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Abstract

This paper presents a new method for spatially adaptive local likelihood es-

timation which applies to a broad class of nonparametric models, including

the Gaussian, Poisson and binary response models. The main idea of the

method is given a sequence of local likelihood estimates (”weak” estimates),

to construct a new aggregated estimate whose pointwise risk is of order of the

smallest risk among all ”weak” estimates. We also propose a new approach

towards selecting the parameters of the procedure by providing the prescribed

behavior of the resulting estimate in the simple parametric situation. We es-

tablish a number of important theoretical results concerning the optimality of

the aggregated estimate. In particular, our “oracle” results claims that its risk

is up to some logarithmic multiplier equal to the smallest risk for the given

family of estimates. The performance of the procedure is illustrated by appli-

cation to the classification problem. A numerical study demonstrates its nice

performance in simulated and real life examples.
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1 Introduction

This paper presents a new method of spatially adaptive nonparametric estimation based

on the aggregation of a family of local likelihood estimates. As a main application of the

method we consider the problem of building a classifier on the base of the given family

of k-NN or kernel classifiers.

The local likelihood approach has been intensively discussed in recent years, see e.g.

Hastie and Tibshirani (1987), Staniswalis (1989), Loader (1996). We refer to Fan, Far-

men and Gijbels (1998) for a nice and detailed overview of local maximum likelihood

approach and related literature. Similarly to the nonparametric smoothing in regression

or density framework, an important issue for the local likelihood modeling is the choice of

localization (smoothing) parameters. Different types of model selection techniques based

on the asymptotic expansion of the local likelihood are mentioned in Fan, Farmen and

Gijbels (1998) which include global as well as variable bandwidth selection. However,

the finite sample performance of estimators based on bandwidth or model selection is

often rather unstable, see e.g. Breiman (1996). This point is particulary critical for

the local or pointwise model selection procedures like Lepski’s method (Lepski, 1990).

In spite of the nice theoretical properties, see Lepski, Mammen and Spokoiny (1997),

Lepski and Spokoiny (1997) or Spokoiny (1998), the resulting estimates suffer from a

high variability due to a pointwise model choice, especially for a large noise level. This

suggests that in some cases, the attempt to identify the true model is not necessarily the

right thing to do. One approach to reduce a variability in adaptive estimation is model

mixing or aggregation. Catoni (2001) and Yang (2004) among others have suggested

global aggregating procedures that achieve the minimal estimation risks over the family

of given “weak” estimates. In the regression setup Juditsky and Nemirovski (2000) have

developed aggregation procedures which have a risk within a multiple of the smallest risk

in the class of all convex combinations of “weak” estimates plus log(n)/n . Tsybakov

(2003) has discussed asymptotic minimax rates for the aggregation. The aggregation

for density estimation has been studied by Li and Barron (1999) and more recently by

Rigollet and Tsybakov (2005). To the best of our knowledge a pointwise aggregation has

not yet been considered.
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Our approach is based on the idea of the spatial (pointwise) aggregation of a family of

local likelihood estimates (“weak” estimates) θ̃(k) . The main idea is, given the sequence

{θ̃(k)} to construct in a data driven way for every point x the “optimal” aggregated

estimate θ̂(x) . “Optimality” means that this estimate satisfies some kind of “oracle”

inequality, that is, its pointwise risk does not exceed the smallest pointwise risk among

all “weak” estimates up to a logarithmic multiple.

Our algorithm can be roughly described as follows. Let {θ̃(k)(x)} , k = 1, . . . , K , be

a sequence of “weak” local likelihood estimates at a point x ordered according to their

variability which decreases with k . Starting with θ̂(1)(x) = θ̃(1)(x) , an aggregated esti-

mate θ̂(k)(x) at any step 1 < k ≤ K is constructed by mixing the previously constructed

aggregated estimate θ̂(k−1)(x) with the current “weak” estimate θ̃(k)(x) :

θ̂(k)(x) = γkθ̃
(k)(x) + (1− γk)θ̂(k−1)(x),

and θ̂(K)(x) is taken as a final estimate. The mixing parameter γk (which may depend

on the point x ) is defined using a measure of statistical difference between θ̂(k−1)(x)

and θ̃(k)(x) . In particular, γk is equal to zero if θ̂(k−1)(x) lies outside the confidence

interval around θ̃(k)(x) . In view of the sequential and pointwise nature of the algorithm,

the suggested procedure is called Spatial Stagewise Aggregation (SSA). An important

features of the procedure proposed are its simplicity and applicability to a variety of

problems including Gaussian, binary, Poisson regression, density estimation, classification

etc. The procedure does not require any splitting of the sample as many other aggregation

procedures do, cf. Yang (2004). Besides that the theoretical properties of SSA can be

rigorously studied. In particular, we establish precise nonasymptotic “oracle” results

which are applicable under very mild conditions in a rather general set-up. We also

show that the oracle property automatically implies spatial adaptivity of the proposed

estimate.

Another important feature of the procedure is that it can be easily implemented and

the problem of selecting the tuning parameters can be carefully addressed.

Our simulation study confirms a nice finite sample performance of the procedure for

a broad class of different models and problems. We only show the results for the classi-

fication problem as the most interesting and difficult one. Some more examples for the
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univariate regression and density estimation can be found in our preprint Belomestny and

Spokoiny (2005). Section 4 shows how the SSA procedure can be applied to aggregating

kernel and k-NN classifiers in the classification problem. Although these two nonpara-

metric classifiers are rather popular, the problem of selecting the smoothing parameter

(the bandwidth for the kernel classifier or the number of neighbors for the k-NN method)

has not been yet satisfactorily addressed. Again, the SSA-based classifier demonstrates

the “oracle” quality in terms of the both pointwise and global misclassification errors.

This application clearly shows one more important feature of the SSA method: it can

be applied to an arbitrary design and arbitrary dimension of the design space. This is

illustrated by simulated and real life classification examples in dimensions up to 10.

The procedure proposed in this paper is limited to aggregating the kernel type es-

timates which are based on the local constant approximation. The modern statistical

literature usually considers the more general local linear (polynomial) approximation of

the underlying function. However, for this paper we have decided by several reasons to

restrict our attention to the local constant case. The most important one is that for the

examples and applications we consider in this paper, the use of the local linear methods

does not improve (and even degrade) the quality of estimation. Our experience strongly

confirms that for the problems like classification, the local constant smoothing combined

with the aggregation technique delivers a reasonable finite sample quality.

Our theoretical study is split into two big parts. Section 2 introduces the considered

local parametric set-up and extends the parametric risk bounds to the local parametric

and nonparametric situation under the so called “small modelling bias” condition. The

main result (Corollary 2.6) claims that the parametric risk bounds continue to apply as

long as this condition is fulfilled. One possible interpretation of our adaptive procedure is

the search of the largest localizing scheme for which the ‘small modelling bias” condition

still holds. Theoretical properties of the aggregation procedure are presented in Section 5.

