slope loadings in the Heston and
in the generalized Heston model. The empirical curvature differs from the
loadings of the models. But in all three cases the model and the empirical
values are highly correlated.

The loadings of the semiparametric factor model differ the most from
the empirical factor loadings. This can partly be explained by the different
scaling in the semiparametric factor model. In table 3 we give some sum-
mary statistics of the time series of factor loadings. These statistics confirm
the different scaling of the parametric approaches and the semiparametric
model. Moreover, we have found that these time series are only weakly cor-
related. The two factor loadings in the Heston have an empirical correlation
of −0.39. This quantity is in the generalized Heston model −0.33 while the
other two correlations of the model are below 0.2. The correlations in the
semiparametric factor model are similar.
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Figure 7: Factor loadings in the models and in the data.

Factor Mean Std.dev. Minimum Maximum ρ̂(1) ρ̂(4) ρ̂(12)
Heston

z1 3.74 0.80 2.21 5.32 95.4 75.2 31.1
z2 -1.74 0.61 -3.08 0.33 74.1 38.1 -17.9

generalized Heston
z1 3.27 0.58 2.45 4.60 87.9 51.9 -26.6
z2 -1.46 0.56 -2.50 0.27 79.8 49.0 -11.2
z3 1.34 1.30 -1.37 4.61 81.3 57.6 45.7

semiparam. model
z1 2.37 0.58 1.36 3.67 93.5 81.1 58.1
z2 -0.01 0.10 -0.17 0.33 73.1 50.0 23.1
z3 0.00 0.03 -0.06 0.06 70.0 36.9 24.8

Table 3: Descriptive statistics of the factor loadings [E−2].
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3.3 Modeling the time series of factor loadings

Diebold and Li (2003) model the factor loadings of the Nelson-Siegel frame-
work by univariate AR(1) processes. Also Cont and da Fonseca (2001) use
these models for their factor loadings in a principal components analysis of
implied volatility surfaces. Hence, we follow this accepted approach. These
processes can be viewed as the standard method for parsimonious modeling.
Moreover, more complex ARMA models did not improve the forecasting re-
sults. Thus, the choice of these simple models seems justified. We do not
consider multivariate AR processes because there is only little correlation
between the factor loadings (see section 3.2). In addition, the use of AR(1)
processes allows us to compare our results to the findings of Diebold and Li
(2003).

The resulting forecasts of the variance swap curves τ weeks ahead are
then given by

̂Vt+τ (T )/T = ẑ1,t/t+τf1(T ) + ẑ2,t/t+τf2(T ) + ẑ3,t/t+τf3(T )

where ẑi,t/t+τ are the forecasts of the i-th factor loading and f1, f2, f3 are the
factors. These factor loading forecasts can be computed by regressing the
loadings at t + h on the loadings at t. But our results improved for repeated
1-day forecasts. Hence we have used the second approach.

In figure 8 we show the autocorrelation functions of the residuals of the
AR(1) models. The results for the Heston model indicate that the AR(1)
models describe accurately the time series for the level and the slope factor
loadings because only a few autocorrelations lie slightly outside the 95%
confidence interval. The autocorrelation functions for the generalized Heston
model show that the level and the slope are could be modeled differently.
But we want to compare our results to Diebold and Li (2003) and they have
also used AR(1) processes although they faced similar modelling problems.
Finally, the loadings can be modelled quite well in the semiparametric factor
model by AR(1) processes, only a few autocorrelations lie slightly outside
the confidence bands.

3.4 Forecasting the variance swap curves

Besides a good in-sample fit models are judged by their dynamic properties.
This is true notably at the moment for option pricing models because of the
popularity of forward started options. In order to assess the quality of the
models in this dynamic respect we perform out-of-sample forecasts.
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Figure 8: Factor loadings in the Heston model (up), in the generalized Heston
model (middle) and in the semiparametric factor model (down).
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As the models describe the variance swap curves by the factor loadings z,
we forecasts the loadings (ẑ1t, ẑ2t, ẑ3t). Our data set consists of observations
from 2003 and 2004. We use the first part of the data for the estimation
of the factor loadings and forecast the variance swap curves of the second
year. In the semiparametric model, the factors are estimated from the data
of the first year. Then we keep these factors fixed for the forecasting. Ac-
tually they differ only a bit from the factors estimated from the whole data
(see figure 7). If we want to forecast at time t the variance curve at time
t + τ then we use whole history of the factor loadings up to time t, i.e.
(z11, z21, z31), . . . , (z1t, z2t, z3t).

