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PRELIMINARY VERSION

Abstract

In his paper we introduce a quantile-based risk measure for multivariate

financial positions: the vector-valued Tail-conditional-expectation (T CE). We

adopt the framework proposed by Jouini, Meddeb, and Touzi [9] to deal with

multi-assets portfolios when one accounts for frictions in the financial market.

In this framework, the space of risks formed by essentially bounded random

vectors, is endowed with some partial vector preorder º accounting for market

frictions. In a first step we provide a definition for quantiles of vector-valued

risks which is compatible with the preorder º. The T CE is then introduced as

a natural extension of the “classical” real-valued tail-conditional-expectation.

Our main result states that for continuous distributions T CE is equal to a

∗This work was partly supported by the Deutsche Forschungsgemeinschaft through the SFB 649

“Economic Risk”
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coherent vector-valued risk measure. We also provide a numerical algorithm for

computing vector-valued quantiles and T CE.

Key words : Risk measures, vector-valued risk measures, coherent risk-measures,

quantiles, tail-conditional-expectation.

MSC Classification (2000): 91B28, 49L25, 35B05.
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1 Introduction

In their seminal paper [2], Artzner et al. adopt an axiomatic approach to characterize

economically coherent risk measures. The authors consider the resulting net worth of

a financial position, at the end of a given investment period, and describe it by a real-

valued random variable X on a finite probability space (Ω,F ,P). Their definition of a

risk measure relies on the following basic approach. An investor (or regulator) defines

among the set of all possible financial positions, a subset A of acceptable positions

regarded as risk-free. Then, the risk measure ρ(X) of a position X ∈ RΩ, corresponds

to the “extra” capital requirement that has to be invested at the beginning of the pe-

riod in some “secure” instrument so that the resulting position is acceptable, i.e. X +

ρ(X) ∈ A. A set of axioms, namely: (i) subadditivity, (ii) monotonicity, (iii) positive

homogeneity, and (iv) translation invariance, guarantees the economic coherence of a

risk measure ρ. The notion of coherent risk measure has been extended to convex risk

measure [6], and has been generalized to more complex spaces of risk, which allows to

take into consideration financial positions with different types of cash streams struc-

tures. For instance, Delbaen [5] considers a general probability space (Ω,F ,P), and

identifies the space of risks with the space of essentially bounded random variables

L∞(Ω,F ,P). Cheridito, Delbaen and Kupper [4] extend the definition and the dual

representation of coherent and convex risk measures to the space of càdlàg processes.

Jaschke and Küchler [8] consider coherent risk measures on abstract spaces of risk

including deterministic, stochastic, single or multi-periodic cash-streams structures.

The above mentioned generalizations, however, do not take into account the problem

of portfolio aggregation. Indeed, if we consider realistic situations where investors

have access to different markets and form multi-assets portfolios, in the presence of

frictions such as : transaction costs, liquidity problems, irreversible transfers,... etc.,

a position cannot be merely described by a real-valued random net worth, or a real-
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valued process of cash-streams. Focusing on this problem, Jouini, Meddeb, and Touzi

[9] describe financial positions through Rd-valued random variables X = (X1, ..., Xd),

where each component X i corresponds to net worth at the end of the investment

period of an investor’s position on the ith market. They restrict the space of risks

to essentially bounded Rd-valued random portfolios X, X ∈ L∞d , and assume that

the portfolios in L∞d are ordered according to a partial ordering relation ¹ which

accounts for frictions on the financial market. By analogy to [2], the authors define

a vector-valued risk measure as set-valued function R which associates to each risky

portfolio X, deterministic portfolios x̄ = (x̄1, ..., x̄d) where x̄i corresponds to some

“extra” capital invested in a secure instrument from market i, and such that the

position X + x̄ is acceptable. Jouini et al. extend the axiomatic characterization

of real-valued coherent risk measures to the multi-dimensional case, and they pro-

vide a dual representation result for coherent vector-valued risk measures, which is

consistent with the representation theorem for coherent real-valued risk measures.

Our main concern in this paper is to define a distribution-based vector-valued risk

measure, to verify its coherency, and to propose a procedure to compute it.

In the one-dimensional context, risk measures of investment strategies are often de-

fined in terms of a quantile of a given distribution. This is a natral procedure since

the worst realizations of a financial position are concentrated on the left tail of its

disribution. A typical example is the Value-at-Risk (V aR) which is a distribution

tail related measure identifying the loss that is likely to be exceeded by a specified

probability, over a given time horizon. A second important example is the Tail Con-

ditional Expectation (TCE), which has been suggested as an alternative to V aR [2].

Indeed, while V aR fails to be a coherent risk measure ( V aR is not subadditive), the

risk mesure TCE results to coincide, under some conditions on the distribution of

the risks, with a coherent risk measure, see [2], [3].
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The main difficulty regarding the generalization of quantile-based measures to this

framework is the fact that vector preorders are, in general, partial preorders. Then,

what can be considered in a context of multidimensional portfolios as the analogous

of “worst cases” or “tail distributions” ? This is the first question we shall address by

suggesting a suitable definition of quantiles for multi-dimensional portfolios. We shall

then introduce Vector-valued Tail conditional Expectation as a natural extension to

the “classical” real-valued TCE.

This paper is organized as follows. In Section 2 we recall the notion of vector-valued

risk measures and acceptance sets, then we present our definition of the α-quantile of

the distribution of an Rd-valued portfolio and the corresponding definition of vector

valued Tail Conditional Expectation. Our main result, provided in Section 3, states

that for continuous distributions, the vector-valued Tail Conditional Expectation is

equal the vector valued Generalized Worst Conditional Expectation (GWEC) which

is a coherent risk measure . Finally, we detail in Section 4 a numerical procedure to

compute quantiles and Tail Conditional Expectations for vector-valued risks.

