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When did the 2001 recession really start? 1

Jörg Polzehl2, Vladimir Spokoiny3 and Cătălin Stărică4

Abstract

The paper develops a non-parametric, non-stationary framework for business-cycle dating
based on an innovative statistical methodology known as Adaptive Weights Smoothing
(AWS). The methodology is used both for the study of the individual macroeconomic
time series relevant to the dating of the business cycle as well as for the estimation of
their joint dynamic.

Since the business cycle is defined as the common dynamic of some set of macroe-
conomic indicators, its estimation depends fundamentally on the group of series moni-
tored. We apply our dating approach to two sets of US economic indicators including
the monthly series of industrial production, nonfarm payroll employment, real income,
wholesale-retail trade and gross domestic product (GDP).

We find evidence of a change in the methodology of the NBER’s Business-Cycle Dating
Committee: an extended set of five monthly macroeconomic indicators replaced in the
dating of the last recession the set of indicators emphasized by the NBER’s Business-
Cycle Dating Committee in recent decades. This change seems to seriously affect the
continuity in the outcome of the dating of business cycle. Had the dating been done on
the traditional set of indicators, the last recession would have lasted one year and a half
longer.

We find that, independent of the set of coincident indicators monitored, the last eco-
nomic contraction began in November 2000, four months before the date of the NBER’s
Business-Cycle Dating Committee.
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1. Introduction

The paper develops a non-parametric, non-stationary framework for business-cycle dat-
ing based on an innovative statistical methodology known as Adaptive Weights Smooth-
ing (AWS). The methodology is used both for the study of the individual macroeconomic
time series relevant to the dating of the business cycle: employment, real personal in-
come, sales, industrial production and gross domestic product (GDP) as well as for the
estimation of their joint dynamic.

In our approach the macroeconomic indicators are modelled as stochastic variations
around a time-varying trend5. Moreover, the movements of the level of individual indi-
cators are assumed to have as common source the dynamic of the economy as a whole.
Periods of economic expansion translate into increasing levels (positive trends) of the
individual indicators or, equivalently, into a positive first derivative of the trend. Simi-
larly, a shrinking economy is seen in decreasing levels (negative trends) or, equivalently,
a negative first derivative of the trend.

The individual series analysis we perform yields the turning points in the level of the
macroeconomic indicators highlighting their non-stationary nature. It shows that the in-
dicators peak and attain their trough in different months. This makes finding the turning
points of the economy particularly challenging and calls for pooling of information from
all the individual indicators. We complement the analysis of individual macroeconomic
series with an estimation of the business cycle defined as the common dynamic of a group
of relevant economic indicators. This is done through a non-stationary factor analysis
which is one of the main contributions of the paper.

Since the business cycle is defined as the common dynamic of some set of macroeco-
nomic indicators, its estimation depends fundamentally on the group of series monitored.
We apply our dating approach to two groups of US economic indicators: the four monthly
economic indicators of industrial production, payroll employment, wholesale-retail trade,
and real income emphasized by the NBER’s Business-Cycle Dating Committee in recent
decades and an extended group with the GDP as the fifth series6.

When the series under scrutiny are the four mentioned monthly economic indicators,
our statistical methodology seems to find the same pattern in the data as the unknown
dating approach of the NBER’s Business-Cycle Dating Committee for all but the last
recession. The two methods produce very different results when it comes to the last
episode of economic contraction. The recession seems to have lasted from November 2000,
four months before the NBER start date, until May 2003 (the last month of negative
growth), i.e. one year and six months after the date announced by the NBER’s Business-
Cycle Dating Committee.

We argue that a possible explanation of this finding could be the inclusion of the
monthly GDP data in the set of indicators closely monitored for the dating of the last

5The volatility of the stochastic variations is also time-varying.
6A monthly series of the GDP seems to have been used lately by the dating committee to supplement

the information on the business cycle.
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economic contraction episode7. When the set of macroeconomic indicators from which
the common dynamic is extracted is extended to include the monthly GDP, the month of
November 2000 is again individuated as the beginning of the recession. However, in this
set-up, the first derivative of the trend of the economy becomes significantly positive in
November 2001, the date of the end of the recession according to the NBER’s Business-
Cycle Dating Committee. Hence, the common dynamic of the five monthly indicators is
consistent with the NBER dating of the recession’s end in November 2001. The growth
rate of the economy in the months that followed was extremely small (0.2 of a percent)
and seems to have stayed at this level until the end of the sample8.

Our findings support the hypothesis of a change in the methodology of the NBER’s
Business-Cycle Dating Committee. They also bring evidence of the existence of a break
in the outcome of the business-cycle dating: had the dating been done based on the
traditional set of indicators, the last recession would have lasted one year and a half
longer becoming the longest contraction episode in the postwar economic history.

While the date of the end of the last recession depends on the set of macroeconomic
indicators (and, in the case of the extended set of five indicators, is consistent with the
NBER’s Business-Cycle Dating Committee dating), we find that, independent of the set
of coincident indicators monitored, the last economic contraction began in November
2000, four months before the date of the NBER’s Business-Cycle Dating Committee.

The non-parametric approach we propose is of particular relevance because dating the
business cycle as well as assessing in real-time the current health level of the economy
are, primary, data summaries. The use of a parametric model is, hence, questionable
from a methodological point of view. The situation can be compared with that in which
one who is interested in the mean and the variance of a time series, instead of computing
sample moments, would fit at AR(1) and then infer the desired quantities9.

