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Non-technical summary 

Research Question 

The transformation of credit scores into probabilities of default (PDs) plays an important role 
in credit risk estimation. The logistic regression, whose logit is a linear function of the credit 
score, has developed into a standard calibration approach. With the advent of machine learning 
techniques in the discriminatory phase of credit risk models, however, this standard calibration 
approach is currently under scrutiny again. 

Previous literature has converted the calibration problem into the task of modelling the cumu-
lative accuracy profile (CAP) without any loss of generality. The main objective of this paper 
is twofold. First, we compare the performance of four calibration approaches on a real-world 
data set. Second, we explore whether the approach, based on modelling the CAP, provides the 
opportunity to derive uncertainties of PD estimates stemming from the statistical dispersion of 
the discriminatory power. 

Contribution 

The main contribution of this paper is threefold. First, we suggest two new one-parametric fam-
ilies of differentiable functions as candidates for modelling the CAP based on the maximum 
entropy principle. In so doing, we extend the underlying calibration approach. Second, we 
benchmark the calibration approach, based on modelling the CAP, against the linear logistic 
regression on a real-world data set. Third, we develop an approach in order to transfer the sta-
tistical dispersion of the discriminatory power into a margin of conservatism for the general 
estimation error of the PD. In this context, we also provide an alternative representation for the 
variance of the area under the receiver operating characteristic to the one recently proposed in 
the literature. 

Results 

We find that one of the new one-parametric families outperforms the linear logistic regression 
on the data set in question. In view of the fact that this outperformance is only statistically 
significant for medium training sample sizes, it is worth noting that even small improvements 
in calibration performance may translate into significant competitive advantages and into rele-
vant refinements of regulatory capital quantification within sizeable portfolios. Furthermore, 
the uncertainties of PD estimates, stemming from the statistical dispersion of the discriminatory 
power, as a function of the sample size fluctuate within a reasonable range. 



 

Nichttechnische Zusammenfassung 

Fragestellung 

Der Überführung von Credit Scores in Ausfallwahrscheinlichkeiten kommt bei der Kreditrisi-
komessung eine zentrale Bedeutung zu. Die logistische Regression, deren Logit eine lineare 
Funktion des Credit Scores ist, hat sich zu einem Standardkalibrierungsverfahren entwickelt. 
Der vermehrte Einsatz von maschinellen Lernverfahren zur Ausfallprognose von Kreditneh-
mern stellt dieses Standardkalibrierungsverfahren aber aktuell wieder auf den Prüfstand. 

Vorhergehenden Beiträgen in der Literatur ist es gelungen, das Problem der Kalibrierung ganz 
allgemein in ein Problem der Modellierung des Cumulative Accuracy Profiles (CAPs) zu über-
führen. Der vorliegende Aufsatz verfolgt ein zweifaches Ziel: Zum einen vergleichen wir die 
Leistungsfähigkeit von vier Kalibrierungsverfahren auf Basis realer Daten. Zum anderen gehen 
wir der Frage nach, ob der Kalibrierungsansatz auf Basis der Modellierung des CAPs die Mög-
lichkeit bietet, Unsicherheiten der Ausfallwahrscheinlichkeitsschätzung aus der Schwankung 
der Trennschärfe abzuleiten. 

Beitrag 

Der Beitrag des vorliegenden Aufsatzes lässt sich in drei Punkte gliedern. Zunächst schlagen 
wir auf Basis des Maximum Entropie Prinzips zwei neue Familien von differenzierbaren Funk-
tionen zur Modellierung des CAPs vor. Auf diese Weise erweitern wir den zugrundeliegenden 
Kalibrierungsansatz. Des Weiteren vergleichen wir den auf der Modellierung des CAPs beru-
henden Kalibrierungsansatz auf Basis echter Daten mit der logistischen Regression. Außerdem 
entwickeln wir ein Verfahren, um die statistische Unsicherheit der Trennschärfe in eine Sicher-
heitsspanne für den allgemeinen Schätzfehler der Ausfallwahrscheinlichkeit zu überführen. In 
diesem Zusammenhang geben wir auch eine alternative Darstellung für die kürzlich vorgeschla-
gene Gleichung zur Berechnung der Varianz der Area under Receiver Operating Characteristic 
an. 

Ergebnisse 

Eine der neuen Familien von differenzierbaren Funktionen führt zu einer besseren Kalibrie-
rungsgüte als die logistische Regression. Obwohl dieser Leistungsunterschied nur für mittel-
große Trainingsstichproben signifikant ist, können bei entsprechenden Portfoliogrößen selbst 
kleinere Verbesserungen in der Kalibrierungsgüte bedeutende Wettbewerbsvorteile darstellen. 
Schließlich nimmt die aus der statistischen Schwankung der Trennschärfe resultierenden Unsi-
cherheit der Ausfallwahrscheinlichkeit als Funktion der Stichprobengröße plausible Werte an.  
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1 Introduction 
Lending activities are one of the major sources of risks for banks and, thus, the ability to esti-
mate accurately credit risk is essential for them (Aussenegg, Resch, and Winkler 2011). The 
key variable in credit risk estimation is the probability of default (PD) (Lawrenz 2008). Banks 
estimate PDs, among other things, in order to support their loan decisions. On the one hand, 
lending to obligors destined to default can cause substantial losses to banks (Van Gestel, 
Baesens, Suykens, Espinoza, Baestaens, Vanthienen, and De Moor 2003). On the other hand, 
denying lending to financially sound obligors most likely means forgoing profitable investment 
opportunities. 
 
The large number of loan applicants and obligors, in particular in the retail lending business, 
makes it necessary to rely on statistical methods rather than on human discretion in order to 
estimate PDs (Huang, Chen, and Wang 2007; Khandani, Kim, and Lo 2010). The model-based 
estimation of PDs allows banks to assess the credit quality of (potential) obligors at much lower 
cost (Huang et al. 2007) and it puts them in the position to allocate their rare and expensive 
human resources to questionable cases of highest importance. 
 
In addition to banks’ internal desire for accurate PD estimates, the Basel capital accord also 

stimulates their usage. Under the internal rating based approach (IRBA), authorised banks quan-

tify their regulatory capital based on own PD estimates (Aussenegg et al. 2011; Van der Burgt 

2019; Van Gestel, Baesens, Van Dijcke, Suykens, Garcia, and Alderweireld 2005). 

 
The model-based estimation of PDs usually involves two steps. First, banks condense all critical 
information about the creditworthiness of obligors into univariate credit scores (Khandani et al. 
2010). These credit scores discriminate between obligors of low and high credit quality (i.e. 
discrimination). Throughout this paper, we follow the convention that low values of credit 
scores tend to indicate high risk of default and vice versa (cf. e.g. Van der Burgt (2019); Tasche 
(2010)). Second, banks transform the credit scores into PDs (i.e. calibration). 
 
Banks have a long history of applying data analysis methods to the estimation of credit risk. 
However, recent technological developments have facilitated the application of machine learn-
ing techniques to the calculation of credit scores (Bonini and Caivano 2018). Machine learning 
techniques use sophisticated mathematical algorithms in order to identify risk drivers providing 
information about the credit quality of obligors. Then, the machine learning techniques link 
these risk drivers to the binary default variable through a functional relationship in the training 
phase and, in so doing, discriminate between defaults and non-defaults (Barboza, Kimura, and 
Altman 2017; Bequé, Coussement, Gayler, and Lessmann 2017). The trained machine learning 
model can finally be applied in order to predict the binary default variables of new data over 
the specified risk horizon. 
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In their role as principal banks, many financial institutions capture huge volumes of information 
(e.g. on the payment behaviour of their customers) every day. The digitalisation of banks’ busi-
ness processes in conjunction with the proliferation of computers and mobile phones involves 
that data volumes increase at an ever-faster pace. Significantly improved storing capacities, 
vastly increased computational power, and ongoing developments of machine learning algo-
rithms facilitate the implementation of machine learning techniques in order to process these 
huge amounts of data and, ultimately, to calculate more accurate credit scores (Bonini et al. 
2018; European Banking Authority 2020; Hong Kong Monetary Authority and 
PricewaterhouseCoopers 2019). 

As a consequence of its immense practical relevance, a great deal of research has been devoted 
to the application of different machine learning techniques for default prediction (e.g. Barboza 
et al. (2017); Butaru, Chen, Clark, Das, Lo, and Siddique (2016); Moscatelli, Parlapiano, 
Narizzano, and Viggiano (2020); Petropoulos, Siakoulis, Stavroulakis, and Vlachogiannakis 
(2020)). The general conclusion of these papers is that machine learning techniques outperform 
traditional models such as logistic regression which are widespread in the banking sector. 
Alonso and Carbó (2020) summarize that the gains in discriminatory power of machine learning 
techniques are very heterogeneous, reaching up to 20% measured by the area under the receiver 
operating characteristic (AUROC). The main reason for this superiority is that machine learning 
techniques capture the underlying nonlinearities in the relationship between risk drivers and 
binary default variables better than traditional models (Bazarbash 2019). Furthermore, machine 
learning techniques are often not subject to series of assumptions and, thus, they are less re-
strictive than traditional models (Barboza et al. 2017). 

However, credit risk estimation does not end with the ordinal ranking of obligors from the most 
to the least prone to default based on credit scores. Credit risk estimation also involves linking 
credit scores with accurate PDs, which is referred to as calibration (Bequé et al. 2017; Fonseca 
and Lopes 2017). In fact, some machine learning techniques (e.g. support vector machines) 
produce credit scores on arbitrary scales, which disqualifies them from probabilistic interpreta-
tions (Bequé et al. 2017; Böken 2021; Caruana and Niculescu-Mizil 2006; Moro, Härdle, and 
Schäfer 2017). Other machine learning techniques provide predictions in the interval from zero 
to one, which in principle allow for an interpretation as PD. For example, Kruppa, Schwarz, 
Arminger, and Ziegler (2013) apply random forests, k-nearest neighbours, and bagged k-nearest 
neighbours in order to directly estimate PDs of a large data set of short-termed instalment cred-
its. However, Bequé et al. (2017) find that the calibration of direct PD estimates consistently 
improves the performance in terms of Brier Score (without hurting discriminatory power). Sim-
ilarly, Leathart, Frank, Holmes, and Pfahringer (2017) point out that direct PD estimates often 
show poor calibration performance. 
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In this paper, we follow Tasche (2010) in assuming a strictly monotonically increasing rela-
tionship between credit scores and credit quality. An important feature of the discriminatory 
power measured by the AUROC is its invariance to any strictly monotonic transformation of 
credit scores (Moro et al. 2017; Van der Burgt 2020). In order to maintain the AUROC, implied 
by the pairs of credit scores and binary default labels, the mapping of credit scores to PDs 
should also be strictly monotonic (i.e. rank-order preserving) (Bequé et al. 2017). 
 
