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ADAPTIVE SIMULATION ALGORITHMS FOR PRICING AMERICAN
AND BERMUDAN OPTIONS BY LOCAL ANALYSIS OF FINANCIAL

MARKET

DENIS BELOMESTNY AND GRIGORI N. MILSTEIN

Abstract. Here we develop an approach for efficient pricing discrete-time American
and Bermudan options which employs the fact that such options are equivalent to the
European ones with a consumption, combined with analysis of the market model over
a small number of steps ahead. This approach allows constructing both upper and low
bounds for the true price by Monte Carlo simulations. An adaptive choice of local low
bounds and use of the kernel interpolation technique enhance efficiency of the whole
procedure, which is supported by numerical experiments.

1. Introduction

The valuation of high-dimensional American and Bermudan options is one of the most
difficult numerical problems in financial engineering. Several approaches have recently
been proposed for pricing such options using Monte Carlo simulation technique (see, e.g.
[1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15] and references therein). In some papers, procedures
are proposed that are able to produce upper and low bounds for the true price and hence
allow for evaluating the accuracy of price estimates.

In [3] we develop the approach for pricing American options both for discrete-time and
continuous-time models. The approach is based on the fact that any American option
is equivalent to the European one with a consumption process involved. This approach
allows us, in principle, to construct iteratively a sequence v1, V 1, v2, V 2, v3, ..., where
v1, v2, v3, ... is an increasing (at any point) sequence of low bounds and V 1, V 2, ..., is
a decreasing sequence of upper bounds. Unfortunately, the complexity of the procedure
increases dramatically with any new iteration step. Even V 2 is too expensive for the real
construction.

Let us consider a discrete-time financial model and let

(Bti , Xti) = (Bti , X
1
ti
, ..., Xd

ti
), i = 0, 1, ..., L,

be the vector of prices at time ti, where Bti is the price of a scalar riskless asset (we
assume that Bti is deterministic and Bt0 = 1) and Xti = (X1

ti
, ..., Xd

ti
) is the price vector

process of risky assets ( along with index ti we shall use below the index i and instead of
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(ti, Xti) we will write (ti, Xi)). Let fi(x) be the profit made by exercising an American
option at time ti if Xti = Xi = x.

In this paper we propose to use an increasing sequence of low bounds for constructing an
upper bound and low bound at the initial position (t0, X0). It is supposed that the above
sequence is not too expensive from the computational point of view. This is achieved by
using local low bounds which take into account a small number of exercise dates ahead.

Let (ti, mXi), i = 0, 1, ..., L; m = 1, ...,M, be M independent trajectories all starting
from the point (t0, X0) and let v1 ≤ v2 ≤ ... ≤ vl be a finite sequence of low bounds
which can be calculated at any position (ti, x). Clearly, these low bounds are also ordered
according to their numerical complexities and a natural number l indicates the maximal
such complexity as well as the quality of the low bound vl. Any low bound gives a low
bound for the corresponding continuation value (low continuation value) and an upper
bound for the consumption process (upper consumption process). If the payoff at (ti, mXi)
is less or equal to the low continuation value, then the position (ti, mXi) belongs to the
continuation region and the consumption at (ti, mXi) is equal to zero. Otherwise the
position (ti, mXi) can belong either to the exercise region or to the continuation region.
In the latter cases we compute the upper consumption at (ti, mXi) as a difference between
the payoff and the low continuation value.