In tables 4 - 7 we show the results for 1 week, 1 month, 3 months and 6
months ahead forecasts. As we have only one years for forecasting we cannot
consider longer periods. In addition to the three models considered so far
we analyze two simple competitors, the static Heston model and the random
walk. As before we consider the variance swap curves at the maturities
1.5, 3, 6, 9, 12, 18 and 24 months.

The two benchmark models are:

• The static Heston model
In the industry, the Heston model is usually applied without forecasting
the parameters. On every day the model is calibrated to observed prices
and other prices are calculated on the basis of these fixed parameters.
The forecasts τ weeks ahead in this model are

̂Vt+τ (T )/T =
Vt(T + τ)− Vt(τ)

T
(3)

where Vt denotes the variance curve at time t.

Forward started options depend on the model parameters at the time
when the options really starts. Because of the popularity of such op-
tions the dynamic properties of models are important. The variance
swap forecast 3 is the price of a forward started variance swap in the
Heston model when the parameter are fixed. In this way, we analyze
if the prices of such forward started options should be calculated with
fixed parameters (static Heston) or if parameter forecasts ((dynamic)
Heston) give more accurate prices.

• The random walk
This model proposes that the variance swap curves do not change:

̂Vt+τ (T )/T = Vt(T )/T
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This is a natural benchmark. Duffie and Kan (1996) show that it is
difficult for yield curve models to give better forecasts than the random
walk. Diebold and Li (2003) conclude that the reparametrized Nelson-
Siegel outperforms the random for yield curves. The Nelson-Siegel
model corresponds to the generalized Heston model.

The forecast errors at time t+ τ are defined as the difference between the
observed variance swap curve and the forecasted curve:

̂Vt+τ (T )/T − Vt+τ (T )/T

for T = 1.5, 3, 6, 9, 12, 18 or 24 months. We examine a number of descriptive
statistics of the errors, including the mean absolute error:

MAE
def
=

1

n

∑
t

‖ ̂Vt+τ (T )/T − Vt+τ (T )/T‖

and the mean absolute relative error:

MARE
def
=

1

n

∑
t

‖
̂Vt+τ (T )/T − Vt+τ (T )/T

Vt+τ (T )/T
‖

where the index t runs over all forecasting days and n is the number of
forecasting days.

The results of the 1-week forecasts are presented in table 4. We see that
the random walk model has the smallest errors of all models. Moreover, these
errors are bigger for small maturities than for long maturities. The static
Heston model can be regarded as the second best model but the Heston
model with parameter forecasts has only slightly bigger errors. The three
factor models have the worst performance where the Nelson-Siegel framework
leads to bigger errors for long maturities. These results show that the short
end of the variance swap curves are harder to forecasts. This corresponds to
the in-sample fits reported in table 2 .

The 1-month-ahead forecast errors in table 5 show qualitatively similar
results. The random walk model outperforms the other models with the
highest errors for small maturities. The errors are on average twice as big as
the errors in the 1-week ahead forecasts. The static and the dynamic Heston
model have a similar performance while the three factor models lead again
to the worst results. The semiparametric factor model outperforms as before
the generalized Heston model.

In table 6, we describe the errors of the 3-months-ahead forecasts. The
best results yields the random walk with relative deviation from the observed

19



Maturity (months) Mean Std.dev. MAE MARE
Heston

1.5 0.14 0.27 0.24 16.8
3 -0.04 0.21 0.16 08.4
6 -0.02 0.21 0.15 07.2
9 0.03 0.21 0.15 06.8

12 0.07 0.21 0.16 07.0
18 0.08 0.21 0.17 06.6
24 0.04 0.20 0.16 05.7

generalized Heston
1.5 0.19 0.23 0.24 17.1

3 0.06 0.20 0.16 08.6
6 0.13 0.20 0.18 09.0
9 0.20 0.20 0.23 10.4

12 0.22 0.20 0.25 10.7
18 0.19 0.19 0.22 08.8
24 0.10 0.19 0.17 06.2

static Heston
1.5 0.17 0.25 0.25 17.0

3 -0.01 0.21 0.15 08.1
6 -0.00 0.20 0.15 06.9
9 0.04 0.20 0.15 06.7

12 0.07 0.20 0.16 06.8
18 0.08 0.20 0.16 06.4
24 0.03 0.20 0.15 05.5

semiparam. model
1.5 0.32 0.26 0.35 24.4

3 0.04 0.20 0.16 08.6
6 0.03 0.20 0.15 07.3
9 0.10 0.21 0.18 07.9

12 0.06 0.20 0.16 06.8
18 0.07 0.20 0.16 06.3
24 0.04 0.19 0.15 05.4

random walk
1.5 0.00 0.24 0.18 12.0

3 0.01 0.21 0.15 08.2
6 0.02 0.20 0.15 07.2
9 0.02 0.20 0.15 06.7

12 0.02 0.20 0.15 06.3
18 0.02 0.19 0.15 05.7
24 0.02 0.19 0.14 05.2

Table 4: Out-of-sample 1-week-ahead forecasting results [E−2].20



Maturity (months) Mean Std.dev. MAE MARE
Heston

1.5 0.21 0.43 0.39 27.7
3 0.05 0.38 0.31 17.2
6 0.08 0.37 0.32 15.3
9 0.14 0.37 0.33 15.2

