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Article

Bounding Causes of
Effects With Mediators

Philip Dawid1 ,
Macartan Humphreys2,3

and Monica Musio4

Abstract

Suppose X and Y are binary exposure and outcome variables, and we have full
knowledge of the distribution of Y, given application of X. We are interested
in assessing whether an outcome in some case is due to the exposure. This
“probability of causation” is of interest in comparative historical analysis
where scholars use process tracing approaches to learn about causes of
outcomes for single units by observing events along a causal path. The
probability of causation is typically not identified, but bounds can be placed
on it. Here, we provide a full characterization of the bounds that can be
achieved in the ideal case that X and Y are connected by a causal chain of
complete mediators, and we know the probabilistic structure of the full
chain. Our results are largely negative. We show that, even in these very
favorable conditions, the gains from positive evidence on mediators is
modest.
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Introduction

Even the best possible evidence regarding the effects of a treatment on an

outcome in a population is generally not enough to identify the probability

that a positive outcome in an individual treated case was in fact caused by the

treatment.

For instance, researchers conducting randomized controlled trials may

determine that providing a medicine to school children increases the overall

probability of good health from one third to two thirds. This information, no

matter how precise, is not enough to answer the following question: Is Ann

healthy because she took the medicine? It is not even enough to answer the

question probabilistically. The reason is that, consistent with these results, it

may be that the medicine makes a positive change for two out of three

children, but a negative change for the remainder: In that case, the medicine

certainly helped Ann. But it might alternatively be that the medicine makes a

positive change for one in three children but no change for the others. In that

case, the chances it helped Ann are just one in two. For, of the children taking

the medicine, two thirds are healthy. Half of these are healthy because of the

medicine, whereas the other half would have been healthy anyway.

Put differently, the experimental data identifies the “effects of causes,”

but we are interested in the reverse problem, of quantifying “causes of

effects.” The causes of effects task of defining and assessing the probability

of causation (Robins and Greenland 1989) in an individual case have been

considered by Tian and Pearl (2000); Dawid (2011); Yamamoto (2012);

Pearl (2015); Dawid, Musio and Fienberg (2016); and Murtas, Dawid, and

Musio (2017).1 Note that this is distinct from the “reverse causal question” of

Gelman and Imbens (2013), which is a collection of effects of causes ques-

tions aimed at ascertaining which causes have an effect on an outcome—the

difference being that the estimand in this formulation does not condition on

observed values of treatments and outcomes. The question is of interest for

historical analyses that seek to explain outcomes, for judicial determinations

of innocence or guilt, and policy analysis seeking to assign responsibility for

outcomes to interventions. For these outcomes, bounds are useful when they

are narrow—in which case they can be treated like point estimates despite the

lack of identification. But even less narrow bounds can sometimes be useful

and support claims of the form: For any possible priors you might hold you

should conclude that Y was more likely than not due to X. Finally, knowing

that bounds are not narrow is useful since it clarifies that claims about causal

attribution reflect prior beliefs about causal processes and not beliefs justi-

fied by data. For all these cases, we highlight that determining that X caused
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Y does not in any way mean that X is the only cause of Y or the most

important cause of Y. For this reason, the attribution question can be

addressed without needing to take account of other possible causes—

although, as we will show, taking account of these may sometimes sharpen

conclusions.

A common approach to learning about causes of effects is to seek additional

evidence along causal pathways. Observation of such ancillary evidence can

then act like a test, leading to updating on overall causal relations. Using the

language in Van Evera (1997), a “smoking gun test” searches for evidence that,

though unlikely to be found, would give great confidence in a claim if it were to

be found; a “hoop” test is a search for evidence that we expect to find, but

which, if found to be absent, would provide compelling evidence against a

proposition (as if the proposition were asked to jump through a hoop).

Though these tests do not require that causal process observations lie

along a simple chain—what Weller and Barnes (2016) call scenario 1 chains

and we call a chain with complete mediation—in many applications,

researchers presume that they do. In the account provided in Mahoney

(2012), Skocpol (1979) produced a hoop test by identifying a mediator M

(local events) such that X (community solidarity) was necessary for M and M

was sufficient for Y (peasant revolution). As described also by Mahoney

(2012), researchers might use chains to justify smoking gun tests, seeking

“chains of necessary conditions.” A common practice among researchers

evaluating development programs is to specify “theories of change” and seek

evidence for intermediate outcomes along a pathway linking treatment to

outcomes (Ghate 2018): Was the treatment received? Was the medicine

ingested? Knight and Winship (2013) review a long history in sociology of

“mechanism-focused scholarship,” including in Max Weber, Karl Marx, and

Paul Lazerfeld. Gross (2018) describes the many different classes of causal

chains used in sociological research, many of which involve complete med-

iation (or linearity, to use his term).

This strategy of looking at values of a mediating variable is often extended

by examining multiple points on a chain. Seeing supportive evidence at many

points along such a causal chain would appear to give confidence that the final

outcome is indeed due to the conjectured cause. This is a common idea in

process tracing (Collier 2011) as well as of mixed methods research as used in

development evaluation (White 2009). As described by Mahoney (2012),

“[a]lthough a hypothesis that passes any one straw in the wind test may not

be well supported, a hypothesis that passes several straw in the wind tests may

generate a good deal of confidence in its validity.” In the most optimistic

accounts of observation of causal chains, it is reasoned that, as one gets close
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enough to a process, by observing more and more links in a chain, the link

between any two steps becomes less questionable—intuitively obvious—and

eventually the causal process reveals itself (Mahoney 2012:581).

We here provide a comprehensive treatment of the scope for inferences of

this form. Our analyses employs causal models for justifying mechanistic

accounts as advocated by Knight and Winship (2013). The analysis builds on

logic found in Mahoney (2012) by quantifying the learning that can be made

from cases involving necessity and sufficiency as well as probabilistic

relations. Whereas existing results (Dawid, Murtas, and Musio 2016) have

considered the case of a single unobserved mediator, we generalize by con-

sidering situations with chains of arbitrary length and we calculate bounds

for general data, that is, for situations in which the values of none, some, or

all the mediators are observed. We obtain a general formula for calculating

bounds on the probability of causation, derive implications of this formula,

and calculate the largest and smallest upper and lower bounds achievable

from any causal chain consistent with known relation between X and Y.