7The change in the emphasis on the GDP series is visible in the official announcements of the NBER’s

Business-Cycle Dating Committee (see Section 6). Despite claims of continuity in the outcome of the

dating, this change could possibly introduce a strong discontinuity in the practice of NBER’s Business-

Cycle Dating Committee.
8While from a strictly statistical point of view, the month of November marks the end of the recession

(the growth rate becomes then statistically significant positive), the economic relevance of a rate of growth

as small as 0.2 of a percent during the period until August 2003 might still be a matter of debate. The

answer to the question ’When did the 2001 recession really end?’ depends on assigning the period of

(practically) flat economic activity after November 2001 either to the past contraction or to the future

expansion. To solve this dilemma one needs not look any further than the practice of the NBER’s

Business-Cycle Dating Committee which specifies that ’if economic activity is roughly flat at the end of

a recession or expansion, the turning point is placed at the end of the flat period’. Hence, if the statistical

rigor is complemented by the established practice and experience, one could further argue that, even

when the monthly GDP series is included in the set of monthly indicators, the recession which started in

November 2000 extended at least until the summer of 2003, i.e. at least eighteen months after the ending

date of the NBER announcement.
9Following the plastic formulation in Harding and Pagan [9] the situation can be compared with that

in which one who is interested in the mean µ and the variance σ2 of a time series, instead of computing

sample moments, would fit at AR(1) with µ as intercept, ρ as the AR(1) parameter and σ2 as the

variance of the innovations and then infer the desired quantities from µ/(1− ρ) and σ2/(1− ρ2). If the
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By treating the business cycle as a succession of structurally different periods our
approach takes an ’intrinsic ’ view, the same as Hamilton [8], Diebold and Rudebush
[6], Chauvet [3], Kim and Nelson [11], Otrok and Whiteman [12] among others. By
contrast, the ’extrinsic’ view assumes that recessions and expansions are generated by
certain configuration of random shocks to a stationary (usually linear) time series model.
For example, Stock and Watson [21], [22] and [23] model the co-movements among many
economic series by means of a single, common, linear, unobserved index.

Our approach belongs to the so-called ’classical cycle’ methodology that focuses on
the cyclical characteristics of the level of the macroeconomic series, such as their peaks
and troughs. In another strand of literature known as growth cycle or deviation cycle,
business cycle patterns are explored assuming that the relevant series can be decomposed
as the sum of a trend and a cycle10.

What distinguishes our contribution from the rest of the large business cycle litera-
ture is the non-stationary, non-parametric approach11 we are advocating. Besides being
intuitively appealing, our non-parametric approach requires only few assumptions on the
nature of the dynamics of the data. The changes of the expected level as well as those in
the volatility function can be smooth or marked by discontinuities. Last, a solid body of
theoretical results and methodological recommendations on the estimation of the model
is already available. Moreover, these results yield rigorous measures of the estimation
error providing the frame for testing hypotheses on expected mean and variance of the
growth rate.

2. Stylized facts of macroeconomic time series

The first order differences of the logarithm of the four monthly US macroeconomic
indicators of industrial production (IP), nonfarm payroll employment (E), sales (S), and
real personal income (PI) as well as the quarterly series of the US GDP are plotted in

data generating process is an AR(1), this would work well; otherwise the parametric approach would not

be very sensible.
10Much of the effort in this field of research is devoted to studying the properties of trend-removing

filters, see Hodrick and Prescott [10], Christiano and Fitzgerald [4], Corbae, Ouliaris and Phillips [5],

Baxten and King [1]. See Harding and Pagan [9] for a discussion on the relevance of this approach to the

literature of business cycle.
11Despite the fact that broad evidence of instability in macroeconomic variables and relations has

been gathering (Stock and Watson [24], [25], Sichel [19], Boldin [2]), the dating of the business cycle

is done mostly by estimating stationary, parametric models on the growth rates of the macroeconomic

series modelled as random variables. Even recent models that treat the phases of the business cycle

as structurally different and that grew from the seminal paper of Hamilton [8] (see Chauvet [3], Kim

and Nelson [11], Otrok and Whiteman [12]) enforce stationarity by the assumption of changes in the

level of growth governed by an unobserved, stationary, Markov switching state variable. This supposes a

constant pattern of change between various phases of the business cycle. To put it more directly, despite

the various important changes that affected the US economy through the decades, these models assume

that the dynamic recession/expansion has not changed over the years. Moreover, all phases of the same

type (all recessions, all recovery periods, all expansions, etc.) are characterized by the same level of

growth. In other words, all recessions look the same. This assumption is in strong contradiction with the

empirical evidence (Sichel [19], Boldin [2], Stock and Watson [25]).
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Figure 2.1. The first order differences of the logarithm of the NBER

monthly indicators: IP, E, S, PI and of the quarterly GDP .

Figure 2.1. It is instructive to summarize the most important common features of these
time series which should be captured by a relevant data analysis12.

Non-stationarity. Most approaches to the analysis of macroeconomic and financial
time series are based on the assumption of stationarity: the growth rates of economic
variables are modelled as stationary when ARMA or VAR processes are fitted, the finan-
cial log-returns, interest rates, foreign exchange rates are assumed to be stationary when
modelled by the ARCH-type or stochastic volatility processes.

Stationarity is a non-trivial and in some cases misleading assumption which imposes
serious restrictions on modeling itself and on the interpretation of the fitted model.
More concretely, under the assumption of stationarity of the data, a stationary model
should be estimated on the whole data set, one would try always to use as much data as
possible in order to support any statistical statement or to make forecasts. On the other
hand, when in doubt about the time-invariant character of the data, a stationary process
could possibly become at most an useful local approximation of the true data generating
process. The parameters of the model should then be re-estimated periodically on a
moving window. One would shy away from making statistical statements based on long

12Although for the sake of clarity the discussion of the common features of the coincident economic

indicators focuses on the growth rates, the modeling of the individual series and the estimation of the

common dynamic will be done starting from the level series.
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samples and in forecasting one would prefer to use the most recent past for the calibration
of the model. However, were the unconditional features of the data time-varying, it is not
clear of what help a stationary model would then be in describing the future dynamic
of the data. Assuming data stationarity, stationary models for economic or financial
variables ignores the evolving nature of the economic processes, the dynamic character
of the economy. For an illustration of the size of the negative impact of the unjustified
assumption of stationarity on modeling and forecasting financial returns, see Stărică [20].