The main result states the “oracle” property of the SSA estimate: the risk of the aggre-

gated estimate is within a log-multiple as small as the risk of the best “weak” estimate

for the function at hand. The results are established in the precise nonasymptotic way

for a rather general likelihood set-up under mild regularity conditions. Moreover, our ap-
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proach allows to link the parametric and nonparametric theory. In particular, we show

that the proposed method delivers the root-n accuracy in the parametric situation. In

the nonparametric case, the quality corresponds to the best parametric approximation.

Both the theoretical study and the motivation of the procedure employ some exponen-

tial bounds for the likelihood which are given in Section 2.2. An important feature of

our theoretical study is that the problem of selecting the tuning parameters is also dis-

cussed in details. We offer a new approach in which the parameters of the procedure

are selected to provide the desirable performance of the method in the simple parametric

situation. This is similar to the hypothesis problem approach when the critical values

are selected using the performance of the test statistic under the simple null hypothesis,

see Section 3.3.1 for a detailed explanation.

2 Local likelihood modeling

This section presents some results on local constant likelihood estimation. We begin by

describing the model under consideration. Suppose we are given independent random

data Z1, . . . , Zn of the form Zi = (Xi, Yi) . Here every Xi means a vector of “features”

or explanatory variables which determines the distribution of the “observation” Yi . For

simplicity we assume that the Xi ’s are valued in the finite dimensional Euclidean space

X = IRd and the Yi ’s belong to IR . The vector Xi can be viewed as a location and

Yi as the “observation at Xi ”. Our model assumes that the distribution of each Yi is

determined by a finite dimensional parameter θ which may depend on the location Xi .

More precisely, let P = (Pθ, θ ∈ Θ ⊆ IRp) be a parametric family of distribution

dominated by a measure P . By p(·, θ) we denote the corresponding density. We consider

the regression-like model in which every “response” Yi is, conditionally on Xi = x ,

distributed with the density p(·, f(x)) for some unknown function f(x) on X with

values in Θ . The considered model can be written as

Yi ∼ Pf(Xi).

The aim of the data-analysis is to infer on the “regression” function f(x) . For the related

models see Fan and Zhang (1999) and Cai, Fan and Li (2000).
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In this paper we focus on the case when P is an exponential family. This means

that the density functions p(y, θ) = dPθ
dP (y) are of the form p(y, θ) = p(y)eyC(θ)−B(θ) .

Here C(θ) and B(θ) are some given nondecreasing functions on Θ and p(y) is some

nonnegative function on Y .

A natural parametrization for this family means the equality EθY =
∫

yp(y, θ)P (dy) =

θ for all θ ∈ Θ . This condition is useful because the weighted average of observations

is a natural unbiased estimate of θ . In what follows we assume that P also fulfills the

following regularity conditions:

(A1) P = (Pθ, θ ∈ Θ ⊆ IR) is an exponential family with a natural parametrization,

and the functions B(·) and C(·) are continuously differentiable.

(A2) Θ is compact and convex and the Fisher information I(θ) := Eθ|∂ log p(Y, θ)/∂θ|2

fulfills for some a ≥ 1

|I(θ′)/I(θ′′)|1/2 ≤ a, θ′, θ′′ ∈ Θ.

We illustrate this set-up with two examples relevant to the applications we consider

below. Some more examples can be found in Fan, Farmen and Gijbels (1998) and Polzehl

and Spokoiny (2005).

Example 2.1. (Inhomogeneous Bernoulli (Binary Response) model) Let Zi =

(Xi, Yi) with Xi ∈ IRd and Yi being a Bernoulli r.v. with parameter f(Xi) , that is,

P (Yi = 1 | Xi = x) = f(x) and P (Yi = 0 | Xi = x) = 1 − f(x) . Such models arise in

many econometric applications and are widely used in classification and digital imaging.

Example 2.2. (Inhomogeneous Poisson model) Suppose that every Yi is valued in

the set N of nonnegative integer numbers and P (Yi = k | Xi = x) = fk(x)e−f(x)/k! ,

that is, Yi follows a Poisson distribution with parameter θ = f(x) . This model is

commonly used in the queueing theory, it occurs in positron emission tomography and

also serves as an approximation for the density model obtained by a binning procedure.

In the parametric setup with f(·) ≡ θ the distribution of every “observation” Yi

coincides with Pθ for some θ ∈ Θ and the parameter θ can be well estimated using the
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parametric maximum likelihood method:

θ̃ = argmax
θ∈Θ

n∑

i=1

log p(Yi, θ).

In the nonparametric framework, one usually applies the local likelihood approach which

is based on the assumption that the regression function f(·) is constant only within some

neighborhood of every point x in the “feature” space X . This leads to the local model

concentrated in some neighborhood of the point x .

2.1 Localization

We use the localization by weights as a general method to describe a local model. Let,

for a fixed x , a nonnegative weight wi = wi(x) ≤ 1 be assigned to the observation Yi at

Xi , i = 1, . . . , n . The weights wi(x) determine a local model corresponding to the point

x in the sense that, when estimating the local parameter f(x) , every observation Yi

is taken with the weight wi(x) . This leads to the local (weighted) maximum likelihood

estimate

f̃(x) = argmax
θ∈Θ

n∑

i=1

wi(x) log p(Yi, θ) . (2.1)

We mention now two possible ways of choosing the weights wi(x) . Localization by

a bandwidth is defined by weights of the form wi(x) = Kloc(li) with li = ρ(x,Xi)/h

where h is a bandwidth, ρ(x,Xi) is the Euclidean distance between x and the design

point Xi and Kloc is a location kernel. Localization by a window simply restricts the

model to a subset (window) U = U(x) of the design space which depends on x , that

is, wi(x) = 1(Xi ∈ U(x)) . Observations Yi with Xi outside the region U(x) are not

used for estimating f(x) . This kind of localization arises e.g. in the classification with

k -nearest neighbors method or in the regression tree approach.

We do not assume any special structure for the weights wi(x) , that is, any configu-

ration of weights is allowed. We also denote W = W (x) = {w1(x), . . . , wn(x)} and

L(W, θ) =
n∑

i=1

wi(x) log p(Yi, θ).

To keep the notation short, we do not show the dependence of the weights on x explicitly

in what follows.
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2.2 Local likelihood estimation for an exponential family model

If P = (Pθ) is an exponential family with the natural parametrization, the local log-

likelihood and the local maximum likelihood estimates admit a simple closed form rep-

resentation. For a given set of weights W = {w1, . . . , wn} with wi ∈ [0, 1] , denote

N =
n∑

i=1

wi, S =
n∑

i=1

wiYi .

Note that the both sums depend on the location x via the weights {wi} .

Lemma 2.1 (Polzehl and Spokoiny, 2005). It holds

L(W, θ) =
n∑

i=1

wi log p(Yi, θ) = SC(θ)−NB(θ) + R

where R =
∑n

i=1 wi log p(Yi) . Moreover,

θ̃ = S/N =
n∑

i=1

wiYi

/ n∑

i=1

wi (2.2)

and

L(W, θ̃, θ) := L(W, θ̃)− L(W, θ) = NK(θ̃, θ).