We emphasize that we focus on what might appear to be ideal conditions:

those in which we believe causal processes follow a simple causal chain and

in which researchers have complete evidence about the probabilistic rela-

tionship between any two consecutive nodes in the chain. Thus, we exclude

more complex situations in which there are both direct and indirect effects

connecting nodes. We explore still more optimistic conditions in which the

chain is arbitrarily long, in which the causal effect of each intermediate

variable on its successor climbs to 1, and in which researchers observe out-

comes consistent with positive effects at every point on the chain.

Insofar as these are best case settings, the negative results we provide are,

we believe, all the more striking. Our key results imply that our ability to raise

lower bounds is often modest. Consistent observations along a causal chain,

for instance, do increase confidence that an outcome can be attributed to a

cause; moreover, for “homogeneous” chains (chains for which causal pro-

cesses look the same at every step)-the longer the chain the better. However,

even under these ideal conditions, the narrowing of bounds is often small. In

the example of attributing Ann’s health to good medicine, a smooth process

with arbitrarily many positive intermediate steps observed would only tighten

the bounds from ½0:5; 1� to ½0:58; 1�. Other processes can tighten the bounds

more. For example, suppose Ann was prescribed the medicine and recovered.

If we know that being prescribed the medicine is the only way in which Ann

could have obtained and taken the medicine, and that taking the medicine

helps anyone who would otherwise be sick, then with positive evidence on

a single intermediate point on the causal chain—that Ann did indeed take the
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medicine—we can identify the probability that prescribing the medicine

caused Ann’s recovery at two thirds. A process like this, in which we observe

a “necessary condition for a sufficient condition,” provides the largest possible

lower bound on the probability of causation available from any observations

on any chain. At this point, we have done the best possible and more data along

the chain will not help. No data pattern supports an inference closer to 1.

Although achieving identification of the probability of causation at 1 is

generally elusive, even on long chains, negative data can yield identification

at 0, even when observed at single node. In this sense, information on med-

iators can support “hoop” tests but not “smoking gun” tests.

The intuition for why identification at 0 is possible is the following. If we

know that A ¼ 1 is necessary for B ¼ 1, then we know that A cannot induce a

negative effect on B. But then if we observe A ¼ 1, B ¼ 0 we can infer that A

did not have any effect—positive or negative—on B, and so the causal chain

is broken. The intuition for why positive evidence is not so informative for

updating towards 1 is that positive evidence is always consistent with both

A ¼ 1 causing B ¼ 1 and B ¼ 1 arising regardless of A. The only time in

which we do not face this ambiguity at all is when we know that B ¼ 1 does

not arise regardless of A in which case we would not learn anything new from

observation of A. The intuition for why longer chains of positive evidence

have modest effects on bounds is that while a decomposition of a process

with many steps means greater confidence of causal effects at each step, each

additional step also creates another point at which a causal chain might be

broken. As a numerical example, in Ann’s one-step process, we had a lower

bound of the probability that X caused Y of .5. If we had five steps and

transition matrices, identical at each step and consistent with the known

distribution of Y given X, then we would have to have quite strong average

effects at each step—around 0.8 rather than one third (since 0:85 � 1=3);

these in turn induce a lower bound that each outcome was caused by its

predecessor of around 0.89. While 0.89 for a single step appears promising,

the implied lower bound for the entire chain is then just 0:895 � 0:56, which

is only a modest increase in what we had before: in short, the parsing into

steps gives more scope to find positive evidence but is accompanied by an

accumulation of points at which a chain might be broken.

Our results have implications for qualitative and quantitative scholars.

Most immediately they can be used to assess what inferences can be drawn

from observations along a causal path and thus inform decisions about

whether to gather data of this form. They can also help clarify the back-

ground knowledge about causal processes needed to make these inferences.
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The result can also be used to help determine which observations to examine

in settings where researchers have a choice. Yet the negative results also

carry a caution: Argumentation for attribution built on evidence along causal

chains can rarely support positive claims for causal effects.

We proceed as follows. The next section introduces the setup and gives

general formulae for bounding the probability of causation for a simple one-

step process. In the third section, we provide new results for cases in which

all mediators are unobserved, all are observed, or just some are observed.

Theorem 2 provides a general formula applicable to all cases. Then, theorem

3 details the maximum and minimum upper and lower bounds for all possible

processes. In all cases, these can be achieved by processes of at most two

steps. In the fourth section, we compare the extrema with the bounds

obtained from smooth (homogeneous) processes, with bounds achievable

when processes are known to be monotonic, and bounds obtainable from

knowledge of covariates, which can be much tighter. We summarize our

results, and consider some implications, in the fifth section. Various techni-

cal details for the proofs in the paper are elaborated in Online Appendices

(which can be found at Supplementary material for this article, available

online).

Preliminaries

Consider a binary treatment or exposure variable X, and binary outcome

variable Y. We let Y ¼ ðY ð0Þ;Y ð1ÞÞ denote a pair of potential outcomes, for

Y where we conceive of Y ðxÞ as the value Y would take, if X were set to the

value x by external intervention. We regard both Y ð0Þ and Y ð1Þ as existing

simultaneously, even prior to setting the value of X, and as having a bivariate

probability distribution.

Throughout, we invoke two assumptions:

Consistency: Even when X is not set by intervention, the outcome Y will

be Y ðX Þ.
No confounding: This is expressed as independence of Y and X.

Consistency is generally uncontroversial, but no confounding is a strong

assumption. Under these assumptions,

PrðY ¼ yjX ¼ xÞ ¼ PrðY ðxÞ ¼ yÞ: ð1Þ
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We suppose we have access to extensive data supplying exact values for

expression (1), for x; y 2 f0; 1g.
Define

t :¼ PrðY ð1Þ ¼ 1Þ � PrðY ð0Þ ¼ 1Þ;

r :¼ PrðY ð1Þ ¼ 1Þ � PrðY ð0Þ ¼ 0Þ:

Then, t is the average causal effect of X on Y, while r is an indicator of

how common Y ¼ 1 is (as seen more immediately when we rearrange to

write r ¼ PrðY ð1Þ ¼ 1Þ þ PrðY ð0Þ ¼ 1Þ � 1). We note that both t and r can

be calculated from the available data.