The visual inspection of the series in Figure 2.1 reveals two possible types of non-
stationarities: in the mean of the growth rates and in their variance.

Time-varying mean. The growth rates seem to have a negative first moment during the
episodes of recession while displaying a positive first moment during most of the expansion
phase.

Unconditional heteroscedasticity. Some of the series in Figure 2.1 seem to have a time-
varying variance. Different periods are animated by different unconditional variances.
This feature is especially presented in IP, E, and GDP data which underwent a reduction
of the variance around the mid 1980’s (see Section 4 for a discussion on structural changes
in the behavior of the considered time series).

Small “signal-to-noise” ratio. Some of the indicators are very noisy with a small
’signal-to-noise’ ratio. In the case of the first order differences of the log-levels, the signal
13 is the growth rate or the time-varying first derivative of the trend, while a measure of
the noise is given by the variance. The variance of industrial production and sales are
particularly large making the recognition of the trend a non-trivial task. As we will see
in Section 4, the monthly series of the GDP also displays a particularly large variance
second only to that of sales.

Presence of common dynamic. By marking the NBER-defined recession periods in
Figure 2.1 we tried to emphasize one of the most important features of the indicators
under discussion: their common dynamic. However, as we will soon see, the comparison
of the estimated turning points of individual series with the turning points of the economy
as specified by the NBER’s Business-Cycle Dating Committee reveals that none of the
indicators delivers precise information about all the episodes of the business cycles. So,
the major requirement to be fulfilled by any analytic approach to business-cycle dating
is that of capturing the common dynamic of the macroeconomic indicators monitored.

3. Adaptive Weights Smoothing (AWS) methodology

In this section we describe the statistical methodology which lies at the core of both
the analysis of individual indicators and of the estimation of the common dynamic of a
set of macroeconomic series.

13In the case of the log-series, the signal is the time-varying trend while a measure of the noise is the

variance of the stochastic variations of the series around its trend.
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3.1. Nonparametric modeling. Let yt denote the logarithm of the level of a macroe-
conomic variable. The features of the data we discussed above lead naturally to the
following model for individual macroeconomic time series.

yt = µ(t) + σ(t) εt, t = 1, 2, ..., n,(3.1)

where the time-varying trend µ and volatility σ could be continuous or display jumps; the
noise (εt) is assumed i.i.d. with zero mean and unit variance, non-necessarily Gaussian.
In words, the macroeconomic indicators are modelled as stochastic variations around
a time-varying trend or expected level µ. The volatility of the variations is also time-
varying. Periods of economic expansion correspond to a positive trend or increasing
expected level µ or, equivalently a positive first derivative of the trend, µ′ (positive
expected growth rates). Similarly, a shrinking economy will manifest in a negative trend
(decreasing expected levels) µ or, equivalently, a negative first derivative of the trend µ′

(negative expected growth rates).
The main goal of our analysis is estimation of the time-varying trend function µ and

its first derivative and identification of the intervals in which µ′ is significantly negative
(positive).

3.2. Local linear estimation. Our approach does not impose any global structural
(parametric) assumption on the functions µ and σ. Instead we impose the following
assumption of a local parametric structure: for every time point t there exists a time
interval around t in which these two functions can be well approximated by a simple
parametric model. In this paper we locally approximate the volatility σ by a constant
and the trend µ by a linear function which corresponds to a local constant approxima-
tion of the derivative µ′. Under the mentioned hypothesis, the main question concerns
the construction of the intervals where a parametric, stationary model provides a good
approximation to the true data generating process and on which the parameters of the
model can be consistently estimated. The size of these intervals is sometimes referred to
as degree of locality. One classical approach suggests to select a bandwidth h and to esti-
mate the functions µ and σ from the time window [t− h, t + h] using the approximating
model equation

ys = µ0(t) + (s− t)µ1(t) + σ(t)εs, s ∈ [t− h, t + h].

This is a classical linear parametric model with three unknown coefficients µ0(t), µ1(t)
and σ(t) which can be estimated using the standard least squares approach.

The degree of locality is given by the bandwidth h and its choice is crucial for many
applications. On one hand, the choice of a small h leads to insufficient noise reduction
because too few points are used for estimating the unknown parameters. On the other
hand, selection of a large bandwidth h may lead to a substantial bias due to the insufficient
approximation of the true function µ on the whole window by a linear function. It is
intuitively clear that the choice of the optimal bandwidth depends on the unknown
geometry of the function to estimate and that a choice of a fixed bandwidth can be
restrictive for the analysis we aim to perform.
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In what follows we apply the Adaptive Weights Smoothing (AWS) approach introduced
in Polzehl and Spokoiny [16] in the context of image denoising and extended in Polzehl
and Spokoiny [17] to a large class of statistical models. The AWS method has a number
of features which make it well-suited for the problem at hand. Firstly, it is completely
data-driven and it adapts automatically to the unknown structure of the signal function
µ in the model. It particular, it is very sensitive to structural changes and can identify
the location of the break point with high precision. Secondly, it can be applied to a
situation where the noise is heteroscedastic. In the case of a heteroscedastic regression,
it can be also used to estimation the time-varying variance of the noise. Finally, in many
special cases it provides nearly optimal noise reduction, see Polzehl and Spokoiny ([17],
[18]).

The idea behind the approach is to describe the local neighborhood of every time point
t by a set of nonnegative weights wt,s satisfying wt,s ∈ [0, 1]. For the case of the known
variance σ2(s), this leads to the estimates µ0(t) and µ1(t) defined by the weighted least
squares:

(µ̂0(t), µ̂1(t))> = argmin
(µ0,µ1)

∑
s

(ys − µ0 − µ1(s− t))2σ−2(s)wt,s.