Now we present some exponential inequality for the “fitted log-likelihood” L(W, θ̃, θ)

which apply in the parametric situation f(·) ≡ θ for arbitrary weighting scheme and

arbitrary sample size.

Theorem 2.2 (Polzehl and Spokoiny, 2005). Let W = {wi} be a localizing scheme

such that maxi wi ≤ 1 . If f(Xi) ≡ θ∗ for all Xi with wi > 0 then for any z > 0

P θ∗(L(W, θ̃, θ∗) > z) = P θ∗
(
NK(θ̃, θ∗) > z

)
≤ 2e−z.

Remark 2.1. Condition A2 ensures that the Kullback-Leibler divergence K fulfills

K(θ′, θ∗) ≤ I∗|θ′ − θ∗|2 for any point θ′ in a neighborhood of θ∗ , where I∗ is the

maximum of the Fisher information over this neighborhood. Therefore, the result of

Theorem 2.2 guarantees that |θ̃ − θ∗| ≤ CN−1/2 with a high probability. Theorem 2.2

can be used for constructing the confidence intervals for the parameter θ∗ .
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Theorem 2.3. If zα satisfies 2e−zα ≤ α , then

Eα = {θ′ : NK
(
θ̃, θ′

) ≤ zα}

is an α -confidence set for the parameter θ∗ .

Theorem 2.2 claims that the estimation loss measured by K(θ′, θ) is with high prob-

ability bounded by z/N provided that z is sufficiently large. Similarly, one can establish

a risk bound for a power loss function.

Theorem 2.4. Assume A1 and A2 and let Yi be i.i.d. from Pθ∗ . Then for any r > 0

Eθ∗L
r(θ̃, θ∗) ≡ N rEθ∗K

r(θ̃, θ∗) ≤ rr .

where rr = 2r
∫
z≥0 zr−1e−zdz = 2rΓ (r) . Moreover, for every λ < 1

Eθ∗ exp
{
λL(θ̃, θ∗)

} ≡ Eθ∗ exp
{
λNK(θ̃, θ∗)

} ≤ 2(1− λ)−1.

Proof. By Theorem 2.2

Eθ∗L
r(θ̃, θ∗) ≤ −

∫

z≥0
zrdP θ∗(L(θ̃, θ∗) > z)

≤ r

∫

z≥0
zr−1P θ∗(L(θ̃, θ∗) > z)dz ≤ 2r

∫

z≥0
zr−1e−zdz

and the first assertion is fulfilled. The last assertion is proved similarly.

2.3 Risk of estimation in nonparametric situation. “Small modeling

bias” condition

This section extends the bound of Theorem 2.2 to the nonparametric situation when the

function f(·) is not any longer constant even in a vicinity of the reference point x . We,

however, suppose that the function f(·) can be well approximated by a constant θ at

all points Xi with positive weights wi . To measure the quality of the approximation,

define for every θ

∆(W, θ) =
∑

i

δ
(
θ, f(Xi)

)
1(wi > 0), (2.3)
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where with `(y, θ, θ′) = log p(y,θ)
p(y,θ′)

δ(θ, θ′) = log Eθe
−2`(Y,θ,θ′) = log Eθ

p2(Y, θ′)
p2(Y, θ)

.

One can easily check that δ(θ, θ′) ≤ I∗|θ − θ′|2 , where I∗ = maxθ′′∈[θ,θ′] I(θ′′) .

Theorem 2.5. Let FW be a σ -field generated by the r.v. Yi for which wi > 0 and let

∆(W, θ) ≤ ∆ . Then it holds for any random variable ξ measurable w.r.t. FW

Ef(·)ξ ≤
(
e∆Eθξ

2
)1/2

.

Proof. Define ZW (θ) = exp
{
−∑

i `
(
Yi, θ, f(Xi)

)
1(wi > 0)

}
. This value is nothing but

the likelihood ratio of the measure P f(·) w.r.t. P θ upon restricting to the observations

Yi for which wi > 0 . Then for any ξ ∼ FW , it holds Ef(·)ξ = EθξZW (θ). Independence

of the Yi ’s implies

log EθZ
2
W (θ) =

∑

i

log Eθe
−2`(Yi,θ,f(Xi))1(wi > 0)

=
∑

i

δ
(
θ, f(Xi)

)
1(wi > 0) ≤ ∆.

The result now follows from the Cauchy-Schwartz inequality EθξZW (θ) ≤ {
Eθξ

2EθZ
2
W (θ)

}1/2 .

This result implies that the bound for the risk of estimation Ef(·)Lr(θ̃, θ) ≡ N rEf(·)Kr(θ̃, θ)

under the parametric hypothesis can be extended to the nonparametric situation provided

that the value ∆(W, θ) is sufficiently small.

Corollary 2.6. For any r > 0 and any λ < 1 , it holds

N rEf(·)
∣∣K(θ̃, θ)

∣∣r ≤
√

e∆(W,θ)r2r,

N
{

Ef(·)
∣∣K(θ̃, θ)

∣∣r
}1/r

≤ 1
λ

{
log

2
1− λ

+ ∆(W, θ) + 2(r − 1)+
}

.

Proof. The first bound follows directly from Theorems 2.4 and 2.5. The proof of the

second one utilizes the fact that for r > 0 the function h(x) = logr
(
x + cr

)
with

cr = e(r−1)+ is concave on (0,∞) because

h′′(x) =
r logr−2

(
x + cr

)

(x + cr)2
{

r − 1− log
(
x + cr

)} ≤ 0
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for x ≥ 0 . This implies with ζ = λL(θ̃, θ)/2 by monotonicity of log and Jensen’s

inequality that Ef(·)ζr ≤ Ef(·)h(eζ) ≤ h(Ef(·)eζ) and hence,

E
1/r
f(·)ζ

r ≤ log
(
Ef(·)eζ + cr

) ≤ log Ef(·)eζ + (r − 1)+ ≤ 1
2

log
(
e∆(W,θ)Eθe2ζ

)
+ (r − 1)+

and the assertion follows.

Corollary 2.6 presents two bounds for the risk of estimation in the nonparametric

situation which extend the similar parametric bounds by Theorem 2.5. The risk bound in

the parametric situation can be interpreted as the bound for the variance of the estimate

θ̃ while the term ∆(W, θ) controls the bias of estimation, see the next section for more

details. The both bounds formally apply whatever the “modeling bias” ∆(W, θ) is.

However, the results are meaningful only if this bias is not too large. The first bound could

be preferable for small values of ∆(W, θ) , however, the multiplicative factor e∆(W,θ)/2

makes this bound useless for large ∆(W, θ) . The advantage of the second bound is that

the “modeling bias” enters in the additive form.

