
Blanchard, Gilles; Kawanabe, Motoaki; Sugiyama, Masashi; Spokoiny, Vladimir;
Müller, Klaus-Robert

Working Paper

In search of non-Gaussian components of a high-
dimensional distribution

SFB 649 Discussion Paper, No. 2006,040

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Blanchard, Gilles; Kawanabe, Motoaki; Sugiyama, Masashi; Spokoiny,
Vladimir; Müller, Klaus-Robert (2006) : In search of non-Gaussian components of a high-
dimensional distribution, SFB 649 Discussion Paper, No. 2006,040, Humboldt University of
Berlin, Collaborative Research Center 649 - Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/25121

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25121
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

1 Fraunhofer FIRST.IDA, Berlin, Germany 
2 CNRS, Université Paris-Sud, Orsay, France 

3 Tokyo Institute of Technology, Tokyo, Japan 
4 Weierstrass Institute for Applied Analysis 

and Stochastics, Berlin, Germany 
5 University of Potsdam, Potsdam, Germany 

 
 
 
 
 
 

 
 
 
 
 
 

SFB 649 Discussion Paper 2006-040 

In Search of Non-Gaussian 
Components of a High-

Dimensional Distribution 
 

Gilles Blanchard 
1,2 

Motoaki Kawanabe 
1 

Masashi Sugiyama 
1,3 

Vladimir Spokoiny 
4 

Klaus-Robert Müller 
1,5 

 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 
http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
FB

  
  
  
6

 4
 9

  
  
  
  

  
  
  
E

 C
 O

 N
 O

 M
 I 

C
  

  
 R

 I 
S

 K
  
  
  
  
  
  

  
  
 B

 E
 R

 L
 I 

N
 



Journal of Machine Learning Research 6 (2005) 1-48 Submitted 4/05; Published 10/05

In Search of Non-Gaussian Components of a
High-Dimensional Distribution ∗

Gilles Blanchard blanchar@first.fhg.de
Fraunhofer FIRST.IDA
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CNRS, Université Paris-Sud, Orsay, France

Motoaki Kawanabe nabe@first.fhg.de
Fraunhofer FIRST.IDA
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Abstract

Finding non-Gaussian components of high-dimensional data is an important preprocessing
step for efficient information processing. This article proposes a new linear method to
identify the “non-Gaussian subspace” within a very general semi-parametric framework.
Our proposed method, called NGCA (Non-Gaussian Component Analysis), is essentially
based on a linear operator which, to any arbitrary nonlinear (smooth) function, associates
a vector which belongs to the low dimensional non-Gaussian target subspace up to an
estimation error. By applying this operator to a family of different nonlinear functions,
one obtains a family of different vectors lying in a vicinity of the target space. As a final
step, the target space itself is estimated by applying PCA to this family of vectors. We show
that this procedure is consistent in the sense that the estimaton error tends to zero at a
parametric rate, uniformly over the family, Numerical examples demonstrate the usefulness
of our method.

1. Introduction

1.1 Setting and general principle

Suppose {Xi}n
i=1 are i.i.d. samples in a high dimensional space Rd drawn from an unknown

distribution with density p(x) . A general multivariate distribution is typically too complex
to analyze from the data, thus dimensionality reduction is useful to decrease the complexity
of the model (Cox and Cox, 1994; Schölkopf et al., 1998; Roweis and Saul, 2000; Tenen-
baum et al., 2000; Belkin and Niyogi, 2003). Here our point of departure is the following
assumption: the high dimensional data includes low dimensional non-Gaussian components
and the other components are Gaussian. This assumption follows the rationale that in most
real-world applications the ‘signal’ or ‘information’ contained in the high-dimensional data
is essentially non-Gaussian while the ‘rest’ can be interpreted as high dimensional Gaussian
noise.

We want to emphasize from the beginning that we do not assume the Gaussian compo-
nents to be of smaller order of magnitude than the signal components; all components are
instead typically of the same order. This setting therefore excludes the use dimensionality
reduction methods based on the assumption that the data lies, say, on a lower dimensional
manifold, up to some small noise. In fact, this type of methods addresses a different kind
of problem altogether.

Under our modeling assumption, therefore, the task is to recover the relevant non-
Gaussian components. Once such components are identified and extracted, various tasks
can be applied in the data analysis process, say, data visualization, clustering, denoising or
classification.

If the number of Gaussian components is at most one and all the non-Gaussian compo-
nents are mutually independent, Independent Component Analysis (ICA) techniques (e.g.
Comon, 1994; Hyvärinen et al., 2001) are relevant to identify the non-Gaussian subspace.
Unfortunately, however, this is often a too strict assumption on the data.

The framework we consider is on the other hand very close to that of Projection Pursuit
(PP) algorithms (Friedman and Tukey, 1974; Huber, 1985; Hyvärinen et al., 2001). The goal
of Projection Pursuit methods is to extract non-Gaussian components in a general setting,
i.e., the number of Gaussian components can be more than one and the non-Gaussian
components can be dependent.
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Projection Pursuit methods typically proceed by fixing a single index which measures the
non-Gaussianity (or ’interessingness’) of a projection direction. This index is then optimized
over all possible directions of projection; the procedure can be repeated iteratively (over
directions orthogonal to the first ones already found) to find a higher dimensional projection
of the data as needed.

However, it is known that some projection indices are suitable for finding super-Gaussian
components (heavy-tailed distribution) while others are suited for identifying sub-Gaussian
components (light-tailed distribution) (Hyvärinen et al., 2001). Therefore, traditional PP
algorithms may not work effectively if the data contains, say, both super- and sub-Gaussian
components.

To summarize: existing methods for the setting we consider typically proceed by defining
an appropriate interestingness index and then compute a projection that maximizes this
index (projection pursuit methods, and some ICA methods). The philosophy that we
would like to promote in this paper is in a sense different: in fact we do not specify what
we are interested in, but we rather define what is not interesting (Jones and Sibson , 1987).
Clearly a multi-dimensional Gaussian subspace is a reasonable candidate for an undesired
component (our idea could be generalized by defining, say, a Laplacian subspace to be
uninformative). Having defined this uninteresting subspace, its (orthogonal) complement is
by definition interesting: this therefore precisely defines our target space.

1.2 Presentation of the method

Technically, our new approach to identifying the non-Gaussian subspace uses a very general
semi-parametric framework. The proposed method, called Non-Gaussian Component Anal-
ysis (NGCA), is essentially based on a central property stating that there exists a linear
mapping h 7→ β(h) ∈ Rd which, to any arbitrary (smooth) nonlinear function h : Rd → R ,
associates a vector β lying in the non-Gaussian target subspace. In practice, the vector
β(h) has to be estimated from the data, giving rise to an estimation error. However, our
main consistency result shows that this estimation error vanishes at a rate

√
log(n)/n with

the sample size n . Using a whole family of different nonlinear functions h then yields a
family of different vectors β̂(h) which all approximately lie in, and span, the non-Gaussian
subspace. We finally perform PCA on this family of vectors to extract the principal direc-
tions and estimate the target space.

In practice, we consider functions of the particular form hω,a(x) = fa(〈ω, x〉) where
f is a function class parameterized, say, by a parameter a , and ‖ω‖ = 1 . Even for a
fixed a , it is infeasible to compute values of β(hω,a) for all possible values of ω (say on a
discretized net of the unit sphere) because of the cardinality involved. In order to choose a
relevant value for ω (still for fixed a ), we then opt to use as a heuristic a well-known PP
algorithm, FastICA (Hyvärinen, 1999). This was suggested by the surprising observation
that the mapping ω → β(hω,a) is then equivalent to a single iteration of FastICA (although
this algorithm was built using different theoretical considerations); hence in this special case
FastICA is exactly the same as iterating our mapping. In short, we use a PP method as
a proxy to select the most relevant direction ω for a fixed a . This results in a particular
choice of ωa , to which we apply the mapping once more, thus yielding βa = β(hωa,a) .
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Finally, we aggregate the different vectors βa obtained when varying a by applying PCA
as indicated previously.

Thus, apart from the conceptual point, defining uninterestingness as the point of depar-
ture instead of interestingness, another way to look at our method is to say that it allows
the combination of information coming from different indices: here the above function fa

(for fixed a ) plays a role similar to that of a non-Gaussianity index in PP, but we do com-
bine a rich family of such functions (by varying a and even by considering several function
classes at the same time). The important point here is while traditional Projection Pursuit
does not provide a well-founded justification for combining directions from using different
indices, our framework allows to do precisely this – thus implicitly selecting, in a given
family of indices, the ones which are the most informative for the data at hand.

In the following section we will outline the theoretical cornerstone of the method, a novel
semi-parametric theory for linear dimension reduction. Section 3 discusses the algorithmic
procedure and is conluded with theoretical results establishing statistical consistence of the
method. In Section 4, we study on simulated and real data examples the behavior of the
algorithm. A brief conclusion is given in Section 5.

2. Theoretical framework

In this section, we give a theoretical basis for the non-Gaussian component search within
a semi-parametric framework. We present a population analysis where expectations can in
principle be calculated exactly in order to emphasize the main idea and how the algorithm
is built. A more rigorous statistical study of the estimation error will be exposed later in
section 3.5.

2.1 Motivation

Before introducing the semi-parametric density model which will be used as a foundation for
developing our method, we motivate it by starting from elementary considerations. Suppose
we are given a set of observations Xi ∈ Rd, (i = 1, . . . , n) obtained as a sum of a signal S
and an independent Gaussian noise component N :

X = S + N , (1)

where N ∼ N (0, Γ) . Note that no particular structural assumption is made about the
noise covariance matrix Γ .