Notations : We first introduce the main notations of the paper.

Given an element x of a finite-dimensional vector space, we shall denote by xi its

i− th component.

For i ≤ d ∈ N, we shall denote by 1i the element of the canonical basis of Rd defined

by : 1j
i = 0 if j 6= i, and 1i

i = 1.

Given a probability space (Ω,F ,P), we shall denote by Ld
∞ the set of essentially

bounded Rd-valued random variables, and ||X||∞ denotes the essential supremum of

X ∈ L∞d

Finally, for a set A, 1A states for its indicator function.
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2 Definitions

We consider investors having access to d ≥ 1 different markets. A financial position is

then described by a d-dimensional random vector X :=
(
X1, ..., Xd

)′
on a probability

space (Ω,F ,P). Each component X i represents the resulting wealth in the market

i of the investor’s positions or strategies. Following Jouini, Meddeb, and Touzi [9],

we restrict our attention to financial positions in L∞d , and we assume that they are

ordered according to the following rule :

X º Y if and only if X − Y ∈ K P− a.s.

where K is a closed convex cone of Rd satisfying the following conditions

Rd
+ ⊂ K and K 6= Rd . (2.1)

Observe that the condition Rd
+ ⊂ K implies that portfolios with nonnegative entries

are nonnegative w.r.t. the partial order relation º.

2.1 Vector-valued risk measures

For the convenience of the reader, we give hereafter a short remainder of the notions

of vector-valued risk measures, and acceptance sets. We refer the interested reader

to [9] for a thourough treatment.

A basic approach for describing the risk incurred by some agent consists of defining,

within the positions he can take, a subset of desirable or acceptable positions. Thus a

portfolio is considered to be risky or not, whether it lies or not in the acceptance set.

Definition 2.1 A coherent acceptance set is a subset A of L∞d satisfying

C0− A is a closed and convex cone of L∞d containing 0 .

C1− For all X ∈ A , for all Y ∈ L∞d , Y º X ⇒ Y ∈ A .

C2− Rd 6⊂ A .
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A vector valued risk measure associates with each risk X a set, R(X), of deterministic

portfolios x̄ ∈ Rd such that: the modified position X + x̄ is “accetable”.

Definition 2.2 A coherent risk measure is a set-valued map R : L∞d ³ Rd satisfying

the following axioms

A0− For all X ∈ L∞d , R(X) is closed, and 0 ∈ R(0) 6= Rd .

A1− For all X, Y ∈ L∞d , X º Y ⇒ R(Y ) ⊂ R(X) .

A2− For all X, Y ∈ L∞d , R(X) + R(Y ) ⊂ R(X + Y ) .

A3− For all X ∈ L∞d , for all t > 0, R(tX) = tR(X) .

A4− For all X ∈ L∞d , for all x ∈ Rd , R(X + x̄) = {−x̄}+ R(X) .

The following Proposition states the relation between coherent acceptance sets and

coherent risk measures.

Proposition 2.1 Let A be some subset of L∞d and define the set-valued map RA :

L∞d ³ Rn as follows

RA(X) :=
{
x̄ ∈ Rd : X + x̄ ∈ A }

Then A is a coherent acceptance set if and only if RA is a coherent risk measure.

Example 2.1 Fix some α ∈ (0, 1). The (vector-valued) Worst Conditional Expecta-

tion at level α is the set-valued map defined on L∞d by

WCEα(X) :=
{
x̄ ∈ Rd : E [X + x̄|B] º 0 for all B ∈ F with P(B) > α

}
.

The vector-valued worst conditional expectation, WCEα, has been introduced by

Jouini et al. [9] as a natural extension of the coherent real-valued worst conditional

expectation, WCEα defined, for a real-valued random variable X , by

WCEα(X ) := − inf { E [X |B] , B ∈ F , P(B) ≥ α } .

It can be easily checked, that WCEα is a coherent vector-valued risk measure.
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Remark 2.1 Actually, in [9], the authors introduce the notion of (d, n)-coherent risk

measure: by assuming that the convex cone K satisfies the additional property of

substitutability

for all i = n + 1, ..., d : − 1i + δ11 and1i − γ11 ∈ K for some δ, γ > 0 .

it possible to regulate risks in L∞d by using deterministic portfolios of the form x̄ =

(x, 0, ..., 0), where x ∈ Rn. In this paper we restrict our analysis to (d, d)-coherent

risk measures in order to simplify our presentation. Our work adapts without any

difficulty to more general (d, n)-coherent risk measure.

We end this subsection by introducing a new vector-valued coherent risk measure

based on the WCEα. We call this risk measure the Generalized Worst Conditional

Expectation at level α, we denote it by GWCEα, and we defined by

GWCEα(X) =
⋃

X̃

WCEα(X̃) (2.2)

where the union is taken over all random variables X̃ on (Ω̃, F̃ , P̃) having the same

distribution as X.

Proposition 2.2 GWCEα is a coherent distribution-based risk measure.

Proof. We only prove that GWCEα satisfies the subadditivity axiom A2, the other

properties (A1, A3− 4) being easy to check.

Let X, Y be in L∞d , and x̄, ȳ respectively in GWCEα(X) and GWCEα(Y ). This

means that x̄ ∈ WCEα(X̃ ′) (reps. ȳ ∈ WCEα(Ỹ ′)), where the random vector X̃ ′

(resp. Ỹ ′) defined on (Ω̃x, F̃x, P̃x) (resp. (Ω̃y, F̃y, P̃y)) has the same distribution as

X (resp. Y ). We have to show that x̄ + ȳ ∈ GWCEα(X + Y ).