The transition matrix P from X to Y (where the row and column labels of

any such matrix are implicitly 0 and 1 in that order) has as entries expression

(1) for x; y ¼ 0; 1. It is helpful to express it in terms of t and r:

P ¼ Pðt; rÞ :¼

1

2
ð1þ t� rÞ 1

2
ð1� tþ rÞ

1

2
ð1� t� rÞ 1

2
ð1þ tþ rÞ

0BBB@
1CCCA: ð2Þ

All entries of P must be nonnegative. This holds if and only if

jrj þ jtj � 1: ð3Þ

We have equality in inequality (3) if and only if one of the entries of

matrix (2) is 1, in which case we term P degenerate. For t � 0, this will

happen if either r ¼ 1� t, in which case PrðY ¼ 1jX ¼ 1Þ ¼ 1 and X ¼ 1

can be thought of as a sufficient condition for Y ¼ 1; or r ¼ t� 1, in which

case PrðY ¼ 1jX ¼ 0Þ ¼ 0, and X ¼ 1 can be thought of as a necessary

condition for Y ¼ 1. Define

s :¼
r

1� t
ðt 2 ½0; 1ÞÞ

1 ðt ¼ 1Þ
:

8<: ð4Þ

Then, s 2 ½�1; 1� is a measure the relative sufficiency of X ¼ 1 for

Y ¼ 1. Intuitively s captures the distribution of weight between the lower

left and upper-right cells of the matrix (2) with t 2 ½0; 1Þ. In this case, the

entries in these cells sum to 1� t with share ð1� sÞ=2 in the lower-left cell

and share ð1þ sÞ=2 in the upper-right cell.
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Causes of Effects

While knowledge of the transition matrix P, and in particular the “average

causal effect” t, is directly relevant for studying “effects of causes,” it is not

enough for analyzing “causes of effects.”

Using the notation x to denote 1� x, we can now define the following

events in terms of Y:

General causation: CðX ;Y Þ:¼ “Y ð1Þ 6¼ Y ð0Þ”.

That is, changing the value of X will result in a change to the value of Y.

We can also describe this as “X affects Y.”

When the relevant variables (here X and Y) are clear from the context, we

will simplify the notation to C.

Specific causation: C
ðX ;Y Þ
xy :¼ “Y ðxÞ ¼ y; Y ðxÞ ¼ y” (for x; y ¼ 0 or 1).

That is, changing the value of X from x to x would change the value of Y

from y to y. We can also describe this as “X ¼ x causes Y ¼ y.” When the

relevant variables X and Y are clear from the context, we will simplify the

notation to Cxy.

We note that Cxy ¼ Cxy.

Probability of Causation

In cases of interest, we will have observed X ¼ x; Y ¼ y, and want to know

the probability that X caused Y, given this information. We denote this

quantity by PC
ðX ;Y Þ
xy , or PCxy when the relevant variables X and Y are clear

from the context. Thus,

PCxy ¼ PrðCjX ¼ x; Y ¼ yÞ ¼ PrðCxyjY ðxÞ ¼ yÞ; ð5Þ

by consistency and no confounding.

Note that, unlike for the definition of the average causal effect, the prob-

ability of causation conditions on a value for the outcome. Our PC11 is what

Pearl (1999) terms the “probability of necessity,” PN, while our PC00 is his

“probability of sufficiency,” PS.

Simple Bounds

The joint distribution for Y, while constrained by knowledge of the transition

matrix P, is in general not fully determined by it. Rather, we can only deduce
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that it has the form of Table 1, where the marginal probabilities agree with

the entries of matrix (2).

However, the internal entries of Table 1 are not determined by P but have

one degree of freedom, expressed by the “slack” quantity x ¼ xðPÞ. We see

that

x ¼ PrðY ð0Þ ¼ 0; Y ð1Þ ¼ 1Þ þ PrðY ð0Þ ¼ 1;Y ð1Þ ¼ 0Þ ¼ PrðCÞ; ð6Þ

the probability of general causation.

The only constraints on x are that all internal entries of Table 1 must be

nonnegative, which holds if and only if

jtj � x � 1� jrj: ð7Þ

In particular x, and thus the bivariate distribution of ðY ð0Þ;Y ð1ÞÞ in

Table 1, is uniquely determined by P if and only P is degenerate. More

generally from equation (7), we see the distinct roles played by t and r. The

larger is t in absolute magnitude, the greater the lower bound on x. The larger

is r in absolute magnitude, the lower is the upper bound on x: If Y ¼ 1 is

either very common or very uncommon then one or other off-diagonal cell in

equation (2) is small, thus limiting the share of cases with Y ð0Þ 6¼ Y ð1Þ.
We further note

PrðC00Þ ¼ PrðC11Þ ¼ 1

2
ðxþ tÞ; ð8Þ

PrðC01Þ ¼ PrðC10Þ ¼ 1

2
ðx� tÞ; ð9Þ

whence, by inequality (7),

maxf0; tg � PrðC00Þ ¼ PrðC11Þ � 1

2
ð1þ t� jrjÞ; ð10Þ

Table 1. Joint distribution of Y(0) and Y(1).

Yð1Þ ¼ 0 Yð1Þ ¼ 1

Yð0Þ ¼ 0 1
2 ð1� r� xÞ 1

2 ðxþ tÞ 1
2 ð1þ t� rÞ

Yð0Þ ¼ 1 1
2 ðx� tÞ 1

2 ð1þ r� xÞ 1
2 ð1� tþ rÞ

1
2 ð1� t� rÞ 1

2 ð1þ tþ rÞ 1
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maxf0;�tg � PrðC01Þ ¼ PrðC10Þ � 1

2
ð1� t� jrjÞ: ð11Þ

Since Cxy ) Y ðxÞ ¼ y,

PCxy ¼
PrðCxyÞ

PrðY ðxÞ ¼ yÞ

which is thus subject to the interval bounds, given by equation (10) or (11), as

appropriate, divided by the known entry PrðY ðxÞ ¼ yÞ of the transition

matrix P.

This analysis delivers the following lower and upper bounds (superscript

“s” for “simple”):

Ls
00 :¼ maxf0; tg

PrðY ð0Þ ¼ 0Þ � PC00 �
1
2
ðtþ 1� jrjÞ

PrðY ð0Þ ¼ 0Þ ¼: U s
00; ð12Þ

Ls
10 :¼ maxf0;�tg

PrðY ð1Þ ¼ 0Þ � PC10 �
1
2
ð1� jrj � tÞ

PrðY ð1Þ ¼ 0Þ ¼: U s
10; ð13Þ

Ls
01 :¼ maxf0;�tg

PrðY ð0Þ ¼ 1Þ � PC01 �
1
2
ð1� jrj � tÞ

PrðY ð0Þ ¼ 1Þ ¼: U s
01; ð14Þ

Ls
11 :¼ maxf0; tg

PrðY ð1Þ ¼ 1Þ � PC11 �
1
2
ðtþ 1� jrjÞ

PrðY ð1Þ ¼ 1Þ ¼: U s
11: ð15Þ

In the absence of additional information, the above bounds constitute the

best available inference regarding the probability of causation.

