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Abstract

This paper investigates the finite sample properties of confidence intervals for structural
vector error correction models (SVECMs) with long-run identifying restrictions on the im-
pulse response functions. The simulation study compares methods that are frequently used
in applied SVECM studies including an interval based on the asymptotic distribution of
impulse responses, a standard percentile (Efron) bootstrap interval, Hall’s percentile and
Hall’s studentized bootstrap interval. Data generating processes are based on empirical
SVECM studies and evaluation criteria include the empirical coverage, the average length
and the sign implied by the interval. Our Monte Carlo evidence suggests that applied re-
searchers have little to choose between the asymptotic and the Hall bootstrap intervals in
SVECMs. In contrast, the Efron bootstrap interval may be less suitable for applied work
as it is less informative about the sign of the underlying impulse response function and the
computationally demanding studentized Hall interval is often outperformed by the other
methods. Differences between methods are illustrated empirically by using a data set from
King, Plosser, Stock & Watson (1991).
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Ralf Brüggemann: Humboldt-Universität zu Berlin, Department of Economics, Spandauer Str. 1, 10178 Berlin,
Germany. E-Mail: brueggem@wiwi.hu-berlin.de. I thank Helmut Lütkepohl for helpful comments and suggestions
on an earlier version of this paper.

1



1 Introduction

The analysis of impulse responses in the framework of vector autoregressive (VAR) models
has become one of the dominant tools in empirical macroeconomic analysis. Interest usu-
ally focuses on the dynamic effects of different macroeconomic shocks (e.g. monetary policy
shocks, fiscal shocks, oil price shocks). In the literature on structural VAR (SVAR) models,
these shocks are typically recovered from reduced form VAR models by imposing identifying
restrictions motivated by economic theory on the structure of the covariance matrix. Structural
impulse response functions (IRFs) are computed to investigate the effects of the economically
meaningful shocks. In contrast to the first generation SVAR models that have been primarily
based on unrestricted VAR models, recent structural analysis is often based on cointegrated
VAR and vector error correction models (VECMs). Following the work by King et al. (1991) a
number of studies have modeled the reduced form as a vector error correction mechanism. Us-
ing VECMs instead of unrestricted VARs has been also advocated by Phillips (1998) because
the latter models produce inconsistent estimates of impulse responses and forecast error vari-
ances at long horizons. The resulting models are called structural vector error correction models
(SVECMs) as the structural analysis is based on a VECM. A key feature of the SVECM class
is that some structural shocks are identified by long-run restrictions which are directly related
to the cointegration properties of the data (see e.g. Breitung, Brüggemann & Lütkepohl (2004)
for a recent overview of SVECMs). Consequently, the SVECM class is closely related to the
literature on permanent-transitory decompositions (see e.g. Levtchenkova, Pagan & Robertson
(1998) for an excellent overview and Gonzalo & Ng (2001)). Empirical SVECM studies in-
clude inter alia Mellander, Vredin & Warne (1992), Fisher, Fackler & Orden (1995), Coenen &
Vega (1999), Fisher, Huh & Tallman (2003), Ribba (2003a, 2003b), Jang & Ogaki (2004) and
Vlaar (2004b).

For the interpretation of structural IRFs it has also become standard practice to report confi-
dence intervals (CIs) around the point estimates to assess the estimation uncertainty. Different
methods for the construction of IRF intervals have been suggested in the literature. CIs may
be based on the asymptotic distributions of the impulse responses (see Lütkepohl (2005)), on
Monte Carlo integration methods of Sims & Zha (1999) and on various variants of bootstrap
methods (see e.g. Kilian (1998c) and Benkwitz, Lütkepohl & Wolters (2001)). In the context
of SVECMs with long-run restrictions four methods have been primarily used in applied work:
The first one is based on a generalization of the asymptotic intervals given in Lütkepohl &
Reimers (1992) suggested by Vlaar (2004a). In the presence of long-run restrictions a correc-
tion of the asymptotic distribution is needed which takes the stochastic nature of the identifying
restrictions into account. Empirical applications of this method include Coenen & Vega (1999)
and Vlaar (2004b). As an alternative to the asymptotic intervals, bootstrap methods have been
used in the context of SVECM. In particular, the standard percentile interval of Efron & Tib-
shirani (1993), the Hall percentile interval and the studentized Hall interval (see Hall (1992))
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have been used in Lütkepohl & Wolters (2003), Brüggemann (2004) and Breitung et al. (2004).
These three bootstrap versions are available for SVECMs with long-run restrictions in form of
the menu driven software JMulTi (see www.jmulti.com) and may be readily applied by inter-
ested researchers.