Define the product probability space (Ω̃, F̃ , P̃) := (Ω̃x × Ω̃y, F̃x ⊗ F̃y, P̃x ⊗ P̃y), and

the random variables

X̃(ω, ω′) = X̃ ′(ω) and Ỹ (ω, ω′) = Ỹ ′(ω′) for (ω, ω′) ∈ Ω̃ .
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For all B̃ = Bx × By ∈ F̃x ⊗ F̃y such that P̃(B̃) ≥ α we have necessarily that

min
{
P̃x(Bx) ; P̃x(Bx)

}
≥ α , and we easily verify, using the definition of WCEα

Ẽ
[
x̄ + X̃|B̃

]
= Ẽx

[
x̄ + X̃ ′|Bx

]
∈ K and Ẽ

[
ȳ + Ỹ |B̃

]
= Ẽy

[
ȳ + Ỹ ′|By

]
∈ K ,

hence Ẽ
[
(x̄ + ȳ)X̃ + Ỹ |B̃

]
∈ K, and by arbitrariness of B̃ we deduce that x̄ + ȳ ∈

WCEα(X̃ + Ỹ ) ⊂ GXCEα(X + Y ). 2

2.2 Quantiles of vector-valued risks

Given a real-valued random variable X , and a confidence level α ∈ (0, 1), the α%

worst realisations of X , situated at the left tail of its distribution, are described by

the lower and upper α quantiles defined by

qα(X ) := inf{ξ ∈ R : P(X ≤ ξ) ≥ α} and qα(X) := inf{ξ ∈ R : P(X ≤ ξ) > α}

The main difficulty in the multidimensional framework is that the vector ordering

º is a partial ordering. Hence, the possible realizations of a d-dimensional portfolio

X ∈ L∞d are not comparable and speaking about “worst realizations” does not make

sense. In order to find an analogous, in this context, to tails of distribution, we

consider subsets A of Rd, which may contain non-comparable possible values of X,

but satisfy the following requirement :

X(ω) ∈ A ⇒ X(ω)−K ⊂ A ,

i.e., if a realization X(w) is among the set A, then all positions which are more risky

then X(w) are also contained in A.

Such subsets are eligible for defining the analogous of quantiles for random vectors.

We introduce the set :

Q :=
{

A ∈ B(Rd) : A−K = A
}

(2.3)
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Definition 2.3 Let X be in L∞d . The lower α-quantile of X is the set

Qα(X) := {A ∈ Q : P(X ∈ A) ≥ α}

and the upper α-quantile of X is the set

Qα(X) := {A ∈ Q : P(X ∈ A) > α}

2.3 Tail Conditional Expectation

Let X be in L∞d , and A be some set in Qα(X), the set :

{
η ∈ Rd , E[η + X |X ∈ A] º 0

}
= {−E [X |X ∈ A]} + K

represents the set of deterministic portfolios η such that the conditional expected

value of the modified position X + η, when X falls in the set A of “bad” scenarii,

is admissible. An immediate proposal for the generalization to the vector-valued

framework of TCEα and TCEα, which are defined for a real-valued random variable

X by

TCEα(X ) := E[−X|X ≤ qα(X )] and TCEα(X ) := E[−X|X ≤ qα(X )]

is the following.

Definition 2.4 Let X be in L∞d and α ∈ (0, 1) .

The lower vector valued tail conditional expectation of X at level α is defined by

T CEα(X) :=
{

η ∈ Rd : ∀A ∈ Qα(X) ,E [η + X |X ∈ A] º 0
}

(2.4)

=
⋂

A∈Qα(X)

({−E [X |X ∈ A]} + K) .

The upper vector valued tail conditional expectation of X at level α is defined by

T CEα(X) :=
{

η ∈ Rd : ∀A ∈ Qα(X) ,E [η + X |X ∈ A] º 0
}

(2.5)

=
⋂

A∈Qα(X)

({−E [X |X ∈ A]} + K) .
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Proposition 2.3 Let α be in (0, 1). T CEα and T CEα define on L∞d set valued maps

satisfying axioms A0, A1, A3 and A4.

In general T CEα, resp. T CEα, does not satisfy axiom A2, i.e. it is not subadditive,

and hence is not a coherent risk measure.

2.4 Consistency with the one-dimensional framework

We end this Section by verifying that the definitions given above are consistent with

the usual definitions of quantiles and Tail conditional expectation of real-valued risk.

Clearly, in the one-dimensional context

Q = {(−∞, a] , a ∈ R} ∪ {(−∞, a) , a ∈ R}

Proposition 2.4 For all X in L∞, and α in (0, 1),

qα(X ) = sup
⋂

A∈Qα(X )

A and qα(X ) = sup
⋂

A∈Qα(X )

A

Proof. By the definitions of qα(X ), and Qα(X ), for all ε > 0, and A ∈ Qα(X )

(−∞, qα(X )− ε] ⊂ A , and (−∞, qα(X ) + ε] ∈ Qα(X ) .

It follows that

(−∞, qα(X )) =
⋂
ε>0

(−∞, qα(X )− ε] ⊂
⋂

A∈Qα(X )

A ,

and
⋂

A∈Qα(X )

A ⊂
⋂
ε>0

(−∞, qα(X ) + ε] = (−∞, qα(X )] ,

hence : qα(X ) = sup
⋂

A∈Qα(X ) A.