Assume the signal S is contained in a lower-dimensional linear subspace E of dimension
m < d . Loosely speaking, we would like to project X linearly so as to eliminate as much
of the noise as possible while preserving the signal information. An important issue for the
analysis of the model (1) is a suitable representation of the density of X which reflects the
low dimensional structure of the non-Gaussian signal. The next lemma presents a generic
representation of the density p for the model (1).

Lemma 1 The density p(x) for the model (1) with the m -dimensional signal S and an
independent Gaussian noise N can be represented as

p(x) = g(Tx)φΓ(x)

4
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where T is a linear operator from Rd to Rm , g(·) is some function on Rm and φΓ(x) is
the density of the Gaussian component.

The formal proof of this lemma is given in the Appendix. Note that the above density
representation is not unique, as the parameters g, T,Γ are not identifable from the density
p. However, the null suspace (kernel) K(T ) of the linear operator T is an identifiable
parameter. In particular, is useful to notice that if the noise N is standard normal, then
the operator T can be taken as the projector on the signal space E . In this case, K(T )
coincides with E⊥ , the orthogonal complementary subspace to E . In the general situation
with “colored” Gaussian noise, the signal space E does not coincide with the orthogonal
complementary of the kernel I = K(T )⊥ of the operator T . However, the density repre-
sentation of Lemma 1 shows that the the subspace K(T ) is non-informative and contains
only noise. The original data can then be projected orthogonally onto I , which we call
the non-Gaussian subspace, without loss of information. This way, we are preserving the
totality of the signal information. This definition implements the general point of view
outlined in the introduction, namely: we define what is considered uninteresting; the target
space is then defined indirectly as the orthogonal of the uninteresting component.

2.2 Relation to ICA analysis

An equivalent view of the same model is to decompose the noise N appearing in Eq.(1) into
a component N1 belonging to the signal space E and an independent component N2 ; it
can then be shown that N2 belongs to the subspace K(T ) defined above. In this view the
space I is orthogonal to the independent noise component, and projecting the data onto
I amounts to cancelling this independent noise component by an orthogonal projection.

In the present paper, we assume that we wish to project the data orthogonally, i.e., that
the Euclidean geometry of the input space is meaningful for the data at hand, and that
we want to respect it while projecting. An alternative point of view would be to disregard
the input space geometry altogether, and to first map the data linearly to a reference
space where it has covariance identity (“whitening” transform), which would be closer to
a traditional ICA analysis. This would have on the one hand the advantage of resulting
in an affine invariant procedure, but, on the other hand, the disadvantage of losing the
information of the original space geometry.

2.3 Main model

Based on the above motivation, we assume to be dealing with an unknown probability
density function p(x) on Rd which can put under the form

p(x) = g(Tx)φΓ(x), (2)

where T is an unknown linear mapping from Rd to Rm with m ≤ d , g is an unknown
function on Rm , and φΓ is a centered1 Gaussian density with covariance matrix Γ .

1. It is possible to handle a more general situation where the Gaussian part has an unknown mean parameter
θ in addition to the unknown covariance Γ . For simplicity of exposition we consider here only the case
of θ = 0 .

5
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Note that the semi-parametric model (2) includes as particular cases both the pure
parametric (m = 0 ) and purely non-parametric (m = d ) models. For practical purposes
however we are effectively interested in an intermediate case where d is large and m is
relatively small. In what follows we denote by I the m -dimensional linear subspace in Rd

generated by the adjoint operator T ∗ :

I = K(T )⊥ = =(T ∗) ,

where =(·) denotes the range of an operator. We call I the non-Gaussian subspace.
The proposed goal is therefore to estimate I by some subspace Î computed from an

i.i.d. sample {Xi}n
i=1 following the distribution with density p(x) . In this paper we assume

the effective dimension m to be known or fixed a priori by the user. Note that we do not
estimate Γ nor g when estimating I . We measure the closeness of the two subspaces Î
and I by the following error function:

E(Î, I) = (2m)−1
∥∥ΠI −ΠÎ

∥∥2

Frob
= m−1

m∑

i=1

‖(Id −ΠÎ)vi‖2, (3)

where ΠI denotes the orthogonal projection on I , ‖·‖Frob is the Frobenius norm, {vi}m
i=1

is an orthonormal basis of I and Id is the identity matrix.

2.4 Key result

The main idea underlying our approach is summed up in the following Proposition (the proof
is given in Appendix A.2). Whenever variable X has covariance2 matrix identity, this result
allows, from an arbitrary smooth real function h on Rd , to find a vector β(h) ∈ I .

Proposition 2 Let X be a random variable whose density function p(x) satisfies Eq.(2)
and suppose that h(x) is a smooth real function on Rd . Assume furthermore that Σ =
E

[
XX>]

= Id . Then under mild regularity conditions on h , the following vector β(h)
belongs to the target space I :

β(h) = E [Xh(X)−∇h(X)] . (4)

In the general case where the covariance matrix Σ is different from identity, provided
it is nondegenerated, we can apply a whitening operation (also known as Mahalanobis
transform). Namely, let us put Y = Σ−

1
2 X the “whitened” data; the covariance matrix of

Y is then identity. Note that if the density function of X is of the form

p(x) = g(Tx)φΓ(x),

then by change of variable the density function of Z = AX is given by

q(z) = cAg(TA−1z)φAΓA>(z),

where cA is a normalization constant depending on A .

2. Here and in the sequel, with some abuse we call Σ = E
[
XX>]

the covariance matrix even though we
do not assume that the non-Gaussian part of the data is centered.

6
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This identity applied to A = Σ−
1
2 and the previous proposition allow to conclude that

βY (h) = E [∇h(y)− yh(y)] ∈ J = =(Σ
1
2 T ∗)

and therefore that
γ(h) = Σ−

1
2 βY (h) ∈ I = =(T ∗) ,

where I is the non-Gaussian index space for the initial variable X , and J = Σ
1
2I the

transformed non-Gaussian space for the whitened variable Y .

3. Procedure

We now use the key proposition established in the previous section to design a practical
algorithm in order to identify the non-Gaussian subspace. The first step is to apply the
whitening transform to the data (where the true covariance matrix Σ is estimated by the
empirical covariance Σ̂ ). We then estimate the “whitened” non-Gaussian space J by some
Ĵ (this will be described next); this space is then finally pulled back in the original space
by application of Σ̂−

1
2 . To simplify the exposition, in this section we will forget about

the whitening/dewhitening steps and always implicitly assume that we are dealing directly
with the whitened data: every time we refer to the non-Gaussian space it is therefore to be
understood that we refer to J = Σ

1
2I corresponding to the whitened data Y .

3.1 Principle idea

In the previous section we have proved that for an arbitrary function h satisfying mild
smoothness conditions, it is possible to construct a vector β(h) which lies in the non-
Gaussian subspace. However, since the unknown density p(x) is used (via the expectation
operator) to define β by Eq.(2), one cannot directly use this formula in practice: it is then
natural to approximate it by replacing the true expectation by the empirical expectation.
This gives rise to the estimated vector

β̂(h) =
1
n

n∑

i=1

Yih(Yi)−∇h(Yi) , (5)

which we expect to be close to the non-Gaussian subspace up to some estimation error. At
this point, a natural step is to consider a whole family of functions {hi}n

i=1 giving rise to an
associated vector family of {β̂i}L

i=1 all lying close to the target subspace, where β̂i := β̂(hi) .
The final step is to recover the non-Gaussian subspace from this set. For this purpose we
suggest to use the principal directions of this family, i.e. to apply PCA (although other
algorithmic options are certainly avalaible for this task). This general idea is illustrated on
Figure 1.

3.2 Normalization of the vectors

When extracting information on the target subspace from the set of vectors {β̂i}L
i=1 , atten-

tion should be paid to how the functions {hi}L
i=1 are normalized. As can be seen from its

definition, the operator which maps a function h to β(h) (and also its empirical counter-
part β̂(h) ) is linear. Therefore, if, for example, one of the functions {hi}L

i=1 is multiplied

7
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Figure 1: The NGCA principle idea: from a varied family of real functions, compute a
family of vectors belonging to the target space up to small estimation error.

by an arbitrarily large scalar, the associated β̂(h) could have an arbitrarily large norm:
this is likely to influence heavily the procedure of principal direction extraction applied to
the whole family.

To prevent this problem, the functions {hi}L
i=1 should be normalized in a reasonable

way. Several possibilities can come to mind, like using the sup or L2 norm of h or of ∇h .
We argue here that a sensible way to normalize functions is such that the average squared
deviation (estimation error) of β̂(h) to its mean is of the same order for all functions h
considered. This has a first direct intuitive interpretation in terms of making the length
of each estimated vector proportional to its associated signal-to-noise ratio. We argue in
more detail that the norm of β̂(h) after normalization is directly linked to the amount of
information brought by this vector about the target subspace.

Namely, if we measure the information that is brought by a certain vector β̂(h) about
the target space J through the angle θ(β̂(h)) between the vector and the space, we have

‖β̂(h)− β(h)‖ ≥ dist(β̂(h),J ) = sin(θ(β̂(h)))‖β̂(h)‖ . (6)

Suppose we have ensured by renormalization that σ(h)2 = E
[
‖β̂(h)− β(h)‖2

]
is constant

and independent of h , and assume that this results in ‖β̂(h)− β(h)‖2 being bounded
by some constant with high probability. It entails that sin(θ(β̂(h)))‖β̂(h)‖ is bounded
independently of h . We expect in this situation that the bigger ‖β̂‖ , the smaller is sin(θ) ,
and therefore the more reliable the information about J . This intuition is illustrated in
Figure 2, where the estimation error is represented by a confidence ball of equal size for all
vectors3.