This is a quadratic optimization problem with the closed form solution

(µ̂0(t), µ̂1(t))> =

(∑
s

Zs,tZ
>
s,tσ

−2(s)wt,s

)−1 ∑
s

Zs,tysσ
−2(s)wt,s.(3.2)

Here Zs,t = (1, s− t)>.
If the variance σ2(s) is unknown, it should be replaced by its estimate σ̂2(s). The

weights wt,s are constructed from the data using the following iterative procedure. Start
with the usual kernel weights wt,s = K(|t − s|2/h2

0) for some kernel K and a small
bandwidth h0. Then compute the estimates µ̂0(t), µ̂1(t) according to (3.2). Recompute
the weights wt,s by comparing (µ̂0(t), µ̂1(t)) and (µ̂0(s), µ̂1(s)) for every s ∈ [t−h1, t+h1],
where h1 is a larger bandwidth than h0. These two steps, i.e. recomputing the weights
and the estimates, are repeated increasing at every step k the bandwidth parameter hk.
The details of the procedure can be found in Polzehl and Spokoiny [17], [18].

For estimating the time varying variance σ2(t) we build the differences ε̂s = 2−1/2(yt−
yt−1). Since every ε̂s is approximatively normal zero mean with the variance equal to σ2

t ,
we apply the AWS procedure for the local constant volatility model to ε̂s, see Polzehl
and Spokoiny [17].

The expression (3.2) helps to bound the standard deviation of the estimate µ̂(t), µ̂′(t)
and therefore, to construct the α-percent symmetric or one-sided confidence intervals
for these estimates. Since we are mostly interested in the sign of the growth rate (or
derivative µ′(t)), we use one-sided intervals which assess the significance of the movements
of the level of the economy. For instance, if µ̂′(t) < 0 and if v̂(t) is its estimated standard
deviation then, the one sided α-interval of interest is of the form Iα = [µ̂′(t), µ̂′(t)+tαv̂(t)]
where tα is the corresponding one-sided quantile of the normal distribution. If Iα belongs
to the negative semiaxis, the growth rate is significantly negative at level α.
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1960 1970 1980 1990 2000

IP

E

S

PI

Figure 4.1. Estimated first derivative of the trend, µ′ (growth rate) of the

NBER monthly indicators: IP, E, S, PI.

4. A non-stationary analysis of the individual macroeconomic indicators

In this section, the non-parametric, non-stationary set-up introduced previously is
used to perform an analysis of the dynamics of the individual monthly macroeconomic
indicators US industrial production, payroll employment, sales and real personal income
as well as of the monthly and quarterly series of US GDP. Our non-stationary analysis
yields estimates of the time-varying trend and its first derivative (corresponding to the
growth rate) for each of the five coincident macroeconomic series. It produces series-
specific cycle turning points14. It also yields a precise picture of the dynamic of the
variance of the stochastic variations around the trend for each of the five indicators.

Figures 4.1 and 4.2 display the time-varying first derivative of the estimated level of
the individual series and yield a number of interesting conclusions.

14Classical cycle peaks (troughs) are points at which a series moves from positive (negative) expected

growth rates to negative (positive) expected growth rates.



10

First, the second graph in Figure 4.1 shows clearly that the behavior of the nonfarm
payroll employment series in the initial period of economic recovery that follows a reces-
sion has changed during the last two recessions. For all the recessions but the last two,
the employment series recovered strongly immediately after the trough. Statistically, this
phenomena is seen in the significantly positive (at the 90% level we used through the
paper) growth rates that used to accompany the beginning of the expansion. The 1991
recovery (which according to the NBER’s Business-Cycle Dating Committee started in
March 1991) saw the estimated employment growth rate remain statistically equal to
zero until December 1992, i.e. one year and nine month beyond the official end of the
recession, while for the current expansion (that according to the NBER’s Business-Cycle
Dating Committee starter in November 2001), the estimated payroll employment growth
rate remained significantly negative until the end of the data set (December 2003), i.e.
at least two years and a month beyond the official end date of the recession. These differ-
ences could possibly be due to the structural changes in the economy which in the past
two recessions were more pronounced than the cyclical downturn changes. In other words,
the economy was changing rather than just going through a temporary slowdown15.

Second, the graph on the bottom of Figure 4.1 shows clearly that the personal income
has not fallen significantly during three of the past seven recessions (in 1960, 1969 and
1981). The decline during the last recession seems significant (at the 90% level).

Third, it emphasizes the fact that determination of the date of the turning points in
economic activity is a challenging task. In every episode, the indicators peak or attain
their trough in different months. Tables 4.1 and 4.2 show the number of months earlier
(minus sign) or later (plus sign) that the peak, trough respectively, occurred relative to
the NBER’s business-cycle peak date. The differences are based on the graphs in Figure
4.1. In Table 4.1 the second column under every indicator contains the differences (in
months) as they appear in the report of the NBER’s Business-Cycle Dating Committee
announcing the peak of March 2001, [13].

A look at the behavior of the four monthly indicators during the last recession reveals
that the expected growth of employment was negative in March 2001 and has remained
negative until the end of the sample (December 2003). The expected growth rate of
personal income became negative in July 2000 and turned positive in March 2003. The
expected growth rate of sales was negative between March 2000 and July 2001, while the
industrial production went through two periods of negative growth between September

15The job losses in cyclical downturns are largely temporary. At the end of the recession, industries

rebound and laid-off workers are readily find employment in similar industries. Job losses from structural

changes are permanent. As industries decline or change, workers are forced to switch industries, sectors,

locations or skills in order to find a new job. Numerous studies indicate that many of the several million

jobs, particularly the factory jobs, lost in the past three years are permanently gone. Groshen and Potter

[7] suggest that 79% of employees who have lost their jobs in the recent recession (and recovery) worked in

industries more affected by structural shifts than by cyclical shifts. Job losses that stem from structural

changes are permanent: as industries decline, jobs are eliminated, compelling workers to switch industries,

sectors, locations, or skills in order to find a new job.
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Peak Industrial Employment Real Sales Real Income
Production

1960 -10 -3 0 0 -3 -3 +1 +1

1969 -3 -2 +4 +3 -3 -2 No peak +8

1973 0 0 +11 +11 +9 0 +1 0

1980 -12 -7 No peak +2 +1 -10 +1 -1

1981 -8 0 +2 0 -7 -6 +2 +1

1990 +2 +2 -1 -1 +3 +1 0 0

2001 -6 -6 0 0 -12 -7 -8 No peak

Table 4.1. Differences between individual turning points and the turning points

of the economy as defined by NBER’s Business-Cycle Dating Committee. The table

displays the number of months earlier (minus sign) or later (plus sign) that the

peak occurred relative to the NBER’s business-cycle peak date. The first column

is based on the estimates displayed in Figure 4.1. The second column are NBER’s

Business-Cycle Dating Committee values.