Similarly, we have that (−∞, qα(X )) ⊂ ⋂
A∈Qα(X ) A ⊂ (−∞, qα(X )] , hence : qα(X )

= sup
⋂

A∈Qα(X ) A. 2

The following Proposition states the relation between the (real-valued) Tail condi-

tional expectation, and the vector-valued Tail conditional expectation.
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Proposition 2.5 For all X in L∞, and for all α in (0, 1)

TCEα(X ) = min T CEα(X ) and TCEα(X ) = min T CEα(X )

Proof. T CEα(X ) is given by

T CEα(X ) =
⋂

A∈Qα(X )

[−E [X |X ∈ A] ,∞) ,

1. Notice that for all n ≥ 1,
(−∞, qα(X ) + 1

n

] ∈ Qα(X ), we deduce that for all n ≥ 1

−E
[
X |X ≤ qα(X ) +

1

n

]
≤ min T CEα(X )

By a dominated convergence argument the left hand side of the last inequality con-

verges to TCEα(X ) as n goes to ∞, then TCEα(X ) ≤ min T CEα(X ).

2. Notice that Qα(X) ⊂ Q̄α(X ) where the set is given by

Q̄α(X ) := {(−∞, a] , a ≥ qα(X)} ∪ {(−∞, a) , a > qα(X)} .

Consequently, to verify that TCEα(X ) ≥ min T CEα(X ), it is sufficient to check that

for all A ∈ Q̄α(X ), TCEα(X) ≥ E [−X|X ∈ A].

2.1. Let a ≥ qα(X ), set pα := P(X ≤ qα(X )), and pa := P(X ≤ a). We have pa ≥ pα,

and

TCEα(X )− (−E [X |X ≤ a]) = E [X |X ≤ a]− E [X |X ≤ qα(X )]

=
1

pαpa

{
pαE [X1X≤a]− paE

[X1X≤qα(X )

]}

=
1

pαpa

{
pαE

[X1qα(X )<X≤a

]

− (pa − pα)E
[X1X≤qα(X )

]}

≥ 1

papα

(pa − pα)
{
pα qα(X )− E [X1X≤qα(X )

]}

≥ 0 .
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2.2 A similar computation shows that if a > qα(X), then

TCEα(X )− (−E [X |X ≤ a]) ≥ 0 .

We prove similarly that TCEα(X ) = min T CEα(X ) . 2

3 Coherency of Tail Conditional Expectation

In general, the (real valued) tail conditional expectation is not subadditive, hence

does not define a coherent risk measure. In the previous literature equality between

the (real-valued) tail conditional expectation and the coherent (real-valued) worst

conditional expectation has been established under two sets of assumptions.

Proposition 3.1 [2] Assume that Ω is finite and that the probability on Ω is uniform.

If X is a risk such that no two values of X in different states are ever equal, then

TCEα(X) = WCEα(X)

We refer the reader to [2] for the proof of this result.

Proposition 3.2 [3] Let α ∈ (0, 1) and X a real valued random variable on some

probability space (Ω,F ,P) such that E[X−] < ∞. Then :





P(X < qα(X)) > 0 and P(X ≤ qα(X)) = α

or

P(X < qα(X)) = 0 and P(X = qα(X)) = 0

iff WCEα(X) = TCEα(X) = TCEα(X) . (3.1)

In particular, (3.1) holds if the distribution of X is continuous.

We refer the reader to [3].
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The main results of this paper extends Proposition 3.1 to the multidimensional frame-

work and state that, in the case of a general probability space, if the distribution of

X is continuous, and the condition P [X ∈ X(B)] = P[B], for all B in F holds, then

WCEα(X) = T CEα(X) .

The inclusion WCEα(X) ⊂ T CEα(X) is straightforward. The following paragraphs

are dedicated to the proof of the second inclusion.

3.1 Finite probability space

Theorem 3.1 Assume that Ω is finite and that the probability on Ω is uniform. If

X is a risk such that no two values of X in different states are ever equal, then

WCEα(X) = T CEα(X).

The proof of this Proposition is based on the following Proposition .

Proposition 3.3 Assume that Ω is finite and that the probability on Ω is uniform.

Let X be a risk such that no two values of X in different states are ever equal. Then,

for all B in F , there exists A ⊂ Rd such that:

(i) A ∈ Qα(X)

(ii) P [X ∈ A] = P [B]

(iii) E [X |B] º E [X |X ∈ A] .

In the proof of Proposition 3.3, we are going to use the notation :

E(D) := (D −K) \D , D ⊂ Rd . (3.2)

The set E(D) is such that :

1. if d ∈ D , e /∈ D , and d º e , then e ∈ E(D) ,

2. if e ∈ E(D) then there exists some d ∈ D such that d º e.

14



We can qualify the subset E(D) as the “bad positions induced by D” and not contained

in D.

Proof of Proposition 3.3 Let B be in F . Notice that, since X(ω) 6= X(ω′)

whenever ω 6= ω′,

P(B) = P (X ∈ X(B)) , and E [X1B] = E
[
X1X∈X(B)

]
.

If P [X ∈ E(X(B))] = 0 then we verify immediately that the set A := X(B) ∪
E(X(B)) satisfies (i), (ii), and (iii).

Assume that P [X ∈ E(X(B))] 6= 0. The idea is to replace elements from X(B) by

elements from E(X(B)) in a convenient way, in order to obtain a set A with the

desired properties.

Set N := Card(Ω). Then

p := P [X = X(ω)] =
1

N
, for all ω ∈ Ω .

Consider the (finite) sequence (An)0≤n≤N of subsets of Rd defined as follows:

1. A0 := X(B) ,

2. for n, 0 ≤ n < N :

− if P [X ∈ E(An)] = 0 : we set An+1 := An,

− if P [X ∈ E(An)] > 0 : An+1 := (An \ {an})∪{en}, where (an, en) can be chosen

such that

(an, en) ∈ An × E(An) ∩ X(Ω)2 , an º en , and an 6∈ E(An \ {an}) .