To date very little is known on the finite sample properties of these CI construction meth-
ods in the context of SVECMs with long-run restrictions. Available Monte Carlo evidence as
e.g. in Kilian (1998a, 1998b, 1998c, 2001) and Kilian & Chang (2000) is essentially limited
to unrestricted VAR models with contemporaneous identifying restrictions based on a Choleski
decomposition of the covariance matrix. Possibly because they require numerical optimization
that are computationally burdensome, SVAR and especially SVEC models with more general
identification schemes (including e.g. long-run restrictions) have not yet been considered in
simulation studies.

In this paper we fill the gap and compare the finite sample properties of the described CI
construction methods for SVECMs with long-run restrictions. For this purpose we conduct
a Monte Carlo study using a large number of data generating processes (DGPs) obtained by
estimating SVECMs from the literature. Our comparison is not only based on standard criteria
such as empirical coverage and average CI length but also includes a new criterion that evaluates
the ability of a specific CI to indicate the underlying sign of the impulse response function. We
argue that indicating the right sign with high probability is an important property of intervals
because it is likely to affect the interpretation of structural IRFs more than small differences
in coverage rates. Moreover, we distinguish between results for responses to permanent and
transitory shocks. This is instructive because permanent and transitory shocks have different
implications on the shape of the response functions and, consequently, may affect the properties
of the corresponding CIs.

Based on our Monte Carlo evidence, it appears that applied researchers have little to choose
between the asymptotic and the Hall bootstrap percentile intervals in SVECMs with long-run
restrictions. In contrast, the standard (Efron) percentile bootstrap interval may be less suitable
for applied work as it is less informative about the sign of the underlying impulse response
function. Comparing CIs for responses to permanent shocks, we find that asymptotic and Hall
bootstrap intervals have similar coverage rates and indicate the right sign of the underlying re-
sponse equally often. Consequently, they allow a similar interpretation. However, the bootstrap
CIs are usually asymmetric and much wider. In contrast, the standard (Efron) bootstrap inter-
val includes the zero line more often and therefore indicates the correct sign less often. For
responses to transitory shocks the CIs are much more alike. However, we find that the compu-
tationally demanding studentized Hall interval is often outperformed by the other methods.

The remainder of the paper is structured as follows. Section 2 introduces the modeling
framework and reviews different methods of constructing CIs for the structural IRFs. In Section
3 we present the Monte Carlo design, discuss evaluation criteria and sum up the results of
our Monte Carlo comparison. Section 4 illustrates the use of different methods using a small
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U.S. macroeconomic model originally analyzed by King et al. (1991) and concluding remarks
are given in Section 5.

2 SVEC Models and Impulse Response Confidence Intervals

We analyze confidence intervals for responses to structural shocks within the framework of
structural vector error correction models (SVECMs). This modeling approach takes explic-
itly cointegration restrictions into account and long-run restrictions can be used to identify the
structural shocks (see Breitung et al. (2004) for recent overview of this modeling class). In the
following, we assume that all variables in the K-dimensional vector yt are at most integrated of
order 1, denoted as I(1), and that the times series can be well described by a VEC model with
cointegration rank r given by

∆yt = Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + αβ′yt−1 + Bεt, (2.1)

where yt is a vector of observable variables, α is a K × r matrix of loading coefficients, β is
the K × r matrix containing the cointegration vectors, and Γ1, . . . , Γp−1 are K ×K coefficient
matrices. The reduced form error terms ut = Bεt, i.e. ut is expressed as linear combinations
of the structural shocks εt. Moreover, we assume that ut is a white noise error vector with
zero mean and time invariant covariance matrix Σu. The structural shocks εt are assumed to be
mutually uncorrelated, such that E[εtε