Specifically, when t � 0, on defining

g :¼ 1� t� jrj
1� tþ jrj ¼

1� jsj
1þ jsj ; ð16Þ

d :¼ 1þ t� jrj
1þ tþ jrj ð17Þ

we have the upper bounds given in Table 2.

A particular interest is in cases where t > 0 (so the overall effect of X and

Y is positive), and we observe positive outcomes, X ¼ 1, Y ¼ 1. In this case,

we omit the subscript 11. We have
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PC ¼ xþ t
2PrðY ð1Þ ¼ 1Þ ; ð18Þ

and interval bounds given by

Ls ¼ 2t
1þ tþ r

� PC � Us ¼ d ðr � 0Þ
1 ðr < 0Þ:

�
ð19Þ

This result agrees with Tian and Pearl (2000) and Dawid (2011).

PC is identified (i.e., the interval inequality (19) reduces to a single point)

if and only if jrj ¼ 1� t, which holds when P is degenerate with either the

lower-left or upper-right element of P being 0. In the former case PC ¼ t,

while in the latter case PC ¼ 1.

More generally, we have Ls ¼ t=PrðY ð1Þ ¼ 1Þ � t, and so PC � t.

Bounds From Mediation

We now suppose that, in addition to X and Y, we can gather data on one or

more binary mediator variables M1; : : :;Mn�1. We also define M0 � X and

Mn � Y . We are interested in assessing the probability that X ¼ x caused

Y ¼ y for a new case where we have information on the values of some or all

of the mediators M1; . . . ;Mn�1.

Assumptions

We confine attention to the case of a complete mediation sequence, where for

every i 2 f0; . . . ; n� 1g, Miþ1 depends on Mi but not on Mj; j < i. For-

mally, we introduce, for i � 1, bivariate variables

Mi :¼ ðMið0Þ;Mið1ÞÞ;

Table 2. Us
xy Denotes the upper bound on the probability that X ¼ x caused Y ¼ y in

a one-step process.

r � 0 r < 0

Us
00 1 d

Us
01 g 1

Us
10 1 g

Us
11 d 1
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where MiðmÞ denotes the potential value for Mi when we intervene to set Mj

to mj, j < i� 1, and Mi�1 to m. As the notation expresses,2 this value is

supposed not to depend on the values set for Mj‘s prior to the immediate

predecessor.

We assume:

Consistency: Even when some or all of the previous M‘s are not set by

intervention, the value of ðMiÞ will be MiðMi�1Þ.
No confounding: We have mutual independence between X, M1, . . . ,Mn.

Then,

PrðMiþ1 ¼ miþ1jMj ¼ mj; j ¼ 0; . . . ; iÞ ¼ PrðMiþ1ðmiÞ ¼ miþ1Þ:

Thus, the sequence ðX � M0; . . . ;Mn � Y Þ forms a (generally nonsta-

tionary) Markov chain. This is an empirically testable consequence of our

assumptions. Our assumptions would therefore be falsified if the Markov

property is found to fail, for instance if we found that X were correlated with

Y conditional on M1 ¼ 1. We note that the converse does not hold: These

assumptions are not guaranteed to be valid when the Markov property is not

found to fail.

Finally, we assume that we have access to data sufficient to accurately

determine the one-step transition probabilities

PrðMiþ1ðmiÞ ¼ miþ1Þ ¼ PrðMiþ1 ¼ miþ1jMi ¼ miÞ; ði ¼ 0; . . . ; n� 1Þ:
ð20Þ

Inferences on Chains

In this section, we establish that the probability that X caused Y is given by

the probabilities that each step in the chain from X to Y was caused by its

predecessor.

Let the transition matrix from Mi�1 to Mi be Pi ¼ Pðti; riÞ, and the overall

transition matrix from X to Y be P ¼ Pðt; rÞ. We shall write,

P ¼ P1jP2 . . . jPn ð21Þ

to indicate that we are assuming the above mediation sequence, and refer to

equation (21) as a decomposition of the matrix P. In particular, we then have

P ¼ PðnÞ :¼
Yn

i¼1
Pi.
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We can readily show by induction that

t ¼ tðnÞ :¼
Yn

i¼1

ti; ð22Þ

r ¼ rðnÞ :¼
Xn

i¼1

ri

Yn

j¼iþ1

tj

 !
: ð23Þ

In particular, for the case n ¼ 2, equation (23) becomes

r ¼ r1t2 þ r2: ð24Þ

On account of equation (22), we have the following result:

Lemma 1: The average causal effect of X on Y is the product of the

successive average causal effects of each variable in the sequence on

the following one.

Lemma 2: CðX ;Y Þ ¼ \n�1
i¼0 CðMi;Miþ1Þ. That is to say, M0 � X affects Mn � Y

if and only if each Mi affects the next.

Proof. Suppose first that each variable affects the next. Then, changing the value

of X will change that of M1, which in turn will change that of M2, and so on until

the value of Y is changed, so showing that X affects Y. Conversely, if, for some

j < n, Mj does not affect Mjþ1, then, whether or not Mj has been changed, the

value of Mjþ1 will be unchanged, whence so too will that of Mjþ2, and so on

until the value of Y is unchanged, whence X does not affect Y. c

We have as a corollary that for any decomposition, the probability that X

affects Y is the product of the probabilities that each variable in the sequence

from X to Y affects the next in the sequence.

Corollary 1.
i. PrðCðX ;Y ÞÞ ¼

Yn

i¼1
PrðCðMi�1;MiÞÞ,

ii. xðPÞ ¼
Yn

i¼1
xðPiÞ,

iii. Given knowledge of the decomposition (21), the constraints on

x ¼ xðPÞ are now:

jtj � x �
Yn

i¼1

ð1� jrijÞ: ð25Þ
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Proof.
i. By the assumed mutual independence of the ðMiÞ.

ii. By equation (6).

iii. By (ii), inequality (7) for each Pi , and equation (22). c

On comparing inequality (25) with inequality (7), we see that detailed knowl-

edge of the mediation process has not changed the lower bound for x. How-

ever, the upper bound is typically reduced:

Theorem 1. The upper bound that results from knowledge of the decomposi-

tion of P is no greater than the upper bound that results from P alone. It will

be strictly less if for some i > 1, Pi is nondegenerate and ri�1 6¼ 0.