Indeed, since P [X ∈ E(An)] > 0, we can chose some en ∈ E(An) ∩X(Ω). By definition

of E(An), there exists some a0 ∈ An such that en ∈ {a0} − K. Then, consider the
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sequence (ak)k≥0 defined by induction as follows

ak+1 := a ∈ {a ∈ An ∩X(Ω) : a 6= ak , a º ak} if this set is non-empty

ak+1 := ak if {a ∈ An ∩X(Ω) : a 6= ak , a º ak} = ∅ .

Since X(Ω) is finite, it is easy to see that for some k∗ ≥ 0, ak = ak∗ for all k ≥ k∗,

and that an := ak∗ satisfies : an º en , and an 6∈ E(An \ {an}).
In this procedure, while E(An) is nonempty, An+1 is obtained by replacing an element

of An by a worst position contained in E(An). Notice that the property an 6∈ E(An \
{an}) implies that an 6∈ An+k for all k ≥ 1.

Since the probability P is uniform, the sequence (An) is such that P [X ∈ An] =

P [X ∈ X(B)] for n = 0, ..., N , in particular

P(B) = P [X ∈ AN ] .

We also verify for 0 ≤ n < N that :

E
[
X1X∈An+1

]
= E [X1X∈An ] or

E
[
X1X∈An+1

]
= E [X1X∈An ]− p (an − en) where an º en .

Hence E [X1X∈An ] º E
[
X1X∈An+1

]
. In particular

E [X1B] = E
[
X1X∈X(B)

] º E [X1X∈AN
] .

It remains to verify that P [X ∈ E(AN)] = 0 to conclude that ÃN := AN ∪ E(AN)

satisfies (i), (ii), and (iii).

Assume to the contrary that P [X ∈ E(AN)] 6= 0. Recall that, by construction, the

sequence (An), for each n ≥ 0, an 6∈ An+k, for all k ≥ 1. Hence {a0, ..., aN} is a set

of N + 1 distinct elements from X(Ω) which contradicts the fact that Card(Ω) = N .

2
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Proof of Theorem ?? 1. Since {X−1(A) , A ∈ Qα(X)} ⊂ {B ∈ F ,P(B) ≥ α}, we

have that WCEα(X) ⊂ T CEα(X).

2. To get the reverse inclusion, we have to show that for all x in T CEα(X), and for

all B in F with P(B) ≥ α, E [x + X |B] º 0.

Let x be in T CEα(X), and B in F with P(B) ≥ α. From Proposition 3.3, there

exists a subset A of Rd such that A−K = A, A closed, P(A) = P(B), and E [X1B]

º E [X1X∈A]. In particular :

E [X |B]− E [X |X ∈ A] =
1

P(B)
(E [X1B]− E [X1X∈A]) º 0 ,

A ∈ Qα(X) hence E [x + X |X ∈ A] º 0 .

Consequently

E [x + X |B] = E [x + X |X ∈ A] + (E [X |B]− E [X |X ∈ A])

= E [x + X |X ∈ A] +
1

P(B)
(E [X1B]− E [X1X∈A]) º 0 .

2

3.2 General probability space

Theorem 3.2 Let X be a risk in L∞d having a continuous probabiliy density f . Then

GWCEα(X) = T CEα(X)

The proof of this Theorem relies on the following Proposition.

Proposition 3.4 Let X be in L∞d . Assume that X has a continuous probability

density f . Then , for all B in Fx := σ(X), there exists A ⊂ Rd such that:

(i) A ∈ Qα(X)

(ii) P [X ∈ A] = P [B]

(iii) E [X |B] º E [X |X ∈ A] .
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We defer the proof of the Proposition 3.4, and start by proving Theorem 3.2

Proof of Theorem 3.2 1. Since {X−1(A) , A ∈ Qα(X)} ⊂ {B ∈ F , P (B) ≥ α}, it

is easy to check that GWCEα(X) ⊂ T CEα(X).

2. To get the reverse inclusion, we are going to show that for all x in T CEα(X), and

for all B in Fx = σ(X) with P(B) ≥ α, E [x + X |B] º 0. Indeed this implies that

T CEα(X) ⊂ WCE(Ω,Fx,P),α(X̃) ⊂ GWCEα(X)

Let x be in T CEα(X), and B in Fx with P(B) ≥ α. Proposition 3.4 shows that there

exists a subset A of Rd such that A−K = A, A closed, P(A) = P(B), and E [X1B]

º E [X1X∈A]. In particular :

E [X |B]− E [X |X ∈ A] =
1

P(B)
(E [X1B]− E [X1X∈A]) º 0 ,

A ∈ Qα(X) hence E [x + X |X ∈ A] º 0 .

Consequently

E [x + X |B] = E [x + X |X ∈ A] + (E [X |B]− E [X |X ∈ A])

= E [x + X |X ∈ A] +
1

P(B)
(E [X1B]− E [X1X∈A]) º 0 .

2

We now turn to the proof of Proposition 3.4. The proof consists in two steps. The

first one is

Lemma 3.1 We introduce the set S of pairs of subsets (δ, β) such that:

1. β and δ are open subsets of Rd ,

2. δ ∩ β = ∅ ,

3. δ ∩ [(D \ δ)−K] = ∅ ,
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4. β −K = β,

5. d º b for all (d, b) in δ × β ,

6. PX(β ∩ E(D)) = PX(δ ∩D) .

Elements of S are ordered as follows :

(δ, β) ∝ (δ̄, β̄) iff δ ⊂ δ̄ and β ⊂ β̄ . (3.3)

Then S admits a maximal element w.r.t the order relation ∝.

Proof. Notice that each totally ordered finite sequence {(δi0 , βi0), ..., (δiN , βiN )} of

elements of S, admits a maximum. We shall denote by m(i0, ..., iN) the index of the

maximum of {(δi0 , βi0), ..., (δiN , βiN )} .