In the rest of this section we briefly comment on relations between the results of

Section 2.3 and the usual rate results under smoothness conditions on the function f(·)
and the regularity conditions on the design X1, . . . , Xn . More precisely, we assume that

the weights wi are supported on the ball of a radius h > 0 with the center at x and

the function f(·) is smooth within this ball in the sense that for θ∗ = f(x)

δ1/2
(
θ∗, f(x + t)

) ≤ Lh, ∀|t| ≤ h. (2.4)

In view of the inequality δ(θ, θ′) ≤ I∗|θ − θ′|2 this condition is equivalent to the usual

Lipschitz property. Obviously, (2.4) implies with N =
∑

i 1(wi > 0)

∆(W, θ∗) ≤ L2h2N.

Combined with the result of Corollary 2.6 these bounds lead to the following rate results.

Theorem 2.7. Assume (A1) and (A2) and let δ1/2
(
θ∗, f(x + t)

) ≤ Lh for and all

|t| ≤ h . Select h = c(L2n)−1/(2+d) for some c > 0 and let the localizing scheme

W be such that wi = 0 for all Xi with |Xi − x| > h , N :=
∑

i wi ≥ d1nhd and
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N :=
∑

i 1(wi > 0) ≤ d2nhd with some constants d1 < d2 . Then

Ef(·)
∣∣NK

(
θ̃, θ∗

)∣∣r/2 ≤ {
exp

(
c2+dd2

)
rr

}1/2
.

Moreover, with c2 = crd/2 exp
(
c2+dd2/2

)
d
−r/2
1 , it holds

Ef(·)
∣∣n1/(2+d)K

(
θ̃, θ∗

)∣∣r/2 ≤ c2L
rd/(2+d)r1/2

r .

This corresponds to the classical accuracy of nonparametric estimation for the Lips-

chitz functions, cf. Fan, Farmen and Gijbels (1998).

3 Description of the method

We start by describing the considered set-up. Let a point of interest x be fixed and the

target of estimation is the value f(x) of the regression function at x . The local para-

metric approach described in Section 2 and based on the local constant approximation

of the regression function in a vicinity of the point x strongly relies on the choice of

the local neighborhood, or more generally, of the set of weights (wi) . The problem of

selecting such weights and constructing an adaptive (data-driven) estimate is one of the

main issues for practical applications and we focus on this problem in this section.

3.1 Local adaptive estimation. General setup

For a fixed x , we assume to be given an ordered set of localizing schemes W (k) = (w(k)
i )

for k = 1, ..., K . The ordering condition means that w
(k)
i ≥ w

(k′)
i for all i and all k > k′ ,

that is, the degree of locality given by W
(k)
i is weakened as k grows. See Section 3.3 for

some examples. For the popular example of kernel weights w
(k)
i = K

(
(Xi− x)/hk

)
, this

condition means that the bandwidth hk grows with k . Let also {θ̃(k), k = 1, ..., K} be

the corresponding set of local likelihood estimates for θ = f(x) :

θ̃(k)(x) = argmax
θ∈Θ

L(W, θ) =
n∑

i=1

w
(k)
i Yi

/ n∑

i=1

w
(k)
i .

Due to Theorem 2.2 the value 1/Nk can be used to measure the variability of the estimate

θ̃(k) . The ordering condition particularly means that Nk grows and hence, the variability

of θ̃(k) decreases with k .
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Given the estimates θ̃(k) , we consider a larger class of their convex combinations:

θ̂ = α1θ̃
(1) + . . . + αK θ̃(K), α1 + .... + αK = 1, αk ≥ 0,

where the mixing coefficients αk may depend on the point x . We aim at constructing

a new estimate θ̂ in this class which performs at least as good as the best one in the

original family {θ̃(k)} .

3.2 Stagewise aggregation procedure

The adaptive estimate θ̂ of θ = f(x) is computed sequentially via the following algo-

rithm.

1. Initialization: θ̂(1) = θ̃(1).

2. Stagewise aggregation: For k = 2, ..., K

θ̂(k) := γkθ̃
(k) + (1− γk)θ̂(k−1),

with the mixing parameter γk being defined for some zk > 0 and a kernel Kag(·) as

γk = Kag

(
m(k)/zk

)
, m(k) := NkK(θ̃(k), θ̂(k−1))

3. Loop: If k < K , then increase k by one and continue with step 2. Otherwise

terminate and set θ̂ = θ̂(K) .

The idea behind the procedure is quite simple. We start with the first estimate θ̃(1)

having the smallest degree of locality but the largest variability of order 1/N1 . Next

we consider estimates with larger values Nk . Every current estimate θ̃(k) is compared

with the previously constructed estimate θ̂(k−1) . If the difference is not significant then

the new estimate θ̂(k) basically coincides with θ̃(k) . Otherwise the procedure essentially

keeps the previous value θ̂(k−1) . For measuring the difference between the estimates

θ̃(k) and θ̂(k−1) , we use m(k) := NkK(θ̃(k), θ̂(k−1)) which is motivated by the results

of Theorems 2.2 and 2.3. In particular, a large value of m(k) means that θ̂(k−1) does

not belong to the confidence set corresponding to θ̃(k) and hence indicates a significant

difference between these two estimates. To quantify this significance, the procedure

utilizes the parameters (critical values) zk . Their choice is discussed in Section 3.3.1.
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Remark 3.1. If Kag(·) is the uniform kernel on [0, 1] then γk is either zero or one

depending on the value of m(k) . This yields by induction arguments that the final

estimate coincides with one of the “weak” estimates θ̃(k) . In this case our method can

be considered as a pointwise model selection method.

If the kernel Kag is such that Kag(t) = 1 for t ≤ b with some positive b , then the

small values of the “test statistic” m(k) lead to the aggregated estimate θ̂(k) = θ̃(k) .

This is an important feature of the procedure which will be used in our implementation

and the theoretical study.

3.3 Parameter choice and implementation details

The implementation of the SSA procedure requires fixing a sequence of local likelihood

estimates, the kernel Kag and the parameters zk . The next section gives some examples

how the set of localizing schemes W (k) can be selected. The only important parame-

ters of the method are “critical values” zk which normalize the “test statistics” m(k) .

Section 3.3.1 describes in details how they can be selected in practice.

The kernel Kag should satisfy 0 ≤ Kag(t) ≤ 1 , should be monotonously decreasing

and have support on [0, 1] . Besides that, there is a positive number b such that Kag(t) =

1 for t ≤ b . Our default choice is a piecewise linear kernel with b = 1/6 and Kag(t) =
(
1 − (t − b)+

)
+

. Our numerical results (not shown here) indicate that the particular

choice of the kernel Kag has only a minor effect on the final results.