Therefore, at least at an intuitive level it appears appropriate to use σ(h) as a renor-
malization. Note that this is just the square root of the trace of the covariance matrix of
β̂(h) , and therefore easy to estimate in practice from its empirical counterpart. In section
3.5, we give actual theoretical confidence bounds for ‖β − β̂‖ which justify this intuition
in a more rigorous manner.

3. Of course, the situation depicted in Figure 2 is idealized: we actually expect (from the Central Limit

Theorem) that β−β̂ has approximately a Gaussian distribution with some non-spherical variance, giving
rise to a confidence ellipsoid rather than a confidence ball. To obtain a spherical error ball, we would
have to apply a (linear) error whitening transform separately to each β̂(h) . However, in that case the
error whitening transform would be different for each h , and the information of the vector family about
the target subspace would then be lost. To preserve this information, only a scalar normalization is
adequate, which is why we recommend the normalization scheme explained here.

8
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Figure 2: For the same estimation error represented as a confidence ball of radius ε , esti-
mated vectors with higher norm give a more precise information about the true
target space.

Finally, to confirm this idea on actual data, we plot in the top row Figure 3 the distri-
bution of β̂ on an illustrative data set using the normalization scheme just described. In
order to investigate the relation between the norm of the (normalized) β̂ and the amount
of information on the non-Gaussian subspace brought by β̂ , we plot in the right part of
Figure 3 the relation between ‖β̂‖ and ‖ΠJ β̂‖/‖β̂‖ = cos(θ(β̂)) . As expected, the vec-
tors β̂ with highest norm are indeed much closer to the non-Gaussian subspace in general.
Furthermore, vectors β̂ with norm close to zero appear to bear almost no information
about the non-Gaussian space, which is consistent with the setting depicted in Figure 2:
whenever an estimated vector β̂ has norm smaller than the estimation error ε , its confi-
dence ball contains the origin, which means that it brings no useable information about the
non-Gaussian subspace.

These findings motivate two important points for the algorithm:

1. It should be beneficial to actively search for functions h which yield an estimated
β̂(h) with higher norm, since these are more informative about the target space J ;

2. The vectors β̂ with norm below a certain threshold ε can be discarded as they are
non-informative. So far the theoretical bounds presented below in section 3.5 are not
precise enough to give a canonical value for this threshold: we therefore recommend
that it be determined by a calibration procedure. For this, we consider independent
Gaussian data: in this case β = 0 for any h and thus ‖β̂‖ represents pure estimation
noise. A reasonable choice for the threshold is therefore the 95th percentile (say) of
this distribution, which we expect to reject a large majority of the noninformative
vectors.

3.3 Using FastICA as preprocessing to find promising functions

When considering a parametrized family of functions {hω} , it is a desirable goal to search
the parameter space to find indices ω such that β̂(hω) has a high norm, as proposed in
the last section. From now on we will restrict our attention to functions of the form

hω(x) = f(〈ω, x〉) , (7)

where ω ∈ Rd , ‖ω‖ = 1 , and f is a smooth real function of a real variable. Clearly, it is
not feasible to sample the entire parameter space for ω as soon as it has more than a few

9
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Figure 3: Illustrative plots of the method, applied to toy data of type (A) (See section 4.1).
Left column: Distribution of β̂ projected on a direction belonging to the target
space J (abscissa) and a direction orthogonal to it (ordinate). Right column:
‖β̂‖ (after normalization) vs. cos(θ(β̂,J )) . From top to bottom rows: random
draw of functions, after 1 -step, and after 4 -step of FastICA preprocessing. β̂ ’s
are normalized as described in section 3.2.
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dimensions, and it is not obvious a priori to find parameters ω such that β̂(hω) has a high
norm. Remember however that we do not need to find an exact maximum of this norm over
the parameter space. We merely want to find parameters such that the associated norm
is preferably high because they bring more information; this may also involve heuristics.
Naturally, good heuristics should be able to find parameters giving rise to vectors with
higher norm, bringing more information on the subspace and ultimately better practical
results, nevertheless the underlying theoretical motivation stays unchanged regardless of
the way the functions are picked.

A particularly relevant heuristic for choosing ω is suggested to us when we look at the
form of β̂ given by Eq.(5) when we plug in functions of the specific form given by Eq.(7):

β̂(hω) =
1
n

n∑

i=1

(
Yif(〈ω, Yi〉)− f ′(〈ω, Yi〉)ω

)
. (8)

It is interesting and surprising to notice that this equation precisely coincides with one iter-
ation of a well-known Projection Pursuit algorithm, FastICA (Hyvärinen, 1999). More pre-
cisely, FastICA consists in iterating the following update rule to form a sequence ω1, . . . , ωT :

ωt+1 ∝ 1
n

n∑

i=1

(
Yif(〈ωt, Yi〉)− f ′(〈ωt, Yi〉)ωt

)
(9)

where the sign ∝ indicates that vector ωt+1 is renormalized to be of unit norm.
Note that the FastICA procedure is derived from quite a different theoretical setting of

what we considered here (see e.g. Hyvärinen et al., 2001); its goal is in principle to optimize
a non-Gaussianity measure E [F (〈ω, x〉)] (where F is such that F ′ formally coincides with
our f above) and the solution is reached by an approximate Newton method giving rise to
the update rule of Eq.(9), repeated until convergence.

This formal identity leads us to adopt the FastICA methodology as a heuristic for our
method. Since finding an actual optimum point is not needed, convergence is not an issue,
so that we only iterate the update rule of Eq.(9) for a fixed number of iterations T to find a
relevant direction ωT . Finally we apply Eq.(8) one more time to this choice of parameter,
so that the procedure finally outputs β̂(hωT ) . On Figure 3, we plot the effect of a few
iterations of this preprocessing for the method, applied on toy data and see that it leads to
a significant improvement.

Paradoxically, if the convergence of this FastICA preprocessing is too good, there is in
principle a risk that all vectors β̂ end up in the vicinity of one single “best” direction instead
of spanning the whole target space: the preprocessing would then have the opposite effect
of what is wished, namely impoverishing the vector family. One possible remedy against
this is to apply so-called batch FastICA, which consists in iterating equation (9) on a m -
dimensional system of vectors, which is orthonormalized anew before each new iteration.
In our practical experiments we did not observe any significant change in the results when
using this refinement, so we mention this possibility only as a matter of precaution. We
suspect two mitigating factors against this possible unwished behavior are that (1) it is
known that FastICA does not converge to a global maximum, so that we probably find
vectors in the vicinity of different local optima and (2) the “optimal” directions depend on
the function f used and we combine a large number of such functions.
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In the next section, we will describe the full algorithm, which consists in applying the
procedure just described to different choices of the function f . Since we are using Projection
Pursuit as a heuristic to find suitable parameters ω for a fixed f , the theoretical setting
proposed here can therefore also be seen as a suitable framework for combining Projection
Pursuit results when using different index functions f .

3.4 Full procedure

The previous sections have been devoted to detailing some key points of the procedure. We
now gather these points and describe the full algorithm. We previously considered the case
of a basis function family hω(y) = f(〈ω, y〉) . We now consider a finite family of possible
choices {fk}L

k=1 which are then combined.
In the implementation tested, we have used the following forms of the functions fk :

f (1)
σ (z) = z3 exp

(
− z2

2σ2

)
, (Gauss-Pow3)

f
(2)
b (z) = tanh(bz), (Hyperbolic Tangent)

f (3)
a (z) = exp (iaz) , (Fourier4)

More precisely, we consider discretized ranges for σ ∈ [σmin, σmax] , b ∈ [0, B] , and
a ∈ [0, A] , giving rise to a finite collection {fk} (which therefore includes simultaneously
functions of the three different above families). Note that using z3 and Hyperbolic Tan-
gent functions is inspired by the classical PP algorithms (including FastICA) where these
indices are used. We multiplied z3 by a Gaussian factor in order to satisfy the boundedness
assumption needed to control the estimation error (see Theorem 3 and 4 below). Further-
more the introduction of the parameter σ2 allows for a richer family. Finally, the Fourier
functions were introduced as they constitute a rich and important family. A pseudocode
for the NGCA algorithm is described in Figure 4.

3.5 Theoretical bounds on the statistical estimation error

In this section we tackle the question of controlling the estimation error when approximating
the vectors β(h) by their empirical estimations β̂(h) from a rigorous theoretical point of
view. These results were derived with the following goals in mind:

• A cornerstone of the algorithm is that we consider a whole family h1, . . . , hL of
functions and pick selected members from it. In order to justify this from a statistical
point of view, we therefore need to control the estimation error not for a single function
h and the associated β̂(h) , but instead uniformly over the function family. For this, a
simple control of e.g. the averaged squared deviation E

[
‖β − β̂‖2

]
for each individual

h is not sufficient: we need a stronger result, namely an exponential control of the
deviation probability. This allows, by the union bound, to obtain a uniform control
over the whole family with a mild (logarithmic) dependence on the cardinality of the
family.

4. In practice, separated into real and complex parts (sine and cosine).

12
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Input: Data points (Xi) ∈ Rd , dimension m of target subspace.
Parameters: Number T of FastICA iterations; threshold ε .

Whitening.
The data Xi is recentered by subtracting the empirical mean.
Let Σ̂ denote the empirical covariance matrix of the data sample (Xi) ;
put Ŷi = Σ̂−

1
2 Xi the empirically whitened data.

Main Procedure.
Loop on k = 1, . . . , L :

Draw ω0 at random on the unit sphere of Rd .
Loop on t = 1, . . . , T : [FastICA loop]

Put β̂t ← 1
n

n∑

i=1

(
Ŷifk(〈ωt−1, Ŷi〉)− f ′k(〈ωt−1, Ŷi〉)ωt−1

)
.