It is important to emphasize that the low bounds are applied adaptively. It means that
if, for instance, using the low bound v1 (which is the cheapest one among v1, v2, ..., vl)
at the position (ti, mXi), we have found that this position belongs to the continuation
region (i.e., the corresponding upper consumption process is equal to zero), we do not
calculate any further bounds. Similarly, if the upper consumption process is positive but
comparatively small, we can stop applying further bounds at (ti, mXi) because a possible
error will not be large. Finally, if the upper consumption process is not small enough after
applying low bounds v1, ..., vj but changes not significantly after applying vj+1, we can
stop applying further bounds as well. The low bounds are prescribed to every position
(ti, mXi) and are, as a rule, local. Applying them means, in some sense, a local analysis
of the considered financial market at any position. Such a local analysis for all positions
(ti, mXi), i = 0, 1, ..., L; m = 1, ...,M , yields some global low bound and upper bound
at the original position (t0, X0). If we detect that the difference between the global upper
and low bounds is large, we can return to the deeper local analysis. It is clear that, in
principle, this analysis can give exhaustive results in a finite number of steps (it suffices
to take the following sequence of American options at (ti, mXi): v1 is the price of the
American option on the time interval [ti, ti+1], v2 is the price on [ti, ti+2] and so on, in a
way that vL−i is the price on [ti, tL]). Thus, we have no problems with convergence of the
algorithms based on the approach considered.
The paper is organized as follows. In Section 2 we recall the basic notions related to
the pricing of American and Bermudan options and sketch the approach developed in [3].
The method of this paper is presented in Section 3. Two numerical examples are given
in Section 4. The paper is concluded in Section 5.
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2. The approach based on consumption processes

To be self-contained, let us briefly recall the approach to pricing American options that
has been developed in [3].

2.1. The Snell envelope. We assume that the modelling is based on the filtered space
(Ω,F , (Fi)0≤i≤L, Q), where the probability measure Q is the risk-neutral pricing measure
for the problem under consideration, and Xi is a Markov chain with respect to the filtration
(Fi)0≤i≤L .

The discounted process X̃i := Xi/Bi is a martingale with respect to the Q and the
price of the corresponding discrete American option at (ti, Xi) is given by

(2.1) ui(Xi) = sup
τ∈Ti,L

BiE

(
fτ (Xτ )

Bτ

|Fi

)
,

where Ti,L is the set of stopping times τ taking values in {i, i+1, ..., L}. The value process
ui (Snell envelope) can be determined by the dynamic programming principle:

uN(x) = fN(x),(2.2)

ui(x) = max

{
fi(x), BiE

(
ui+1(Xi+1)

Bi+1

|Xi = x

)}
, i = L− 1, ..., 0.

We see that theoretically the problem of evaluating u0(x), the price of the discrete-time
American option, is easily solved using iteration procedure (2.2). However, if X is high
dimensional and/or L is large, the above iteration procedure is not practical.

2.2. The continuation value, the continuation and exercise regions. For the con-
sidered American option, let us introduce the continuation value

(2.3) Ci(x) = BiE

(
ui+1(Xi+1)

Bi+1

|Xi = x

)
,

the continuation region C and the exercise (stopping) region E :

C = {(ti, x) : fi(x) < Ci(x)} ,(2.4)

E = {(ti, x) : fi(x) ≥ Ci(x)} .

Let X i,x
j , j = i, i + 1, ..., L, be the Markov chain starting at time ti from the point

x : X i,x
i = x, and mX i,x

j , m = 1, ...,M, be independent trajectories of the Markov chain.
The Monte Carlo estimator ûi(x) of ui(x) (in the case when E is known) has the form

(2.5) ûi(x) =
1

M

M∑
m=1

Bi

Bτ

f(mX i,x
τ ),

where τ is the first time at which X i,x
j gets into E (of course, τ in (2.5) depends on i, x,

and m : τ =m τ i,x). Thus, for estimating ui(x), it is sufficient to examine sequentially the
position (tj, mX i,x

j ) for j = i, i+1, ..., L, whether it belongs to E or not. If (tj, mX i,x
j ) ∈ E ,

then we stop at the instant τ = tj on the trajectory considered. If (tj, mX i,x
j ) ∈ C, we

move one step more along the trajectory.
3



Let v be any low bound, i.e. ui(x) ≥ vi(x), i = 0, 1, ..., L. Clearly, fi(x) is a low
bound. If v1

i , ..., v
l
i are some low bounds then the function vi(x) = max1≤k≤l v

k
i (x) is also

a low bound. Henceforth we consider low bounds satisfying the inequality vi(x) ≥ fi(x).
Introduce the set

Cv =

{
(ti, x) : fi(x) ≤ BiE

(
vi+1(Xi+1)

Bi+1

|Xi = x

)}
.