There are two fundamental calibration approaches (Lawrenz 2008). The first is to discretize the 
range of credit scores into a certain number of buckets and, in so doing, to pool obligors with 
similar credit scores. All the obligors falling into the same bucket receive the same PD, which 

is usually derived from the observed default frequency (ODF)2 of the bucket (Nehrebecka 
2016). A widely used methodology for grouping obligors and estimating PDs for each group is 
isotonic regression (Zadrozny and Elkan 2002). For example, Moro et al. (2017) successfully 
apply the isotonic regression in order to map scores produced by support vector machines into 
PDs. Similarly, Fonseca et al. (2017) provide empirical evidence in favour of the isotonic re-
gression. However, bucket-based PD estimates by definition discard the individual PDs inside 
the buckets. Therefore, no risk differentiation within buckets is possible (Böken 2021). 
 
Due to this drawback, we follow the second calibration approach and assign individual PDs to 
obligors throughout this paper (direct PD estimates). A widely accepted methodology for as-
signing individual probabilities across several disciplines is the logistic regression (Hosmer, 
Lemeshow, and Sturdivant 2013). In the banking sector, the linear logistic regression (LLR) 
(i.e. the logistic regression whose logit is a linear function of the credit score) is the most prev-
alent calibration methodology (Nehrebecka 2016; Bequé et al. 2017). This approach assumes a 
sigmoidal relationship between credit scores and PDs. 
 
The assumption of a linear logit as well as the sigmoid shape impose restrictions, which can be 
unrealistic. For example, Bequé et al. (2017) demonstrate that relaxing the linearity constraint 
in the logit through penalized regression splines is especially suitable for calibrating classifier 
predictions. Similarly, Moro et al. (2017) call the linear relationship of the logit as a function 
of the score a major disadvantage of this calibration approach. Furthermore, they criticize the 
sigmoid form of the link function between PDs and credit scores as too restrictive. Hence, there 
is a certain demand for a more flexible calibration regime than the one that the (linear) logistic 
regression establishes. 
 

2 The ODF is defined as the number of obligors, which were in the bucket at the beginning of the period and ended 
up in default at the end of the period, divided by the total number of obligors that were in the bucket at the 
beginning of the period (Lawrenz 2008). 
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Falkenstein, Boral, and Carty (2000) introduce a very general calibration approach, which is 

based on modelling the cumulative accuracy profile (CAP)3 by means of a differentiable con-
cave function on the interval from zero to one. Tasche (2010) demonstrates that this approach 
converts the problem of calibration into a regression task without any loss of generality (cf. 
equation (5.2b) in Tasche (2010)). In this framework, the conditional PD is a function of the 
obligor’s rank. Based on the results of Tasche (2010), we reason that the calibration approach 
based on the first derivative of the CAP is equivalent to the logistic regression if the theoretical 
assumptions of the logistic regression are met (i.e. if the credit scores of defaulted and non-
defaulted obligors are drawn from two distributions of the exponential family, respectively). In 
this sense, the approach proposed by Falkenstein et al. (2000) generalises the logistic regres-
sion. Particularly against the background of machine learning algorithms entering increasingly 
the discriminatory phase of credit risk models, a more flexible calibration approach seems to 
be desirable. 
 
Van der Burgt (2008) models the CAP by means of a one-parametric family of differentiable 
functions and, then, applies this approach to both synthetic portfolios and a real-life low default 
portfolio consisting of exposures to 86 sovereigns. The approach of Van der Burgt (2008) is 
also used and discussed by Agarwal and Taffler (2008); Nehrebecka (2016); Roengpitya and 
Nilla-Or (2011); Van der Burgt (2019). Tasche (2010) very carefully investigates the approach 
proposed by Van der Burgt (2008). On the one hand, he acknowledges that “the suggestion by 
Van der Burgt (2008) leads to a potentially quite useful modification of logit regression in the 
univariate case”. On the other hand, he criticises: “In his paper, van der Burgt (2008) does not 
spend much time with explaining the why and how of his approach. It is tempting to guess that 
the approach was more driven by the results than by theoretical considerations.” Paragraph 96 
of the Guidelines on PD estimation, LGD estimation and treatment of defaulted assets 
(European Banking Authority 2017) amplifies this point of criticism by requiring financial in-
stitutions to “demonstrate that the theoretical assumptions of the probability model underlying 
the estimation methodology are met to a sufficient extent in practice […]”. 
 
The contributions of this paper with regard to calibration are threefold. First, we leverage the 
results of Tasche (2010) in order to demonstrate that the calibration approach based on model-
ling the CAP is equivalent to the logistic regression if the theoretical assumptions of the logistic 
regression are met. In this sense, the approach proposed by Falkenstein et al. (2000) generalises 
the logistic regression. Second, we justify the one-parametric family of differentiable functions 
proposed by Van der Burgt (2008). To this end, we use a special case of the result of Brunel 
(2019), according to which the maximum entropy principle conditional on a given AUROC and 
assuming independent defaults implies that the conditional PDs can be calculated via the LLR. 
Instead of the credit score, however, the rank of the obligors serves as explanatory variable 

3 Please note that the CAP is also known as Lorenz curve and power curve. 

4



(Brunel 2019). Then, we empirically show that the approach of Van der Burgt (2008) is very 
similar to the entropy maximizing logistic regression on the ranks of the obligors for lower 
unconditional PDs and/or lower AUROCs. Similarity to the entropy maximizing LLR on the 
ranks of the obligors is theoretically appealing, because maximizing the entropy leads to the 
distribution of the binary default variable 𝑌𝑌 that carries the highest uncertainty and, thus, the 
fewest assumptions about the true distribution. Third, we benchmark the regression proposed 
by Van der Burgt (2008) and the regression approach leading to maximum entropy against the 
LLR on a large real-world data set. However, both regression approaches disregard the specific 
form of the empirical CAP. Therefore, we propose a modification of the regression approach 
leading to maximum entropy as a third one-parametric family and find that this modified ap-
proach outperforms the LLR. This finding supports the result of Bequé et al. (2017) according 
to which nonlinear but strictly monotonic transformations of credit scores can improve the cal-
ibration performance compared to the LLR. 
 
Banking supervisors also take a great interest in the properties of banks’ PD estimates. In par-
ticular, banking supervisors seek to avoid any underestimation of credit risk. In order to account 
for the natural uncertainty of PD estimates, Article 179 (1) (f) of the Corrigendum to regulation 
(EU) No 575/2013 on prudential requirements for credit institutions and investment firms 
(European Parliament and the Council of the European Union 2013) stipulates that “an institu-
tion shall add to its estimates a margin of conservatism that is related to the expected range of 

estimation errors”.4 Paragraph 43 (b) of the Guidelines on PD estimation, LGD estimation and 
treatment of defaulted assets (European Banking Authority 2017) further specifies that “the 
[margin of conservatism] for the general estimation error should reflect the dispersion of the 
distribution of the statistical estimator.” 
 
While the obligation of quantifying an adequate margin of conservatism for the general estima-
tion error is clear, the regulation explicitly does not impose a specific methodology for this (cf. 
p. 18 in European Banking Authority (2017)). Furthermore, the academic literature on quanti-
fying the general estimation error of PDs is still in its infancy. Lawrenz (2008) assesses the 
uncertainty of PD estimates by calculating four confidence intervals of the ODF. Blümke (2020) 
proposes a Bayesian approach, which generates a distribution of the PD estimate and, in so 
doing, provides an easy way to define a margin of conservatism. More precisely, he points out 
that “a more conservative estimate than the mean can be obtained by choosing a more conserva-
tive percentile of the posterior distribution”. In the framework of logistic regression, Hosmer et 

4 The negative consequence of excessively conservative PDs is the loss of competitiveness at international level 
(Pfeuffer, Nagl, Fischer, and Rösch 2020). In order to solve this dilemma, paragraph 208 (c) of the Guidelines 
on PD estimation, LGD estimation and treatment of defaulted assets (European Banking Authority 2017) allows 
financial institutions to exclude the margin of conservatism from their PD estimates when used for internal pur-
poses such as risk management and decision-making processes. 
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al. (2013) calculate confidence intervals for the logit (in Section 1.4), which translate into con-
fidence intervals of the estimated PDs. 
 
This paper contributes to this emerging strand of literature by exploring whether the calibration 
methodology proposed by Van der Burgt (2008) allows us to derive uncertainties of PDs result-
ing from the statistical dispersion of the discriminatory power as required by paragraph 140 (a) 
of the ECB guide to internal models (European Central Bank 2019). We employ this measure 
of PD uncertainty to synthetic data sets of pairs of credit scores and default labels. 
 
The remainder of this paper proceeds as follows. Section 2 presents the theoretical background 
of four calibration approaches. In Section 3, we compare the performance of the four calibration 
approaches on a real-world data set. Section 4 explores whether the calibration approach of Van 
der Burgt (2008) provides the opportunity to quantify uncertainties of PD estimates stemming 
from the statistical dispersion of discriminatory power. Section 5 concludes by briefly summa-
rizing the main results, discussing their implications, and offering suggestions for future re-
search. 
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2 Calibration theory 
This Section, first, introduces definitions and notation with regard to calibration. Second, it 
revisits a general framework that allows determining PDs conditional on credit scores via re-
gression. Subsection 2.1 then demonstrates that the logistic regression is a special case of this 
general framework. In Subsection 2.2, we present three one-parametric families of differentia-
ble functions that provide alternatives to logistic regression for calibration.  
 