′
t] is diagonal. Without loss of generality we normalize the

variances of the structural shocks to unity such that Σε = IK . Using Granger’s representation
theorem (see Johansen (1995, Theorem 4.2)), it can be shown that the long-run effects of ut are
given by the total impact matrix

C(1) = β⊥(α′⊥(IK −
p−1∑
i=1

Γi)β⊥)−1α′⊥,

where β⊥ and α⊥ represent the orthogonal complements of β and α, respectively. It follows
from (2.1) that the long-run effects of structural shocks εt can be written as

C(1)B. (2.2)

Note that C(1) has reduced rank rk(C(1)) = K − r and consequently there are K − r common
trends. This implies that at most r shocks may have transitory effects because the matrix C(1)B

cannot have more than r columns of zeros. Thus, the cointegration rank r of the system is
informative with respect to the maximum number of transitory shocks.

Identifying restrictions are needed for estimating the contemporaneous impact matrix B and
in the context of our modeling framework it is possible to use restrictions on B (short-run or
contemporaneous restrictions) and restrictions on C(1)B (long-run restrictions). Here we only
consider the case of exclusion restrictions that may be written for the short-run restrictions as

Rsvec(B) = 0
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and for the long-run restrictions as

Rlvec(C(1)B) = Rl(IK ⊗ C(1))vec(B) = R∗
l vec(B) = 0.

Note that we have rewritten the long-run restrictions such that they can be expressed as linear
restrictions on vec(B) but the restriction matrix R∗

l now involves the elements of C(1). In
practice, C(1) has to be replaced by an estimate and, consequently, the restriction matrix R∗

l is
stochastic. It is this stochastic nature of the restriction matrix that makes a modification of the
asymptotic confidence bands necessary (see Vlaar (2004a) and Section 2.1).

Estimates for the contemporaneous impact matrix can be found by maximizing the concen-
trated log-likelihood function given by

ln l(B) = constant− T

2
ln |B|2 − T

2
tr

(
(B′)−1BΣ̃u

)
, (2.3)

with respect to the free structural parameters subject to the identifying restrictions, where Σ̃u

is the estimated residual covariance matrix from the reduced form VECM (see Breitung et al.
(2004) for more details).

The quantities of interest in empirical studies are often given by the impulse response func-
tions derived from the SVEC. To compute the structural impulse response functions from the
SVEC, we transform (2.1) into the corresponding levels version by letting A1 = Γ1 +αβ′+ IK ,
Ai = Γi − Γi−1 for i = 2, . . . , p− 1 and Ap = −Γp−1 such that

yt = A1yt−1 + · · ·+ Apyt−p + ut. (2.4)

Then the response functions to an impulse in the reduced form (forecast error) ut are given by
letting Φ0 = IK and

Φi =
i∑

j=1

Φi−jAj, i = 1, 2, . . . (2.5)

Consequently, the structural impulse response functions are given by

Θi = ΦiB, i = 0, 1, 2, . . . (2.6)

In practice, SVEC models are typically estimated by a two-step procedure. In the first step,
the reduced form VECM is specified and estimated. Given an estimate for the reduced form
covariance matrix Σu and enough identifying restrictions, an estimate of B can be obtained by
ML estimation. Moreover, estimates of Aj, j = 1, . . . , p are easily obtained from the reduced
form VEC parameter estimates. Consequently, the estimated impulse responses are a function
of estimated parameters, hence, also estimates. To assess the uncertainty around the impulse
response estimates, confidence bands are typically plotted around the point estimates. Four
methods that are often used in practical SVECM studies are reviewed in the following sections.
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2.1 Asymptotic Impulse Response Intervals

The estimation uncertainty around the estimated impulse response may be quantified by using
asymptotic distribution results. If the reduced form parameters are asymptotically normally
distributed, the estimated structural impulse responses Θ̂i will also have an asymptotic normal
distribution as Θ̂i is a nonlinear function of the reduced form parameters. Consequently, the
asymptotic distribution of the structural impulse response may be obtained by using the delta
method. For instance, the asymptotic distribution of impulse responses for SVAR models that
are not based on cointegrated VAR and VEC models has been derived by Amisano & Giannini
(1997). For the case of forecast error and orthogonalized impulse responses in cointegrated VAR
model, the asymptotic distribution is given in Lütkepohl & Reimers (1992). In comparison with
results given in those studies, the derivation of the asymptotic distribution has to be modified
if long-run restrictions on the effects of structural shocks are considered. The modification is
needed because the long-run restrictions imply a stochastic restriction matrix. Vlaar (2004a)
derives the asymptotic distribution that is relevant for the considered SVEC models. Vlaar
(2004a) shows that