Since Cv ⊂ C, any low bound provides us with a sufficient condition for moving along the
trajectory: if (tj, mX i,x

j ) ∈ Cv, we do one step ahead.

2.3. Equivalence of American options to European ones with consumption pro-
cesses. For 0 ≤ i ≤ L− 1 the equation (2.2) can be rewritten in the form

(2.6) ui(x) = BiE

(
ui+1(Xi+1)

Bi+1

|Xi = x

)
+

[
fi(x)−BiE

(
ui+1(Xi+1)

Bi+1

|Xi = x

)]+

.

Introduce the functions

(2.7) γi(x) =

[
fi(x)−BiE

(
ui+1(Xi+1)

Bi+1

|Xi = x

)]+

, i = L− 1, ..., 0.

Due to (2.6), we have

uL−1(XL−1) = BL−1E

(
fL(XL)

BL

|FL−1

)
+ γL−1(XL−1),

uL−2(XL−2) = BL−2E

(
uL−1(XL−1)

BL−1

|FL−2

)
+ γL−2(XL−2)

= BL−2E

(
fL(XL)

BL

|FL−2

)
+ BL−2E

(
γL−1(XL−1)

BL−1

|FL−2

)
+ γL−2(XL−2).

Analogously, one gets

ui(Xi) = BiE

(
fL(XL)

BL

|Fi

)
+ Bi

L−(i+1)∑
k=1

E

(
γL−k(XL−k)

BL−k

|Fi

)
(2.8)

+γi(Xi), i = 0, ..., L− 1.

Putting X0 = x and recalling that B0 = 1, we obtain

(2.9) u0(x) = E

(
fL(XL)

BL

)
+ γ0(x) +

L−1∑
i=1

E

(
γi(Xi)

Bi

)
.

Formula (2.9) gives us the price of the European option with the payoff function fi(x) in
the case when the underlying price process is equipped with the consumption γi defined
in (2.7).
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2.4. Upper and low bounds using consumption processes. The results about the
equivalence of the discrete-time American option to the European one with the consump-
tion process cannot be used directly because ui(x) and consequently γi(x) are unknown.
We take the advantage of this connection in the following way (see [3]).

Let vi(x) be a low bound on the true option price ui(x). Introduce the function (upper
consumption process)

(2.10) γi,v(x) =

[
fi(x)−BiE

(
vi+1(Xi+1)

Bi+1

|Xi = x

)]+

, i = 0, ..., L− 1.

Clearly,
γi,v(x) ≥ γi(x).

Hence the price Vi(x) of the European option with payoff function fi(x) and upper con-
sumption process γi,v(x) is an upper bound: Vi(x) ≥ ui(x).

Conversely, if Vi(x) is an upper bound on the true option price ui(x) and

(2.11) γi,V (x) =

[
fi(x)−BiE

(
Vi+1(Xi+1)

Bi+1

|Xi = x

)]+

, i = 0, ..., L− 1,

then the price vi(x) of the European option with low consumption process γi,V (x) is a low
bound.

Thus, starting from a low bound v1
i (x), one can construct the sequence of low bounds

v1
i (x) ≤ v2

i (x) ≤ v3
i (x) ≤ ... ≤ ui(x), and the sequence of upper bounds V 1

i (x) ≥ V 2
i (x) ≥

... ≥ ui(x). All these bounds can be, in principle, evaluated by the Monte Carlo simula-
tions. However, each further step of the procedure requires labor-consuming calculations
and in practice it is possible to realize only a few steps of this procedure. In this connec-
tion, much attention in [3] is given to variance reduction technique and some constructive
methods for reducing statistical errors are proposed there.

2.5. Bermudan options. As before, let us consider the discrete-time model

(Bi, Xi) = (Bi, X
1
i , ..., Xd

i ), i = 0, 1, ..., L.