Proof. We compare the upper bound of inequality (25) with that of inequality (7).

Consider first the case n ¼ 2. Then,

jrj ¼ jr1t2 þ r2j; by equation ð24Þ;

� jr1jjt2j þ jr2j; ð26Þ

� jr1jð1� jr2jÞ þ jr2j by inequality ð3Þ: ð27Þ

It follows that

ð1� jr1jÞð1� jr2jÞ � 1� jrj: ð28Þ

Moreover, we shall have strict inequality in (27), and hence also in (28), if

P2 is nondegenerate and r1 6¼ 0, since these together imply

jr1jð1� jr2jÞ < jr1jjt2j.
Noting that if ð1� jr1jÞð1� jr2jÞ ¼ 1� jrj, then r2 6¼ 0 implies r 6¼ 0,

the result for general n follows by induction. c

We note that the above condition for strict inequality (28), while suffi-

cient, is not necessary. For example, in the case n ¼ 2, it will also hold if r1t2

and r2 have different signs, since then we would have strict inequality in

(26).

It follows from inequalities (25) and (28) that collapsing two mediators

into a single one (for instance, by removing Mi and replacing Pi;Piþ1 with

Q ¼ PiPiþ1) can only increase the upper bound for x.

Corollary 2. Consider two decompositions P ¼ P1jP2j . . . jPn and

P ¼ P1j . . . jPijQjPiþ2j . . . jPn, where Q ¼ PiPiþ1. Then the upper bound

for x for the former does not exceed that for the latter.
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Unobserved Mediators

Suppose first that, for the new case, we have observed X ¼ x; Y ¼ y, but the

values of the mediators are not observed. That is, although we have data

supplying the transition probabilities in equation (20) as before, we do not

know the values of the mediators for the case in question. Even in this case,

as was shown for the two-term decomposition in Dawid et al. (2016), knowl-

edge of the decomposition (equation [21]) of P can alter the bounds for PC.

Indeed, in this case, equation (5) still applies, where PrðCxyÞ is given by

equation (8) or (9) as appropriate, but now with x subject to the revised

bounds of equation (25). In each case, the lower bound is unaffected, but,

by theorem 1, the upper bound is reduced.

This analysis delivers the following revised bounds (superscript “:” for

“not observed”):

L:
00 :¼ Ls

00 ¼
maxf0; tg

PrðY ð0Þ ¼ 0Þ � PC00 �
tþ

Yn

i¼1

ð1� jrijÞ

2PrðY ð0Þ ¼ 0Þ ¼: U:
00 ; ð29Þ

L:
10 :¼ Ls

10 ¼
maxf0;�tg

PrðY ð1Þ ¼ 0Þ � PC10 �

Yn

i¼1

ð1� jrijÞ � t

2PrðY ð1Þ ¼ 0Þ ¼: U:
10 ; ð30Þ

L:
01 :¼ Ls

01 ¼
maxf0;�tg

PrðY ð0Þ ¼ 1Þ � PC01 �

Yn

i¼1

ð1� jrijÞ � t

2PrðY ð0Þ ¼ 1Þ ¼: U:
01 ; ð31Þ

L:
11 :¼ Ls

11 ¼
maxf0; tg

PrðY ð1Þ ¼ 1Þ � PC11 �
tþ

Yn

i¼1

ð1� jrijÞ

2PrðY ð1Þ ¼ 1Þ ¼: U:
11 : ð32Þ

Note, in particular, for the case t > 0, where we observe X ¼ 1, Y ¼ 1

(but the values of mediators are not observed), we have revised bounds

L: :¼ 2t
1þ tþ r

� PC �
tþ

Yn

i¼1

ð1� jrijÞ

1þ tþ r
¼: U :: ð33Þ

For n ¼ 2, this agrees with the analysis of Dawid et al. (2016).
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Bounds When Some or All Mediators are Observed

Now suppose that, in addition to X ¼ x, Y ¼ y, we also observe data on k

mediators (0 � k � n� 1) for the new case. In particular, we observe

Mir ¼ mir , for 0 < i1 < . . . ir . . . < ik < n. For notational simplicity, we

write eMr for Mir , emr for mir . We also identify eM0 � X and eMkþ1 � Y (soem0 ¼ x, emkþ1 ¼ y).

The relevant probability of causation is now

fPCxy :¼ PrðCj eMr ¼ emr; r ¼ 0; . . . ; k þ 1Þ:

Note that in contrast to the difference between equations (29)–(32), on the

one hand, and equations (12)–(15), on the other hand, which relate to the same

quantity PCxy but express different conclusions about it (since based on

different external evidence), fPCxy is a genuinely different quantity from

PCxy, as it conditions on different information about the case in question. For

this reason, it is possible that the upper bound on the probability of causation

for a particular case when M is observed is higher than the upper bound on the

probability of causation for a particular case given M is not observed.

Theorem 2. Given observations on X ; eM1; . . . ; eMk ; Y , the probability that X

caused Y is given by the product of the probabilities that each observed term

in the sequence caused the next observed term:

fPCxy ¼
Yk

r¼0

PC
ðeMr ;eMrþ1Þemremrþ1

:

Proof. From lemma 2, we have

C ¼ \
k

r¼0
Cð
eMr ;eMrþ1Þ;

whence, using the “no-confounding” independence properties,

fPCxy ¼
Yk

r¼0

PrðCðeMr ;eMrþ1Þj eMr ¼ emr; eMrþ1 ¼ emrþ1Þ;

¼
Yk

r¼0

PC
ðeMr ;eMrþ1Þemremrþ1

: ð34Þ
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c

Now since we have the decomposition information about the mediators

(if any) occurring between eMr � Mir and eMrþ1 � Mirþ1
, but not their values

for the new case, the bounds on any factor in equation (34) will, mutatis

mutandis, have the form of the relevant expressions for L:
xy and U :

xy , as

displayed in inequalities (29)–(32). Then, the overall lower [resp., upper]

bound on fPCxy will be the product of these lower [resp., upper] bounds,

across all terms. This procedure supplies a complete recipe for determining

the appropriate bounds on fPCxy in the knowledge of the full decomposition of

P and the values of the observed mediators for the new case.