Let (δi, βi)i∈I be a totally ordered family of elements of S. we claim that (δi, βi)i∈I

has an upperbound .

Set δ∞ :=
⋃
i∈I

δi and β∞ :=
⋃
i∈I

βi .

It is clear that (δ∞, β∞) is an upperbound for (δi, βi)i∈I , provided it is contained in

S. This is what we proof through the Steps 1-6.

1. δ∞ and β∞ are open subsets of Rd.

2. By definition of δ∞, β∞, the order relation ∝, and using property (2) of the

elements of S :

δ∞ ∩ β∞ ⊂
⋃

i,j∈I

δi ∩ βj ⊂
⋃

i,j∈I

δm(i,j) ∩ βm(i,j) =
⋃

i,j∈I

∅ = ∅ .

3. For all i in I, (D \ δ∞) ⊂ (D \ δi), then

δ∞ ∩ [(D \ δ∞)−K] =
⋃
i∈I

δi ∩ [(D \ δ∞)−K]

⊂
⋃
i∈I

δi ∩ [(D \ δi)−K] =
⋃
i∈I

∅ = ∅ .
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4. β∞ −K =
⋃

i∈I βi −K =
⋃

i∈I βi = β∞.

5. Let d be in δ∞, and b be in β∞. Let i , j be in I such that d ∈ δi, and b ∈ βj.

Then (d, b) ∈ δm(i,j) × βm(i,j), and it follows from property (5) of elements of S that

d º b.

Consequently, for all (d, b) in δ∞ × β∞, d º b.

6. It remains to show that P [X ∈ β∞ ∩ E(D)] = P [X ∈ δ∞ ∩D] to conclude that

(δ∞, β∞) is an element of S. In order to establish this property we use the following

Lemma which proof is reported later on.

Lemma 3.2 Let G and H be two subsets of Rd, then

P (X ∈ G ∩H) = sup
C∈C(G)

P (X ∈ C ∩H) ,

where C(G) denotes the set of all compact subsets of G.

By Lemma (3.2) : P [X ∈ δ∞ ∩D] = supC∈C(δ∞) P [X ∈ C ∩D].

Let C be a compact subset of ∪i∈Iδi C(δ∞). Since δi, i ∈ I are open subsets of Rd,

there exists a finite sequence {δi1 , ..., δiN} such that C ⊂ ∪N
k=1δik .

The finite sequence {(δi1 , βi1), ..., (δiN , βiN )} is totally ordered in S, hence it admits a

maximum. Let i0 := m(i1, ..., iN) be the index of its maximum. Then by definition

of the order relation ∝, and by property (6) of the elements of S :

∪N
k=1δik ⊂ δi0 and P [X ∈ δi0 ∩D] = P [X ∈ βi0 ∩ E(D)]

it follows:

P [X ∈ C ∩D] ≤ P [X ∈ δi0 ∩D] = P [X ∈ βi0 ∩ E(D)] ≤ P [X ∈ β∞ ∩ E(D)] .

Taking the supremum over C(δ∞), we get : P [X ∈ δ∞ ∩D] ≤ P [X ∈ β∞ ∩ E(D)].
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A similar argument shows that the reverse inequality holds. Then

P [X ∈ δ∞ ∩D] = P [X ∈ β∞ ∩ E(D)] .

In S, each totally ordered family admits an upperbound, then, by Zorn’s Lemma, S
admits a maximal element. 2

Proof of Lemma 3.2 Since the distribution of X is absolutely continuous w.r.t to

the Lebesgue measure, for each set S in Rd

P (X ∈ S) = sup
C∈C(S)

P (X ∈ C) ,

where C(S) denotes the set of all compact subsets of S (see [?]).

Let C be in C(G ∩H), then C is in C(G), it follows that

P (X ∈ G ∩H) = sup
C∈C(G∩H)

P (X ∈ C ∩H) ≤ sup
C∈C(G)

P (X ∈ C ∩H) .

The reverse inequality is straightforward, since for all C in C(G), C ∩ H ⊂ G ∩ H,

hence P (X ∈ C ∩H) ≤ P (X ∈ G ∩H) . 2

Now we are ready for the proof of the second step of Proposition 3.4.

Proof of Proposition 3.4

Let B be in F , and set D := X(B). X is such that

P(B) = P(X ∈ D) and E [X1B] = E [X1X∈D] .

Assume that P (X ∈ E(D)) = 0. Then, clearly the set A := D ∪ E(D) = D − K

satisfies each of the requirement (i), (ii), and (iii).

Now we concentrate on the case where P (X ∈ Ec(D)) > 0. We are going to prove

that it is possible to obtain a subset A with the required properties by substituting

elements from D by “worst” elements w.r.t to the preoerder º, i.e. elements taken

from E(D).
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Lemma 3.1 states that the set S admits a maximal element. Let (δ?, β?) be such an

element.

1. If P [X ∈ D \ δ?] = 0, then the set A := β? ∩ E(D) satisfies (i), (ii), and (iii).

Indeed, by definition of E(D), E(D)−K = E(D). The property (4) of elements of S
implies β? −K = β?. Hence

A−K = [β? ∩ E(D)]−K = β? ∩ E(D) = A .

Using P [X ∈ D \ δ?] = 0, and the property (6) of elements on S

P [X ∈ A] = P [X ∈ β? ∩ E(D)] = P [X ∈ D ∩ δ?] = P [X ∈ D] .

Since P [X ∈ D] = P(B) ≥ α, it follows that

A ∈ Qα(X) and P(X ∈ A) = P (B)

Using P [D \ δ?] = 0, and p := P [X ∈ δ? ∩D] = P [X ∈ β? ∩ E(D)]

E [X1B]− E [X1X∈A]

= E [X1B]− E [X1X∈A]

= E [X1X∈D∩δ? ]− E [
X1X∈β?∩E(D)

]

=
1

p

∫ ∫
(X(ω)−X(ω′))1X∈D∩δ?(ω)1X∈β?∩E(D)(ω

′)dP (ω)dP (ω′)

º 0

where the last inequality follows from property (5) of elements of S.