Trough Industrial Employment Real Sales Real Income
Production

1960 -1 0 0 -1

1969 -1 -1 -1 No trough

1973 -1 0 0 0

1980 -2 No trough -2 0

1981 0 +1 0 +2

1990 -1 +12 -3 -2

2001 0 No trough -4 +15

Table 4.2. Differences between individual turning points and the turning points

of the economy as defined by NBER’s Business-Cycle Dating Committee. The table

displays the number of months earlier (minus sign) or later (plus sign) that the trough

occurred relative to the NBER’s business-cycle trough date. The values are based

on the estimates displayed in Figure 4.1.

2000 and November 2001 and between August 2002 and May 2003. The monthly GDP’s
period of negative growth was July 2000 - July 2001.

Figure 4.2 displays the estimated growth rate of the quarterly GDP. It shows a poor
correspondence between the pattern in the estimated growth rate and that of the re-
cesions/expansions particularly for the period anterior to the pronounced variance re-
duction of the series in the middle of the ’80s. For example, the period 1980-1983 is
statistically consistent with a period of positive but low growth rate for the GDP al-
though the NBER dating would decompose it into a quick succession of two negative
growth periods interrupted by one of short positive growth. The impact the sampling
frequency has on the estimation of the turning points is highlighted in Figure 4.2. While
based on quarterly data, the negative estimate of the growth in the GDP in the end of
2000 and beginning of 2001 is close to zero and not significant at 90% level, the estimation
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Figure 4.2. Turning points in the GDP. Estimated growth rate (µ′) of the

GDP, quarterly data (top and middle), monthly data (bottom). The dash-

dotted line is the 10% one-sided confidence interval. The quarterly data

suggest negative (although statistically not significant) growth between III

2000 - II 2001 while The monthly data yield July 2000 - July 2001 as the

period of negative (and almost significant at the 90% level) growth.

based on monthly data yields a smaller point estimate that is close to being significant at
the 90% level. As a conclusion, the large volatility as well as the low sampling frequency
make dating the business cycle using only the GDP quarterly series impossible.

The results of the volatility estimation by the AWS procedure are shown in Figure 4.3.
One can observe significant time variation of the volatility in some of the four monthly
indicators as well as in the variance of the quarterly GDP. The industrial production
displays two breaks in the volatility process, the first in the summer of 1961, the second
in the end of 1984, the employment displays a sharper reduction in variance towards the
beginning of 1987 while the volatility of the sales and personal income does not seem to
have changed much over the last 4 decades. The relative size of the volatilities does not
practically change through time. The payroll employment series has the lowest variance
followed by the personal income, industrial production and the sales series. In particular
the sales series has a variance more than nine times bigger than the employment.
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Figure 4.4. Volatility of the quarterly GDP data series.

The variance of the quarterly GDP decreased significantly (2.4 times) between the first
and the second quarter of 1986.

5. Dating the business cycle: the methodology

In the sequel, following the NBER’s Business Cycle Dating Committee, we define a
recession as a significant decline in activity spread across the economy, lasting more than a
few months normally visible in a set of relevant macroeconomic indicators. In other words,
the business cycle is defined as the common dynamic of a group of economic variables.
While in the previous section we individually analyzed a number of macroeconomic series,
in this section we propose a methodology of estimating their common dynamic.

Besides the assumptions that formed the basis of the individual analysis in previous
section, here we hypothesize, consistently with the above definition of recession, that the
time-varying means of relevant macroeconomic series have a common dynamic. More
concretely, if we denote by y

(i)
t the logarithm of the i-th macroeconomic variable (like

the industrial production, employment, etc.), this assumption can be expressed in the
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following form:

y
(i)
t = m(i) + α(i)f(t) + σ(i)(t) ε

(i)
t , t = 1, 2, . . . , n, i = 1, 2, . . . , p,(5.1)

where the (deterministic) functions f and σ(i) are possibly discontinuous. The quantities
m(i) and α(i) are unknown positive coefficients.

The noise (ε(1)
t , . . . , ε

(p)
t ) for every indicator is assumed i.i.d. with zero mean and unit

variance, non-necessarily Gaussian. The model allows correlations between errors ε(i) for
different indicators i. The estimation of the correlation structure of the errors is discussed
in the next section.

In words, we assume that the levels of relevant macroeconomic time series fall or rise
together as an expression of the changes in the state of the economy which is modelled
by the trend function f(t). Increasing f corresponds to expansions while a decreasing f

identifies the recessions. Alternatively, a positive first derivative of f signals an expanding
economy, a negative fist derivative is associated with a contracting economy. Concisely,
f is the time-varying trend of the economy as a whole.

The relation (5.1) can be too restrictive if too many series and a long time period are
considered. A standard way to tackle this problem is to allow the coefficients m(i) and
α(i) to change slowly with time. This leads to the equation

y
(i)
t = m(i)(t) + α(i)(t)f(t) + σ(i)(t) ε

(i)
t , t = 1, 2, . . . , n, i = 1, 2, . . . , p.(5.2)

The time dependent coefficients m(i)(t) and α(i)(t) are assumed to vary smoothly and
more slowly than function f .

The aim of this section is to introduce a methodology to estimate the economy’s driving
function f .