12 0.18 0.38 0.35 15.2
18 0.19 0.39 0.37 14.6
24 0.15 0.40 0.36 13.5

generalized Heston
1.5 0.43 0.33 0.45 33.4

3 0.35 0.29 0.37 21.4
6 0.45 0.30 0.46 23.0
9 0.53 0.31 0.53 24.8

12 0.55 0.32 0.55 24.5
18 0.49 0.33 0.51 21.1
24 0.37 0.34 0.44 16.7

static Heston
1.5 0.35 0.38 0.42 30.2

3 0.16 0.34 0.30 16.8
6 0.15 0.33 0.29 14.5
9 0.18 0.34 0.31 14.4

12 0.20 0.35 0.33 14.4
18 0.18 0.37 0.35 13.7
24 0.12 0.39 0.34 12.7

semiparam. model
1.5 0.52 0.36 0.54 38.9

3 0.26 0.32 0.34 19.3
6 0.27 0.33 0.35 17.3
9 0.33 0.35 0.39 18.1

12 0.28 0.35 0.38 16.4
18 0.26 0.37 0.38 15.3
24 0.19 0.39 0.37 13.6

random walk
1.5 0.01 0.38 0.32 20.9

3 0.04 0.33 0.27 14.8
6 0.05 0.33 0.27 13.2
9 0.06 0.33 0.28 12.7

12 0.06 0.34 0.29 12.4
18 0.06 0.36 0.30 12.0
24 0.07 0.37 0.32 11.6

Table 5: Out-of-sample 1-months-ahead forecasting results [E−2].21



Maturity (months) Mean Std.dev. MAE MARE
Heston

1.5 0.42 0.55 0.60 43.2
3 0.27 0.51 0.48 27.6
6 0.30 0.53 0.51 25.8
9 0.36 0.55 0.57 26.8

12 0.40 0.57 0.61 27.3
18 0.40 0.62 0.65 26.7
24 0.36 0.65 0.65 24.9

generalized Heston
1.5 0.73 0.33 0.73 54.3

3 0.68 0.31 0.68 39.6
6 0.80 0.33 0.80 41.0
9 0.87 0.36 0.87 41.8

12 0.88 0.38 0.88 40.3
18 0.80 0.41 0.80 33.9
24 0.65 0.43 0.69 27.5

static Heston
1.5 0.82 0.53 0.87 64.5

3 0.60 0.49 0.67 39.1
6 0.53 0.52 0.63 32.0
9 0.51 0.55 0.64 30.5

12 0.49 0.59 0.66 29.5
18 0.42 0.65 0.66 27.0
24 0.33 0.69 0.64 24.3

semiparam. model
1.5 0.82 0.40 0.83 60.9

3 0.58 0.38 0.61 35.8
6 0.61 0.43 0.64 32.9
9 0.68 0.46 0.71 34.1

12 0.63 0.49 0.68 31.1
18 0.59 0.53 0.67 28.5
24 0.51 0.57 0.65 25.5

random walk
1.5 0.13 0.50 0.40 29.7

3 0.16 0.45 0.40 22.9
6 0.17 0.48 0.43 21.5
9 0.18 0.51 0.45 21.0

12 0.18 0.54 0.47 20.6
18 0.18 0.60 0.50 20.3
24 0.18 0.65 0.54 20.2

Table 6: Out-of-sample 3-months-ahead forecasting results [E−2].22



Maturity (months) Mean Std.dev. MAE MARE
Heston

1.5 0.52 0.40 0.54 39.8
3 0.37 0.44 0.44 26.0
6 0.40 0.48 0.46 24.6
9 0.45 0.51 0.50 24.9