First, we revisit the one-parametric family introduced by Van der Burgt (2008). Second, we 
propose the one-parametric family that corresponds to the maximum entropy approach. The 
maximum entropy principle is well-established in finance (cf. Segoviano Basurto (2006)). It 
states that the probability distribution with the maximum entropy is the one that makes the 
fewest assumptions about the true distribution of data. Paragraph 96 of the Guidelines on PD 
estimation, LGD estimation and treatment of defaulted assets (European Banking Authority 
2017) seems to draw attention to calibration approaches, relying on a minimum number of as-
sumptions, by requiring banks to “demonstrate that the theoretical assumptions of the probabil-
ity model underlying the estimation methodology are met to a sufficient extent.” Furthermore, 
we justify the one-parametric family of differentiable functions proposed by Van der Burgt 
(2008) by empirically demonstrating its similarity to the entropy maximizing logistic regression 
on the ranks of the obligors (Brunel 2019) for lower unconditional PDs and/or lower AUROCs. 
Third, we modify the second one-parametric family in order to fit better the empirical CAP in 
question. Hence, the theoretical underpinnings of the first and third one-parametric families are 
less than that of the second one. 
 
As a starting point, we assume the existence of a credit scoring model that maps a multidimen-

sional input vector to a one-dimensional credit score (Van der Burgt 2020).5 The credit score 
takes on real values on a continuous scale. Throughout this paper, we follow the convention 
that low values of credit scores tend to indicate high default risk and vice versa (e.g. Van der 
Burgt (2019); Tasche (2010)). Hence, banks can use credit scores in order to discriminate be-
tween obligors of low and high credit quality. 
 
One main objective of this paper is to compare different approaches for transforming credit 
scores into PDs (i.e. different calibration approaches). The parameters of the calibration ap-
proaches are determined based on historical training data sets and, then, we apply the calibration 
approaches to new test data sets. The training and test data sets are of the form {𝑠𝑠𝑘𝑘,𝑦𝑦𝑘𝑘}𝑘𝑘=1

𝑛𝑛𝐷𝐷+𝑛𝑛𝑁𝑁𝐷𝐷 
and consist of pairs of credit scores 𝑠𝑠𝑘𝑘 ∈ ℝ and binary default labels 𝑦𝑦𝑘𝑘 ∈ {0; 1} of 𝑛𝑛𝐷𝐷 defaulted 
and 𝑛𝑛𝑁𝑁𝐷𝐷 non-defaulted obligors. The binary default label 𝑦𝑦𝑘𝑘 represents the state of default one 
observation period (usually one year) after the calculation of the credit score 𝑠𝑠𝑘𝑘. A credit default 

5 For example, the credit score could be a weighted sum of several financial ratios. 
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of obligor 𝑘𝑘 is labelled as 𝑦𝑦𝑘𝑘 = 1, whereas 𝑦𝑦𝑘𝑘 = 0 indicates that obligor 𝑘𝑘 has not (yet) fallen 
into default. 
 
Let 𝐹𝐹𝐷𝐷(𝑠𝑠) = 𝑃𝑃(𝑆𝑆 ≤ 𝑠𝑠|𝑌𝑌 = 1) and 𝑓𝑓𝐷𝐷(𝑠𝑠) = 𝑃𝑃(𝑆𝑆 = 𝑠𝑠|𝑌𝑌 = 1) [resp. 𝐹𝐹𝑁𝑁𝐷𝐷(𝑠𝑠) = 𝑃𝑃(𝑆𝑆 ≤ 𝑠𝑠|𝑌𝑌 = 0) 
and 𝑓𝑓𝑁𝑁𝐷𝐷(𝑠𝑠) = 𝑃𝑃(𝑆𝑆 = 𝑠𝑠|𝑌𝑌 = 0)] denote the cumulative distribution function (CDF) and the 
probability density function (PDF) of the defaults [resp. non-defaults]. Based on these notations 
and employing the law of total probability, we can express the CDF (i.e. 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)) and the PDF 
(i.e. 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)) of all obligors as follows: 

𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) = 𝑃𝑃(𝑌𝑌 = 1) ∙ 𝐹𝐹𝐷𝐷(𝑠𝑠) + [1 − 𝑃𝑃(𝑌𝑌 = 1)] ∙ 𝐹𝐹𝑁𝑁𝐷𝐷(𝑠𝑠), 
𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) = 𝑃𝑃(𝑌𝑌 = 1) ∙ 𝑓𝑓𝐷𝐷(𝑠𝑠) + [1 − 𝑃𝑃(𝑌𝑌 = 1)] ∙ 𝑓𝑓𝑁𝑁𝐷𝐷(𝑠𝑠). 

(1)  

 
The objective of calibration is to estimate the PD given a credit score (i.e. 𝑃𝑃(𝑌𝑌 = 1|𝑆𝑆 = 𝑠𝑠)). 
This conditional PD can be expressed in terms of the unconditional PD (i.e. 𝑃𝑃(𝑌𝑌 = 1)) as well 
as the PDFs 𝑓𝑓𝐷𝐷(𝑠𝑠) and 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) by using the definition of conditional probabilities and the law of 
total probability: 

𝑃𝑃(𝑌𝑌 = 1|𝑆𝑆 = 𝑠𝑠) =
𝑃𝑃(𝑌𝑌 = 1, 𝑆𝑆 = 𝑠𝑠)

𝑃𝑃(𝑆𝑆 = 𝑠𝑠)  

=
𝑃𝑃(𝑌𝑌 = 1) ∙ 𝑃𝑃(𝑆𝑆 = 𝑠𝑠|𝑌𝑌 = 1)

𝑃𝑃(𝑌𝑌 = 1) ∙ 𝑃𝑃(𝑆𝑆 = 𝑠𝑠|𝑌𝑌 = 1) + [1 − 𝑃𝑃(𝑌𝑌 = 1)] ∙ 𝑃𝑃(𝑆𝑆 = 𝑠𝑠|𝑌𝑌 = 0) 

=
𝑃𝑃(𝑌𝑌 = 1) ∙ 𝑓𝑓𝐷𝐷(𝑠𝑠)

𝑃𝑃(𝑌𝑌 = 1) ∙ 𝑓𝑓𝐷𝐷(𝑠𝑠) + [1 − 𝑃𝑃(𝑌𝑌 = 1)] ∙ 𝑓𝑓𝑁𝑁𝐷𝐷(𝑠𝑠) 

= 𝑃𝑃(𝑌𝑌 = 1) ∙
𝑓𝑓𝐷𝐷(𝑠𝑠)
𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠). 

(2)  

 
According to equation (2), we can directly calculate the conditional PD by estimating 𝑃𝑃(𝑌𝑌 = 1) 
as well as the PDFs 𝑓𝑓𝐷𝐷(𝑠𝑠) and either 𝑓𝑓𝑁𝑁𝐷𝐷(𝑠𝑠) or 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠). For example, we could estimate these 
PDFs via maximum likelihood estimation or kernel density estimation. However, both ap-
proaches can result in non-monotonic relationships between the credit score and PD which 
would violate the requirement of rank-order preservation enshrined in paragraph 99 of the 
Guidelines on PD estimation, LGD estimation and treatment of defaulted assets (European 
Banking Authority 2017). Furthermore, the former approach requires a-priori specification of 
potential probability distributions whose parameters are to be determined (Böken 2021). The 
latter approach can result in a downward biased estimation of the AUROC without manipulat-
ing the credit scores (Tasche 2010). Falkenstein et al. (2000) propose an alternative approach, 
which allows the calculation of the conditional PD through regression. The derivation of their 
approach starts with the last line of equation (2):  
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𝑃𝑃(𝑌𝑌 = 1|𝑆𝑆 = 𝑠𝑠) = 𝑃𝑃(𝑌𝑌 = 1) ∙
𝑓𝑓𝐷𝐷(𝑠𝑠)
𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) 

=
(1)

𝑃𝑃(𝑌𝑌 = 1) ∙
𝑑𝑑𝐹𝐹𝐷𝐷(𝑠𝑠)
𝑑𝑑𝑠𝑠

∙
1

𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) 

=
(2)

𝑃𝑃(𝑌𝑌 = 1) ∙
𝑑𝑑𝐹𝐹𝐷𝐷(𝑠𝑠)
𝑑𝑑𝑠𝑠

∙
𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−1�𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)�

𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)  

=
(3)

𝑃𝑃(𝑌𝑌 = 1) ∙
𝑑𝑑𝐹𝐹𝐷𝐷(𝑠𝑠)
𝑑𝑑𝑠𝑠

∙
𝑑𝑑𝑠𝑠

𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) 

=
(4)

𝑃𝑃(𝑌𝑌 = 1) ∙
𝑑𝑑𝐹𝐹𝐷𝐷(𝑠𝑠)
𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠), 

(3)  

where we use 
• (1): the definition of 𝑓𝑓𝐷𝐷(𝑠𝑠), 

• (2): the derivative of the inverse function6, 
• (3): the definition of inverse functions, and 
• (4): the chain rule 

in order to arrive at Proposition 5.1 in Tasche (2010). This equation allows us to determine the 
conditional PD as the product of the unconditional PD and the first derivative of the CAP. Thus, 
no direct estimation of the PDFs 𝑓𝑓𝐷𝐷(𝑠𝑠) and either 𝑓𝑓𝑁𝑁𝐷𝐷(𝑠𝑠) or 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) is necessary. 
 
So far, we have not made any assumptions on the CDFs 𝐹𝐹𝐷𝐷(𝑠𝑠) and 𝐹𝐹𝑁𝑁𝐷𝐷(𝑠𝑠) other than differen-
tiability of 𝐹𝐹𝐷𝐷(𝑠𝑠) with respect to 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠). As we will see in the following subsections, the only 
difference between the logistic regression and CAP regressions lies in the assumption about the 

quotient 𝑓𝑓𝐷𝐷(𝑠𝑠)
𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) or, alternatively, about the derivative 𝑑𝑑𝐹𝐹𝐷𝐷(𝑠𝑠)

𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠). 