√
Tvec(Θ̂i −Θi) → N(0, ΣΘi

), (2.7)

where

ΣΘi
= (Fi + Gi)Σγ(Fi + Gi)

′ + HiΣγB
H ′

i, (2.8)

Σγ is the covariance matrix of the VEC parameters γ = vec(Γ1, Γ2, . . . , Γp−1, α). Moreover,
ΣγB

is the covariance matrix of the free structural parameters γB. Detailed expressions for
Fi, Hi and Gi are given in the Appendix A. If the unknown quantities in (2.8) are replaced by
estimates, asymptotic confidence bands for the elements of Θ̂i may be based on the estimated
standard deviations that are given by the square roots of the diagonal elements of T−1Σ̂Θi

. For
instance, an asymptotic 95% interval is given by adding ±1.96 estimated standard deviations
to the point estimate. Consequently, the asymptotic CIs are necessarily symmetric around the
point estimate. The asymptotic CI will be denoted as CIA in the following.

Vlaar’s modification essentially introduces the additional matrix Gi in (2.8). Using an empir-
ical example, Vlaar (2004a) illustrates that for transitory shocks neglecting the stochastic nature
of the restrictions (i.e. setting Gi = 0 in (2.8)) ‘one mistakenly assumes very precise predictions
at short horizons, whereas at long horizons the confidence bands do not converge to zero’.

2.2 Bootstrap Intervals

In recent years, inference on impulse response functions that are based on bootstrap methods
have become increasingly popular because they sometimes have better small sample properties
than intervals based on asymptotic theory (see e.g. Kilian (1998c)). Moreover, they are easy to
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compute given presently available computing technology and avoid the relatively complicated
analytical expressions for the asymptotic covariance matrix (see Section 2.1).

Alternative residual-based bootstrap methods have been suggested in the literature (see Benk-
witz et al. (2001) for an overview). In the context of VEC models, the bootstrap procedures
work as follows: The model (2.1) is estimated and the estimation residuals ût are centered
around their mean ¯̂u. Bootstrap residuals u∗1, . . . , u

∗
T are generated by drawing randomly with

replacement from the centered residuals, û1 − ¯̂u, . . . , ûT − ¯̂u. The bootstrap residuals together
with the estimated model parameters and the given presample values are used to generate boot-
strap time series. The model is reestimated using the bootstrap time series and the quantities of
interest, in our case the structural impulse responses, are determined on the basis of the boot-
strap estimates.1 Repeating these steps many times gives the empirical bootstrap distribution of
the impulse response functions. Using this distribution, CIs may be obtained for Θ̂i.

In this paper we consider three types of bootstrap confidence intervals that have been sug-
gested in the literature (see Benkwitz, Lütkepohl & Neumann (2000) and Benkwitz et al.
(2001)), are readily available for applied researchers in the form of a menu driven software2

and have often been used in applied SVECM studies with long-run identifying restrictions (see
inter alia Brüggemann (2004) and Breitung et al. (2004)). We denote by θ, θ̂, and θ̂∗ a general
impulse response coefficient, its estimator based on the estimated model coefficients and the
corresponding bootstrap estimator, respectively. The three bootstrap methods are given in the
following:

Standard percentile interval. The first bootstrap method is based on the standard percentile
interval (see Efron & Tibshirani (1993)):

CIS =
[
s∗ξ/2, s

∗
(1−ξ/2)

]
, (2.9)

where s∗ξ/2 and s∗(1−ξ/2) are the ξ/2 and (1− ξ/2)-quantiles of the empirical bootstrap distribu-
tion of θ̂∗. We will refer to this interval as the Efron interval in the following.

Hall’s percentile interval. The second method is based on the interval presented in Hall (1992)
which is given by

CIH =
[
θ̂ − t∗(1−ξ/2), θ̂ − t∗ξ/2

]
, (2.10)

where t∗ξ/2 and t∗(1−ξ/2) are the quantiles of the empirical distribution of (θ̂∗ − θ̂). We will refer
to this interval as the Hall interval in the following.