Suppose that an investor can exercise only at an instant from the set of stopping times
S = {s1, ..., sl} within {0, 1, ..., L}, where sl = L. The price ui(Xi) of the so called
Bermudan option is given by

ui(Xi) = sup
τ∈TS∩[i,L]

BiE

(
fτ (Xτ )

Bτ

|Fi

)
,

where TS∩[i,L] is the set of stopping times τ taking values in {s1, ..., sl} ∩ {i, i + 1, ..., L}
with sl = L.

The value process ui is determined as follows:

uL(x) = fL(x),

ui(x) =


max

{
fi(x), BiE

(
ui+1(Xi+1)

Bi+1

|Xi = x

)}
, i ∈ S,

Bi

(
ui+1(Xi+1)

Bi+1

|Xi = x

)
, i /∈ S.

5



Similarly to American options, any Bermudan option is equivalent to the European one
with the payoff function fi(x) and the consumption process γi defined as

γi(x) =


[
fi(x)−BiE

(
ui+1(Xi+1)

Bi+1

|Xi = x

)]+

, i ∈ S,

0, i /∈ S.

Thus, all the results obtained in this section for discrete-time American options can be
carried over to Bermudan options. For example, if vi(x) is a low bound on the true option
price ui(x), the price Vi(x) of the European option with the payoff function fi(x) and
with the consumption process

γi,v(x) =


[
fi(x)−BiE

(
vi+1(Xi+1)

Bi+1

|Xi = x

)]+

, i ∈ S,

0, i /∈ S.

is an upper bound: Vi(x) ≥ ui(x).

3. The main procedure

The difficulties mentioned in Subsection 2.4 can be avoided by using an increasing
sequence of simple low bounds.

3.1. Local low bounds. The trivial low bound is fi(x) and the simplest nontrivial one
is given by

vi+1
i (x) = max

{
fi(x), BiE

(
fi+1(Xi+1)

Bi+1

|Xi = x

)}
.

The function vi+1
i (x) is the price of the American option at the position (ti, x) on the time

interval [ti, ti+1]. It takes into account the behavior of assets at one step ahead. Let vi+k
i (x)

be the price of the American option at the position (ti, x) on the time interval [ti, ti+k].
The function vi+k

i (x) corresponds to an analysis of the market over k steps ahead. The
calculation of vi+k

i (x) can be done iteratively. Indeed, the price of the American option on
the interval [ti, ti+k+1] with k + 1 exercise periods can be calculated using the American
options on the interval [ti+1, ti+k+1] with k exercise periods

(3.1) vi+k+1
i (x) = max

{
fi(x), BiE

(
vi+k+1

i+1 (Xi+1)

Bi+1

|Xi = x

)}
.

We see that vi+k+1
i (x) is, as a rule, much more expensive than vi+k

i (x). The direct formula
(3.1) can be too laborious even for k ≥ 3. As an example of a simpler low bound, let us
consider the maximum of the American option on the interval [ti, ti+k] and the European
option on the interval [ti, ti+k+1]:

v̄i+k
i (x) = max

{
vi+k

i (x), BiE

(
fi+k+1(Xi+k+1)

Bi+k+1

|Xi = x

)}
.

This low bound is not so expensive as vi+k+1
i (x). Clearly

vi+k
i (x) ≤ v̄i+k

i (x) ≤ vi+k+1
i (x).

6



Different combinations consisting of European, American, and Bermudan options can give
other simple low bounds.

The success of the main procedures (see below) exceedingly depends on a choice of low
bounds. Therefore their efficient construction is of great importance. To this aim one can
use the known methods and among them the method from [3].

We emphasize again (see Introduction) that if after using some low bound it is es-
tablished that the position belongs to C, then this position does not need any further
analysis. Therefore, at the beginning the simplest nontrivial low bound vi+1

i (x) should be
applied and then other low bounds should be used adaptively in the order of increasing
complexity.