  

6 For the sake of completeness, we provide the derivative of the inverse function 𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴
−1�𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)�
𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)

 in the following: 

𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−1�𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)� = 𝑠𝑠 

⇒
𝑑𝑑
𝑑𝑑𝑠𝑠
𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−1�𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)� =

𝑑𝑑
𝑑𝑑𝑠𝑠
𝑠𝑠 

⇔
(4) 𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−1�𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)�

𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) ∙
𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)
𝑑𝑑𝑠𝑠

= 1 

⇔
(1) 𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−1�𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)�

𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) =
1

𝑑𝑑𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)
𝑑𝑑𝑠𝑠

=
1

𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) 
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2.1 Calibration based on logistic regression 
The LLR is a standard calibration approach. It passes real-valued credit scores through a sig-
moid function in order to produce PDs in the range between zero and one. The distributional 
assumptions of the logistic regression are well known, for example, from the textbook of Bishop 
(2006) and have recently been revisited by Böken (2021). The purpose of this subsection is to 
demonstrate that equation (3) leads to the logistic regression if the corresponding assumptions 
hold. 
 
The logistic regression starts from the premise that the PDFs of the credit scores of defaults 
(𝑌𝑌 = 1) and non-defaults (𝑌𝑌 = 0) are members of the exponential family, i.e. that the PDFs 
have the following form, respectively (Bishop 2006): 

𝑓𝑓𝑌𝑌(𝑠𝑠) = ℎ(𝑠𝑠) ∙ 𝑔𝑔�𝛽𝛽𝑌𝑌� ∙ exp �𝛽𝛽𝑌𝑌
𝑇𝑇
∙ 𝑢𝑢�⃗ (𝑠𝑠)�, (4)  

where 

• the vector 𝛽𝛽𝑌𝑌 includes the natural parameters, 

• the function 𝑔𝑔�𝛽𝛽𝑌𝑌� can be interpreted as the coefficient ensuring normalisation of the 
distribution, and 

• 𝑢𝑢�⃗ (𝑠𝑠) is some vector function of the credit score 𝑠𝑠. 
 
Under this assumption, we can first determine 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) based on equation (1) and, second, cal-
culate 𝑃𝑃(𝑌𝑌 = 1|𝑆𝑆 = 𝑠𝑠) by plugging 𝑓𝑓𝐷𝐷(𝑠𝑠) and 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) into the first line of equation (3): 

𝑃𝑃(𝑌𝑌 = 1|𝑆𝑆 = 𝑠𝑠) =
1

1 + exp �− ��𝛽𝛽𝐷𝐷 − 𝛽𝛽𝑁𝑁𝐷𝐷�
𝑇𝑇
∙ 𝑢𝑢�⃗ (𝑠𝑠) + ln � 𝑃𝑃(𝑌𝑌 = 1)

1− 𝑃𝑃(𝑌𝑌 = 1)� + ln �
𝑔𝑔�𝛽𝛽𝑁𝑁𝐷𝐷�
𝑔𝑔�𝛽𝛽𝐷𝐷�

���
. 

(5)  

 
The right-hand side of equation (5) obviously has the form of the logistic regression function. 
The argument of the exponential function multiplied by minus one is referred to as logit and is 
denoted by 𝑙𝑙(∙). When banks use the logistic regression in order to estimate PDs, they assume 
in the vast majority of cases that the logit is a linear function of 𝑠𝑠. 
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2.2 Calibration based on CAP regressions 
This subsection presents three calibration approaches that are based on modelling the empirical 
CAP. The CAP plays an important role in the measurement of discriminatory power of PD 
models (Engelmann, Hayden, and Tasche 2003; Falkenstein et al. 2000; Van der Burgt 2008, 
2019). The construction of the CAP includes two steps. First, we arrange the obligors in as-
cending order of their credit scores (i.e. from obligors of low credit quality to obligors of high 
credit quality). Second, we plot the cumulative share of the defaults (i.e. the CDF of the de-
faults) against the cumulative share of all (i.e. CDF of all) (Engelmann et al. 2003; Falkenstein 
et al. 2000; Van der Burgt 2008, 2019, 2020). When we go from the lowest to the highest credit 
score, each default generates a vertical jump whereas any occurrence generates a horizontal 
move (Brunel 2019). Thus, the specific shape of the CAP depends on the respective portfolio 
of obligors and on the applied credit scoring methodology. Recent technological developments 
have facilitated the application of machine learning techniques in order to estimate credit scores 
(Bonini et al. 2018; European Banking Authority 2020; Hong Kong Monetary Authority et al. 
2019). Consequently, the shapes of the CAPs will become more diverse in the future. Therefore, 
we do not only revisit the calibration approach introduced by Van der Burgt (2008), but we 
propose on top of this two alternative families of differentiable functions in order to extend the 
possibilities of modelling the CAP. 

According to equation (3), the conditional PD is equal to the product of the unconditional PD 
and the derivative of the CAP. While we simply approximate the first factor by the ODF, the 
determination of the second factor involves two steps. First, we construct the empirical CAP 
from the observations. The set { 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠);𝐹𝐹𝐷𝐷(𝑠𝑠) } consists of a finite number of isolated points 
and, thus, the empirical CAP is obviously not differentiable (Tasche 2010). Therefore, we 
model the CAP by fitting one-parametric families of differentiable functions to the empirical 
CAP in the second step. The one-parametric families of differentiable functions have to satisfy 
the following conditions: 

• They have to pass through the points (𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠min) = 0;𝐹𝐹𝐷𝐷(𝑠𝑠min) = 0) and
(𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠max) = 1;𝐹𝐹𝐷𝐷(𝑠𝑠max) = 1).

• They have to be concave in the range from zero to one. Concavity ensures that the PD
is a strictly monotonically decreasing function of the credit score and, thus, it preserves
the rank ordering implied by the credit scores.

• According to equation (3), the conditional PD is proportional to the first derivative of
the CAP. In order to ensure that the conditional PD is bounded between zero and one,
the derivative of the one-parametric families of differentiable functions at 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠max) =
1 have to be larger than or equal to zero and at 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠min) = 0 it has to be smaller than

or equal to 1
𝑃𝑃(𝑌𝑌=1).
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The parameters determine the specific functional shapes of the three modelled CAPs, respec-
tively. Here, we follow Van der Burgt (2008) and determine the parameters of the three families 
of differentiable functions in such a way that the AUROC, implied by the pairs of credit scores 

and default labels, is preserved.7 To this end, we first use the following relationship in order to 
convert the AUROC, implied by the pairs of credit scores and default labels, into the corre-
sponding area under the CAP (in the range from zero to one) (Engelmann et al. 2003): 

2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 1 =
∫ 𝐴𝐴𝐴𝐴𝑃𝑃(𝑥𝑥) ∙ 𝑑𝑑𝑥𝑥1
0 − 1

2
1 − 𝑃𝑃(𝑌𝑌 = 1)

2 − 1
2

 

=
2 ∙ ∫ 𝐴𝐴𝐴𝐴𝑃𝑃(𝑥𝑥) ∙ 𝑑𝑑𝑥𝑥1

0 − 1
1 − 𝑃𝑃(𝑌𝑌 = 1)  

⇔ �𝐴𝐴𝐴𝐴𝑃𝑃(𝑥𝑥) ∙ 𝑑𝑑𝑥𝑥
1

0

=
(2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 1) ∙ �1 − 𝑃𝑃(𝑌𝑌 = 1)� + 1

2
. 

(6)  

 
Equations (8), (11), and (14) express the areas under the modelled CAP as invertible functions 
of the parameters, respectively. Finally, we plug the area under the CAP, implied by the pairs 
of credit scores and default labels, into the inverse of these functions in order to determine the 
corresponding parameters (AUROC-matching). In the following, we present three different 
one-parametric families of differentiable functions for modelling the CAP. 
 
First one-parametric family of differentiable functions 
Van der Burgt (2008) suggests the following one-parametric family of differentiable functions 
in order to fit the CAP: 

𝐴𝐴𝐴𝐴𝑃𝑃1(𝑥𝑥) =
1 − 𝑒𝑒−𝑎𝑎1∙𝑥𝑥

1 − 𝑒𝑒−𝑎𝑎1
, (7)  

where 𝑥𝑥 ∈ [0; 1] is the cumulative share of all obligors and 𝑎𝑎1 > 0 is a parameter. The area 
under 𝐴𝐴𝐴𝐴𝑃𝑃1(𝑥𝑥) in the range from 𝑥𝑥 = 0 to 𝑥𝑥 = 1 is equal to (Van der Burgt 2008):  

7 Please note that the pairs of default labels and PDs, derived from any of the three CAP regressions, result in 
exactly the same CAP as the one generated by the pairs of default labels and credit scores (i.e. the solid black 
line in Figure 3). The reason for this is that the CAP regressions produce PDs, which are strictly monotonically 
decreasing functions of the credit score (cf. Figure 4). Fitting the empirical CAP is only an intermediate step in 
order to transform credit scores into PDs. 
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�
1 − 𝑒𝑒−𝑎𝑎1∙𝑥𝑥

1 − 𝑒𝑒−𝑎𝑎1
∙ 𝑑𝑑𝑥𝑥

1

0

= �
𝑥𝑥 + 1

𝑎𝑎1
∙ 𝑒𝑒−𝑎𝑎1∙𝑥𝑥

1 − 𝑒𝑒−𝑎𝑎1 �

0

1

 

=
1 + 1

𝑎𝑎1
∙ 𝑒𝑒−𝑎𝑎1

1 − 𝑒𝑒−𝑎𝑎1
−

1
𝑎𝑎1

1− 𝑒𝑒−𝑎𝑎1
 

=
1 + 1

𝑎𝑎1
∙ (𝑒𝑒−𝑎𝑎1 − 1)

1 − 𝑒𝑒−𝑎𝑎1
 

=
1

1 − 𝑒𝑒−𝑎𝑎1
−

1
𝑎𝑎1

. 