Again consider the special case with t > 0, X ¼ Y ¼ 1. On account of

equation (22), we can, after possibly switching the labels 0 and 1 for some of

the Mi’s, take ti > 0, all i. We assume henceforth that this is the case. The

above procedure then delivers lower bound 0 unless emi ¼ emi�1, all i, so that

mi ¼ 1, all i. In that case, we obtain lower bound (with superscript þ for

“positive mediators”):

Lþ :¼ tYk

r¼0

Prð eMrþ1 ¼ 1j eMr ¼ 1Þ

¼ t
PrðY ¼ 1; eMr ¼ emr; r ¼ 2; . . . ; kjX ¼ 1Þ

:

ð35Þ

It is easy to see that this lower bound can only increase if we introduce

further observed mediators. It follows that the smallest lower bound occurs

when there are no observed mediators, when it reduces to L: ¼ Ls as in

inequalities (33) and (19); while the largest lower bound occurs when all

mediators are observed (all taking value 1)—that is to say, there is positive

evidence for every link in the mediation chain.

In the remainder of this article, we shall give special attention to this

case and write simply fPC for fPC11, and so on. The bounds for fPC are then:

Lþ :¼
Yn

i¼1

2ti

1þ ti þ ri

� �
� fPC �

Yn

i¼1

1þ ti � jrij
1þ ti þ ri

� �
¼: Uþ: ð36Þ

The following result follows directly from the above considerations:

Lemma 3. The lower bound Lþ of inequality (36) is at least as large as the

lower bound Ls of inequality (19).
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However, it will follow from theorem 3 below that Uþ can be smaller or

larger than U s.

Largest and Smallest Upper and Lower Bounds

Equation (34) provides a general formula for calculating bounds on the

probability of causation for any pattern of data observed on mediating vari-

ables (including no data). We now use this result to assess the largest and

smallest possible upper bounds from observation of possible values on med-

iating variables.

Consider an arbitrary decomposition of P:

P ¼ P1jP2j . . . jPn; ð37Þ

with P ¼ Pðt; rÞ, Pi ¼ Pðti;riÞ. We restrict attention to the case t > 0 and

assume that variables are labeled so that each ti > 0.

We investigate the smallest and largest achievable values for

L:;U:; Lþ;Uþ; L�, U� (superscript � for some negative evidence) and

show that in each case, these are achievable by decompositions involving at

most one mediator.

Theorem 3. Consider transition matrix P ¼ Pðt; rÞ from X to Y with t > 0

and jrj < 1� t. The largest and smallest upper and lower bounds on the

probability that X ¼ 1 caused Y ¼ 1, from any complete mediation process

for (a) the case with mediators unobserved (b) the case with positive out-

comes on all mediators observed and (c) cases that include some negative

Table 3. Largest and smallest achievable upper and lower bounds from decomposi-
tions of any length, given no mediators observed (L:, U:), positive evidence
observed for all mediators (Lþ, Uþ), or when some negative evidence is observed
(L�; ,U�).

No Evidence Positive Evidence
Some Negative
Evidence

Largest Upper U: ¼ 1þt�jrj
1þtþr Uþ ¼ minf1; 1� rg U� ¼ 1

Lower L: ¼ 2t
1þtþr Lþ ¼ 1þt�r

2 L� ¼ 0

Smallest Upper U: ¼ 2t
1þtþr* Uþ ¼ 2t

1þtþr* U� ¼ 0*

Lower L: ¼ 2t
1þtþr Lþ ¼ 2t

1þtþr L� ¼ 0

*PC can be identified.
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evidence on the mediators, are as given in Table 3. These can all be achieved

by decompositions of length 1 or 2.

Proof. See Online Appendix A (which can be found at Supplementary mate-

rial for this article, available online). c

The largest upper bound with mediators unobserved, U : , can be achieved

without any mediators. Since unobserved mediators do not alter the lower

bound, we have L: ¼ L: ¼ Ls. In addition, we have U : ¼ Ls, which is

achievable, for example, from the following decomposition:

P ¼
2t

1þ tþ r
1� tþ r
1þ tþ r

0 1

0@ 1A�����
1 0

1� t� r
2

1þ tþ r
2

0@ 1A: ð38Þ

Note that, with this decomposition, PC is identified via two degenerate

transition matrices: X ¼ 1 is a sufficient condition for M ¼ 1, while M ¼ 1

is a necessary condition for Y ¼ 1.

The smallest upper and lower bounds available when mediators are

observed agree with the simple lower bound. Positive evidence cannot

reduce the lower bound, but it can reduce the upper bound to the lower

bound, at which point fPC is identified. This can be achieved by the same

decomposition given in equation (38).

The largest upper bound with positive evidence on mediators, Uþ , can

exceed the simple upper bound when r > 0. It results from the following

two-term decomposition, involving a single mediator:

P ¼

1� rþ t
2ð1� rÞ

1� r� t
2ð1� rÞ

1� r� t
2ð1� rÞ

1� rþ t
2ð1� rÞ

0BBB@
1CCCA
����� 1� r r

0 1

� �
: ð39Þ

The lower bound can be raised with positive information on mediators and

takes its largest value with the following degenerate two-term decomposition

P ¼ P1jP2, involving a single mediator:

P ¼
1 0

1� t� r
1þ t� r

2t
1þ t� r

0@ 1A�����
1þ t� r

2

1� tþ r
2

0 1

0@ 1A: ð40Þ
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With this decomposition fPC is identified via two degenerate transition

matrices: In this case, X ¼ 1 is a necessary condition for M ¼ 1, while M ¼ 1

is a sufficient condition for Y ¼ 1. The largest lower bound with positive

evidence from this decomposition is 1þt�r
2

which can fall far short of 1,

implying that in general mediators cannot provide “smoking gun” evidence

that X ¼ 1 caused Y ¼ 1. A benchmark of 50 percent—a balance of prob-

abilities—is sometimes used (e.g., in civil legal proceedings) as the standard

of proof. This result shows that this standard cannot be met by any informa-

tion on mediators if t < r, or equivalently, if PrðY ¼ 1jX ¼ 0Þ > 0:5.