3.2. The main procedure for constructing upper bounds for the initial position
(global upper bounds). Aiming to estimate the price of the American option at a fixed
position (t0, x0), we simulate the independent trajectories mXi, i = 1, ..., L, m = 1, ...,M,
of the process Xi, starting at the instant t = t0 from x0 : X0 = x0. Let vi(x) be a low
bound and (ti, mXi) be the position on the m-th trajectory at the time instant ti. We
calculate the low continuation value

(3.2) ci,v(mXi) = BiE

(
vi+1(mXi+1)

Bi+1

|Fi

)
at the position (ti, mXi). If

(3.3) fi(mXi) < ci,v(mXi),

then (ti, mXi) ∈ C (see (2.4)) and we move one step ahead along the trajectory to the
next position (ti+1, mXi+1). Otherwise if

(3.4) fi(mXi) ≥ ci,v(mXi),

then we cannot say definitely whether the position (ti, mXi) belongs to C or to E . In
spite of this fact we do one step ahead in this case as well. Let us recall that the true
consumption at (ti, x) is equal to

(3.5) γi (x) = [fi (x)− Ci (x)]+

(see (2.7) and (2.3)). Thus, it is natural to define the upper consumption γi,v at any
position (ti, mXi) by the formula

(3.6) γi,v(mXi) = [fi(mXi)− ci,v(mXi)]
+.

Obviously, ci,v ≤ Ci and hence γi,v ≥ γi. Therefore, the price Vi(x) of the European option
with payoff function fi(x) and upper consumption process γi,v is an upper bound on the
price ui(x) of the original American option. In the case (3.3) γi,v(mXi) = γi(mXi) = 0
and we do not get any error. If (3.4) holds and besides ci,v(mXi) < Ci(mXi), we get an
error. If γi,v(mXi) is large, then it is in general impossible to estimate this error, but if
γi,v(mXi) is small, the error is small as well.
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Having found γi,v, we can construct an estimate V̂0(x0) of the upper bound V0(x0) for
u0(x0) by the formula

(3.7) V̂0(x0) =
1

M

M∑
m=1

fL(mXL)

BL

+
1

M

L−1∑
i=0

M∑
m=1

γi,v(mXi)

Bi

.

Note that for the construction of an upper bound V0 one can use different local low
bounds depending on a position. This opens various opportunities for adaptive proce-
dures. For instance, if γi,v(mXi) is large, then it is reasonable to use a more powerful local
instrument at the position (ti, mXi).

3.3. The main procedure for constructing low bounds for the initial position
(global low bounds). Let us proceed to the estimation of a low bound v0(x0). We stress
that both V0(x0) and v0(x0) are estimated for the initial position (t0, x0) only. Since we
are interested in obtaining as large as possible low bound, it is reasonable to calculate
different not too expensive low bounds at the position (t0, x0) and to take the largest one.

Let us fix a local low bound v. We denote by t0 ≤ τ
(m)
1 ≤ L the first time when either (3.4)

is fulfilled or τ
(m)
1 = L. The second time τ

(m)
2 is defined in the following way. If τ

(m)
1 < L,

then τ
(m)
2 is either the first time after τ

(m)
1 for which (3.4) is fulfilled or τ

(m)
2 = L. So,

t0 ≤ τ
(m)
1 < τ

(m)
2 ≤ L. In the same way we can define θ times

(3.8) 0 ≤ τ
(m)
1 < τ

(m)
2 < ... < τ

(m)
θ = L.

The number θ depends on the m-th trajectory: θ = θ(m) and can vary between 1 and

L + 1 : 1 ≤ θ ≤ L + 1. We put by definition τ
(m)
θ+1 = τ

(m)
θ = L, τ

(m)
θ+2 = ... = τ

(m)
L+1 = L.