Put ωt ← β̂t/‖β̂t‖ .
End Loop on t

Let Nk be the trace of the empirical covarariance matrix of β̂T :

Nk =
1
n

n∑

i=1

∥∥∥Ŷifk(〈ωT−1, Ŷi〉)− f ′k(〈ωT−1, Ŷi〉)ωT−1

∥∥∥
2
−

∥∥∥β̂T

∥∥∥
2
.

Store v(k) ← β̂T ∗
√

n/Nk. [Normalization]
End Loop on k

Thresholding.
From the family v(k) , throw away vectors having norm smaller than threshold ε .

PCA step.
Perform PCA on the set of remaining v(k) .
Let Ĵ be the space spanned by the first m principal directions.

Pull back in original space.
Î = Σ̂−

1
2 Ĵ .

Output: Î .

Figure 4: Pseudocode of the NGCA algorithm.
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• We aim at making the covariance trace σ̂2 directly appear into the main bounding
terms of our error control. This provides a more solid justification to the renormal-
ization scheme developed in section 3.2 where we had used arguments based on a
non rigorous intuition. The choice to involve directly the empirical covariance in the
bound instead of the population one was made to emphasize that estimation error for
the covariance itself is also taken into account for the bound.

• While the control of the deviation of an empirical average of the form given in Eq.(5)
is a very classical problem, we want to explicitly take into account the effect of the
empirical whitening/dewhitening using the empirical covariance matrix Σ̂ . This com-
plicates matters noticeably since this whitening is itself data-dependent.

• Our goal was not to obtain tight confidence intervals or even exact asymptotical
behavior. There is a number of ways in which our results could be substantially
refined, for example obtaining uniform bounds over continuous (instead of finite)
families of functions using covering number arguments; showing asymptotical uniform
central limit properties for a precise study of the typical deviations, etc. Here we
tried to obtain simple, while still mathematically rigorous, results, covering essential
statistical foundations of our method: consistency and order of the convergence rate.

In the sequel, for a matrix A , we denote ‖A‖ its operator norm.

Analysis of the estimation error with exact whitening. We start by considering an
idealized case where whitening is done using the true covariance matrix Σ : Y = Σ−

1
2 X .

In this case we have the following control of the estimation error:

Theorem 3 Let {hk}L
k=1 be a family of smooth functions from Rd to R . Assume that

supy,k max (‖∇hk(y)‖ , ‖hk(y)‖) < B and that X has covariance matrix Σ with
∥∥Σ−1

∥∥ ≤
K2 , and is such that for some λ0 > 0 the following inequality holds:

E [exp (λ0 ‖X‖)] ≤ a0 < ∞. (10)

Denote h̃(y) = yh(y) − ∇h(y) . Suppose X1, . . . , Xn are i.i.d. copies of X and let Yi =
Σ−

1
2 Xi . If we define

β̂Y (h) =
1
n

n∑

i=1

h̃(Yi) =
1
n

n∑

i=1

Yih(Yi)−∇h(Yi) , (11)

and

σ̂2
Y (h) =

1
n

n∑

i=1

∥∥∥h̃(Yi)− β̂Y (h)
∥∥∥

2
, (12)

then for any δ < 1
4 , with probability at least 1−4δ the following bounds hold simultaneously

for all k ∈ {1, . . . , L} :

dist
(
β̂Y (hk),J

)
≤ 2

√
σ̂2

Y (hk)
log(Lδ−1) + log d

n
+ C

(
log(nLδ−1) log(Lδ−1)

n
3
4

)
,
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and

dist
(
Σ−

1
2 β̂Y (hk), I

)
≤ 2K

√
σ̂2

Y (hk)
log(Lδ−1) + log d

n
+ C ′

(
log(nLδ−1) log(Lδ−1)

n
3
4

)
,

where dist(γ, I) denotes the distance between a vector γ and the subspace I , and C,C ′

are constants depending only on the parameters (d, λ0, a0, B, K) .

Comments.

1. The above inequality tells us that the rate of convergence of the estimated vectors to
the target space is in this case of order n−1/2 (classical “parametric” rate). Further-
more, the theorem gives us an estimation of the relative size of the estimation error for
different functions h through the empirical factor σ̂Y (h) in the principal term of the
bound. As announced in our initial goals, this therefore gives a rigorous foundation
to the intuition exposed in section 3.2 for vector renormalization.

2. Also following our goals, we obtained a uniform control of the estimation error over
a finite family with a logarithmic dependence in the cardinality. This does not cor-
respond exactly to the continuous families we use in practice but comes close enough
if we consider adequate parameter discretization. We will comment on this in more
detail after the next theorem.

Whitening using empirical covariance. When Σ is unknown (which is in general the
case), we use instead the empirical covariance matrix Σ̂ . Here we will show that under a
somewhat stronger assumption on the distribution of X and on the functions h , we are
still able to obtain a convergence rate of order at most

√
log(n)/n towards the index space

I .
Let us denote Ŷi = Σ̂−

1
2 Xi the empirically whitened datapoints, h̃(y) = yh(y)−∇h(y)

as previously, and

β̂
Ŷ

(h) =
1
n

n∑

i=1

h̃(Ŷi) =
1
n

n∑

i=1

Ŷih(Ŷi)−∇h(Ŷi) ; (13)

finally, let us denote

γ̂(h) = Σ̂−
1
2 β̂

Ŷ
(h) , and σ̂2

Ŷ
(h) =

1
n

n∑

i=1

∥∥∥h̃(Ŷi)− β̂
Ŷ

(h)
∥∥∥

2
.

We then have the following theorem:

Theorem 4 Let us assume the following :
(i) There exists λ0 > 0, a0 > 0 such that

E
[
exp

(
λ0 ‖X‖2

)]
= a0 < ∞ ;

(ii) The covariance matrix Σ of X is such that
∥∥Σ−1

∥∥ ≤ K2 ;
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(iii) supk,y max (‖∇hk(y)‖ , ‖hk(y)‖) < B ;
(iv) The functions h̃k(y) = ∇hk(y)− yhk(y) are all Lipschitz with constant M .

Then for big enough n , with probability at least 1 − 4
n − 4δ the following bounds hold

true simultaneously for all k ∈ {1, . . . , L} :

dist(β̂
Ŷ

(hk),J ) ≤ C1

√
d log n

n
+ 2

√
σ̂2

Ŷ
(hk)

log(Lδ−1) + log d

n
+ C2

log(nLδ−1) log(Lδ−1)

n
3
4

,

and

dist(γ̂(hk), I) ≤ C ′
1

√
d log n

n
+ 2K

√
σ̂2

Ŷ
(hk)

log(Lδ−1) + log d

n
+ C ′

2

log(nLδ−1) log(Lδ−1)

n
3
4

,

where C1, C
′
1 are constants depending on parameters (λ0, a0, B,K, M) only and C2, C

′
2 on

(d, λ0, a0, B, K,M) .

Comments.

1. Theorem 4 implies that the vectors γ̂(hk) obtained from any h(x) converge to the
unknown non-Gaussian subspace I uniformly at a rate of order

√
log(n)/n .

2. The condition (i) is a restrictive assumption as it excludes some densities with heavy
tails. We are considering weakening this assumption in future developments.

3. In the actual algorithm we consider a family of functions of the form hω(x) =
f(〈ω, x〉) , with ω on the unit sphere of Rd . Suppose we approximate ω by its
nearest neighbor ω̃ on a regular grid of scale ε . Then we only have to apply the
bound to a discretized family of size L = O(ε1−d) , giving rise only to an additional
factor in the bound of order

√
d log ε−1 . Taking for example ε = 1/n (the fact that

the function family depends on n is not a problem since the bounds are valid for any
fixed n ), this ensures convergence of the discretized functions to the initial continu-
ous family while introducing only in an additional factor

√
d log n in the bound: this

does not change fundamentally the order of the bound since there is already another√
d log n term present.

4. For both Theorems 3 and 4 we have given bounds for estimation of both I and J ,
that is, in terms of the initial data and of the “whitened” data. The result in terms of
the initial data ensures the overall consistency of the approach, but the convergence
in the whitened space is equally interesting since we use it as the main working space
for the algorithm.

5. Comparing to Theorem 3 obtained for exact whitening, we see in the present case
that there is an additional term of principal order in n coming from the estimation
error of Σ , with a multiplicative factor which unfortunately is not known accurately.
This means that the renormalization scheme is not completely justified in this case,
although we feel the idealized situation of Theorem 3 already provides some strong
argument in this direction. However, the present result suggests that the accuracy of
the normalization could probably be further improved.
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4. Numerical results

Parameters used: All of the experiments presented where obtained with exactly the
same set of parameters: a ∈ [0, 4] for the Fourier functions; b ∈ [0, 5] for the Hyper-
bolic Tangent functions; σ2 ∈ [0.5, 5] for the Gauss-pow3 functions. Each of these ranges
was divided into 1000 equispaced values, thus yielding a family {fk} of size 4000 (Fourier
functions count twice because of the sine and cosine parts). The preliminary calibration
procedure described in the end of section 3.2 suggested to take ε = 1.5 as the threshold un-
der which vectors are not informative (strictly speaking, the threshold should be calibrated
separately for each function f but we opted here for a single threshold for simplicity).
Finally we fixed the number of FastICA iterations T = 10 . With this choice of parameters
and 1000 data points in the sample, the computation time is typically of the order of less
than 10 seconds on a modern PC under our Matlab implementation.

4.1 Tests in a controlled setting

For testing our algorithm and comparing it with PP, we performed numerical experiments
using various synthetic data. Here we report exemplary results using the following 4 data
sets. Each data set includes 1000 samples in 10 dimension and each sample consists of
8 -dimensional independent standard Gaussian. Other 2 non-Gaussian components are as
follows.