3.3.1 Choice of the parameters zk

The “critical values” zk define the level of significance for the test statistics m(k) . A

proper choice of these parameters is crucial for the performance of the procedure. We

propose in this section one general approach for selecting them which is similar to the

bootstrap idea in the hypothesis testing problem. Namely, we select these values to

provide the prescribed performance of the procedure in the parametric situation (under

the null hypothesis). For every step k , we require that the estimate θ̂(k) is sufficiently

close to the “oracle” estimate θ̃(k) in the parametric situation f(·) ≡ θ in the sense that

sup
θ∗∈Θ

Eθ∗
∣∣NkK

(
θ̃(k), θ̂(k)

)∣∣r ≤ ρrr (3.1)
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for all k = 2, . . . , K with rr from Theorem 2.4. In some cases the risk Eθ∗
∣∣NkK

(
θ̃(k), θ̂(k)

)∣∣r

does not depend on θ∗ . This is, for example, the case when θ is a shift or scale param-

eter, as for Gaussian shift, exponential and volatility families. Then it sufficient to check

(3.1) for any single point θ∗ . In the general situation, the risk Eθ∗
∣∣NkK

(
θ̃(k), θ̂(k)

)∣∣r

depends on the parameter value θ∗ . However, our numerical results (not reported here)

indicate that this dependence is minor and usually it suffices to check these conditions

for one parameter θ∗ . In particular, for the Bernoulli model considered in Section 4 we

recommend to only check the condition (3.1) for the “least favorable” value θ∗ = 1/2

corresponding to the largest variance of the estimate θ̃ .

The values ρ and r in (3.1) are two global parameters. The role of ρ is similar to

the level of the test in the hypothesis testing problem while r describes the power of the

loss function. A specific choice is subjective and depends on the particular application at

hand. Taking a large r and small ρ would result in an increase of the critical values and

therefore, improves the performance of the method in the parametric situation at cost of

some loss of sensitivity to parameter changes. Theorem 5.1 presents some upper bounds

for the critical values zk as functions of ρ and r in the form a0+a1 log ρ−1+a2r(K−k)

with some coefficients a0 , a1 and a2 . We see that these bounds linearly depend on r

and on log ρ−1 . For our applications to classification, we apply a relatively small value

r = 1/2 because the misclassification error corresponds to the bounded loss function.

We also apply ρ = 1 although the other values in the range [0.5, 1] lead to very similar

results. Note that in general the such defined parameters zk depend on the model

considered, design X1, . . . , Xn and the localizing schemes W (1), . . . , W (K) which in turn

can differ from point to point. Therefore, an implementation of the suggested rule would

require to compute the parameters separately for every point of estimation. However,

in many situations, e.g. for the regular design, this variation from point to point is

negligible, and a universal set of parameters can be used. Important is only that the

conditions (3.1) are fulfilled for all the points.
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3.3.2 Simplified parameter choice

The proposal (3.1) is not constructive: we have just K − 1 conditions for choosing

K − 1 parameters. Here we present a simplified procedure which is rather simple for the

implementation and based on the Monte Carlo simulations. It suggests to first identify the

last value zK using the reduced aggregation procedure with only two estimates θ̃(K−1)

and θ̃(K) :

sup
θ∗∈Θ

Eθ∗
∣∣NkK

(
θ̃(K), θ̂(zK)

)∣∣r ≤ ρrr/(K − 1)

where θ̂(zK) = γθ̃(K) + (1− γ)θ̃(K−1) , γ = Kag(m/zK) and m = NKK
(
θ̃(K), θ̃(K−1)

)
.

The other values zk are found in the form zk = zK + ι(K − k) to provide (3.1). This

suggestion is justified by the result of Theorem 5.1 from Section 5.1.

3.3.3 Examples of sequences of local likelihood estimates

This section presents some examples and recommendations for the choice of the localizing

schemes W (k) which we also use in our simulation study. Note, however, that the choice

of W (k) ’s is not a part of the SSA procedure. The procedure applies with any choice

under some rather mild growth conditions.

Below we assume that the design X1, . . . , Xn is supported on the unit cube [−1, 1]d .

This condition can be easily provided by rescaling the design components. We mention

two approaches for choosing the localizing scheme which are usually used in applications.

One is based on a given sequence of bandwidths, one more is based on the nearest neighbor

structure of the design. In both situations we assume that a location kernel Kloc is a

nonnegative function on the unit cube in [−1, 1]d . In general we only assume that this

kernel is decreasing alone any radial line, that is, Kloc(ρx) ≥ Kloc(x) for any x ∈ [−1, 1]d

and ρ ≤ 1 , and Kloc(x) = 0 for |x| ≥ 1 . In the most of applications, one applies an

isotropic kernel Kloc which only depends on the norm of x . The recommended choice

is the Epanechnikov kernel Kloc(x) = (1− |x|2)+ .

Bandwidth-based localizing schemes: This way can be recommended for the

univariate or bivariate equidistant design. Let {hk}K
k=1 be a finite set of bandwidth-

candidates. We assume that this set is ordered, that is, h1 < h2 < . . . < hK . Every
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such bandwidth determines the collection of kernel weights w
(k)
i = Kloc

(
(Xi − x)/hk

)
,

i = 1, . . . , n . In all the examples below we apply a geometrically increasing sequence

of “bandwidths” hk , that is, hk+1 = ahk for some a > 1 . This sequence is uniquely

determined by the starting value h1 , the factor a and the total number K of local

schemes. The recommended choice of a is (1.25)1/d although our numerical results

(not reported here) indicate no significant change in the results when the other value of

a in the range 1.1 to 1.3 is used. The value h1 is to be selected in a way that the

starting estimate θ̃(1) is well defined for all the points of estimation. In the case of a

local constant approximation, this value can be taken very small because even one point

can be sufficient for a preliminary estimation. In the case of a regular design, the value

h1 is of order n−1/d . The number K of local schemes W (k) or, equivalently, of the

“weak” estimates θ̃(k) is mostly determined by the values h1 and a in such a way that

hK = h1a
K−1 is about one, that is, the last estimate behaves like a global parametric

estimate from the whole sample. The formula K = a log(hK/h1) suggests that K is at

most logarithmic in the sample size n .

k-NN based local schemes: If the design is irregular or the design space is high

dimensional ( d > 2 ) then it is useful to apply the local schemes based on the k-nearest

neighbor structure of the design. For this approach, an increasing sequence {Nk} of

integers has to be fixed. For a fixed x and every k ≥ 1 , the bandwidth hk is the

minimal one for which the ball of radius hk contains at least Nk design points. The

weights are defined again by w
(k)
i = Kloc

(
(Xi − x)/hk

)
. The sequence {Nk} is selected

similarly to the sequence {hk} in the bandwidth-based approach. One starts with a

fixed N1 and then multiplies it at every step with some factor a > 1 : Nk+1 = aNk .

The number of steps K is such that NK is of order n .

One can easily check that the kernel and k-NN based local schemes coincide in the

case of univariate regular design.

4 Application to classification

One observes a training sample (Xi, Yi) , i = 1, . . . , n , with Xi valued in a Euclidean

space x = IRd with known class assignment Yi ∈ {0, 1} . Our objective is to construct
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a discrimination rule assigning every point x ∈ x to one of the two classes. The clas-

sification problem can be naturally treated in the context of a binary response model.

It is assumed that each observation Yi at Xi is a Bernoulli r.v. with the parameter

θi = f(Xi) , that is, P (Yi = 0|Xi) = 1− f(Xi) and P (Yi = 1|Xi) = f(Xi) . The “ideal”

Bayes discrimination rule is ρ(x) = 1 (f(x) ≥ 1/2) . Since the function f(x) is usually

unknown it is replaced by its estimate θ̂ . If the distribution of Xi within the class k

has density fk then

θi = π1f1(Xi)/(π0f0(Xi) + π1f1(Xi)).

where πk is the prior probability of k th population k = 0, 1 .