12 0.48 0.53 0.53 24.8
18 0.48 0.56 0.53 23.1
24 0.42 0.58 0.50 20.6

generalized Heston
1.5 0.82 0.30 0.82 62.3

3 0.79 0.27 0.79 46.1
6 0.92 0.31 0.92 46.9
9 0.98 0.33 0.98 47.0

12 0.99 0.35 0.99 44.8
18 0.87 0.38 0.87 36.9
24 0.71 0.40 0.71 28.6

static Heston
1.5 1.16 0.48 1.16 84.4

3 0.90 0.53 0.90 52.5
6 0.76 0.59 0.76 39.5
9 0.68 0.63 0.69 34.0

12 0.62 0.66 0.64 30.3
18 0.49 0.71 0.57 25.1
24 0.36 0.75 0.54 22.2

semiparam. model
1.5 0.97 0.31 0.97 71.8

3 0.74 0.31 0.74 43.2
6 0.77 0.36 0.77 39.7
9 0.84 0.39 0.84 40.5

12 0.79 0.41 0.79 36.1
18 0.74 0.44 0.74 31.3
24 0.64 0.46 0.64 26.0

random walk
1.5 0.18 0.35 0.33 24.0

3 0.21 0.38 0.32 18.9
6 0.21 0.47 0.36 18.9
9 0.20 0.52 0.38 18.9

12 0.18 0.55 0.40 18.8
18 0.14 0.62 0.44 19.1
24 0.11 0.67 0.48 19.2

Table 7: Out-of-sample 6-months-ahead forecasting results [E−2].23



curve vary between 20% and 30%. The Heston model with parameter fore-
casts gives better results than the static Heston model while the other two
models perform badly.

Finally, we consider forecasts half a year ahead in table 7. For these long
periods the dynamic Heston model performs quite good compared to the
random walk that gives again the best forecasts. The static Heston model
leads to rather big errors and the semiparametric model produces similar
errors as the Nelson-Siegel approach.

4 Conclusion

We have analyzed the modeling and forecasting of variance swap curves.
Reparametrizing the Heston model we consider a Nelson-Siegel framework
with two factors, level and slope. Generalizing this approach we analyzed
also the full Nelson-Siegel model with the three factors, level, slope and
curvature. Moreover, we considered a three factor semiparametric model.
We analyzed the in-sample and out-of-sample performance of these models
and compared the results to two benchmark models: the random walk and
the static Heston model that is often used in industry.

The in-sample fit (table 2) gives good results for long maturities but all
models have problems in fitting the short end of the variance swap curves.
The generalized Heston model naturally outperforms the Heston model and
the flexible semiparametric factor model leads to the best fit for long maturi-
ties but also has significant problems with the short maturities. Actually, all
models show some bias at the short end as is confirmed by the residuals (fig-
ure 6). Comparing these results to yield curve modeling we see that variance
swap curves seem to be more difficult to model because the in-sample fits
are worse. An explanation can be seen in the higher curvature of variance
swap curves. The Nelson-Siegel model that leads to quite good fits for yield
curves, see Diebold and Li (2003), has problems in modeling the short end
of the variance swap curves. Moreover, variance swap curves lie in general
below interest rate curves so that the higher absolute error gives an even
bigger relative error.

We forecast the variance swap curves in these three models by forecasting
the factor loadings. For the out-of-sample analysis we consider in addition
two benchmark models: the random walk and the static Heston model. In
the random walk the forecast is the curve observed today and in the static
Heston model the forecast is computed without forecasting the parameters.
None of the four models gives better results than the random walk. This cor-
responds the forecasting problems for yield curves described by Duffie and
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Kan (1996). Thus we cannot confirm the results of Diebold and Li (2003) who
conclude that the Nelson-Siegel framework outperforms the random walk in
yield curve modeling for long forecasts. An explanation can be seen in the
difficulties already encountered in the in-sample fit. The two factor models
give better forecasts than the three factor approaches. The static Heston
that is popular in industry produces worse forecasts than the dynamic He-
ston model for long periods. Hence, we can conclude that the parameters
move significantly in the Heston model and this movements should be taken
into account in order to model the dynamics of the model. Such dynamics
are important for forward started options and should be priced into these
products in the Heston model. The famous Nelson-Siegel approach for yield
curves gives rather bad results for variance curves, the semiparametric factor
model outperforms it even in the out-of-sample analysis.

We conclude that the modeling of variance swap curves is a challenging
new topic because yield curve models show a bad performance for variance
swap curves. We could not confirm the results of Diebold and Li (2003)
in the out-of-sample analysis. These different results may be due to the
different nature of the data, 15 years of monthly yield curves and 2 years
of weekly variance swap curves. But we have seen that the Heston model
gives better variance swap forecasts when the parameter are forecasted. This
is essential for forward started options on realized variance. As the two
factor models outperform the three factor models the results underline Zellner
(1992)’s principle to keep it sophisticatedly simple. The bad performance of
the Heston model for short maturities is well known so that future research
could analyze other approaches (e.g. the model of Bates (1996)). Moreover,
other forecasting techniques like moving windows could be considered in order
to improve the forecasting results.
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