2. Now we consider the case where P [X ∈ D \ δ?] > 0, and we set

D? := (D \ δ?) ∪ (E(D) ∩ β?) .

We shall prove that in this case P [X ∈ E(D?)] = 0, it then follows that the set

A := D? ∪ E(D?) satisfies (i), (ii) and (iii).
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Assume to the contrary that P [X ∈ E(D?)] > 0. We are going to show that, then,

it is possible to find (δ̄, β̄) in S such that (δ?, β?) ∝ (δ̄, β̄), which is in contradiction

with the fact that (δ?, β?) is a maximal element.

2.1. Notice that since f is contiuous, and the cone K contains Rd
+, then P [X ∈ D \ δ∗]

implies that there exists some a ∈ E(D?) ∩ int [D \ δ? −K], with f(a) > 0.

Let r > 0 such that B(a, r) ⊂ int [D \ δ? −K], and z ∈ B(a, r) ∩ int[a + K], b in

∈ D \ δ? such that z = b− k for some k in K. Then u := b− a is in int[K].

2.2. Now consider the function Ψ defined on R by :

Ψ(t) = P (X ∈ [(a + t.u) + K] ∩ [D \ δ?])− P [X ∈ [(a + t.u)−K] ∩ E(D \ δ?)]

We verify that





limt→+∞ Ψ(t) = −P (X ∈ E(D \ δ?)) < 0

limt→−∞ Ψ(t) = P (X ∈ D \ δ?)) > 0

In fact, since a is in b+int(K), there exists some η > 0 such that B(a, η) ⊂ b+int(K).

Let λ := 3‖X‖∞
η

, then

B(a′, 3‖X‖∞) ⊂ b + int(K) , with a′ := b + λ(a− b) .

By translation: b+(a−a′)−K, which is equal to a+λ(b−a)−K contains B(a′, 3‖X‖∞).

We deduce that

∀λ′ > λ, B(a′, 3‖X‖∞) ⊂ a + λ(b− a)−K .

It follows that

∀λ′ > λ , P [X ∈ [(a + λ′.u) + K] ∩ [D \ δ?]] = 0

and P [X ∈ [(a + λ′.u)−K] ∩ E(D \ δ?)] = P [X ∈ E(D \ δ?)] .
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Then

lim
t→∞

Ψ(t) = lim
t→∞

P [X ∈ [(a + λ′.u) + K] ∩ [D \ δ?]]

−P [X ∈ [(a + λ′.u)−K] ∩ E(D \ δ?)]

= −P [X ∈ E(D \ δ?)]

Similar arguments provide the limit at −∞.

We state the following Lemma which is proved later on.

Lemma 3.3 The function Ψ is continuous.

Since Ψ is continuous, there exists t? such that Ψ(t?) = 0.

Consider the subsets [(a + t?.u) − int(K)] and [(a + t?.u) + int(K)], they are open,

disjoint and their union is nonempty as it contains either a or b. We obtain by setting

δ̄ := δ? ∪ [(a + t?.u) + int(K)] and β̄ := β? ∪ [(a + t?.u)− int(K)]

an element (δ̄, β̄) of S which majorates strictly (δ?, β?). This is in contradiction with

the fact that (δ?, β?) is maximal.

We then conclude that if P [X ∈ D \ δ?] > 0 then E(D?) is PX-null, which ends the

proof. 2

Proof of Lemma 3.3. It is sufficient to prove that for any subset A and any closed

convex cone K with nonempty interior, the mapping Ψ1 : t 7→ PX(A∩ [(a+ t.u)+K])

is continuous; then Ψ is continuous as the sum of two continuous applications.

Notice that

K(t′) := (a + t′) + K ⊂ (a + t.u)−K =: K(t) for t ≤ t′ ∈ R .
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Then:

|Ψ(t) + Ψ(t′)| = Ψ(t)−Ψ(t′)

= P [X ∈ A ∩ (K(t) \K(t′))]

≤ ‖f‖B(0,‖X‖∞)L(B(0, ‖X‖∞) ∩ (K(t) \K(t′)))

where f is the density of X and L denotes the Lebesgue measure on Rd

The result then follows from the continuity of the Lebesgue measure on the space of

bounded convex bodies equipped with the Pompeiu-Hausdorff-Blaschke metric (see

[10]). 2

Remark 3.1 Let X be a risk in L∞d having a continuous probabiliy density f . Then

T CEα(X) =
⋂

A∈Qα(X),A closed

−{E [X|X ∈ A]}+ K .

Indeed, since f is continuous for each borel set A contained in Qα(X), for each n ≥ 1

there exists some closed set An such that An ⊂ A and P(X ∈ An) ≥ P(X ∈ A)−1/n.

Then the sequence
(
Ān := An −K

)
is a sequence of closed subsets contained in Qα(X)

and satisfying E
[
X|X ∈ Ān

] −−−→
n→∞

E [X|X ∈ A], and the required result follows from

the closedness of T CEα(X).