Nonparametric methods of estimating the function θ are typically based on local

averaging. Two typical examples are given by the k -nearest neighbor ( k -NN) estimate

and the kernel estimate. For a given k and every point x in x , denote by Dk(x) the

subset of the design X1, . . . , Xn containing the k nearest neighbors of x . Then the

k -NN estimate of f(x) is defined by averaging the observations Yi over Dk(x) :

θ̃(k)(x) = k−1
∑

Xi∈Dk(x)

Yi .

The definition of the kernel estimate of f(x) involves a univariate kernel function K(·)
and the bandwidth h :

θ̃(h)(x) =
n∑

i=1

K

(
ρ(x, Xi)

h

)
Yi

/ n∑

i=1

K

(
ρ(x,Xi)

h

)
.

Both methods require the choice of a smoothing parameter (the value k for k -NN and

the bandwidth h for the kernel estimate).

Example 4.1. In this example we consider the binary classification problem with the

corresponding class densities f0(x) and f1(x) given by two component normal mixtures

f0(x) = 0.2φ(x; (−1, 0), 0.5I2) + 0.8φ(x; (1, 0), 0.5I2)

f1(x) = 0.5φ(x; (0, 1), 0.5I2) + 0.5φ(x; (0,−1), 0.5I2)

where φ(·; µ,Σ) is the density of the multivariate normal distribution with the mean

vector µ and the covariance matrix Σ and I2 is 2× 2 unit matrix.
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Figure 4.1: Sample from the binary response model with the normal mixture class den-

sities (left) and results of applying the Bayes discrimination rule for this model (right).

Figure 4.1 shows one typical realization of the training sample with 100 observations

in each class (left) and the optimal Bayes classification for a testing sample with 1000

observations in each class (right). First, in order to illustrate the “oracle” property of

the SSA we compute the pointwise misclassification errors for all week estimate and SSA

estimate at four boundary points. They are obtained using training sample of size 400 ,

k -NN weighting scheme with N1 = 5, NK = 300, K = 30 and ρ = 0.5 . Further, we have

done 500 simulations runs generating each time 100 training points and 100 testing

points. The rates of misclassification on testing sets have been averaged thereafter to

give the mean misclassification error which is shown as a reference dotted line in Figure

4.3. We note here that the critical values

zk = 0.0031 + 0.007 ∗ (K − k), k = 1, . . . , K

have been computed only once for one design realization and least favorable parameter

value θ∗ = 0.5 and then used in all runs. The same strategy is used in other examples

as well. Next, two “weak” classification methods, k -NN and kernel classifiers, with

varying smoothing parameters are applied to the same data set Figure 4.3 (top) shows

the dependence of the misclassification error on the bandwidth for kernel classifiers and
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Figure 4.2: Pointwise misclassification errors (black dots) at four points for all weak

estimates used in the example 4.1. The solid reference lines correspond to the SSA

misclassification errors.

on the number of nearest neighbors for the k -NN classifier.

One can observe that a careful choice of the smoothing parameter is crucial for getting

a reasonable quality of the classification. A wrong choice leads to a significant increase

of the misclassification rate, especially for the kernel classifiers. At the same time, the

optimal choice can lead to a reasonable quality of the classification which is only slightly

worse than one of the Bayes decision rule.

Example 4.2. Now we consider the example 4.1 with additional 8 independent N (0, 1)

distributed nuisance components. So, now Xi = (X1
i , .., X10

i ) where

(X1
i , X2

i ) ∼ fclass(i), (X3
i , .., X10

i ) ∼ N ((0, ..., 0︸ ︷︷ ︸
8

), I8).

The SSA procedure is implemented now again using k -NN weights with the number of

nearest neighbors exponentially increasing from 5 to 100 . The results are shown in the
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Figure 4.3: Misclassification errors as a functions of the main smoothing parameter for

k -NN (right) and kernel (left) classifiers. SSA and Bayes misclassification errors are given

as reference lines. Top: Example 4.1 (dimension 2). Bottom: Example 4.2 (dimension

10).

bottom row of Figure 4.3. We observe again that the quality of the both standard classi-

fiers depends significantly on the choice of the smoothing parameters. In the considered

high dimensional situation, even under the optimal choice the quality of the dimension

independent Bayes classifier is not attained. However, the SSA procedure performs again

nearly as good as the best k -NN or kernel classifier.

Example 4.3. [BUPA liver disorders] We consider the dataset sampled by BUPA Med-

ical Research Ltd. It consists of 7 variables and 345 observed vectors. The subjects

are single male individuals. The first 5 variables are measurements taken by blood tests

that are thought to be sensitive to liver disorders and might arise from excessive alcohol

consumption. The sixth variable is a sort of selector variable. The seventh variable is

the label indicating the class identity. Among all the observations, there are 145 peo-
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ple belonging to the liver-disorder group (corresponding to selector number 2 ) and 200

people belonging to the liver-normal group. The BUPA liver disorder data set is noto-

riously difficult for classifying with the usual error rates about 30% . We apply SSA,

k -NN and kernel classifiers to tackle this problem. In SSA procedure the kNN weighting

scheme was employed with number of k -NN ranging from 2 to 100 . Figure 4.4 shows

the corresponding one-leave-out cross-validation errors for the above methods. One can

see that the SSA method is uniformly better than kernel or k -NN classifiers.
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Figure 4.4: One-leave-out cross-validation errors as a functions of the main smoothing

parameters for k -NN (right) and kernel (left) classifiers. The dotted line describes the

error of SSA classifier.

Example 4.4. [Bankruptcy Data] The data set from the Compustat repository contains

the statistics about bankruptcies (defaults) in private sector of USA economy during the

period 2000-2005. There are 14 explanatory variables including different financial ra-

tios, industry indicators and so on. First, the preliminary analysis is conducted and two

most informative variables (equity/total assets ratio and net income/total assets ratio

(profitability)) are selected. The projection of the default statistics on the corresponding

plane is shown in Figure 4.5. Further, the performance of SSA procedure is compared to

the performance of k-NN classifier with different numbers of nearest neighbors. Namely,

the one-leave-out cross-validation errors are computed for both SSA and k-NN classifica-

tion methods and the last one is presented in Figure 4.5 as a function of the number of
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nearest neighbors. Again as in previous examples, the quality of classification strongly

depends on the choice of the parameter k . The adaptive SSA procedure provides the

performance corresponding to the best possible choice of this parameter.

−5 0 5 10

−
4

−
3

−
2

−
1

0
1

Return on Assets

E
qu

ity
/T

ot
al

 A
ss

et
s

0 20 40 60 80 100
0.

22
0.

24
0.

26
0.

28
0.