Thus, we get times τ 1, ..., τL+1 which are connected with the considered process Xi. For
any 1 ≤ k ≤ L + 1 the time τ k does not anticipate the future because at each point Xi

at time ti the knowledge of Xj, j = 0, 1, ..., i, is sufficient to define it uniquely. So, the
times τ 1, ..., τL+1 are stopping rules and the following low bound can be proposed

v0(x0) = max
1≤k≤L+1

E
fτk

(Xτk
)

Bτk

which can be in turn estimated as

v̂0(x0) = max
1≤k≤L+1

1

M

M∑
m=1

f
τ
(m)
k

(mX
τ
(m)
k

)

B
τ
(m)
k

.

Of course, v0(x0) depends on the choice of the local low bound v. Clearly, increasing the
local low bound implies increasing the global low bound v0(x0).

Remark 3.1. It is reasonable instead of the stopping criterion (3.4) to use the following
criterion

(3.9) γi,v(mXi) ≥ ε

for some ε > 0. On the one hand, γi,v ≥ γi and hence the stopping criterion with ε = 0
can lead to earlier stopping and possibly to a large error when γi,v > 0 but γi = 0. On
the other hand, if 0 < γi,v(mXi) < ε we can make an error using criterion (3.9). Indeed,

8



in this case we continue and if γi > 0 then (ti, mXi) ∈ E and the true decision is to stop.
Since the price of the option at (ti, mXi) upon the continuation is Ci(mXi) and

fi(mXi)− Ci(mXi) = γi ≤ γi,v < ε,

the error due to the wrong decision at (ti, mXi) is small as long as ε is small. It is
generally difficult to estimate the influence of many such wrong decisions on the global
low bound. Fortunately, any ε > 0 leads to a sequence of stopping times (3.8) and,
consequently, to a global low bound v0(x0). What the global upper bound is concerned,
we have 0 ≤ γi,v − γi < ε when γi,v < ε and hence the error in estimating V0 is small due
to (3.7). The choice of ε can be based on some heuristics and the empirical analysis of
overall errors in estimating true γi’s.

3.4. Kernel interpolation. The computational complexity of the whole procedure can
be substantially reduced by using methods from the interpolation theory. As discussed in
the previous sections, the set of independent paths

PM := {mXi, i = 1, ..., L, m = 1, ...,M}

and the sequence of local low bounds {v1
i , ..., v

l
i} deliver the set of the upper consumption

values {γi,v(mXi), i = 0, ..., L, m = 1, ...,M}, where vi := max{v1
i , ..., v

l
i}. If M is large

one may take a subset PM̃ of PM containing first M̃ � M trajectories

(3.10) PM̃ := {mXi, i = 1, ..., L, m = 1, ..., M̃}

and compute {γi,v(mXi), i = 0, ..., L, m = 1, ..., M̃}. The remaining consumption values

γi,v(nXi) for n = M̃ + 1, ...,M can be approximated by

γ̂i,v(nXi) :=
∑

�
m:mXi∈Bk

P
M̃

(nXi)

�wn,mγi,v(mXi),

where Bk
PM̃

(nXi) is the set of k nearest neighbors of nXi lying in the PM̃ for fixed exercise

date ti and

wn,m :=
K(‖nXi −m Xi‖/h)∑�

m:mXi∈Bk
P

M̃
(nXi)

�K(‖nXi −m Xi‖/h)

with K(·) being a positive kernel. A bandwidth h and the number of nearest neighbors
k are chosen experimentally. Having found γ̂i,v(nXi), we get the global upper bound at

(t0, x0) according to (3.7) by plugging estimated values γ̂i,v(mXi) with m = M̃ + 1, ...,M
in place of the corresponding γi,v(mXi) .
The simulations show that an essential reduction of computational time can be sometimes
achieved at small loss of precision. The reason for the success of kernel methods is that
the closeness of the points in the state space implies the closeness of the corresponding
consumption values.
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4. Simulations

4.1. Bermudan max calls on d assets. This is a benchmark example studied in [5], [9]
and [15] among others. Specifically, the model with d identical assets is considered where
each underlying has dividend yield δ. The risk-neutral dynamic of assets is given by

dXk
t

Xk
t

= (r − δ)dt + σdW k
t , k = 1, ..., d,(4.1)

where W k
t , k = 1, ..., d, are independent one dimensional Brownian motions and r, δ, σ are

constants. At any time t ∈ {t0, ..., tL} the holder of the option may exercise it and receive
the payoff

f(Xt) = (max(X1
t , ..., Xd

t )−K)+.