5.1. Estimation of the correlation structure. The first step in our analysis con-
sists in estimating the covariance matrix Σ(t) = Var(yt). Similarly to the univariate
case, for every i = 1, . . . , p, we first estimate the standard deviations σ̂(i)(t) from the
differences (y(i)

t − y
(i)
t−1) using the volatility AWS-algorithm (see Section 3). Denote

ε̂
(i)
t = (y(i)

t − y
(i)
t−1)/σ̂(i)(t) for i = 1, . . . , p; ε̂(t) = (ε̂(1)(t), . . . , ε̂(p)(t))> and σ̂(t) =

diag(σ̂(1)(t), . . . , σ̂(p)(t)). Next, we locally estimate the correlation matrix Ct = εtε
>
t

as Ĉt = (2h)−1
∑t+h

s=t−h ε̂sε̂
>
s . Since our results do not indicate a strong correlation

structure between different time series, we further proceed assuming no correlation and
Σ(t) = σ̂(t)2. However, the procedure presented below applies for any time varying
correlation structure between the individual time series.

5.2. Estimation of the common dynamics. In the first step we estimate the coeffi-
cient functions m(i)(t) and α(i)(t). Note that these functions are only identifiable up to
a shift and scaling factor. We can therefore set one of the m(i) equal to zero and one of
the α(i) equal to one. We select the indicator that has the largest signal-to-noise ratio
(say, the i0-th series), that is, we set m(i0)(t) ≡ 0 and α(i0)(t) ≡ 1.

For estimating the other coefficients we note that for every i 6= i0 and for every point t,
µ(i)(s) ≈ m(i)(t)+α(i)(t)f(s) for s in some neighborhood of t, s ∈ [t−h, t+h]. Therefore,
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the coefficients m(i)(t) and α(i)(t) can be estimated from the observations y
(i)
s by ordinary

least square regression. If ωts = K((t− s)/h) then

(m̂(i)(t), α̂(i)(t))> = arginf
(m,α)

∑
s

(
y(i)

s −m− αy(i0)
s

)2
ωts

=

( ∑
s ωts

∑
s y

(i0)
s ωts∑

s y
(i0)
s ωts

∑
s |y(i0)

s |2ωts

)−1 ( ∑
s y

(i)
s ωts∑

s y
(i)
s y

(i0)
s ωts

)
.

A value of h = 90 (which corresponds to a window of fifteen years) and the Epanechnicov
kernel K(u) = (1−u2)+ are used in our analysis. This choice ensures a small estimation
error of the parameters m(i) and α(i) and justifies the use of the estimates m̂(i)(t) and
α̂(i)(t) in place of the true values.

The estimation of the function f is based on the observation that for all i the variables
z
(i)
t = (y(i)

t −m(i)(t))/α(i)(t) have same mean f(t) and variance |σ(i)(t)/α(i)(t)|2. The co-
variance of the vector z(t) = (z(1)(t), . . . , z(p)(t)) is given by Varz(t) = A−1(t)Σ(t)A−1(t)
where A(t) = diag(α(1)(t), . . . , α(p)(t)) is the diagonal matrix with the diagonal entries
α(i)(t) and Σ(t) = Varyt.

In a next step, we produce the convex combination of the p series in zt

Xt = β>(t)zt,(5.3)

that has expectation f(t) and the smallest variance. In other words, the vector of co-
efficients β(t) is chosen to minimize the variance of Xt in the class B+ of all vectors
β = (β(1), . . . , β(p)) satisfying

∑p
i=1 β(i) = 1 and β(i) ≥ 0

β(t) = argmin
β∈B+

Var(β>zt) = argmin
β∈B+

β>Var(zt)β(5.4)

= argmin
β∈B+

β>A−1(t)Σ(t)A−1(t)β.

If f(t) is the signal we are interested in, the series Xt has the best signal-to-noise ratio
among all linear combinations of the coordinates of zt. Given the matrices A(t) and Σ(t),
this is a standard quadratic optimization problem with cone constraints. If the condition
β(i) ≥ 0 is disregarded, an application of the Lagrange multipliers approach leads to the
following solution

β∗(t) =
1

1>A(t)Σ−1(t)A(t)1
A(t)Σ−1(t)A(t)1,

VarX(t) = Var(z>(t)β∗(t)) =
1

1>A(t)Σ−1(t)A(t)1
,

where 1 is a vector with the entries equal to one.
Often, the vector β∗(t) belongs to the set B+. If some entries of the vector β∗(t)

are negative, the corresponding components are excluded from the optimization and the
procedure is repeated.

In applications the true covariance matrix Σ(t) and true coefficients m(i)(t), α(i)(t) are
not known and we replace them with the corresponding estimates. This leads to the
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following definition

ẑ
(i)
t =

y
(i)
t − m̂(i)(t)

α̂(i)(t)
, ẑt = (ẑ(1)

t , . . . , ẑ
(p)
t ),

β̂(t) =
1

1>Â(t)Σ̂−1(t)Â(t)1
Â(t)Σ̂−1(t)Â(t)1,

X̂t = β̂
>
(t)ẑt.

As a final step, the series X̂t is smoothed with the AWS methodology (Section 3),

using the variance estimate Var X̂(t) ≈
(
1>Â(t)Σ̂−1(t)Â(t)1

)−1
to obtain an estimate

of the function f(t) and of its first derivative. Recall that the function f(t) is a proxy
for the level of the economy while the first derivative measures the growth rate of the
economy.

6. Dating the business cycle: the practice

Defining recession as a significant decline in activity spread across the economy, assigns
an important role to the choice of measures of economic activity that reflect this decline16.
During the last decades, the NBER’s Business Cycle Dating Committee has emphasized a
group of four monthly economic indicators consisting of industrial production (IP), non-
farm payroll employment (E), real personal income (PI), and wholesale-retail trade (S) as
defined in the note ’The Business-Cycle Peak of March 2001’ [13] (2001 Announcement).

Recently, according to the note of July 17, 2003 [14] (2003 Announcement) as well as
in the most recent description of the NBER’s Business-Cycle dating procedure issued on
October 21, 2003 [15] (2003 Description), the Committee seems to have extended the
set of indicators to include a monthly series of GDP estimates issued by Macroeconomic
Advisers, a private consulting firm.