30

Number of k−NN

C
V

 E
rr

or

k−NN Classifier
SSA Classifier

Figure 4.5: Left: Default events (crosses indicate defaulted firms and circles operating ones) are

shown in dependence on the two characteristics of a firm. Right: One-leave-out cross-validation

error for k-NN classifier as a function of the number of nearest neighbors. The CV error for SSA

classifier is given as a red reference line.

5 Some theoretical properties of the SSA method

This section discusses some important theoretical properties of the proposed aggregating

procedure. In particular we establish the “oracle” result which claims that the aggregated

estimate is up to a log-factor as good as the best one among the considered family {θ̃(k)}
of local constant estimates.

The majority of the results in the modern statistical literature are stated as asymp-

totic rate results. It is however well known that the rate optimality of an estimation

procedure does not automatically imply its good finite sample properties and cannot

be used for comparing different procedures. The rate results are also almost useless for

selecting the parameters of the procedure. In our theoretical study we apply another

approach which aims to link parametric and nonparametric inference with the focus on
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the adaptive behaviour of the proposed method. This means in particular that the SSA

procedure attains the parametric accuracy if the parametric assumption is fulfilled. In

the general situation the procedure attains (up to a unavoidable price for adaptation)

the quality corresponding to the best possible local parametric approximation for the

underlying model near the point of interest .

The “oracle” result is in its turn a consequence of two important properties of the

aggregated estimate θ̂ : “propagation” and “stability”. “Propagation” can be viewed

as the oracle result in the parametric situation with f(·) ≡ θ∗ . In this case the oracle

choice would be the estimate with the largest value Nk , that is, the last estimate θ̃(K)

in the family {θ̃(k)} . The “propagation” property means that at every step k of the

procedure the “aggregated” estimate θ̂(k) is close to the “oracle” estimate θ̃(k) . In other

words, the “propagation” property ensures that at every step the degree of locality is

relaxed and the local model applied for estimation is extended to a larger neighborhood

described by the weights W (k) . The “propagation” property can be naturally extended to

a nearly parametric case when ∆(W (k), θ) is small for some fixed θ and all k ≤ k∗ . The

“propagation” feature of the procedure ensures that the quality of estimation improves

and confidence bounds for θ̂(k) become tighter as the number of iterations increases

provided that the “small modeling bias” condition still holds. Finally, the “stability”

property secures that the quality gained in the “propagation” stage will be kept for the

final estimate.

Our theoretical study is done under assumptions A1 and A2 on the parametric family

P . Additionally we impose an assumption on the sequence of localizing schemes W (k)

which was already mentioned in Section 3.

(A3) the set W (k) is ordered in the sense that w
(k)
i ≥ w

(k′)
i for all i and all k > k′ .

Moreover, for some constants u0, u with 0 < u0 ≤ u < 1 , values Nk =
∑n

j=1 w
(k)
i

satisfy for every 2 ≤ k ≤ K

u0 ≤ Nk−1/Nk ≤ u.
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5.1 Behavior in the parametric situation

First we consider the homogeneous situation with the constant parameter value f(x) =

θ∗ . Our first result claims that in this situation under condition A3 the parameters zk

can be chosen in the form zk = zK + ι(K−k) to fulfill the “propagation” condition (3.1).

The proof is given in the Appendix.

Theorem 5.1. Assume A1 , A2 and A3 . Let f(Xi) = θ∗ for all i . Then there are

three constants a0, a1 and a2 depending on r and u0 , u only such that the choice

zk = a0 + a1 log ρ−1 + a2r log Nk

ensures (3.1) for all k ≤ K . Particularly, Eθ∗
∣∣NKK

(
θ̃(K), θ̂

)∣∣r ≤ ρrr.

5.2 “Propagation” under “small modelling bias”

Now we extend the “propagation” result to the situation when the parametric assumption

is not fulfilled any more but the deviation from the parametric structure within the

considered local model is sufficiently small. This deviation can be measured for the

localizing scheme W (k) by ∆(W (k), θ) from (2.3).

We suppose that there is a number k∗ such that the modeling bias ∆(W (k), θ) is

small for some θ and all k ≤ k∗ . Consider the corresponding estimate θ̂(k∗) obtained

after the first k∗ steps of the algorithm. Theorem 2.5 implies in this situation the

following result.

Theorem 5.2. Assume A1 , A2 and A3 . Let θ and k∗ be such that ∆(W (k), θ) ≤ ∆

for some ∆ ≥ 0 and all k ≤ k∗ . Then

Ef(·)
∣∣Nk∗K

(
θ̃(k∗), θ̂(k∗))∣∣r/2 ≤

√
ρrre∆,

Ef(·)
∣∣Nk∗K

(
θ̃(k∗), θ

)∣∣r/2 ≤
√

rre∆.

5.3 “Stability after propagation” and “oracle” results

Due to the “propagation” result, the procedure performs well as long as the “small

modeling bias” condition ∆(W (k), θ) ≤ ∆ is fulfilled. To establish the accuracy result

for the final estimate θ̂ , we have to check that the aggregated estimate θ̂(k) does not
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vary much at the steps “after propagation” when the divergence ∆(W (k), θ) from the

parametric model becomes large.

Theorem 5.3. Under A1 , A2 and A3 , it holds for every k ≤ K

NkK
(
θ̂(k), θ̂(k−1)

) ≤ zk. (5.1)

Moreover, under A3 , it holds for every k′ with k < k′ ≤ K

NkK
(
θ̂(k′), θ̂(k)

) ≤ a2cu zk (5.2)

with cu = (u−1/2 − 1)−1/2 and zk = maxl≥k zl .

Remark 5.1. An interesting feature of this result is that it is fulfilled with probability

one, that is, the control of stability “works” not only with a high probability, it always

applies. This property follows directly from the construction of the procedure.

Proof. By convexity of the Kullback-Leibler divergence K(u, v) w.r.t. the first argument

K
(
θ̂(k), θ̂(k−1)

) ≤ γkK
(
θ̃(k), θ̂(k−1)

)
.

If K
(
θ̃(k), θ̂(k−1)

) ≥ zk/Nk , then γk = 0 and (5.1) follows. Now, Assumption A2 and

Lemma 6.1 yield

K1/2
(
θ̂(k′), θ̂(k)

) ≤ a

k
′∑

l=k+1

K1/2
(
θ̂(l), θ̂(l−1)

) ≤ a

k
′∑

l=k+1

(
zl/Nl

)1/2
.

The use of Assumption A3 leads to the bound

K1/2
(
θ̂(k′), θ̂(k)

) ≤ a
(
zk/Nk

)1/2
k
′∑

l=k+1

u(l−k)/2 ≤ a
√

u(1−√u)−1
(
zk/Nk

)1/2

which proves (5.2).

Combination of the “propagation” and “stability” statements implies the main result

concerning the properties of the adaptive estimate θ̂ .

Theorem 5.4. Assume A1 , A2 and A3 . Let k∗ be a “good” choice in the sense that

max
k≤k∗

∆(W (k), θ) ≤ ∆
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for some θ and some value ∆ . Then

Ef(·)
∣∣Nk∗K

(
θ̃(k∗), θ̂

)∣∣r/2 ≤ 2(r−1)+ar
{√

ρrre∆ +
(
cu zk∗

)r/2}

where cu is the constant from Theorem 5.3.