(A) Simple Gaussian Mixture: 2 -dimensional independent Gaussian mixtures with
density of each component given by

1
2
φ−3,1(x) +

1
2
φ3,1(x), (14)

(B) Dependent super-Gaussian: 2 -dimensional isotropic distribution with density pro-
portional to exp(−‖x‖) .

(C) Dependent sub-Gaussian: 2 -dimensional isotropic uniform with constant positive
density for ‖x‖ ≤ 1 and 0 otherwise.

(D) Dependent super- and sub-Gaussian: 1 -dimensional Laplacian with density pro-
portional to exp(−|xLap|) and 1 -dimensional dependent uniform U(c, c + 1) , where
c = 0 for |xLap| ≤ log 2 and c = −1 otherwise.

For each of these situations, the non-Gaussian components are additionally rescaled coor-
dinatewise by a fixed factor so that each coordinate has unit variance. The profiles of the
density functions of the non-Gaussian components in the above data sets are described in
Figure 5.

We compare the following three methods in the experiments: PP with ‘pow3’ or ‘tanh’
index5 (denoted by PP(pow3) and PP(tanh), respectively), and the proposed NGCA.

5. We used the deflation mode of the FastICA code (Hyvärinen et al., 2001) as an implementation of PP.
The ‘pow3’ flavor is equivalent to a kurtosis based index, i.e. in this case, FastICA iteratively maximizes
the kurtosis. On the other hand, the ‘tanh’ flavor uses a robust index which is appropriate in particular
for heavy-tailed data.
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(A) (B) (C) (D)

Figure 5: Densities of non-Gaussian components. The data sets are: (a) 2D independent
Gaussian mixtures, (b) 2D isotropic super-Gaussian, (c) 2D isotropic uniform and
(d) dependent 1D Laplacian + 1D uniform.
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Figure 6: Boxplots of the error criterion E(Î, I) .
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Figure 7: Performance comparison plots (for error criterion E(Î, I) ) of NGCA versus
FastICA; top: versus pow3 index; bottom: versus tanh index.
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Figure 6 shows boxplots of the error criterion E(Î, I) defined in Eq.(3) obtained from
100 runs. Figure 7 shows comparison of the errors obtained by different methods for each
individual trial. Because PP tends to get trapped into local optima of the index function
it optimizes, we restarted it 10 times with random starting points and took the subspace
obtaining the best index value. However, even when it is restarted 10 times, PP (especially
with the ‘pow3’ index) still gets caught in local optima in a small percentage of cases (we
also tried up to 500 restarts but it led to negligible improvement).

For the simplest data set (A), NGCA is comparable or slightly better than PP methods.
It is known that PP(tanh) is suitable for finding super-Gaussian components (heavy-tailed
distribution) while PP(pow3) is suitable for finding sub-Gaussian components (light-tailed
distribution) (Hyvärinen et al., 2001). This can be observed in the data sets (B) and
(C): PP(tanh) works well for the data set (B) and PP(pow3) works well for the data set
(C), although the upper-quantile is very large for the data set (C) (because of PP getting
trapped in local minima). The plots of Figure 7 confirm that NGCA is on average on par
or slightly better than PP with ‘correct’ non-Gaussianity index without having to prefix
such a non-Gaussianity index. For the data set (C), NGCA appears to be very slightly
worse than PP(pow3) (excluding those cases where PP fails due to local minima: the
corresponding points are outside the range of the figure), but this appears hardly significant.
The superiority of the index adaptation feature of NGCA can be clearly observed in the
data set (D), which includes both sub- and super-Gaussian components. Because of this
composition, there is no single best non-Gaussianity index for this data set, and the proposed
NGCA gives significantly lower error than that of either PP method.

Failure modes. We now try to explore the limits of the method and the conditions under
which estimation of the target space will fail. First, we study the behaviour of NGCA again
compared with PP as the total dimension of the data increases. We use the same synthetic
data sets with 2-dimensional non-Gaussian components, while the number of Gaussian
components increases. The averaged errors over 100 experiments are depicted in Figure 8.
In all cases we seem to observe a sharp phase transition between a good behaviour regime
and a failure mode where the procedure is unable to estimate the correct subspace. In 3
out of 4 cases however we observe that the phase transition to the failure mode occurs for
a higher dimension for NGCA than for the PP methods, which indicates better robustness
of NGCA.

In the synthetic data sets used so far, the data was always generated with a covariance
matrix equal to identity. Another interesting setting to study is the robustness with respect
to bad conditioning of the covariance matrix. We consider again a fixed-dimension setting,
with 2 non-Gaussian and 8 gaussian dimensions.

While the non-Gaussian coordinates always have variance unity, the standard
deviation of the 8 Gaussian dimensions now follows the geometrical progression
10−r, 10−r+2r/7, . . . , 10r. Thus, the higher r , the worse conditioned is the total covariance
matrix.

The results are depicted in Figure 9, where we observe again a transition to a failure
mode when the covariance matrix is too badly conditioned. Although NGCA still appears
as the best method, we observe that on 3 out of 4 data sets the transition to failure mode
seems to happen roughly at the same point as for PP methods. This suggests that there is
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Figure 8: Results when the total dimension of the data increases.
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Figure 9: Results when the Gaussian (noise) components have different scales (the stan-
dard deviations follow a geometrical progression on [10−r, 10r] where r is the
parameter on the abscissa).
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no or only little added robustness of NGCA with respect to PP in this regard. However, this
result is not entirely surprising, as we expect this type of failure mode to be caused by a too
large estimation error in the covariance matrix and therefore in the whitening/dewhitening
steps. Since these steps are common to NGCA and the PP algorithms, it seems logical to
expect a parallel evolution of their errors.

4.2 Example of application for realistic data: visualization and clustering

We now give an example of application of our methodology to visualization and clustering
of realistic data. We consider here “oil flow” data which has been obtained by numerical
simulation of a complex physical model. This data was already used before for testing
techniques of dimension reduction (Bishop et al., 1998). The data is 12-dimensional and it
is not known a priori if some dimensions are more relevant. Here our goal is to visualize
the data and possibly exhibit a clustered structure. Furthermore it is known that the data
is divided into 3 classes. We show classes in different colors but the class information is not
used in finding the directions (i.e. the process is unsupervised).

We compare the NGCA methodology described in the previous section, and PP
(“vanilla” FastICA) using the tanh or the pow3 index. The results are shown on Fig-
ure 10. A 3D projection of the data was computed using these methods, which was in turn
projected in 2D to draw the figure; this last projection was chosen manually so as to make
the cluster structure as visible as possible in each case.

We see that the NGCA methodology gives a much more relevant projection than PP
using either tanh or pow3 alone: we can distinguish 10-11 clusters versus at most 5 for the
PP methods. Furthermore the classes are clearly separated only on the NGCA projection,
on the other ones they are partially confounded in one single cluster. Finally, we confirm,
by applying the projection found to held-out test data (i.e. data not used to determine the
projection), that the cluster structure is relevant and not due to some overfitting artifact.
This, in passing, shows one advantage of a linear projection method, namely that it can be
extended to new data in a straightforward way.

Presumably, an important difference between the NGCA projection and the others comes
from the Fourier functions, since they are not present in either of the PP methods. It can
be confirmed by looking at the vector norms that Fourier functions are more relevant for
this data set; they gave rise to estimated vectors with generally higher norms and had
consequently a sizable influence of the choice of the projection. One could object that we
have been merely lucky for this specific data because Fourier functions happened to be more
relevant, and neither PP method uses this index. One could suggest, for fair comparison, to
use the PP algorithm with a Fourier index. However, beside the fact that this index is not
generally used in classical PP methods, the results would be highly dependent of the specific
frequency parameter chosen, so we did not make experiments in that direction (by contrast,
the NGCA methodology allows to combine vectors obtained from different frequencies). On
the other hand, another route to investigate the relevance of this objection is to look at
the results obtained by the NGCA method if Fourier functions are not used – thus only
considering Gauss-pow3 and tanh. In this case we still hope an improvement over PP
because NGCA is combining indices (as well as combining over the parameters ranges σ2

and b ). This is confirmed in Figure 10: even without the relevant Fourier functions, NGCA
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Figure 10: 2D projection of the “oil flow” (12-dimensional) data obtained by different al-
gorithms. Top: vanilla FastICA methods (left: tanh index, right: pow3 index).
Middle: on the left, projection obtained by NGCA (using a combination of
Fourier, tanh, Gauss-pow3 indices). On the right is the projection obtained by
applying NGCA without the Fourier index. Finally, the bottom panel shows
the projection of additional test data using the projection found by NGCA on
the middle-left panel. In each case (except the bottom panel), the data was
first projected in 3D using the respective methods (without class information),
from which a 2D projection was chosen visually so as to yield the clearer cluster
structure. For the bottom panel, the 2D projection found from the middle-left
panel was used to visualize additional test data.
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yields a projection where 8 clusters can be distinguished, and the classes are much more
clearly separated than with PP methods. Finally, a visual comparison with the results
obtained by Bishop et al. (1998) demonstrated that the projection found by our algorithm
exhibits a clearer clustered structure; moreover ours is a purely linear projection whereas
the latter reference was a nonlinear data representation

Further analysis on clustering performance with additional data sets are given in the
Appendix and underline the usefulness of our method.

5. Conclusion

We proposed a new semi-parametric framework for constructing a linear projection to sep-
arate an uninteresting multivariate Gaussian ‘noise’ subspace of possibly of large amplitude
from the ‘signal-of-interest’ subspace. Our theory provides generic consistency results on
how well the non-Gaussian directions can be identified (Theorem 4). To estimate the non-
Gaussian subspace from the set of vectors obtained, PCA is finally performed after suitable
renormalization and elimination of uninformative vectors. The key ingredient of our NGCA
method is to make use of the gradient computed for the nonlinear basis function h(x)
in Eq.(11) after data whitening. Once the low-dimensional ‘signal’ part is extracted, we
can use it for a variety of applications such as data visualization, clustering, denoising or
classification.