(8)  

 
The derivative of 𝐴𝐴𝐴𝐴𝑃𝑃1(𝑥𝑥) with respect to 𝑥𝑥 is (Van der Burgt 2008): 

𝑑𝑑
𝑑𝑑𝑥𝑥

𝐴𝐴𝐴𝐴𝑃𝑃1(𝑥𝑥) =
𝑎𝑎1 ∙ 𝑒𝑒−𝑎𝑎1∙𝑥𝑥

1 − 𝑒𝑒−𝑎𝑎1
. (9)  

 
Second one-parametric family of differentiable functions 
The entropy-maximizing one-parametric family of differentiable functions is theoretically ap-
pealing, because maximizing the entropy leads to the distribution of the binary default variable 
𝑌𝑌 that carries the highest uncertainty and, thus, the fewest assumptions about the true distribu-
tion of data. More specifically, a special case of the result of Brunel (2019) shows that the 
logistic regression on the ranks of obligors (rather than on the credit scores) maximizes the 
entropy of the distribution of the binary default variable 𝑌𝑌 under the assumption of independent 
defaults and conditional on a specified AUROC. This brings us to our second one-parametric 
family of differentiable functions for fitting the empirical CAP: 

𝐴𝐴𝐴𝐴𝑃𝑃2(𝑥𝑥) =
ln �1 + 𝑒𝑒𝑎𝑎2∙𝑥𝑥

2 �

ln �1 + 𝑒𝑒𝑎𝑎2
2 �

, (10)  

where 𝑎𝑎2 < 0 is a parameter. The area under 𝐴𝐴𝐴𝐴𝑃𝑃2(𝑥𝑥) in the range from 𝑥𝑥 = 0 to 𝑥𝑥 = 1 is equal 
to:  
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�
ln �1 + 𝑒𝑒𝑎𝑎2∙𝑥𝑥

2 �

ln �1 + 𝑒𝑒𝑎𝑎2
2 �

∙ 𝑑𝑑𝑥𝑥
1

0

=
1

ln �1 + 𝑒𝑒𝑎𝑎2
2 �

∙ � ln �
1 + 𝑒𝑒𝑎𝑎2∙𝑥𝑥

2 � ∙ 𝑑𝑑𝑥𝑥
1

0

 

=
1

ln �1 + 𝑒𝑒𝑎𝑎2
2 �

∙ �𝑥𝑥 ∙ ln �
1 + 𝑒𝑒𝑎𝑎2∙𝑥𝑥

2 � −
1
𝑎𝑎2
∙ 𝐿𝐿𝐿𝐿2(−𝑒𝑒𝑎𝑎2∙𝑥𝑥)− 𝑥𝑥 ∙ ln{1 + 𝑒𝑒𝑎𝑎2∙𝑥𝑥}�

0

1

 

=
1

ln �1 + 𝑒𝑒𝑎𝑎2
2 �

∙ �ln �
1 + 𝑒𝑒𝑎𝑎2

2 � −
1
𝑎𝑎2
∙ 𝐿𝐿𝐿𝐿2(−𝑒𝑒𝑎𝑎2)− ln{1 + 𝑒𝑒𝑎𝑎2} +

1
𝑎𝑎2
∙ 𝐿𝐿𝐿𝐿2(−1)�, 

(11)  

where 𝐿𝐿𝐿𝐿2(∙) denotes the polylogarithm function of second order, i.e. 𝐿𝐿𝐿𝐿2(𝑧𝑧) = ∑ 𝑧𝑧𝑘𝑘

𝑘𝑘2
∞
𝑘𝑘=1 . 

 
The derivative of 𝐴𝐴𝐴𝐴𝑃𝑃2(𝑥𝑥) with respect to 𝑥𝑥 is indeed equal to the logistic regression on the 
ranks multiplied by a factor: 

𝑑𝑑
𝑑𝑑𝑥𝑥

𝐴𝐴𝐴𝐴𝑃𝑃2(𝑥𝑥) =
1

ln �1 + 𝑒𝑒𝑎𝑎2
2 �

∙
𝑑𝑑
𝑑𝑑𝑥𝑥

ln �
1 + 𝑒𝑒𝑎𝑎2∙𝑥𝑥

2 � 

=
𝑎𝑎2

ln �1 + 𝑒𝑒𝑎𝑎2
2 �

∙
1

1 + 𝑒𝑒−𝑎𝑎2∙𝑥𝑥
. 

(12)  

 
In equation (12), 𝑥𝑥 is equal to the cumulative share of all obligors, i.e. equal to the rank divided 
by the total number of obligors. If we set 𝑎𝑎2 = 𝑎𝑎2� ∙ 𝑛𝑛 with 𝑛𝑛 being the total number of obligors, 
then we explicitly obtain the logistic regression on the ranks. 
 
Figure 1 and Figure 2 reveal that the one-parametric family of differentiable functions, proposed 
by Van der Burgt (2008), produces similar PDs for lower unconditional PDs and/or lower AU-
ROCs as the one-parametric family of differentiable functions that maximizes the entropy of 
the distribution of the binary default variable 𝑌𝑌 for a given AUROC. 
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Figure 1: Maximum absolute difference between PDs produced by CAP1 and CAP2 as a function of the AUROC and 

unconditional PD. 

 

 

Figure 2: Average absolute difference between PDs produced by CAP1 and CAP2 as a function of the AUROC and 
unconditional PD. 
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Third one-parametric family of differentiable functions  
The second one-parametric family of differentiable functions maximizes the entropy of the dis-
tribution of the binary default variable 𝑌𝑌 conditional only on a specified AUROC. In so doing, 
it disregards the specific form of the empirical CAP. Hence, we slightly modify the second one-
parametric family of differentiable functions in order to represent more accurately the empirical 
CAP. More precisely, the third one-parametric family of differentiable functions used in this 
paper is: 

𝐴𝐴𝐴𝐴𝑃𝑃3(𝑥𝑥) =
ln(1 + 𝑎𝑎3 ∙ 𝑥𝑥)

ln(1 + 𝑎𝑎3) , (13)  

where 𝑎𝑎3 > 0 is a parameter. For the area under this function in the range from 𝑥𝑥 = 0 to 𝑥𝑥 = 1, 
we get: 

�𝐴𝐴𝐴𝐴𝑃𝑃3(𝑥𝑥) ∙ 𝑑𝑑𝑥𝑥
1

0

=
1

ln(1 + 𝑎𝑎3) ∙ � ln(1 + 𝑎𝑎3 ∙ 𝑥𝑥) ∙ 𝑑𝑑𝑥𝑥
1

0

 

=
1

𝑎𝑎3 ∙ ln(1 + 𝑎𝑎3) ∙
[(1 + 𝑎𝑎3 ∙ 𝑥𝑥) ∙ ln(1 + 𝑎𝑎3 ∙ 𝑥𝑥) − 𝑎𝑎3 ∙ 𝑥𝑥]01 

=
(1 + 𝑎𝑎3)

𝑎𝑎3 ∙ ln(1 + 𝑎𝑎3) ∙
[ln(1 + 𝑎𝑎3) − 1]. 

(14)  

 
Finally, we derive 𝐴𝐴𝐴𝐴𝑃𝑃3(𝑥𝑥) with respect to 𝑥𝑥: 

𝑑𝑑
𝑑𝑑𝑥𝑥

𝐴𝐴𝐴𝐴𝑃𝑃3(𝑥𝑥) =
𝑎𝑎3

ln(1 + 𝑎𝑎3) ∙
1

1 + 𝑎𝑎3 ∙ 𝑥𝑥
 

=

⎩
⎨

⎧
𝑎𝑎3

ln(1 + 𝑎𝑎3) , 𝑥𝑥 = 0

𝑎𝑎3
ln(1 + 𝑎𝑎3) ∙

1
1 + 𝑒𝑒ln(𝑎𝑎3∙𝑥𝑥) , 𝑥𝑥 > 0.

 
(15)  

 
The main difference between the second and third one-parametric family is that the logarithm 
is applied to the product of the parameter and 𝑥𝑥 in the latter case.  
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3 Comparison of calibration approaches 
This section benchmarks the three one-parametric families of differentiable functions, pre-
sented in equations (7), (10), and (13), against the LLR using real-world data. The LLR serves 
as a benchmark, because it is a standard and widely accepted calibration approach in both the 
banking sector and the academic literature on credit risk estimation. We evaluate the calibration 
performance of the four approaches out-of-sample. 
 
The analysis is based on a real-world data set, which originates from a European bank. The 
bank is authorised to follow the IRBA in order to assess the creditworthiness of its obligors in 
this portfolio. The data set consists of real-valued credit scores and the default statuses one year 
after the calculation of the credit scores of about 2,450 defaulted and 277,000 non-defaulted 
obligors. Hence, the unconditional PD in this data set is approximately 0.88%. The AUROC 
amounts to 0.83. 
 
Figure 3 compares the empirical CAP with three CAP regressions. Obviously, the third one-
parametric family of differentiable functions represents the empirical CAP best. Furthermore, 
the first and second family result in very similar CAPs. 

 
Figure 3: Comparison of the empirical CAP, implied by the real-world data set, and three modelled CAPs. 

 
In the following, we measure relative performance differences between different calibration 
approaches. An optimal model forecasts the true PDs of individual obligors (Aussenegg et al. 
2011; Bequé et al. 2017). However, the true (conditional) PD is a latent variable and, as such, 
unobservable (Aussenegg et al. 2011; Böken 2021). Therefore, we have to fall back on 
measures of calibration performance that are based on ex-ante estimated conditional PDs and 
ex-post observed default labels (Aussenegg et al. 2011; Böken 2021). Specifically, our judg-
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ments rest on the Brier Score and the Log Loss which are widely accepted measures of calibra-
tion performance (Bequé et al. 2017; Böken 2021; Kruppa et al. 2013). The Brier Score is the 
average over all squared differences between ex-ante estimated conditional PDs and ex-post 
observed default labels. The Log Loss is equal to the negative average log-likelihood. Lower 
values of the Brier Score and Log Loss indicate better calibration quality. However, the absolute 
value of these two measures is hard to interpret (Böken 2021). Therefore, we calculate the pair-
wise relative differences between the Brier Score and Log Loss of the LLR and the three CAP 
regressions, respectively. 
 