We also present a corollary of the “oracle” result concerning the risk of the adaptive

estimate θ̂ for the special case with r = 1 . The other values of r can be considered as

well, one only has to update the constants depending on r . We also assume that ρ ≤ 1 .

Corollary 5.5. Let maxk≤k∗ ∆(W (k), θ) ≤ ∆ for some θ and some ∆ . Then

N
1/2
k∗ Ef(·)K1/2

(
θ̂, θ

) ≤ a
(
2
√

r1e∆ +
√

cuzk∗
)
.

Proof. Just observe that by Lemma 6.1

K1/2
(
θ̂, θ

) ≤ a
{

K1/2
(
θ̃(k∗), θ

)
+ K1/2

(
θ̃(k∗), θ̂(k∗)

)
+

k̂∑

l=k∗+1

K1/2
(
θ̂(l), θ̂(l−1)

)}

and follow the proof of Theorem 5.3.

Remark 5.2. Recall that in the parametric situation, the risk Eθ∗
∣∣Nk∗K

(
θ̃(k∗), θ∗

)∣∣1/2

of θ̃(k∗) is bounded by r1/2 , cf. Theorem 2.2. In the nonparametric situation, the result

is only slightly worse: the value r1/2 is replaced by
√

r1e∆ which takes into account

the modeling bias. There is also an additional term proportional to
√

zk∗ which can be

considered as the payment for adaptation. Due to Theorem 5.1, zk∗ is bounded from

above by zK + ι(K − k∗) . By Theorem 5.1 K is only logarithmic in the sample size n .

Therefore, the risk of the aggregated estimate corresponds to the best possible risk

among the family {θ̃(k)} for the choice k = k∗ up to a logarithmic factor. Lepski,

Mammen and Spokoiny (1997) established a similar result in the regression setup for

the pointwise adaptive Lepski procedure. Combining the result of Corollary 5.5 with

Theorem 2.7 yields the rate of adaptive estimation
(
n−1 log n

)1/(2+d) under Lipschitz

smoothness of the function f and the usual design regularity, see Polzehl and Spokoiny

(2005) for more details. It was shown by Lepski (1990) that in the problem of point-

wise adaptive estimation this rate is optimal and cannot be improved by any estimation

method. This gives an indirect proof of the optimality of our procedure: the factor zk∗
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in the accuracy of estimation cannot be removed or reduced in the rate because otherwise

the similar improvement would appear in the rate of estimation.

6 Appendix: Proof of Theorem 5.1

The proof utilizes the following simple “metric like” property of K1/2(·, ·) .

Lemma 6.1 (Polzehl and Spokoiny, 2005, Lemma 5.2). Under condition A2 it

holds for every sequence θ0, θ1, . . . , θm that

K1/2(θ1, θ2) ≤ a
{
K1/2(θ1, θ0) + K1/2(θ2, θ0)

}
,

K1/2(θ0, θm) ≤ a
{
K1/2(θ0, θ1) + . . . + K1/2(θm−1, θm)

}
.

With the given constants zk , define for k > 1 the random sets

Ak = {Nk K(θ̃(k), θ̃(k−1)) ≤ bzk}, A(k) = A2 ∩ . . . ∩Ak ,

where b enters in the construction of Kag : Kag(t) = 1 for t ≤ b .

Note first that θ̂(k) = θ̃(k) on A(k) for all k ≤ K . This fact can be proved by

induction in k . For k = 1 , the assertion is trivial because θ̂(1) = θ̃(1) . Now sup-

pose that θ̂(k−1) = θ̃(k−1) . Then it holds on Ak that m(k) = NkK(θ̃(k), θ̂(k−1)) =

NkK(θ̃(k), θ̃(k−1)) ≤ bzk and thus, γk = Kag(m(k)/zk) ≥ Kag(b) = 1 yielding θ̂(k) = θ̃(k) .

Therefore, it remains to bound the risk of θ̂(k) on the complement A
(k)

of A(k) .

Define Bk = A(k−1) \A(k) . On the event Bk , the index k is the first one for which the

condition Nk K(θ̃(k), θ̃(k−1)) ≤ bzk is violated. It is obvious that A
(k)

=
⋃

l<k Bl . First

we bound the probability P θ∗
(
Bl

)
. Applying assumption A3 and Lemma 6.1 yields for

every l

Nl K(θ̃(l), θ̃(l−1)) ≤ 2a2Nl

{
K(θ̃(l), θ∗) + K(θ̃(l−1), θ∗)

}

≤ 2a2
{
Nl K(θ̃(l), θ∗) + u−1

0 Nl−1K(θ̃(l−1), θ∗)
}
.

Therefore, by Theorem 2.2,

P θ∗
(
Bl

) ≤ P θ∗
(
Nl K(θ̃(l), θ̃(l−1)) > bzl

) ≤ 2 exp
(
−u0b

4a2
zl

)
.
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On the set Bl , it holds θ̂(l−1) = θ̃(l−1) and thus, for every k > l the aggregated

estimate θ̂(k) by construction is a convex combination of θ̃(l−1), . . . , θ̃(k) . Convexity of

the Kullback-Leibler divergence w.r.t. the second argument, the definition of θ̂(k) and

Lemma 6.1 ensure that

K1/2
(
θ̃(k), θ̂(k)

)
1
(
Bl

) ≤ max
l′=l−1,...,k−1

K1/2
(
θ̃(k), θ̃(l′))

≤ a max
l′=l−1,...,k−1

{
K1/2(θ̃(k), θ∗) + K1/2(θ̃(l′), θ∗)

}

≤ 2a max
l′=l−1,...,k

K1/2(θ̃(l′), θ∗).

This and Theorem 2.4 imply for every r

Eθ∗K
r
(
θ̃(k), θ̂(k)

)
1
(
Bl

) ≤ (2a)2rEθ∗

k∑

l′=l−1

Kr(θ̃(l′), θ∗)1
(
Bl

)

≤ (2a)2r
k∑

l′=l−1

E
1/2
θ∗ K2r(θ̃(l′), θ∗)P 1/2

θ∗
(
Bl

)

≤ (2a)2rr
1/2
2r

k∑

l′=l−1

N−r
l′ 2 exp

(
−u0b

8a2
zl

)

≤ C1N
−r
l r

1/2
2r exp

(−c2zl

)

for some fixed constants C1 and c2 . Therefore,

Eθ∗K
r
(
θ̃(k), θ̂(k)

) ≤
k∑

l=2

Eθ∗K
r
(
θ̃(k), θ̂(k)

)
1
(
Bl

) ≤
k∑

l=2

C1N
−r
l r

1/2
2r exp

(−c2zl

)
.

It remains to check that the choice zk = a0 + a1 log ρ−1 + a2r log(NK/Nk) with properly

selected a0, a1 and a2 provide the required bound Eθ∗
∣∣NkK

(
θ̃(k), θ̂(k)

)∣∣r ≤ ρrr .
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