1In our implementation of the bootstrap the estimated cointegration matrix β is fixed in all bootstrap replications
and only the remaining parameters of the VECM are reestimated in every bootstrap replication. Benkwitz et al.
(2001) find that reestimating β in every bootstrap replication leads to similar results.

2Both considered bootstrap methods are implemented in the software JMulTi (see www.jmulti.com and
Lütkepohl & Krätzig (2004)).
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Hall’s studentized interval. The third method uses a studentized statistic presented in Hall
(1992). The confidence interval is constructed by using the bootstrap quantiles t∗∗ξ/2 and t∗∗(1−ξ/2)

from the distribution (θ̂∗ − θ̂)/(v̂ar(θ̂∗))1/2 to compute the interval

CISH =

[
θ̂ − t∗∗(1−ξ/2)

√
v̂ar(θ̂), θ̂ − t∗∗ξ/2

√
v̂ar(θ̂)

]
, (2.11)

where the variances may be estimated by a bootstrap within each bootstrap replication (see
e.g. Lütkepohl (2005, Appendix D.3)). We will refer to this interval as the studentized Hall
interval in the following. Due to the inner bootstrap in each bootstrap replication, this methods
is computationally very demanding. We have included this interval in our study as this method
should result in more precise confidence intervals (at least in theory).

Note that to date there is no formal proof for the described bootstrap procedures to be consis-
tent in the context of cointegrated VAR, VEC and SVEC models. Including them in our study
is therefore mostly motivated by the fact that bootstrap methods have been frequently used by
applied researchers. Also note that the bootstrap methods ‘automatically’ take the long-run
restrictions into account, i.e. a modification for the case of long-run restrictions (as for the as-
ymptotic intervals) is not needed here.

Another potential problem of the bootstrap in the context of SVEC models is related to
the fact that we have to use numerical optimization for estimating the structural parameters
of the contemporaneous impact matrix B in every bootstrap replication. Consequently, there
may be some bootstrap replications in which the algorithm does not converge. In the past,
this limited the application of bootstrap methods to models that could be estimated without
numerical optimization, e.g. when the Choleski decomposition of Σu is used. We have solved
this computational issue by using a fast and robust estimation algorithm. Our algorithm uses
the original point estimate as a starting value in every bootstrap replication and usually results
in convergence after a few iterations.3 Consequently, it is now easily possible to apply the
bootstrap methods to set up CIs for the structural impulse responses of a SVECM.

3 Monte Carlo Comparison

3.1 Monte Carlo Design

The simulation study uses DGPs that are obtained from estimating SVECMs previously speci-
fied in the empirical literature. Using empirical model specifications leads to DGP characteris-
tics, such as number of endogenous variables, lag length and number of cointegration properties,

3In the rare event of no convergence after 500 iterations, we try up to 50 different random starting values. If
there is still no convergence, the corresponding bootstrap draw will be deleted. This typically happens only once
or twice in 2000 bootstrap replications. This extremely fast and robust version of the SVEC algorithm has been
implemented in Gauss and is also used by the software package JMulTi.
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similar to those typically encountered by applied time series econometricians. We think that the
results of this strategy are more useful to practitioners than presenting results on relatively sim-
ple, artificial DGPs. Indeed, we have used a large number of DGP specifications that are based
on some of the studies cited in the introduction. Our Monte Carlo study is based on the DGPs
whose properties are summarized in Table 1, where we give the cointegration structure and the
identification scheme together with the moduli of the VAR companion matrix.

DGP (A) is obtained by using the estimates of a model for the log of consumption ct, the log
of investment it and the log of private output qt as specified by King et al. (1991). Following
their analysis, the data are modeled by imposing a cointegration rank of two (r = 2) in the
three-dimensional system. The DGP parameters are obtained by imposing the balanced growth
path conditions (see β in Table 1) before estimating a VECM with eight lagged differences
and an unrestricted constant (as in the original study). DGP (B) is a variant of DGP (A) that
is obtained by using only p = 2 lags, which is sufficient according to standard information
criteria. Structural identification of the permanent shock follows the original study. In addition,
we disentangle the two transitory shocks by a zero restriction in B.