We compare the three CAP regressions to the LLR for different training sample sizes expressed 
as percentage of the total data set. Specifically, the size of the training sample ranges from 5% 
to 95% in steps of 10% of the total data set. At the beginning, we split the total data set into two 
subsets that contain all defaults and all non-defaults, respectively. For each of the defined train-
ing sample sizes, we then randomly create 1,000 training and test data sets. To this end, we 
randomly draw a sample from all defaults and a sample from all non-defaults of predefined size 
(ranging from 5% to 95% in steps of 10%), respectively. The union of these two subsets is the 
training data set, while the remaining data serve as test data. In so doing, we ensure that the 
unconditional PDs in the training data set and test data set are equal except for rounding differ-
ences. For each draw, we benchmark the three CAP regressions against the LLR, respectively. 
The two parameters of the linear logit (i.e. the coefficient of the credit score and the constant) 

are determined by maximizing the likelihood function on the training data.8 
 
Due to the random sampling, the AUROC of the training data set fluctuates around the AUROC 
of the total data set with every draw. For each draw, we determine the three parameters of the 
three CAP regressions in such a way that the AUROCs induced by the modelled CAPs are equal 
to the AUROC implied by the pairs of credit scores and binary default labels of the training 
data set, respectively. After determining the three parameters, we calculate the PDs for the 
training data set based on equations (9), (12), and (15), respectively. We multiply the estimated 
PDs by a constant in order to ensure that the average estimated PD is equal to the ODF in the 

training sample.9 
 
We benchmark the three CAP regressions against the LLR on the hold-out test data set (i.e. all 
the data not considered for training). To this end, we first assign PDs to the test data. If a credit 
score of the test data set falls between two credit scores of the training data set, we derive its 
PD via linear interpolation. If a credit score of the test data exceeds the maximum or falls below 

8 More precisely, we use the Matlab-function glmfit in order to estimate the parameters of the LLR. 
9 Please note that the ODF in the training sample is approximately equal to the ODF of 0.88% in the total data set 

due to the construction of the training and test samples. 

18



the minimum credit score of the training data set, we determine its PD via an almost flat ex-
trapolation. This means that we perform a linear regression between the maximum [resp. min-
imum] credit score of the training data set and a synthetic data point with a credit score of 50 
[resp. -50] and a PD that differs by 0.001% from the minimum [resp. maximum] PD of the 
training data set. In doing so, we preserve the rank ordering of the test data. As an example, 
Figure 4 shows the PDs of a random test data set (containing 25% of all pairs of credit scores 
and default labels) as functions of the credit score for the four calibration approaches. The 
CAP1- and CAP2-regression produce PDs in a narrower range than the other two calibration 
approaches. 

 

Figure 4: PDs of a random test data set (containing 25% of the total sample) as functions of the credit score for the 
four calibration approaches. 

 
As a disadvantage, we use the credit scores rather than the ranks in order to assign PDs to the 
test data set. Indeed, we could alternatively assign PDs to the test data set based on equations 
(9), (12), and (15), respectively. However, this approach implies that we knew the rank ordering 
of the entire test data set at once. As obligors in practice constantly enter and exit the application 
portfolio, we deem this approach unrealistic. 
 
After assigning PDs to the test data set, we calculate the Brier Score and the Log Loss on the 
test data set for the four calibration approaches. Figure 5 shows the medians of the relative 
differences in the Brier Score between the LLR and the three CAP regressions over the 1,000 
random samplings as a function of the training sample size, respectively. Figure 6 provides the 
analogous information for the Log Loss as an alternative measure of calibration performance. 
The main results hold for both measures. On the one hand, Figure 5 and Figure 6 reveal the 
superiority of the LLR over the first and second CAP regressions. On the other hand, these 
figures indicate that the third CAP regression outperforms the LLR. 
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Figure 5: Medians of relative differences in Brier Score between linear logistic regression and CAP regressions as 
functions of the training sample size. 

 

 
Figure 6: Medians of relative differences in Log Loss between linear logistic regression and CAP regressions as func-

tions of the training sample size. 

 
In order to further assess the stability of this outperformance, Figure 7 and Figure 8 plot the 
10%-, 50%- (i.e. the median), and 90%-quantile over the 1,000 relative differences versus the 
training sample size. Again, the main results hold for both measures of calibration performance. 
The relative differences of the Brier Scores and Log Losses fluctuate in a narrow range around 
the medians. In general, smaller sample sizes involve higher uncertainty. Therefore, it seems 
plausible that the range between the 10%- and 90%-quantile is largest for small training data 
sets (i.e. on the left of Figure 7 and Figure 8) and for small test data sets (i.e. on the right of 
Figure 7 and Figure 8). Although the 10%-quantiles are below zero for most of the analysed 
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training sample sizes, Figure 7 and Figure 8 further substantiate the outperformance of the third 
CAP regression over the LLR on the data set in question. In particular, the relative difference 
between Log Losses of the LLR and the third CAP regression is significantly larger than zero 
with a confidence level of 90% for medium training sample sizes. 

 
Figure 7: Median and range between 10%- and 90%-quantile of relative differences in Brier Score between linear 

logistic regression and CAP3-regression as a function of the training sample size. 

 

 

Figure 8: Median and range between 10%- and 90%-quantile of relative differences in Log Loss between linear lo-
gistic regression and CAP3-regression as a function of the training sample size. 
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4 Propagation of uncertainty from discriminatory power to probabilities of default 
In the run-up to the entry into force of the Guidelines on PD estimation, LGD estimation and 
treatment of defaulted assets (European Banking Authority 2017) on the 1st of January 2022 
(European Banking Authority 2019), the quantification of uncertainties inherent in PD esti-
mates has gained momentum. Among other things, paragraphs 42 and 43 (b) of these guidelines 
require that PD estimates should take a general estimation error into account, which reflects the 
dispersion of the distribution of the statistical estimator. Paragraph 140 (a) of the ECB guide to 
internal models further specifies that “when using direct PD estimates, the [margin of conserv-
atism] is based on the distribution of this direct PD estimator (which includes the risk differen-
tiation function), implicitly reflecting the uncertainty of the [long run average]” (European 
Central Bank 2019). 
 
According to equation (3), uncertainties of PD estimates can indeed stem from two sources. In 
addition to the statistical dispersion of the unconditional PD, uncertainties of the discriminatory 
power can transpire into PD estimates via the derivative-term in equation (3). The purpose of 
this subsection is to explore whether the calibration methodology proposed by Van der Burgt 
(2008) provides the opportunity to derive uncertainties of PD estimates from the statistical dis-
persion of discriminatory power. In principle, we could select any of the three CAP regressions 
presented in Section 2.2 for this analysis. However, we choose the CAP1-regression as we con-
sider this one-parametric family of differentiable functions as standard. The CAP regression 
proposed by Van der Burgt (2008) does not adequately represent the CAP of our real-world 
data set as Figure 3 illustrates. Therefore, we base our analysis on synthetic data sets similar to 
Böken (2021); Brunel (2019); Tasche (2010). The construction of synthetic data sets comprises 
the following three steps. 

• First, we specify that the credit scores of the defaults and non-defaults follow normal 
distributions, respectively. In order to comply with the convention that low credit scores 
tend to represent low creditworthiness and vice versa, the standard deviations of the two 
normal distributions have to be equal (cf. equations (21) and (24) in the Appendix) and 
the mean of the non-defaults has to exceed the mean of the defaults. To be exact, the 
positive real number 𝜇𝜇 denotes the mean of the non-defaults and – 𝜇𝜇 stands for the mean 
of the defaults. 

• Second, we specify the discriminatory power measured by the AUROC. Given the AU-
ROC and the standard deviation of the two normal distributions, the inverse of equation 
(3.14) in Tasche (2010) allows for the calculation of 𝜇𝜇. 

• After setting the numerical values of three for the standard deviations, of 0.85 for the 
AUROC, and of 5% for the unconditional PD, we can draw data sets of arbitrary size 
from the two normal distributions in the third step. 

The synthetic data sets generated in this way provide optimal conditions by excluding any un-
wanted noisy influence. As an example, Figure 9 illustrates that the one-parametric family of 
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differentiable functions proposed by Van der Burgt (2008) adequately represents the empirical 
CAP of a synthetic data set. The differences between the theoretical and empirical CAPs are 
due to sampling. The sample contains less information than the underlying data generating dis-
tribution (Böken 2021). 

 
Figure 9: Comparison of theoretical CAP, empirical CAP, and fitted CAP1 for an exemplary synthetic data set 
defined by 5,000 obligors, a theoretical AUROC of 0.85, standard deviations equal to three (i.e. 𝜶𝜶 = 𝟏𝟏), and an 

unconditional PD of 5%. 

 
Due to the random sampling and the finite size of the data sets, the AUROC of the training data 
set is subject to statistical uncertainty and, thus, it fluctuates around its theoretical value of 0.85 
(Van der Burgt 2020). More precisely, the AUROC is asymptotically normally distributed 
(Engelmann et al. 2003). We approximate the expected value of this normal distribution by the 
empirical AUROC of the drawn training data set. Starting from the equation for 𝑉𝑉𝑎𝑎𝑉𝑉(𝐴𝐴) be-
tween equations (3) and (4) in the supplementary materials of Fong and Huang (2019), we 
furthermore derive the variance of the AUROC. Under the more general assumption that the 
credit score of the non-defaults [resp. defaults] follows a normal distribution with expected 
value 𝜇𝜇 [resp. – 𝜇𝜇] and standard deviation 𝜎𝜎 [resp. 𝛼𝛼 ∙ 𝜎𝜎], we arrive at the following equation 
for the variance of the AUROC: 
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𝑉𝑉𝑎𝑎𝑉𝑉(AUROC|𝑛𝑛𝐷𝐷;𝑛𝑛𝑁𝑁𝐷𝐷;𝛼𝛼)

=
1

𝑛𝑛𝐷𝐷 ∙ 𝑛𝑛𝑁𝑁𝐷𝐷

∙

⎩
⎪
⎨

⎪
⎧

(𝑛𝑛𝑁𝑁𝐷𝐷 − 1) ∙ � 𝛷𝛷

⎝

⎛
𝑦𝑦 − �1 + 𝛼𝛼2

𝛼𝛼2 ∙ 𝛷𝛷−1(AUROC)
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⎞
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+ (𝑛𝑛𝐷𝐷 − 1) ∙ � 𝛷𝛷 �
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∙ 𝜑𝜑(𝑦𝑦) ∙ 𝑑𝑑𝑦𝑦
∞
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− (𝑛𝑛𝑁𝑁𝐷𝐷 − 1) ∙ (1 − AUROC)2 − 𝑛𝑛𝐷𝐷 ∙ AUROC2 + AUROC

⎭
⎪
⎬

⎪
⎫

, 

(16)  

where 
• 𝑛𝑛𝐷𝐷 denotes the number of defaults in the sample, 
• 𝑛𝑛𝑁𝑁𝐷𝐷 represents the number of non-defaults in the sample, 
• 𝜑𝜑(∙) stands for the PDF of the standard normal distribution, 
• 𝛷𝛷(∙) denotes the CDF of the standard normal distribution, and 
• 𝛷𝛷−1(∙) represents the inverse of the CDF of the standard normal distribution. 