For the case with some negative evidence on the mediators, the lower

bound is always 0. The smallest upper bound is also 0, which can be achieved

by the decomposition of equation (40) above, with the single mediator

observed at 0 (the key feature of this decomposition is that Y ¼ 1 cannot

be caused by M ¼ 0). In this case, fPC is identified at 0, showing that it is

possible for negative data on mediators to provide “hoop” evidence that

X ¼ 1 did not cause Y ¼ 1. The highest upper bound when there is some

negative evidence, U� ¼ 1, can be achieved by a two-step decomposition,

Pðt;rÞ ¼ Pðt1; r1ÞjPðt2; r2Þ, with the mediator taking value 0. For r � 0,

this occurs with the decomposition with parameters:

t1 ¼ 2t
1þ tþ r

r1 ¼ 0 t2 ¼
1þ tþ r

2
r2 ¼ r: ð41Þ

For r � 0, it occurs with decomposition parametrized by:

t1 ¼
tð1þ rþ tÞ

2ðtþ rÞ r1 ¼
rð1þ rþ tÞ

2ðtþ rÞ t2 ¼
2ðtþ rÞ
1þ tþ r

r2 ¼ 0: ð42Þ

Comparisons

Although knowledge of mediators can narrow bounds, the scope for learning

from knowledge of mediation processes—and the specific values taken on by

mediators—is often small. In particular, although negative evidence can

yield low upper bounds, providing confidence that an outcome was not due

to a putative cause, positive evidence generally does not raise lower bounds

substantially.

To put these claims in context, we compare the extrema on bounds in

theorem 3 with bounds that can be achieved from “homogeneous” processes,

from knowledge of monotonicity, and from covariate information.
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Homogeneous Processes

First, we consider bounds for a special case: long homogeneous processes—

that is, cases in which we have a potentially unlimited sequence of variables

directly mediating between X and Y, with one-step transition matrices that are

identical at each step (and having positive average causal effect). For such

processes, PrðMiþ1ðmÞ ¼ m 0Þ ¼ PrðMiðmÞ ¼ m 0Þ.
Intuitively, a lot of data at many points in a chain should lead to stronger

inferences. This intuition is however not in line with our finding that the

extrema on the bounds given in theorem 3 are generally achieved through

two-step processes in which transition matrix P1 is different from transition

matrix P2. The bounds from long processes can be no better than those

described in theorem 3, but how different are they?

Table 4 shows the upper and lower bounds achievable with homogeneous

processes of unbounded length, for three cases: cases in which there are no

data on the values of the mediators, cases in which all mediators are observed

and positive (Mt ¼ 1 for all t), and cases in which values alternate between 1

and 0. For further details, see Online Appendix B (which can be found at

Supplementary material for this article is available online).

We see that, for r 6¼ 0, with alternating evidence, identification can be

achieved in the limit, at 0. In other cases, however, identification is not

achieved. In particular, the lower bound with positive evidence can fall far

short of the highest possible lower bound, especially when jrj and t are

small. For example, if r ¼ 0, then Lþ � Lþ1 ¼ 1
2
ð1�

ffiffiffi
t
p
Þ2.

Monotonicity

Suppose that we knew that there are no cases for which the exposure would

prevent the outcome, that is, such that Y ð0Þ ¼ 1; Y ð1Þ ¼ 0. We note that

since monotonicity is an attribute of the typically unidentifiable joint distri-

bution of ðY ð0Þ;Y ð1ÞÞ, it is not easy to justify without additional knowledge.

Table 4. Upper and lower bounds from homogeneous decompositions of length
n!1, given no mediators observed, positive evidence observed for all mediators,
and alternating evidence.

No Evidence Positive Evidence Alternating Evidence

Upper U:
1 ¼ tþtjsj

1þtþr Uþ1 ¼ min 1; tsf g U�1 ¼
0 ifr 6¼ 0
1 ifr ¼ 0

�
Lower L:

1 ¼ 2t
1þtþr Lþ1 ¼ t

1
2ð1þsÞ L�1 ¼ 0
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One case where this is possible is when we know of the existence of a

mediation process with decomposition as in equation (38).

From Table 1, we have that monotonicity implies x ¼ t, that is, x is

identified at its lower limit. In turn, this implies that PC, given by equation

(18), is identified at its lower limit, Ls ¼ 2t=ð1þ tþ rÞ. In this case, knowl-

edge of the value of mediators does nothing to raise the lower bound.

Observed Covariate

Suppose that, in addition to X and Y, we can observe a binary covariate W,

pretreatment to X, which can affect the dependence of Y on X. Let

p :¼ PrðW ¼ 1Þ, and let Pi be the transition matrix from X to Y, conditional

on W ¼ i; for consistency with the known P ¼ Pðt; rÞ we must have

P ¼ pP1 þ ð1� pÞP0.

In particular, it could then be the case that p ¼ ð1þ t� rÞ=2, and

P1 ¼
1 0

1� t� r
2

1þ tþ r
2

0@ 1A P0 ¼
0 1

1� t� r
2

1þ tþ r
2

0@ 1A:
In this case, knowledge that an individual with X ¼ Y ¼ 1 also has

W ¼ 1 is enough to identify PC at 1. We emphasize that we use an extreme

decomposition here not to argue that such a decomposition is likely but rather

to highlight that there is always a possibility for full identification at 1 with

observed covariates whereas identification at 1 with mediators is generally

not obtainable.

Unobserved Covariate

As shown in Dawid (2011), knowledge of covariates can improve bounds,

even if their values are not observed for the case at hand. In particular, this

can let us identify PC at the upper bound, U s ¼ minf1; 1þt�r
1þtþrg. For this to be

possible, however, the average treatment effect must be negative for some

value of W. Thus, suppose again the W is pretreatment to X and

p :¼ PrðW ¼ 1Þ. Suppose then that p ¼ 1þtþr
2

, and the conditional transition

matrices are the following:

For r < 0,
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P1 ¼
1 0

0 1

� �
P0 ¼

�2r
1� t� r

1þ t� r
1� t� r

1 0

0@ 1A:
For r � 0,

P1 ¼
1þ t� r
1þ tþ r

2r
1þ tþ r

0 1

0@ 1A P0 ¼
0 1

1 0

� �
:

In either case, knowledge that X ¼ Y ¼ 1 is sufficient to infer that

W ¼ 1. This identifies the probability of causation: PC ¼ 1 for r < 0,

PC ¼ 1þt�r
1þtþr for r � 0. In both cases we hit the upper bound.