In applying the method developed in this paper we take ti = iT/L, i = 0, ..., L, with
T = 3, L = 9 and simulate M = 50000 trajectories

PM = {mXi, i = 0, ..., L}M
m=1

using Euler scheme with a time step h = 0.1. Setting M̃ = 500, we define the set PM̃ as
in (3.10) and compute adaptively the low continuation values for every point in PM̃ . To
this end we simulate N = 100 points

nX
(ti, mXi)
i+1 , 1 ≤ n ≤ N,

from each point (ti, mXi) with i < L and m ≤ M̃ . For any natural l such that 0 ≤ l ≤
L− i− 1, values

v
(j)
i+1

(
n
X

(ti, mXi)
i+1

)
, 0 ≤ j ≤ l,

based on local low bounds of increasing complexity, can be constructed as follows. First,

v
(0)
i+1

(
n
X

(ti, mXi)
i+1

)
= f

(
n
X

(ti, mXi)
i+1

)
and v

(j)
i+1 for j = 1, 2 are values of the American option

on the intervals [ti+1, ti+1+j] . If j > 2 then v
(j)
i+1 is defined as value of the Bermudan

option with three exercise instances at time points {ti+1, ti+j, ti+j+1}. Now, we estimate
the corresponding low continuation value by

ĉi,l(mXi) =
e−r(ti+1−ti)

N

N∑
n=1

max
0≤j≤l

{
v

(j)
i+1(nX

(ti, mXi)
i+1 )

}
.

Clearly, ĉi,l is the Monte-Carlo estimate of ci,v, where v = max0≤j≤l v
(j)
i+1. Let us fix a

maximal complexity l∗. Sequentially increasing l from 0 to l∗i = min{l∗, L − i − 1}, we
compute ĉi,l until l ≤ l∗, where

l∗ := min{l : fi(mXi) < ĉi,l(mXi)}
or l∗ := l∗i if

fi(mXi) ≥ ĉi,l(mXi), l = 1, . . . , l∗i .

Note, that in the case l∗ < l∗i the numerical costs are reduced as compared to the non-

adaptive procedure while the quality of the estimate ĉi,v∗ , where v∗ = max0≤j≤l∗ v
(j)
i+1 is

preserved. The estimated values ĉi,v∗(mXi) allow us, in turn, to compute the estimates

for the corresponding upper consumptions γi,v∗(mXi) with m = 1, . . . , M̃ . The upper

consumptions values for m = M̃+1, . . . M are estimated using kernel interpolation with an
10



Table 4.1. Bounds (with 95% confidence intervals) for the 2-dimensional
Bermudan max call with parameters K = 100, r = 0.05, σ = 0.2, L = 9
and l∗ varying as shown in the table.

l∗ x0 Lower Bound Upper Bound True Value
v0(X0) V0(X0)

90 7.892±0.1082 8.694±0.0023 8.08
1 100 12.872±0.1459 15.2568±0.0042 13.90

110 19.275±0.1703 23.8148±0.0062 21.34
90 8.070±0.1034 7.900±0.0018 8.08

3 100 13.281±0.1434 14.241±0.0038 13.90
110 19.526±0.1852 21.807±0.0058 21.34
90 8.099±0.1057 7.914±0.0018 8.08

6 100 13.196±0.1498 13.844±0.0038 13.90
110 19.639±0.1729 21.411±0.0056 21.34

exponential kernel (see Section 3.4). In Table 4.1 the corresponding results are presented
in dependence on l∗ and x0 with X0 = (X1

0 , . . . , X
d
0 )T , X1

0 = ... = Xd
0 = x0. The true

values are quoted from [8]. We see that while the quality of bounds increases significantly
from l∗ = 1 to l∗ = 3, the crossover to l∗ = 6 has a little impact on it. It means that either
the true value is achieved (as for x0 = 90) or deeper analysis is needed (as for x0 = 100).