 
Figure 10: Variance of the AUROC for normally distributed credit scores (with 𝝈𝝈 = 𝟑𝟑) as a function of the AUROC 

and the parameter 𝜶𝜶 for a synthetic data set of 1,000 obligors. 

 
Figure 10 shows the variance of the AUROC as a function of the AUROC and of the parameter 
𝛼𝛼. This figure reveals that the variance of the AUROC is a strictly monotonically decreasing 
function of the AUROC for fixed 𝛼𝛼.  
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Under the same assumption that the credit scores of the defaults and non-defaults follow normal 
distributions, respectively, Van der Burgt (2020) derives the variance of the AUROC based on 
the relationship between the AUROC and the Mann-Whitney U-statistics. Van der Burgt (2020) 
eventually expresses the variance of the AUROC by means of Owen’s T function. We inde-
pendently derive the alternative representation of the variance of the AUROC from a different 
starting point. However, our test calculations suggest that equation (16) and equation (4.10) in 
Van der Burgt (2020) give exactly the same results and, thus, the two closed-form equations 
for the sample variance in the observed AUROC are equivalent. In order to comply with the 
convention that the PD is a strictly monotonic function of the credit score, we set the parameter 
𝛼𝛼 in equation (16) equal to one in what follows (cf. Appendix) 

 
Figure 11: The AUROC as a function of the parameter 𝒂𝒂𝟏𝟏 in the framework of Van der Burgt (2008). 

 
The uncertainty of the AUROC transpires, first, into uncertainties of the parameter 𝑎𝑎1 and, 
second, into uncertainties of the PD estimates. Figure 11 demonstrates that the AUROC is a 
strictly monotonically increasing function of the parameter 𝑎𝑎1 in the framework of Van der 
Burgt (2008). Consequently, we can invert this function in order to find the parameter 𝑎𝑎1 lead-
ing to the empirical AUROC, implied by the pairs of credit scores and default labels of the 
training data set. Furthermore, we calculate the 5%- and 95%-quantile of the AUROC assuming 
a normal distribution. As the AUROC is a strictly monotonically increasing function of the 
parameter 𝑎𝑎1, we can also calculate the 5%- and 95%-quantiles of 𝑎𝑎1. In the next step, we seek 
to convert the confidence interval of 𝑎𝑎1 into a confidence interval of the PD. According to 
Blümke (2020), we can obtain a more conservative PD estimate than the expected PD by choos-
ing a more conservative percentile of the PD. In order to derive conservative PDs from the 
uncertainty of the AUROC, we distinguish the following three cases. 
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• For small cumulative shares of all obligors (i.e. 𝑥𝑥), the PD is a strictly monotonically 
increasing function of the parameter 𝑎𝑎1 in the framework of Van der Burgt (2008) (cf. 
Figure 12). Hence, we can calculate conservative PDs by using the 95%-quantile of 𝑎𝑎1. 

• For high cumulative shares of all obligors, the PD is a strictly monotonically decreasing 
function of 𝑎𝑎1 (not illustrated). As a consequence, we can calculate conservative PDs 
by using the 5%-quantile of 𝑎𝑎1. 

• For intermediate cumulative shares of all obligors, the functional relationship between 
the PD and 𝑎𝑎1 is not strictly monotonic (cf. Figure 12). In this range, we approximate 
conservative PDs by means of linear interpolation. To this end, we determine the linear 
function starting at the last cumulative share for which the PD is a strictly monotonically 
increasing function of 𝑎𝑎1 in the relevant range and ending at the first cumulative share 
for which the PD is a strictly monotonically decreasing function of 𝑎𝑎1 in the relevant 
range (cf. Figure 13). 
Figure 14 shows the range of cumulative shares, for which we cannot calculate con-
servative PDs based on quantiles of the parameter 𝑎𝑎1, as a function of the portfolio size 
and AUROC for a confidence level of 95%. The lower [resp. upper] surface presents 
the lower [resp. upper] bounds of these ranges. The figure reveals that the range of non-
processable cumulative shares decreases with increasing portfolio size and increasing 
AUROC. It is worth noting that the approach can even be applied to almost 82% of the 
obligors in the worst case characterised by an AUROC of 0.6 and a portfolio size of 
500. 

 
Figure 12: Probability of default as a function of the cumulative share of all obligors (i.e. 𝒙𝒙) and parameter 𝒂𝒂𝟏𝟏 in the 

framework of Van der Burgt (2008). 

26



 

Figure 13: Ratio of conservative and best estimate PD for an exemplary synthetic data set defined by 16,000 obligors, 
a theoretical AUROC of 0.85, standard deviations equal to three (i.e. 𝜶𝜶 = 𝟏𝟏), and an unconditional PD of 5% for a 

confidence level of 95%. 

 

 
Figure 14: Range of cumulative share, for which we cannot directly estimate conservative PDs, as a function of the 

AUROC and portfolio size for standard deviations equal to three (i.e. 𝜶𝜶 = 𝟏𝟏), an unconditional PD of 5%, and a confi-
dence level of 95%. (Please note the logarithmic scale on the axis showing the portfolio size.) 

 
We define different portfolio sizes starting with 500 and doubling until 256,000. For each of 
the defined portfolio sizes, we then randomly draw 1,000 data sets of credit scores from the two 
normal distributions. For each synthetic obligor, we calculate the best estimate PD and the con-
servative PD by plugging the best estimate and conservative value of 𝑎𝑎1 into equation (9), re-
spectively (cf. Figure 13). Following this, we average the ratios of conservative PD divided by 
best estimate PD over all synthetic obligors and plot the 10%-, 50%- (i.e. the median), and 90%-
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quantile of these averages over the 1,000 random draws versus the sample size in Figure 15. In 
so doing, this figure illustrates the degree of reliability of the estimates as a function of the 
sample size. As intuition suggests, both the median of the average ratios and the range between 
the 10%- and 90%-quantile decrease for larger sample sizes. 

 
Figure 15: Median and range between 10%- and 90%-quantile of the average ratio of conservative and best estimate 
PD as a function of the sample size for a confidence level of 95% and a theoretical AUROC of 0.85. (Please note the 

logarithmic scale on the axis showing the portfolio size.) 

 
So far, we have assumed a deterministic unconditional PD. In fact, however, the unconditional 
PD is subject to uncertainty, which may amplify the dispersion of the conditional PD. More 
precisely, the unconditional PD affects the upper endpoint of the confidence interval of the 
conditional PD in two opposite ways. On the one hand, higher values of the unconditional PD 
result in higher values of the conditional PD through the first factor on the right hand side of 
equation (3). In order to account for this source of uncertainty, we can determine a confidence 
interval of the unconditional PD and use its upper endpoint in equation (3). On the other hand, 
higher values of the unconditional PD lead to lower values of the variance of the AUROC. In 
order to see this, we set 𝛼𝛼 equal to one, we substitute the number of defaults by the product of 
the total number of obligors in the portfolio and the unconditional PD (i.e. 𝑛𝑛𝐷𝐷 = 𝑛𝑛 ∙ 𝐴𝐴𝑂𝑂𝐹𝐹), and 
we replace the number of non-defaults 𝑛𝑛𝑁𝑁𝐷𝐷 by 𝑛𝑛 − 𝑛𝑛𝐷𝐷 = 𝑛𝑛 ∙ (1 − 𝐴𝐴𝑂𝑂𝐹𝐹) in equation (16): 
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𝑉𝑉𝑎𝑎𝑉𝑉(AUROC, ODF|𝑛𝑛,𝛼𝛼 = 1)

=
1

𝑛𝑛2 ∙ 𝐴𝐴𝑂𝑂𝐹𝐹 ∙ (1 − 𝐴𝐴𝑂𝑂𝐹𝐹)

∙ �(𝑛𝑛 ∙ (1 − 𝐴𝐴𝑂𝑂𝐹𝐹) − 1) ∙ � 𝛷𝛷 �𝑦𝑦 − √2 ∙ 𝛷𝛷−1(AUROC)�
2
∙ 𝜑𝜑(𝑦𝑦) ∙ 𝑑𝑑𝑦𝑦

∞

−∞

+ (𝑛𝑛 ∙ 𝐴𝐴𝑂𝑂𝐹𝐹 − 1) ∙ � 𝛷𝛷 �𝑦𝑦 + √2 ∙ 𝛷𝛷−1(AUROC)�
2
∙ 𝜑𝜑(𝑦𝑦) ∙ 𝑑𝑑𝑦𝑦

∞

−∞

− (𝑛𝑛 ∙ (1 − 𝐴𝐴𝑂𝑂 𝐹𝐹) − 1) ∙ (1 − AUROC)2 − 𝑛𝑛 ∙ 𝐴𝐴𝑂𝑂𝐹𝐹 ∙ AUROC2

+ AUROC�. 

(17)  

 
Figure 16 reveals that the higher the unconditional PD, the lower the variance of the AUROC. 
The lower variance of the AUROC in turn leads to a reduced upper endpoint of the confidence 
interval of the conditional PD via the second factor on the right hand side of equation (3). 
Therefore, neglecting the randomness of the unconditional PD in the second factor on the right-
hand side of equation (3) simplifies and adds conservatism to the calculation of the margin of 
conservatism for the general estimation error of the conditional PD. 