4 Numerical computation of T CE

4.1 The discrete distribution case

In the case of a discrete distribution, the T CE can be computed through a rather

simple algorithm since the Quantile set is a finite collection of finite subsets of Rd. The

main idea of the algorihm is to compute recursively the quantiles of the distribution :

• assume that the random vector X has N realisations denoted by xi, i = 1, ..., N ,
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• and denote by Qalpha the list of α quantiles, inizialized to an empty list

Algorithm : α−QuantilesSet

Begin

var List A ;

var integer i, c ;

for i = 1 to N :

for c = 1 to N − i + 1 : A := empty list;

Quantile(A, i, c) ;

end

where

Algorithm : Quantile(A, i, c)

Begin

var integer j ;

A := A + {xi} ;

if (c > 0)then

for j = i + 1 to N : Quantile(A, j, c− 1);

else

if (P(X ∈ A) ≥ α) then Q := Q + {A};
A := A− (last element in A);

end if

A := A− (last element in A);

end
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Example 4.1 We consider the example of an investor having access to two financial

markets indexed by i, i = 1, 2. Each maket i consists of a non risky asset Bi,

and a risky asset Si, and the currency in markets i is denoted by mi. For each i,

transfers between the Bi’s account and the Si’s account are free of charges, hence

the position of the investor in the market i can be described by a single account X i.

However transfers between the two markts are subject to proportional transaction

costs. Taking the currency m1 as reference, when the investor transfers 1 m1 from

account i, he receives 1− λij m1 in the account j.

Let Ω := {ωk, 1 ≤ k ≤ 10}, and P(ωk) = 1
10

for k = 1, ..., 10. Denote by X = (X1, X2)

the random vector representing the Profit&Loss (P&L) (expressed in m1) at a future

date T of some investor’s position. The realisations of X are given in the following

table.

X1 X2

ω1 35 10

ω2 20 5

ω3 25 30

ω4 10 20

ω5 15 −10

X1 X2

ω6 5 0

ω7 8 −2

ω8 −8 8

ω9 −10 6

ω10 −15 −10

Figures 4.1, 4.1, 1 and 1, report T CEα(X) for diffrent values of α. On each of these

figures, T CEα(X) corresponds to the hatched rectangle at the top right corner. It is

obtained as the intersection of the sets {−E[X|X ∈ A]} + K, A ∈ Qα(X). We also

reported on these figures the realizaions of X : ◦, and the points {−E[X|X ∈ A]} , A ∈
Qα(X) : ◦.

Application : In order to secure his position the investor can procede as follows

- choose x̄ = (x̄1, x̄2) in T CEα(X),
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- place (x1 + x2 ∗K)e−r1T m1 in B1,

- buy x2 unities of the exchange options paying 1 m2 for K m1.

The resulting P&L of modified position at the end of the investment period is equal

to X + x̄, and satisfies, according to the defition of T CEα : E [X + x̄|X ∈ A] º 0

for all A ∈ Qα(X).

−20 −10 0 10 20 30 40

Figure 1: α = 2%

−20 −10 0 10 20 30 40

Figure 2: α = 4%

−20 −10 0 10 20 30 40

Figure 3: α = 3%

−10 0 10 20 30 40

Figure 4: α = 6%
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4.2 The continuous case : a numerical approximation

Let X be in L∞d , and L > 0 such that P

(
X ∈

d∏

k=1

]− L,L[

)
= 1. For each n ≥ 1 we

consider the grid

Gn :=
d∏

k=1

{
−L + i

2L

n
, 0 ≤ i ≤ n

}
,

then Ω can be partitioned into Ω = ∪nd

`=1A`, where

A` =

{
X ∈

d∏

k=1

[−L + (jk − 1)
2L

n
,−L + jk

2L

n
[

}

for each ` = 1 +
∑d

k=1 nk−1(jk − 1) with 1 ≤ j1, ..., jd ≤ n .

For each n ≥ 1, we define the random vector Xn by

Xn =
(−L ∗ (jk − 1)2L

n
, 1 ≤ k ≤ d

)′
on A`

for each 1 ≤ j1, ..., jd ≤ n , and ` = 1 +
∑d

k=1 nk−1(jk − 1) .

For each n ≥ 1, T CEα(Xn) can be computed by the algorithm described in the

previous subsection. The following Proposition shows that the sequence (T CEα(Xn))

allows to approximates elements of T CEα(X).

Proposition 4.1 The sequence (Xn)n≥1 converges to X in probability and satisfies

lim inf
n

T CEα(Xn) :=
⋃
n

⋂

k≥n

T CEα(Xk) ⊂ T CEα(X)

Proof. By definition of the sequence (Xn), P
(|Xn −X| > 2

n

)
= 0 for all n ≥ 1,

hence (Xn) converges to X in probability.

Let η be in lim infn T CEα(Xn). Observe that it is sufficient to prove that E [X|X ∈ A]

is in K for all A in Qα(X) with A closed ( see Remark 3.1).
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Let A be a closed subset of Rd contained in Qα(X). By the definition of the sequence

(Xn)n≥1, Xn(ω) ¹ X(ω) for all n ≥ 1 and ω ∈ Ω. Consequently, P(Xn ∈ A) ≥
P (X ∈ A), and A is in Qα(Xn) for all n ≥ 1. Since η ∈ lim infn T CEα(Xn), we have

for n sufficiently large

η + E [Xn|Xn ∈ A] ∈ K

On the other hand

E [Xn|Xn ∈ A] −−−→
n→∞

E [X|X ∈ A] .

Indeed, by the definition of the sequence (Xn), and the closedness of the set A we

have that lim infn {Xn ∈ A} = {X ∈ A}, then

lim
n
P(Xn ∈ A) = P(lim inf

n
{Xn ∈ A}) = P (X ∈ A) ,

and

|E [Xn1Xn∈A]− E [X1X∈A] | ≤ E [|Xn −X|] + ||X||∞ |P(Xn ∈ A)− P(X ∈ A)|
−−−→
n→∞

0 .

It follows from the closedness of the cone K, that η + E [X|X ∈ A] is in K. By

arbitrariness of A in {A′ ∈ Qα(X), A′ closed} we onclude to the required result. 2
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