Figure 1 compares the bounds obtained, under various assumptions, for a

range of values of t and r. It illustrates how, in general, lower bounds rise

with t and fall with r. For homogeneous processes, the lower bounds

improve on the simple bounds, although the gain from unlimited steps is not

a striking improvement on that for just two steps. The gains from nonhomo-

geneous decompositions can be substantial. The best lower bounds achiev-

able from knowledge of covariates are higher than lower bounds achieved

from any knowledge of mediators.

Conclusion

We provide a general formula for calculating bounds on the probability of

causation for complete mediation processes involving binary variables of

arbitrary length and with arbitrary data patterns. In addition, we characterize

the largest and smallest achievable bounds obtainable from any data. Knowl-

edge of these bounds is useful for assessing when there can be gains from

learning about processes in a population and gains from learning about the

values of mediators for cases.

Our analysis focuses on ideal cases in which there is a very simple known

causal structure in which nodes are connected in a simple causal chain—

excluding situations such as one in which X has a direct effect on Y as well as

an indirect effect through M. We show, however, that even in these ideal

conditions, access to even unlimited data on mediators has only a modest,

and asymmetric, impact on inferences. Knowledge of mediation processes,

and of positive values for some mediators in a particular case, can raise the
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lower bound on the probability of causation, thus providing some evidence

against a skeptic who doubts that the outcome in the case can be attributed to

the putative cause. Moreover, this information can be enough to achieve

� � 0.1 � � 0.25

�
�
�

0.5
�
�

0
�
�

0.5

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Best (observed) covariate

Best (unobserved) covariate

Best (positive) mediator

Infinite step homogeneous

Two step homogeneous

Monotonic

Unobserved mediators

Simple bounds

Best (observed) covariate

Best (unobserved) covariate

Best (positive) mediator

Infinite step homogeneous

Two step homogeneous

Monotonic

Unobserved mediators

Simple bounds

Best (observed) covariate

Best (unobserved) covariate

Best (positive) mediator

Infinite step homogeneous

Two step homogeneous

Monotonic

Unobserved mediators

Simple bounds

Probability of causation

Figure 1. Comparison of bounds on PC. Simple bounds are derived from the distri-
bution of Y given X and are given by inequality (19). Tightest bounds from unobserved
mediators are given by the decomposition in (38). Monotonicity implies the same
bounds. Bounds from a homogeneous two-step decomposition and positive evidence
can be calculated from theorem 3. Infinite-step bounds, assuming positive evidence
observed at every step from a homogeneous process, are given in Table 4. Best two-
step bounds show the highest lower bound achievable from information on mediation
shown in Table 3 and can be achieved with positive evidence for the decomposition of
equation (40). Greatest lower bounds given information on an unobserved and
observed binary covariate are as described in the Comparisons section.
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identification. However, the gains are generally modest and may not be

sufficient to convince a skeptic. For instance, if most outcomes are positive

for untreated units, then it follows from our results that there is no evidence

on mediators for a treated unit with positive outcomes that can raise the lower

bound on the probability that the outcome was due to the treatment above 50

percent. More generally, identification at 1 is not possible. In contrast, for

some processes, observing negative evidence on a single mediator can effec-

tively convince a skeptic that the outcome is not due to the exposure.

These general results have implications for when gathering further inter-

mediate data on particular cases can be useful. We see, for instance, starkly

contrasting implications for a process in which X is a necessary condition for

a sufficient condition for Y and a process in which X is a sufficient condition

for a necessary condition for Y. In the first case, consistent with arguments in

Mahoney (2012), negative evidence on mediators implies no causal effect—

we have a hoop test. In addition, we show, positive evidence on mediators

yields the largest possible upper bound and identifies the probability of

causation. For example, if it is known that the effect of delivering a deworm-

ing medicine passes uniquely through ingestion, and ingestion is sufficient

for effective deworming, then evidence of ingestion raises the lower bound

and identifies the probability of causation. These features, we note, depend

on the chain structure we specify: were there a possible direct effect from X

to Y, then necessity followed by sufficiency would not imply a hoop test

because knowledge that X did not cause M is not sufficient to conclude that X

did not cause Y.

In contrast for a process in which X is a sufficient condition for a neces-

sary condition for Y, we already enjoy identification and there is no gain from

gathering data on the mediator. For instance, if ingesting medicine is a

sufficient condition for good health, and good health is a necessary condition

for good school performance, then observing ingestion and good school

performance is sufficient to achieve identification. There are no additional

gains from measuring health, since good health is already implied by good

performance. A similar logic holds for any chain of necessary relations,

suggesting that these do not in fact aggregate to form a smoking gun test

since if M ¼ 1 is necessary for Y ¼ 1, then the value of M is already known

from observing Y ¼ 1.

The main result can also be used to guide choice of which causal process

observations to examine. For instance, consider a homogeneous process with

n steps (n even) and suppose that researchers can observe the value of just

one mediator Mi. In this case, we can show that the lower bound on the

probability of causation, following observation of positive data, is
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maximized if the central mediator in the sequence is observed. For intuition,

there is more ex ante certainty about the values of mediators close to the

edges; ex ante uncertainty increases, and the scope for learning increases

accordingly far from the edges. See Appendix C for details.

Finally, these results also have implications for the potential gains from

research agendas that seek to learn about mediation processes (as, e.g., in the

designs described in Imai, Keele, and Tingley 2010) compared to the poten-

tial gains from learning about effect heterogeneity (as, e.g., is done in factor-

ial designs; Fisher 1926). The scope for gains from knowledge of mediation

processes is typically weaker than potential gains from knowledge of condi-

tions under which interventions are more or less effective. While of course

the actual gains from knowledge of mediators and covariates depends on

underlying causal relations, by providing extrema on bounds, the results we

provide can inform the choice of experimental design.
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Notes

1. General procedures for deriving bounds on causal queries are given in Sachs et al.

(2021) though unfortunately these cannot be used for the problem considered here

as our causal query is in general not linear, or, in their formulation, not a linear

function of joint probabilities of response function variables.

2. But note that, although we are identifying Mn with Y, we will distinguish between

MnðaÞ, the potential value of Mn ¼ Y when setting Mn�1 to a, and Y ðaÞ, the

potential value of Y when setting X to a ða ¼ 0; 1Þ.
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