This section investigates the impact the choice of the set of macroeconomic variables
has on the results of the dating in the context of the possible recent changes of the
methodology of the NBER’s Business-Cycle Dating Committee 17.

16Monitoring different groups of macroeconomic indicators can possibly yield different business-cycle

dating outcomes.
17The existence of a break in the dating approach of the NBER’s Business-Cycle Dating Committee is

further supported by the contrasting statements on the role of the GDP series. The 2001 Announcement

[13] states that ’the committee gives relatively little weight to real GDP because it is only measured

quarterly and it is subject to continuing, large revisions.’ Quite differently, the 2003 Announcement [14]

stresses the importance of ’the real GDP as the single best measure of economic activity’ and frases most

of the explanation about the dating of the trough as November 2001 around the dynamic of a monthly

real GDP time series issued by Macroeconomic Advisers. Evidence of continuing falling employment

and industrial production at the date of the announcement of the trough is waived by ’the fact that

the broadest, most comprehensive measure of economic activity (i.e. the GDP, n.n.) is well above its

pre-recession levels’ (2003 Announcement [14]). Moreover, in contrast with the 2001 Announcement, the

2003 Description [15] clearly states that ’the committee places considerable weight on the estimates of

real GDP issued by the Bureau of Economic Analysis of the U.S. Department of Commerce’.
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Figure 6.1. Top The log NBER series minus their value in Jan 1959 and

the same series centered and scaled with corresponding estimated m(·) and

α(·). Bottom The coefficients m (left) and α (right). IP black dash-dotted,

E blue solid, S magenta dotted, PI red dashed.

6.1. Business-cycle dating based on the four traditional NBER’s Business-
Cycle Dating Committee coincident indicators. In the sequel we apply the dating
methodology described in Section 5 to the set of the four monthly economic indicators
of industrial production, nonfarm payroll employment, wholesale-retail trade, and real
income, emphasized by the NBER’s Business-Cycle Dating Committee in recent decades.
The results of the estimation are displayed in Figures 6.1 through 6.3.

The top-left graph shows the four indicators minus their value in January 1959 while
the top-right graph shows the estimated ẑt series, i.e. the original series centered and
scaled with corresponding estimated m(·) and α(·). The graphs indicate that our method-
ology succeeds in highlighting the common dynamic of the four series. The bottom graphs
display the coefficients m (left) and α(right). The displayed changes in values of the pa-
rameters m and α seem to confirm the correctness of the assumption that they are slowly
time-varying. The coefficients β are plotted in Figure 6.2.

It is worth noticing that the series that contribute most to building X̂t, the convex
combination of the z-series, are the employment and personal income indicators. During
the first three decades, employment series contribution varied between 30% and 55%, the
personal income series contributed with 35 to 50% while the participation of the industrial
production series decreased from 20% in the begining of the 60’s to less than 10% in the
middle of the 80’s. Sales contributed roughly 10% during the whole period. Employment
accounting for as much as 65% around 1990. In the last decade, the personal income
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Figure 6.2. The estimated coefficients β. IP black dash-dotted, E blue

solid, S magenta dotted, PI red dashed.

Recession peak trough

1960 -3 -1

1969 -2 -1

1973 +1 0

1980 +2 -1

1981 +2 +2

1990 0 0

2001 -4 +18

Table 6.1. Differences between turning points of the economy defined by our

procedure and those defined by NBER’s Business-Cycle Dating Committee. The

table displays the number of months earlier (minus sign) or later (plus sign) that the

turn (measured by our methodology) occurred relative to the NBER’s business-cycle

turn date. The values are based on the estimates displayed in Figure 6.3.

series considerably increased its contribution from 20% to 40%, employment’s impact
decreased from 65% to 40% while industrial production accounted for 15-25%. To put it
shortly, our methodology finds that the dynamic of the economy is strongly expressed in
the payroll employment and personal income series, with the employment being the most
important single series. This is in line with the practice of the NBER’s Business-Cycle
Dating Committee that emphasizes the two series as the main coincident indicators.

Figure 6.3 displays the first derivative of the estimated level of the minimum-variance
series X̂t. The information about the dating is summarized in Table 6.1. For all the re-
cessions but the last one we see a very good correspondence between the periods when the
estimated growth rate f ′ of the economy is significantly negative and the intervals defined
by the NBER Business-Cycle Dating Committee as recessions. We interpret this as evi-
dence that our reproducible statistical method and the unknown NBER Business-Cycle
Dating Committee procedure produce the same measure of data’s features of interest.

The two methods give a very different overall picture of the last episode of economic
contraction. Our method dates the beginning of the economic contraction during the
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Figure 6.3. The estimated growth rate f ′ of the economy. The doted line

corresponds to the 90% one-sided confidence intervals.

month of November 2000, four months before the NBER dating. We find a significant
increase in the growth rate of the economy in December 2001 to a level that is still
negative (although close to zero). The growth level does not become significantly positive
until June 2003. Our approach indicates that, based on the traditional four coincident
macroeconomic indicators, the recession ended in May 2003 (June being the first month
with significant positive economic growth), eighteen months beyond the date NBER’s
Business-Cycle Dating Committee specified as the end of the recession (November 2001).

Could it be that the strong discrepancy between the two end dates of the last recession
could be explained by augmenting the set of monthly indicators to include the monthly
GDP series?

6.2. Business-cycle dating based on a set of indicators extended to include the
monthly GDP series. In order to answer this question we applied our methodology
to the extended set of economic indicators which includes also the monthly series of the
GDP. The data cover the interval May 1992 to August 2003.