Numerically we found comparable or superior performance to, e.g., FastICA in deflation
mode as a generic representative of the family of PP algorithms. Note that in general
PP methods need to pre-specify a projection index with which they search non-Gaussian
components. By contrast, an important advantage of our method is that we are able to
simultaneously use several families of nonlinear functions; moreover, also inside a same
function family we are able to use an entire range of parameters (such as frequency for
Fourier functions). Thus, our new method provides higher flexibility, and less restricting
assumptions a priori on the data. In a sense, the functional indices that are the most
relevant for the data at hand are automatically selected.

Future research will adapt the theory to simultaneously estimate the dimension of the
non-Gaussian subspace. Extending the proposed framework to non-linear projection sce-
narios (Cox and Cox, 1994; Schölkopf et al., 1998; Roweis and Saul, 2000; Tenenbaum et al.,
2000; Belkin and Niyogi, 2003; Harmeling et al., 2003) and to finding the most discrimina-
tive directions using labels are examples for which the current theory could be taken as a
basis.
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Appendix A. Proofs of the theorems

A.1 Proof of Lemma 1

Suppose first that the noise N is standard normal. Denote by ΠE the projector from Rd

to Rm which corresponds to the subspace E . Let also E⊥ be the subspace complementary
to E and ΠE⊥ mean the projector on E⊥ . The standard normal noise can be decomposed
as N = N1 u N2 where N1 = ΠEN and N2 = ΠE⊥N are independent noise components.
Similarly, the signal X can be decomposed as

X = (ΠES + N1) u N2

where we have used the model assumption that the signal S is concentrated in E and it
is independent of N . It is clear that the density of ΠES + N1 in Rm can be represented
as the product g(x1)φ(x1) for some function g and the standard normal density φ(x1) ,
x1 ∈ Rm . The independence of N1 and N2 yields the in the similar way for x = (x1, x2)
with x1 = ΠEx and x2 = ΠE⊥x that p(x) = g(x1)φ(x1)φ(x2) = g(x1)φ(x) . Note that for
the linear mapping T = ΠE characterizes the signal subspace E . Namely, E is the image
=(T ∗) of the dual operator T ∗ while E⊥ is the null subspace (kernel) of T : E⊥ = K(T ) .

Next we drop the assumption of the standard normal noise and assume only that the
covariance matrix Γ of the noise is nondegenerated. Multiplying the both sides of the
equation (1) by the matrix Γ−1/2 leads to Γ−1/2X = Γ−1/2S + Ñ where Ñ = Γ−1/2N
is standard normal. The transformed signal X̃ = Γ−1/2S belongs to the subspace
Ẽ = Γ−1/2E . Therefore, the density of X̃ can be represented as p(x̃) = g̃(Π

Ẽ
x̃)φ(x̃)

where Π
Ẽ

is the projector corresponding to Ẽ . Coming back the variable x yields the
density of X in the form p(x) = g(Tx)φ(Γ−1/2x) where T = Π

Ẽ
Γ−1/2 .

A.2 Proof of Proposition 2

For any function ψ(x) , it holds that
∫

ψ(x + u)p(x)dx =
∫

ψ(x)p(x− u)dx,

if the integrals exists. Under mild regularity conditions on p(x) and ψ(x) allowing differ-
entiation under the integral sign, differentiating this with respect to u gives

∫
∇ψ(x)p(x)dx = −

∫
ψ(x)∇p(x)dx. (15)

Let us take the following function

ψh(x) := h(x)− x>E [Xh(X)] ,

whose gradient is
∇ψh(x) = ∇h(x)− E [Xh(X)] .
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The vector β(h) is the expectation of −∇ψh . From Eq.(15) and using ∇p(x) =
∇ log p(x) p(x) , we have

β(h) =
∫

ψh(x)∇ log p(x) p(x)dx.

Applying Eq.(2) to the above equation yields

β(h) =
∫

ψh(x)∇ log g(Tx) p(x)dx−
∫

ψh(x)Γ−1x p(x)dx

= T ∗
∫

ψh(x)∇g(Tx)φθ,Γ(x)dx− Γ−1

∫
xψh(x)p(x)dx. (16)

Under the assumption E
[
XX>]

= Id , we get

E [Xψh(X)] = E [Xh(X)]− E
[
XX>

]
E [Xh(X)] = 0,

that is, the second term of Eq.(16) vanishes. Since the first term of Eq.(16) belongs to I
by the definition of I , we finally have β(h) ∈ I .

A.3 Proof of Theorem 3

For a fixed function h, we will essentially apply Lemma 5 stated below for each coordinate
of βY (h) . Denoting the k -th coordinate of a vector v by v(k) , and y = Σ−

1
2 x , we have

h̃(k)(x) =
∣∣∣[∇h(y)− yh(y)](k)

∣∣∣ ≤ B(1 + ‖y‖) ≤ B (1 + K ‖x‖) .

It follows that h̃(k)(x) is such that

E
[
exp

(
λ0

BK
h̃(k)(x)

)]
≤ a0 exp

(
λ0

K

)
,

and hence satisfies the assumption of Lemma 5. Denoting by σ̂2
k the sample variance of

h̃(k) , we apply the lemma with δ′ = δ/d , obtaining by the union bound that with probability
at least 1− 4δ , for all 1 ≤ k ≤ d :

([
βY − β̂Y

](k)
)2

≤ 4σ̂2
k

log
(
dδ−1

)

n
+ C1(λ0, a0, B, d,K)

log2(nδ−1) log2 δ−1

n
3
2

,

where we have used the inequality (a + b)2 ≤ 2(a2 + b2) and C1 denotes some function
depending only on the indicated quantities. Now summing over the coordinates, taking the
square root and using

√
a + b ≤ √

a +
√

b leads to:

∥∥∥βY − β̂Y

∥∥∥ ≤ 2

√
σ̂2

Y (h)
log δ−1 + log d

n
+ C2(λ0, a0, B, d, K)

(
log(nδ−1) log δ−1

n
3
4

)
, (17)

with probability at least 1 − 4δ . To turn this into a uniform bound over the family
{hk}L

k=1, we simply apply this inequality separately to each function in the family with
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δ′′ = δ/L. This leads to the first announced inequality of theorem. We obtain the second
one by multiplying the first by Σ−

1
2 to the left and using the assumption on

∥∥Σ−1
∥∥.

Lemma 5 Let X be a real random variable such that for some λ0 > 0 :

E [exp (λ0 |X|)] ≤ a0 < ∞.

Let X1, . . . , Xn denote an i.i.d. sequence of copies of X . Let µ = E [X] , µ̂ = 1
n

∑n
i=1 Xi

and σ̂2 = 1
2n(n−1)

∑
i6=j(Xi −Xj)2 be the sample variance.

Then for any δ < 1
4 the following holds with probability at least 1 − 4δ , where c is a

universal constant:

|µ− µ̂| ≤
√

2σ̂2 log δ−1

n
+ cλ−1

0 max
(
1, log

(
na0δ

−1
))

((
log δ−1

n

) 3
4

+
log δ−1

n

)
.

Proof For A > 0 denote XA = X1{|X| ≤ A} . We decompose
∣∣∣∣∣
1
n

n∑

i=1

Xi − µ

∣∣∣∣∣ ≤
∣∣∣∣∣
1
n

n∑

i=1

(
Xi −XA

i

)
∣∣∣∣∣ +

∣∣∣∣∣
1
n

n∑

i=1

XA
i − E

[
XA

]
∣∣∣∣∣ +

∣∣E [
X −XA

]∣∣ ;

these three terms will be denoted by T1, T2, T3 . By Markov’s inequality, it holds that

P [|X| > t] ≤ a0 exp (−λ0t) ,

Fixing A = log
(
nδ−1a0

)
/λ0 for the rest of the proof, it follows by taking t = A in the

above inequality that for any 1 ≤ i ≤ n :

P
[
XA

i 6= Xi

] ≤ δ

n
.

By the union bound, we then have XA
i = Xi for all i , and therefore T1 = 0 , except for a

set ΩA of probability bounded by δ .
We now deal with the third term: we have

T3 = |E [X1{|X| > A}]| ≤ E [X1{X > A}] =
∫ ∞

0
P [X1{X > A} > t] dt

≤ AP [X > A] +
∫ ∞

A
a0 exp (−λ0t) dt

≤ a0

(
A + λ−1

0

)
exp (−λ0A)

=
δ

nλ0

(
1 + log

(
nδ−1a0

))
.

Finally, for the second term, since
∣∣XA

∣∣ ≤ A = λ−1
0 log

(
nδ−1a0

)
, Bernstein’s inequality

ensures that with probability as least 1− 2δ the following holds:
∣∣∣∣∣
1
n

n∑

i=1

XA
i − E

[
XA

]
∣∣∣∣∣ ≤

√
2Var [XA] log δ−1

n
+ 2

log
(
nδ−1a0

)
log δ−1

λ0n
.
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We finally turn to the estimation of Var
[
XA

]
. The sample variance of XA is given by

(σ̂A)2 =
1

2n(n− 1)

∑

i6=j

(
XA

i −XA
j

)2
;

Note that (σ̂A)2 is an unbiased estimator of Var
[
XA

]
. Furthermore, replacing XA

i by
X ′A

i in the above expression changes this quantity at most of 4A2/n since XA
i appears only

in 2(n − 1) terms. Therefore, application of the bounded difference (a.k.a. McDiarmid’s)
inequality (McDiarmid , 1989) to the random variable σ̂A yields that with probability 1−δ
we have

∣∣(σ̂A)2 −Var
[
XA

]∣∣ ≤ 4A2

√
log δ−1

n
;

finally, except for samples in the set ΩA which we have already excluded above, we have
σ̂A = σ̂ . Gathering these inequalities lead to the conclusion.