DGP (C) corresponds to the six-variable model in King et al. (1991) which in addition to
ct, it and qt also includes the log of real money mt, an interest rate Rt and the inflation rate
∆pt. The cointegration structure (r = 3) and the long-run restrictions on C(1)B correspond to
the original study. The remaining parameters have been obtained by estimating a VECM with
eight lagged differences and an unrestricted constant (as in the original study). Moreover, we
have imposed a recursive structure on B to identify the three transitory shocks. DGP (D) is a
variant of DGP (C) with a smaller number of lags (p = 2). The length of the generated time
series in the Monte Carlo study in DGPs (A) to (D) is T = 168 and corresponds to the number
of observations used in the original study.

DGP (E) is a five-variable structural VECM obtained from a small monetary system of the
Euro area provided by Coenen & Vega (2001). The long-run identifying assumptions are driven
by the cointegration properties (r = 3), while the contemporaneous restrictions are merely
imposed for convenience. The remaining parameters have been obtained by estimating a VECM
with one lag of ∆yt and an unrestricted constant. Generated time series of length T = 75 have
been used in the simulation.

DGP (F) is a SVECM for inflation πt and unemployment Ut based on Ribba (2003b). The
parameters are obtained by imposing β = (1,−1) and then estimating a VECM with six lagged
differences (p = 7) and an unrestricted constant. Generated time series of length T = 371
have been used in the simulation. A zero column on the long-run impact matrix separates the
transitory and the permanent shock in the system. No further restrictions are needed in this
bivariate system because there is only one permanent and one transitory shock. Note that DGPs
(A) to (E) are based on models for quarterly data, while DGPs (F) and (G) have been obtained
from monthly data.

For each design point in our Monte Carlo experiment we have generated M = 1000 sets
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of time series by drawing normally distributed errors from multivariate distributions with zero
mean and covariance matrices corresponding to the VECMs in Table 1. We have used zero
initial values and have truncated the first 50 observations to eliminate the impact of the start-
ing values. The length of the generated time series corresponds to that of the time series used
in the original studies. For each Monte Carlo replication we computed the structural impulse
response functions together with the three bootstrap and the asymptotic confidence intervals.
The bootstrap intervals are based on 500 bootstrap replications and 100 inner bootstrap repli-
cations for the studentized Hall interval in order to obtain reasonable computation times.4 All
computations are done with GAUSS.

3.2 Evaluation Criteria

We use three evaluation criteria to assess the accuracy of different impulse response CIs. The
first criterion is the empirical coverage of impulse response confidence intervals as suggested by
inter alia Kilian (1998a), Kilian & Chang (2000), and Kilian (2001). More formally, let θ̂jk,h be
the estimated structural response of variable j to an impulse in variable k, h periods ago. Then
denote a (1− α)× 100% confidence interval around θ̂jk,h by [γα

2 ,jk,h; γ1−α
2 ,jk,h]. The empirical

coverage of that interval can be computed from a Monte Carlo experiment and is given by

ECjk,h =
1
M

M∑
m=1

I(γα
2 ,jk,h,m ≤ θjk,h ≤ γ1−α

2 ,jk,h,m), (3.1)

where I(·) is an indicator function that takes the value one, if the true DGP impulse response
θjk,h is within the interval of replication m. M indicates the number of Monte Carlo replications.
Ideally, the empirical coverage should be close to the nominal level of 1− α.

Secondly, we look at the average length (AL) of the confidence intervals which can be com-
puted as

ALjk,h =
1
M

M∑
m=1

(γ1−α
2 ,jk,h,m − γα

2 ,jk,h,m). (3.2)

Clearly, one would expect that the interval length is related to its coverage properties. But
judging empirical coverage and average length together may reveal information on differences
of the interval locations. In our context this is a useful information because the ± standard
error asymptotic confidence bands are necessarily symmetric while the shape of the bootstrap
intervals depends on the bootstrap distribution and may as well be asymmetric.