Figure 6.4 displays the volatility estimates of the five monthly series. The relative size
of the volatilities does not practically change through time. The payroll employment
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Figure 6.4. Volatility of the NBER data series together with the monthly

GDP: IP black dash-dotted, E blue solid, S magenta dotted, PI red dashed,

GDP green bold-dotted. The variance of the GDP series is second only to

sales.

series has the lowest variance followed by the personal income, industrial production, the
GDP and the sales series. In particular the GDP series has a standard deviation more
than four times bigger than the employment while the factor is six for the sales. In this
application, we took i0 to be 2.

The top left graph in Figure 6.5 displays the five indicators minus their value in May
1992 (the first month the monthly GDP series is available). The top-right graph shows
the estimated ẑt series, i.e. the original series centered and scaled with corresponding
estimated m and α. The bottom graphs display the coefficients m (left) and α (right).

The corresponding β-coefficient are plotted in Figure 6.6. Similarly to the previous
analysis of Section 5, the resulting series X̂t is mainly a combination between employment
and personal income. The payroll employment coefficient β decreases from 0.57 to 0.43
while the weight of the personal income increases from 0.23 to 0.46. The industrial
production’s weight decreases from about 0.22 to 0.12. The GDP series has an almost
constant contribution with β ≤ 0.09 while the β of the sales series is about 0.05.

The results of the dating analysis are displayed in Figure 6.7. The graph shows the
estimated growth rate of the economy, i.e. the first derivative of the estimated function
f , together with a 90% one-sided confidence interval.

Consistently with the previous dating, our methodology finds that the growth rate
of the economy became negative in November 2000, placing the start of the recession
four months before the NBER date. In contrast with the dating based only on four
macroeconomic indicators, we find that between October and November 2001, the first
derivative made a significant jump upwards to a small, but statistically significant positive
value (0.2 of a percent). (The first derivative seems to have stayed at this level until the
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Figure 6.5. The log NBER series together with the monthly GDP minus
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sponding estimated m(·) and α(·). Bottom The coefficients m (left) and α
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Figure 6.6. The estimated coefficients β. IP black dash-dotted, E blue

solid, S magenta dotted, PI red dashed, GDP black cross-dotted.

end of the sample.)18. From a strictly statistical point of view, we find that the month
of November 2001 marks the end of the recession that started in November 2000.

18While from a strictly statistical point of view, the month of November marks the end of the recession,

the economic relevance of such a small rate of growth that animates the following months might still be a

matter of debate. Should a period at the end of a recession that is characterized by such a small growth,

barely-significantly different from zero be considered the beginning of a new expansion as the Dating

Committee seems to have done it? Or should it be treated as a continuation of the recession until the

growth becomes significantly stronger? A possible answer exists already in the practice of the Dating

Committee. The 2003 Announcement emphasized that ’if economic activity is roughly flat at the end of a
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To summarize, for all recessions where the monthly GDP series was not directly used
in dating19, our statistical methodology yields a dating that closely matches that of the
NBER’s Business-Cycle Dating Committee (the biggest difference is of 3 months and
concerns the beginning of the 1960 recession20). The two methods (i.e. the method of
the NBER’s Business-Cycle Dating Committee and ours) produce very different results
when it comes to the last episode of recession. First, our methodology finds that the
recession started in November 2000, four months before the NBER date. Second, it dates
the end of the recession in May 2003, one year and six months after the date announced
by the Committee.

When the methodology developed in Section 5 is applied to a set macroeconomic indi-
cators extended to include the monthly GDP series, we confirm the month of November
2000 as the beginning of the recession. We also find that, from a statistical point of
view, the recession ended in November 2001, consistent with the NBER’s Business-Cycle
Dating Committee dating.

7. Conclusions

In this paper we introduced a non-parametric, non-stationary approach to business-
cycle dating. The main ingredient is the innovative statistical methodology known as

recession or expansion, the turning point is placed at the end of the flat period’. Hence, if the statistical

rigor is complemented by the established practice and experience, one could further argue that, even

when the monthly GDP series is included in the set of monthly indicators, the recession which started

in November 2000 extended at least until the summer of 2003, i.e. at least eighteen months after the

ending date of the NBER announcement. However, since our competence is mainly statistical, we leave

the economic interpretation of our findings to the economists.
19The monthly GDP series on the NBER site is available from 1992.
20Note that our analysis is based on current, revised data. This fact could very well be responsible

for some of the minor mismatches between the official NBER dates and the results of our procedure.
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Adaptive Weights Smoothing (AWS) which is used both for the study of the individual
macroeconomic time series relevant to the dating of the business cycle as well as for the
estimation of their joint dynamic. The estimation of the business cycle is done through
a non-stationary factor analysis which is one of the main contributions of the paper.

The main conclusion of the paper is that the dating of the business cycle fundamentally
depends on the group of series monitored. When our dating approach is applied to the
set of US economic indicators emphasized by the NBER’s Business-Cycle Dating Com-
mittee in recent decades consisting of the monthly series of industrial production, payroll
employment, real income, and wholesale-retail trade, we find that the 2001 recession
lasted between November 2000 and May 2003. Extracting the business-cycle common
dynamic from an extended group of coincident indicators with the GDP as the fifth se-
ries yields different results, dating the end of the last economic contraction in November
2001, consistent with the NBER’s Business-Cycle Dating Committee date.

These findings support the hypothesis of a change in the methodology of the NBER’s
Business-Cycle Dating Committee: in the dating of the last recession, an extended set of
five monthly macroeconomic indicators replaced the set of indicators emphasized by the
NBER’s Business-Cycle Dating Committee in recent decades. They also bring evidence
of the existence of a continuity break in the outcome of NBER’s Business-Cycle Dating
Committee output: had the dating been done based on the traditional set of indicators,
the last recession would have lasted one year and a half longer becoming the longest
contraction episode in the postwar economic history.

While the date of the end of the last recession depends on the set of macroeconomic
indicators (and, in the case of the extended set of five indicators, is consistent with the
NBER’s Business-Cycle Dating Committee dating), we find that, independent of the
set of coincident indicators monitored, the last economic contraction began in November
2000, four months before the date of the NBER’s Business-Cycle Dating Committee.
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