A.4 Proof of Theorem 4

In this proof we will denote by C(·) a factor depending only on the quantities inside the
parentheses, and whose exact value can vary from line to line.

From Lemmas 9 and 10 below, we conclude that for big enough n , the following in-
equality is satisfied with probability 1− 2/n:

∥∥∥Σ−
1
2 − Σ̂−

1
2

∥∥∥ ≤ C(a0, λ0,K)

√
d log n

n
; (18)

also, it is a a weaker consequence of Lemmas 7 and 8 that the following inequalities hold
with probability at least 1− 1/n each (again for n big enough):

1
n

n∑

i=1

‖Xi‖ ≤ C(a0, λ0) , (19)

1
n

n∑

i=1

‖Xi‖2 ≤ C(a0, λ0) . (20)

Let us denote Ω the set of samples where (18), (19) and (20) are satisfied simultaneously;
from the above we conclude that for large enough n the set Ω contains the sample with
probability at least 1− 4/n. For the remainder of the proof we suppose that this condition
is satisfied.

For any function h, we have
∥∥∥β̂

Ŷ
− βY

∥∥∥ ≤
∥∥∥β̂

Ŷ
− β̂Y

∥∥∥ +
∥∥∥β̂Y − βY

∥∥∥

Note that (up to some changes in the constants) the assumption on the Laplace transform
is stronger than the assumption of Theorem 3; hence equation (17) in the proof of this
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theorem holds and we have with probability at least 1− 4δ , for any function in the family
{hk}L

k=1 :

∥∥∥βY − β̂Y

∥∥∥ ≤ 2

√
σ̂2

Y (h)
log (Lδ−1) + log d

n
+ C(λ0, a0, B, d, K)

(
log(nLδ−1) log

(
Lδ−1

)

n
3
4

)
.

(21)
On the other hand, conditions (18) and (19) imply that for any function h in the family,

∥∥∥β̂
Ŷ
− β̂Y

∥∥∥ =

∥∥∥∥∥
1
n

n∑

i=1

(
h̃(Ŷi)− h̃(Yi)

)∥∥∥∥∥ ≤
M

n

n∑

i=1

∥∥∥Ŷi − Yi

∥∥∥

≤ M

n

∥∥∥Σ−
1
2 − Σ̂−

1
2

∥∥∥
n∑

i=1

‖Xi‖

≤ C(a0, λ0,K)M

√
d log n

n
.

where in the first inequality, we have used the Lispchitz assumption on the function h.
One remaining technicality is to replace the term σ̂Y (h) (which cannot be evaluated

from the data since it depends on the exactly whitened data Yi ) in (21) by σ̂
Ŷ

(h) which
can be evaluated from the data. For this use the following, holding for any function h in
the family:

∣∣∣σ̂2
Y (h)− σ̂2

Ŷ
(h)

∣∣∣ =
1

2n(n− 1)

∣∣∣∣∣∣
∑

i 6=j

∥∥∥h̃(Yi)− h̃(Yj)
∥∥∥

2
−

∥∥∥h̃(Ŷi)− h̃(Ŷj)
∥∥∥

2

∣∣∣∣∣∣
;

let us now focus on one term of the above sum:
∥∥∥h̃(Yi)− h̃(Yj)

∥∥∥
2
−

∥∥∥h̃(Ŷi)− h̃(Ŷj)
∥∥∥

2

=
(
h̃(Yi)− h̃(Ŷi)− h̃(Yj) + h̃(Ŷj)

)> (
h̃(Yi)− h̃(Yj) + h̃(Ŷi)− h̃(Ŷj)

)

≤ M2
(∥∥∥Yi − Ŷi

∥∥∥ +
∥∥∥Yj − Ŷj

∥∥∥
)(
‖Yi − Yj‖+

∥∥∥Ŷi − Ŷj

∥∥∥
)

≤ M2
∥∥∥Σ−

1
2 − Σ̂−

1
2

∥∥∥
(∥∥∥Σ−

1
2

∥∥∥ +
∥∥∥Σ̂−

1
2

∥∥∥
)

(‖Xi‖+ ‖Xj‖)2

≤ M2C(a0, λ0,K)

√
d log n

n

(
‖Xi‖2 + ‖Xj‖2

)
,

where we have used the Cauchy-Schwarz inequality, the triangular inequality and the Lip-
schitz assumption on h̃ at the third line. Summing over i 6= j this expression and using
condition (20) we obtain

∣∣∣σ̂2
Y (h)− σ̂2

Ŷ
(h)

∣∣∣ ≤ M2C(a0, λ0,K)

√
d log n

n
,

so that we can effectively replace σ̂Y by σ̂
Ŷ

in (21) up to additional lower-order terms.
This concludes the proof of the first inequality in the theorem.
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For the second inequality, we additionally write

dist(γ̂(h), I) ≤
∥∥∥Σ̂−

1
2 β̂

Ŷ
− Σ−

1
2 βY

∥∥∥
≤

∥∥∥Σ−
1
2 − Σ̂−

1
2

∥∥∥ ‖βY ‖+
∥∥∥Σ−

1
2

∥∥∥
∥∥∥β̂

Ŷ
− βY

∥∥∥ +
∥∥∥Σ−

1
2 − Σ̂−

1
2

∥∥∥
∥∥∥β̂

Ŷ
− βY

∥∥∥ ;

we now conclude using (18), the previous inequalities controlling
∥∥∥β̂

Ŷ
− βY

∥∥∥ , the assump-

tion on
∥∥∥Σ−

1
2

∥∥∥ and the fact that

‖βY ‖ = ‖E [Xh(X)−∇h(X)]‖ ≤ B(1 + E [‖x‖]) ≤ C(a0, λ0, B) .

Appendix B. Additional proofs and results

We have used Bernstein’s inequality which we recall here for completeness under the fol-
lowing form:

Theorem 6 Suppose X1, . . . , Xn are i.i.d. real random variables such that |X| ≤ b and
V arX = σ2 . Then

P

[∣∣∣∣∣n
−1

∑

i

Xi − E(Xi)

∣∣∣∣∣ >

√
2σ2

x

n
+ 2b

x

n

]
≤ 2 exp(−x).

The following results concern the estimation of Σ−
1
2 , needed in the proof of Theorem 4.

We divide this into 4 lemmas.

Lemma 7 Let ξ1, . . . , ξn be i.i.d. with E [ξ1] = m and assume logE [expµ(ξ1 −m)] ≤
cµ2/2 holds for all µ ≤ µ0 , for some positive constants c and µ0 . Then for sufficiently
large n

P

[
n−1/2

n∑

i=1

(ξi −m) > z

]
≤ e−c−1z2/2.

Proof This is an application of Chernoff’s bounding method:

Rn := logP

[
n−1/2

n∑

i=1

(ξi −m) > z

]

≤ −µz
√

n + logE

[
exp

n∑

i=1

µ(ξi −m)

]

= −µz
√

n + n logE [expµ(ξ1 −m)] ,

where the above inequality is Markov’s. We select µ = zn−1/2c−1 . For n sufficiently large,
it holds that µ ≤ µ0 and by the lemma condition

Rn ≤ −µz
√

n + ncµ2/2 = −z2c−1/2.
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The goal of the following Lemma is merely to replace the assumption about the Laplace
transform (in the previous Lemma) by a simpler assumption (existence of some exponential
moment). This allows a simpler statement – as far as we are not really interested in the
precise constants involved.

Lemma 8 Let X be a real random variable such that for some µ0 > 0 :

E [exp(µ0 |X|)] = e0 < ∞.

Then there exists c > 0 (depending only on µ0 and e0 ) such that

∀µ ∈ R |µ| ≤ µ0/2 ⇒ logE [exp (µ (X − E [X]))] ≤ cµ2/2.

Proof Note that X has finite expectation since |X| ≤ µ−1
0 expµ0 |X| . Taylor’s expansion

gives that

∀x ∈ R, ∀µ ∈ R, |µ| < µ0/2 ⇒ exp(µx) ≤ 1 + µx +
µ2

2
x2 exp(|µ0| |x| /2). (22)

There exists some constant c > 0 (depending on µ0 ) such that

∀x ∈ R, x2 exp(|µ0x| /2) ≤ c (exp(|µ0x|)) .

Using this and the assumption, taking expectation in (22) yields that for c′ = 1
2ce0 > 0

∀µ ∈ R, |µ| < µ0/2 ⇒ E [exp(µX)] ≤ 1 + µE [X] + c′µ2 ≤ exp
(
µE [X] + c′µ2

)
,

implying
E [exp (µ (X − E [X]))] ≤ exp

(
c′µ2

)
;

taking logarithms on both sides yields the conclusion.

The next two Lemmas, once combined, provide the confidence bound on
∥∥∥Σ−

1
2 − Σ̂−

1
2

∥∥∥
which we need for the proof of Theorem 4.

Lemma 9 Let X1, . . . , Xn be i.i.d. vectors in Rd . Assume that, for some µ0 > 0 ,

E
[
exp

(
µ0 ‖X‖2

)]
= e0 < ∞ ; (23)

denote Σ = E
[
XX>]

and Σ̂ it empirical counterpart. Then for some constant κ depend-
ing only on (µ0, e0) , and for big enough n ,

R∗
n := P

[∥∥∥Σ− Σ̂
∥∥∥ >

√
κd log n

n

]
≤ 2

n
.