4.2. Bermudan basket-put. In this example we consider again the model with d identi-
cal assets driven by independent identical geometrical Brownian motions (see (4.1)) with
δ = 0. Defining the basket at any time t as X̄t = (X1

t + ... + Xd
t )/d, let us consider the

Bermudan basket put option granting the holder the right to sell this basket for a fixed
price K at time t ∈ {t0, ..., tL} getting the profit given by f(X̄t) = (K − X̄t)

+. We apply
our method for constructing low and upper bounds on the true value of this option at
the initial point (t0, X0). In order to construct local low bounds we need to compute the
prices of the corresponding European style options vt+θ

t (x) = e−rθE(f(X̄t+θ)|Xt = x) for
different θ and t. It can be done in principle by Monte-Carlo method since the closed
form expression for vt+θ

t (x) is not known. However, in this case it is more rational to use
the so-called moment-matching procedure from [6] and to approximate the distribution of

the basket X̄t+θ by a log-normal one with parameters r̃ − σ̃2/2 and σ̃θ1/2, where r̃ and σ̃
are chosen in a such way that the first two moments of the above log-normal distribution
coincide with the true ones. In our particular example r̃ = r and

σ̃2 =
1

θ
log

∑d
i,j=1 X i

tX
j
t exp(1{i=j}σ

2θ)[∑d
i=1 X i

t

]2
 .(4.2)

In Table 4.2 the results of simulations for different maximal complexity l∗ and initial values
x0 = X1

0 = ... = Xd
0 are presented. Here, overall M = 50000 paths are simulated and

on the subset of M̃ = 500 trajectories the local analysis is conducted. Other trajectories
are handled with the kernel interpolation method as described in Section 3.4. Similar to
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Table 4.2. Bounds (with 95% confidence intervals) for the 5-dimensional
Bermudan basket put with parameters K = 100, r = 0.05, σ = 0.2, L = 9
and different l∗.

l x0 Lower Bound Upper Bound True Value
v0(X0) V0(X0)

100 2.391±0.0268 2.985±0.0255 2.480
1 105 1.196±0.0210 1.470±0.0169 1.250

110 0.594±0.0155 0.700±0.0105 0.595
100 2.455±0.0286 2.767±0.0238 2.480

2 105 1.210±0.0220 1.337±0.0149 1.250
110 0.608±0.0163 0.653±0.0094 0.595
100 2.462±0.0293 2.665±0.0228 2.480

3 105 1.208±0.0224 1.295±0.0144 1.250
110 0.604±0.0166 0.635±0.0090 0.595
100 2.473±0.0200 2.639±0.0228 2.480

6 105 1.237±0.0231 1.288±0.0142 1.250
110 0.611±0.0169 0.632±0.0089 0.595
100 2.479±0.0300 2.627±0.0226 2.480

9 105 1.236±0.0232 1.293±0.0144 1.250
110 0.598±0.0167 0.627±0.0087 0.595

the previous example, significant improvements are observed for l∗ = 2 and l∗ = 3. The
difference between the upper bound and low bound for l∗ > 3 is less than 5%.

5. Conclusions

In this paper a new Monte-Carlo approach towards pricing discrete American and
Bermudan options is presented. This approach relies essentially on the representation of
an American option as the European one with the consumption process involved. The
combination of the above representation with the analysis of the market over a small
number of time steps ahead provides us with a low as well an upper bound on the true price
at a given point. Additional ideas concerning adaptive computation of the continuation
values and the use of interpolation techniques help reducing the computational complexity
of the procedure. In summary, the approach proposed has following features:

• It is Monte-Carlo based and is applicable to the problems of medium dimension-
ality.

• The propagation of errors is transparent and the quality of final bounds can be
easily assessed.

• It is adaptive that is its numerical complexity can be tuned to the accuracy needed.
• Different type of sensitivities can be efficiently calculated by combining the current

approach with the method developed in [14].
12
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