 
Figure 16: Variance of the AUROC for normally distributed credit scores (with standard deviation equal to three, i.e. 
𝜶𝜶 = 𝟏𝟏) as a function of the AUROC and the unconditional PD for a synthetic data set of 100,000 obligors. (Please note 

the logarithmic scale on the axis showing the unconditional PD.) 
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5 Conclusion 
The LLR has developed into a standard approach in order to transform credit scores into PD 
estimates over the last decades. As machine learning techniques increasingly find their way into 
the discriminatory phase of credit risk models, however, the standard calibration approach is 
under scrutiny again. For example, Bequé et al. (2017) find that processing the output of differ-
ent machine learning techniques improves the calibration performance without hurting the dis-
criminatory power. In particular, the authors reveal that a nonlinear but monotonic logit is es-
pecially suitable for calibrating the output of machine learning techniques. 
 
Falkenstein et al. (2000) propose a very general calibration methodology, which is based on 
modelling the empirical CAP through a differentiable function. So far, this calibration method-
ology has only attracted little attention in the banking sector and in the academic literature. The 
key question when implementing the general calibration methodology of Falkenstein et al. 
(2000) is how to model the empirical CAP. Van der Burgt (2008) proposes a one-parametric 
family of differentiable functions in order to fit the empirical CAP. Based on the result of Brunel 
(2019), we substantiate this proposal by demonstrating its similarity to the maximum entropy 
approach (for lower unconditional PDs and/or lower AUROCs). Similarity to the one-paramet-
ric family of differentiable functions that maximizes the entropy is desirable as it makes the 
fewest assumptions about the true distribution of the binary default variable. 
 
However, both regression approaches disregard the specific form of the empirical CAP. There-
fore, we propose a third one-parametric family of differentiable functions inspired by the result 
of Brunel (2019). In order to analyse the practical relevance of these three regression based 
calibration approaches, we benchmark them against the LLR on a real-world data set. Our re-
sults reveal that only the third one-parametric family of differentiable functions outperforms 
the LLR. Given the fact that the median of the relative difference between the LLR and the third 
one-parametric family of differentiable functions ranges below 0.5%, it is important to highlight 
that even small improvements in calibration performance may significantly improve the pricing 
accuracy of credit products (Alonso et al. 2020). These gains in pricing accuracy, in turn, may 
translate into competitive advantages and into relevant refinements of regulatory capital quan-
tification. The bottom line of this analysis is that extending the LLR can improve the calibration 
performance as already demonstrated by Bequé et al. (2017). 
 
Furthermore, we develop an approach, based on the ansatz of Van der Burgt (2008), in order to 
transfer the statistical dispersion of the discriminatory power into a margin of conservatism for 
the general estimation error of the PD. In this context, we also provide an alternative represen-
tation for the variance of the AUROC to the one proposed by Van der Burgt (2020). In order to 
demonstrate the effectiveness of our approach, we run a simulation study based on artificially 
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generated data sets. These synthetic data sets provide optimal conditions by excluding any un-
wanted noisy influence. More precisely, we generate credit scores of defaults and non-defaults 
by sampling from two normal distributions. The mean of the defaults is equal to the negative 
mean of the non-defaults and the standard deviations of the two distributions are equal. This 
setting has two important properties. First, the PD is a strictly monotonically decreasing func-
tion of the credit score as required by convention. Second, we can calculate the true posterior 
probabilities through equations (5) and (21). 
 
Although the proposed approach is certainly not perfect, it provides an opportunity to relate the 
uncertainty of discriminatory power to uncertainties of individual PDs as required, for example, 
by paragraph 140 (a) of the ECB guide to internal models (European Central Bank 2019). In 
accordance with Article 179 (1) (f) of the Corrigendum to regulation (EU) No 575/2013 on 
prudential requirements for credit institutions and investment firms (European Parliament and 
the Council of the European Union 2013), the approach provides larger margins of conserva-
tism where less data induce larger likely ranges of error. Furthermore, the higher the discrimi-
natory power of the credit risk model, the lower is the variance of the discriminatory power in 
our framework (cf. Figure 10). Therefore, our approach punishes credit risk models with low 
discriminatory power through higher margins of conservatism and, in so doing, incentivizes 
banks to improve the discriminatory power of their credit risk models. 
 
In principle, bank internal and supervisory audits of credit risk models can involve empirical 
investigations, for example, based on challenger models and benchmarking data sets in order to 
complement the in-depth analyses of the underlying mathematical theory. As the development 
of challenger models usually requires significant resources, however, this approach is hardly 
compatible with time-limited supervisory audits (Dupont, Fliche, and Yang 2020). Against this 
backdrop, benchmarking data sets take on greater significance. Based on the framework de-
scribed in the second-to-last paragraph, we can generate synthetic data sets of credit scores and 
default labels for which we know the AUROC, the variance of the AUROC, and the true pos-
terior probabilities. After banks have processed these synthetic data sets, internal auditors and 
supervisors can check whether the banks’ models appropriately reproduce the known output. If 
this is not the case, the underlying algorithms or their implementations might deserve closer 
attention. In so doing, the application of synthetic data sets could enhance the efficiency and 
effectiveness of bank internal and supervisory audits. However, the reproduction of metrics of 
synthetic data sets only is a necessary (rather than a sufficient) condition for the appropriateness 
of banks’ internal models. 
 
Our paper contains a number of limitations of which some offer avenues for future research. As 
an example, the paper neglects differences between the empirical and modelled CAPs, which 
might give rise to further uncertainties of the estimated conditional PDs.  
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Appendix 
Throughout this paper, we follow the convention that low values of credit scores tend to indicate 
high default risk and vice versa. This appendix demonstrates that the conditional PD (i.e. 
𝑃𝑃(𝑦𝑦 = 1|𝑠𝑠)) does not monotonically decrease with increasing credit score if the credit scores 
of the defaults and non-defaults follow normal distributions with different variances. In order 
to verify this, we first specify the parameters and functions in equation (4) as suggested by 
Bishop (2006), i.e. 
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Under these specifications, the conditional PDFs, defined in equation (4), become univariate 
normal distributions as examples of exponential family distributions: 
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where 
• 𝜇𝜇𝑌𝑌 stands for the expectation and 
•  𝜎𝜎𝑌𝑌2 denotes the variance. 

Furthermore, the logit (cf. equation (5)) becomes a quadratic function of the credit score (cf. 
Section 1.5 in Hosmer et al. (2013)): 
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𝜎𝜎𝑁𝑁𝐷𝐷
𝜎𝜎𝐷𝐷

�

+
𝜇𝜇𝑁𝑁𝐷𝐷2

2 ∙ 𝜎𝜎𝑁𝑁𝐷𝐷2
−

𝜇𝜇𝐷𝐷2

2 ∙ 𝜎𝜎𝐷𝐷2
. 

(19)  

 
If we further specify the variances and expected values of the defaults and non-defaults as fol-
lows 

𝜎𝜎𝐷𝐷 = 𝛼𝛼 ∙ 𝜎𝜎𝑁𝑁𝐷𝐷 = 𝛼𝛼 ∙ 𝜎𝜎, 
𝜇𝜇𝐷𝐷 = −𝜇𝜇𝑁𝑁𝐷𝐷 = −𝜇𝜇, 

(20)  

 
then we can write the logit in a more compact form: 
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𝑙𝑙(𝑠𝑠) =
𝛼𝛼2 − 1

2 ∙ 𝛼𝛼2 ∙ 𝜎𝜎2
∙ 𝑠𝑠2 −

𝜇𝜇 ∙ (𝛼𝛼2 + 1)
𝛼𝛼2 ∙ 𝜎𝜎2

∙ 𝑠𝑠 + ln �
𝑃𝑃(𝑌𝑌 = 1)

1 − 𝑃𝑃(𝑌𝑌 = 1)� − ln{𝛼𝛼} +
𝜇𝜇2 ∙ (𝛼𝛼2 − 1)

2 ∙ 𝛼𝛼2 ∙ 𝜎𝜎2
. (21)  

 
The derivative of the conditional PD with respect to the credit score is: 

𝑑𝑑
𝑑𝑑𝑠𝑠
𝑃𝑃(𝑌𝑌 = 1|𝑠𝑠) =

𝑑𝑑
𝑑𝑑𝑠𝑠

1
1 + exp{−𝑙𝑙(𝑠𝑠)} 

= 𝑙𝑙′(𝑠𝑠) ∙
exp{−𝑙𝑙(𝑠𝑠)}

(1 + exp{−𝑙𝑙(𝑠𝑠)})2, 
(22)  

with 

𝑙𝑙′(𝑠𝑠) =
𝛼𝛼2 − 1
𝛼𝛼2 ∙ 𝜎𝜎2

∙ 𝑠𝑠 −
𝜇𝜇 ∙ (𝛼𝛼2 + 1)
𝛼𝛼2 ∙ 𝜎𝜎2

. (23)  

 
The conditional PD is obviously not a strictly monotonically decreasing function of the credit 
score which conflicts with our convention: 

𝑑𝑑
𝑑𝑑𝑠𝑠
𝑃𝑃(𝑌𝑌 = 1|𝑠𝑠) ≥ 0 

⇔
𝛼𝛼2 − 1
𝛼𝛼2 ∙ 𝜎𝜎2

∙ 𝑠𝑠 ≥
𝜇𝜇 ∙ (𝛼𝛼2 + 1)
𝛼𝛼2 ∙ 𝜎𝜎2

 

⇒
𝛼𝛼>1

𝑠𝑠 ≥ 𝜇𝜇 ∙
𝛼𝛼2 + 1
𝛼𝛼2 − 1

. 

(24)  

Figure 17 illustrates the impact of 𝛼𝛼 larger than one on the PD as a function of the credit score. 
According to equation (21), the quadratic term in 𝑠𝑠 vanishes if 𝛼𝛼 is equal to one. In this case, 
the conditional PD is a strictly monotonically decreasing function of the credit spread as Figure 
18 shows. Section 4 restricts itself to this case. 
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Figure 17: The difference between the standard deviations of the normally distributed credit scores of defaults and 

non-defaults by the factor 𝜶𝜶 ≠ 𝟏𝟏 induces a non-monotonic relationship between the credit score and PD. 

 

 
Figure 18: Equal standard deviations of the normally distributed credit scores of defaults and non-defaults ensure 

that the PD is a strictly monotonically decreasing function of the credit score. 
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