31



Blanchard, Kawanabe, Sugiyama, Spokoiny and Müller

Proof Along this proof C, c will denote constants depending only on µ0, e0 ; their exact
value can change from line to line. Note that by definition of Σ and Σ̂ ,

∥∥∥Σ− Σ̂
∥∥∥ = sup

θ∈Bd

1
n

n∑

i=1

(
(X>

i θ)2 − E
[(

X>θ
)2

])
,

where Bd denotes the unit ball of Rd . For ε < 1 , let Bd,ε denote a ε-packing set of
Bd, that is, a discrete ε -separated set of points of Bd of maximum cardinality. By the
maximality assumption and the triangle inequality, Bd,ε is also a 2ε-covering net of Bd. On
the other hand, the ε-balls centered on these points are disjoint and their union is included
in the ball of radius (1 + ε) , so that a volume comparison allows us to conclude that
#(Bd,ε)εd ≤ (1 + ε)d ≤ 2d . This shows that Bd,2ε is a 4ε-covering set of Bd of cardinality
bounded by ε−d.

Now, if θ, θ′ ∈ Bd are such that ‖θ − θ′‖ ≤ 4ε , then we have
∣∣∣∣∣

n∑

i=1

(X>
i θ)2 −

n∑

i=1

(X>
i θ′)2

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

(X>
i (θ − θ′))(X>

i (θ + θ′))

∣∣∣∣∣

≤ 8ε

n∑

i=1

‖Xi‖2 ,

where we have applied the Cauchy-Schwarz inequality at the last line.
Now application of Lemmas 7 and 8 yields that for n large enough, with probability at

least 1− 1/n ,

n−1
n∑

i=1

‖Xi‖2 ≤ E
[
‖X‖2

]
+

√
c log n

n
≤ C .

The above implies that with probability at least 1− 1/n ,

sup
θ,θ′∈Bd:‖θ−θ′‖≤2ε

n−1/2

∣∣∣∣∣
n∑

i=1

(X>
i θ)2 −

n∑

i=1

(X>
i θ′)2

∣∣∣∣∣ ≤ Cε
√

n .

We can also show a similar inequality about the corresponding expectation

sup
θ,θ′∈Bd:‖θ−θ′‖≤2ε

n−1/2
∣∣∣E

[
(X>θ)2

]
− E

[
(X>θ′)2

]∣∣∣ ≤ Cε
√

n .

We now select ε = n−
1
2 . Therefore, approximating any θ ∈ Bd by its nearest neighbour

in Bd,2ε and using the above inequalitites, we obtain that

R∗
n ≤ 1

n
+ P

[
sup

θ∈Bd,2ε

n−1/2
n∑

i=1

(
(X>

i θ)2 − E
[(

X>θ
)2

])
>

√
κd log n− C

]

≤ 1
n

+
∑

θ∈Bd,2ε

P

[
n−1/2

n∑

i=1

(
(X>

i θ)2 − E
[(

X>θ
)2

])
>

√
(κ− C)d log n

]

≤ 1
n

+ #(Bd,2ε) exp{−0.5c−1(κ− C)d log n} ≤ 2
n
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provided that κ is chosen so that c−1(κ − C)d/2 > d/2 + 1 . Here we
have again used Lemmas 7 and 8, noting that for any θ ∈ Bd it holds that
E

[
expµ0

∣∣θ>X
∣∣] ≤ E [expµ0 ‖X‖] < exp(µ0) + e0 by assumption.

Lemma 10 Let A,B be two real positive definite symmetric matrices satisfying
‖A−B‖ ≤ ε with ε ≤ (2

∥∥A−1
∥∥)−1 . Then there exists a constant C such that

∥∥∥A−
1
2 −B− 1

2

∥∥∥ ≤ C
∥∥A−1

∥∥ 3
2 ε .

Proof
Note that for ‖M‖ < 1 it holds that

(I −M)−
1
2 =

∑

k≥0

γkM
k ,

with (γk) ≥ 0 the coefficients of the power series development of the function 1/
√

1− x .
Denote λmax(M), λmin(M) the biggest and smallest eigenvalue of a matrix M . Put

K = ‖A‖ = λmax(A) and L =
∥∥A−1

∥∥ = λmin(A)−1 . Note that LK ≥ 1 . Put A′ =
A/K, B′ = B/K . All eigenvalues of A′ belong to (0, 1] and therefore

∥∥I −A′
∥∥ = λmax(I −A′) = 1− λmin(A′) = 1− (LK)−1 .

By the assumption that ε ≤ (2L)−1 , it holds that

λmax(B′) = K−1 ‖B‖ ≤ K−1 (‖A‖+ ε) ≤ 1 + (2LK)−1 ≤ 3
2

,

and that
λmin(B′) ≥ K−1 (λmin(A)− ε) ≥ (2KL)−1 ,

from this we deduce that

∥∥I −B′∥∥ = max(λmax(B′)− 1, 1− λmin(B′)) ≤ max
(

1
2
, 1− (2LK)−1

)
= 1− (2LK)−1 .

Putting A = I − A′, B = I − B′ , we have ensured that
∥∥A

∥∥ < 1 and
∥∥B

∥∥ < 1 ; we can
thus write

A′−
1
2 −B′− 1

2 =
(
I −A

)− 1
2 − (

I −B
)− 1

2

=
∑

k≥1

γk(A
k −B

k) .

Noticing that

∥∥∥A
k −B

k
∥∥∥ =

∥∥∥∥∥
k−1∑

i=0

A
i(A−B)Bk−1−i

∥∥∥∥∥ ≤ k max
(∥∥A

∥∥ ,
∥∥B

∥∥)k−1 ∥∥A′ −B′∥∥ ,
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we obtain
∥∥∥A′−

1
2 −B′− 1

2

∥∥∥ ≤
∥∥A′ −B′∥∥∑

k≥1

kγk

(
1− (2LK)−1

)k−1

=
ε

K

1
2
(2LK)

3
2 = CL

3
2 K

1
2 ε .

From this we deduce that
∥∥∥A−

1
2 −B− 1

2

∥∥∥ = K− 1
2

∥∥∥A′−
1
2 −B′− 1

2

∥∥∥ ≤ CL
3
2 ε.

Appendix C. Clustering results

The goal of NGCA is to discover interesting structure in the data. It is naturally a difficult
task to quantify this property precisely. In this appendix we try to make this apparent
using clustering techniques. We apply a mean distance linkage clustering algorithm to
data projected in lower dimension using various techniques: NGCA, FastICA, PCA, LLE,
Isomap.

There is no single well-defined performance measure for the performance of clustering.
Here we resort to indirect criteria that should however allow a comparative study. We
consider the two following criteria:

(1) Label cross-information. We apply clustering to benchmark data for which label
information Y is available. Although this information is not used in determining the clus-
tering, we will use it as a yardstick to measure whether the clustering gives rise to relevant
structure discovery. We measure this by the scaled mutual information I(C, Y )/H(Y ),
where C is the cluster labelling and the normalization ensures that the quantity lies be-
tween 0 and 1. Note that there is a priori no mathematical reason why clustering should
be related to label information, but this is often the case for real data, so this can be a
relevant criterion of structure discovery. A higher score indicates a better match between
discovered cluster structure and label structure.

(2) Stability. Recent attempts at formalizing criteria for clustering have proposed
that clustering stability should be a relevant criterion for data clustering (e.g. (Meinecke et
al. , 2002; Lange et al., 2004)). Again, this is only an indirect criterion as, for example, a
trivial clustering algorithm dividing the space without actually looking at the data would
be very stable. But with this caveat in mind, it provides a relevant diagnostic tool. Here
we measured stability in the following way: the data is divided randomly into 2 groups of
equal size on which we apply clustering. Then the cluster labels obtained on group 1 are
extended to group 2 by the nearest-neighbor rule and vice-versa. This thus gives rise to
two different cluster labellings C1, C2 of the whole data and we measure their agreement
through relative mutual information I(C1, C2)/H(C1, C2) . Again, this score lies in the
interval [0, 1] and a high score indicates better stability.

We consider the “oil flow” data already presented in section 4.2, and additional data
sets from the UCI classification repository, for which the features all take continuous values.
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(When there are features taking only discrete values, NGCA is inappropriate since these
will generally be picked up as strongly non-Gaussian). Size and dimension of these data
sets are given in Table 1.

Table 1: Description of data sets
Data set Nb. of Classes Nb. of samples Total dimension Projection Dim.

Oil 3 2000 12 3
Wine 3 178 13 3
Vowel 11 528 10 3
USPS 10 7291 30 10

The results are depicted in Figure 11. On the Oil data set, NGCA works very well
for both criteria (as was expected from the good visualization results of section 4.2). On
the Wine data set, the different algorithms appear to be divided in two clear groups, with
the performance in the first group (NGCA, Isomap, LLE) noticeably better than in the
second (PCA, FastICA). NGCA belongs to the better group although the best methods
appear to be the non-linear projections LLE and Isomap. The results of the Vowel data set
are probably the most difficult to interpret as most methods appear to be relatively close.
Isomap appear as the winner method in this case with NGCA quite close in terms of label
cross-information and in the middle range for stability. Finally, for the USPS data set we
used the 30 first principal components obtained by Kernel-PCA and a polynomial kernel
of degree 3. In this case PCA gives better results in terms of label cross-information with
NGCA a close second, while NGCA is the clear winner in terms of stability.

To summarize: NGCA performed very well in 2 of the 4 data sets tried (Oil data and
USPS), and was in the best group of methods for the Wine Data and had average perfor-
mance on the last data set. Even when NGCA is outperformed by nonlinear methods LLE
and Isomap, it generally achieves a comparable performance though being a linear method,
which has other advantages such as clearer geometrical interpretation, direct extension to
additional data if needed, possible assessment of variable importance in original space.
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Figure 11: Clustering results
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