Our third evaluation criterion is related to the sign implied by the respective confidence
interval. In interpreting impulse response functions, the sign of the response is one of the most
important quantities of interest. Typically, the description includes statements about the sign and

4We have repeated some of our simulations with 1000 bootstrap draws. The results are virtually identical to the
ones discussed here.
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the significance of responses to different shocks. To assess how different CI methods capture the
sign of the underlying impulse response, we need to compare the sign implied by a particular
method to a measure of the ‘true’ sign as implied by the DGP. Clearly, different measures
of the ‘true sign’ are possible. Instead of using the sign given by the DGP impulse response
function, we use a more fuzzy measure. In particular, we use the sign which is implied by a 90%
confidence interval around the DGP impulse response. Let S(θjk,h) denote the sign implied by
this interval. Then the ‘true’ impulse response is said to have a zero impact when the zero line
is included in this interval, denoted as S(θjk,h) = 0. Accordingly, the ‘true’ sign of the impulse
response θjk,h is positive (negative) when the both interval limits are above (below) the zero line.
These situations are denoted as S(θjk,h) = 1 and S(θjk,h) = −1, respectively. Accordingly, the
implied sign of an interval for θ̂jk,h computed by a particular method in replication m is denoted
as S(θ̂jk,h)m. For each CI construction method we record the relative frequency of same implied
signs as

CSjk,h =
1
M

M∑
m=1

I
(
S(θ̂jk,h)m = S(θjk,h)

)
(3.3)

where I(·) is an indicator function that takes the value one, if the sign implied in replication m

equals the sign implied by the DGP. Values of CSjk,h close to 1 point to CI methods that capture
the true dynamics quite well.

3.3 Monte Carlo Results

The following Monte Carlo results have been obtained by estimating correctly specified SVEC
models. In other words, results are based on using the correct lag length p, the correct cointegra-
tion rank r and deterministic terms as specified in Table 1. Structural parameters are estimated
by using the corresponding identification scheme from Table 1. Our simulation results are sum-
marized in Figures 1 and 2 as well as in Tables 2 and 3.

We start the discussion by presenting some typical results in graphical form. Figure 1 shows
the empirical coverage of the considered methods obtained from simulations of DGP (A) using
a nominal coverage of 90% which is indicated by the solid line. The graph shows in the jk-th
panel, j, k = 1, . . . , K, the results for the response of variable j to an impulse in variable k (a
structural shock associated with variable k). Our identification scheme for DGP (A) leads to
one permanent and two transitory shocks and the results for the permanent shock are given in
the left column of the figure which we discuss first.

All four methods lead to intervals that have empirical coverage below nominal. The bootstrap
variants are typically slightly closer to the nominal level, especially for larger impulse response
horizons. Moreover, CISH has slightly higher coverage than CIH and in turn, CIH has slightly
higher coverage than the Efron bootstrap interval. It is instructive to check the average length
of the corresponding intervals that are given in the first column of Figure 2. By construction
the lengths of two bootstrap methods CIS and CIH are equal. Note, that the higher coverage
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values of the bootstrap intervals coincide with much broader confidence bands for the permanent
shocks such that some part of the difference is explained by the length of the interval and not by
its location. This is particularly evident for the studentized Hall interval CISH . Similar coverage
and considerably wider bootstrap intervals imply that there must be substantial overlapping of
both interval types.

The situation is somewhat different for intervals of responses to transitory shocks (see e.g. the
second and third column in Figures 1 and 2). In DGP (A) empirical coverage is higher than for
responses to permanent shocks (exceptions are a few responses on impact), often even higher
than the nominal coverage for large forecasting horizons. This may be explained by the fact that
the long-run responses are restricted to zero. In this case, also the intervals are restricted and
therefore they include the true impulse response function with higher probability. Moreover, it
now seems that CIS is slightly better than the asymptotic interval CIA which in turn is slightly
better than CIH . Note that the studentized Hall interval has typically the lowest coverage rates
in this situation. Interestingly, it is now the asymptotic interval that is somewhat longer than the
bootstrap intervals CIS and CIH , however, the average length of both methods are much closer
together than in the case of permanent shocks. Also note that the asymptotic and the studentized
Hall interval have about the same length in this example.

As we have a relatively large number of DGPs, we choose to summarize the main results in
a few tables instead of reporting graphs for all the results obtained. The graphical representa-
tion of results for DGP (A) in the foregoing suggests that the relative accuracy of the considered
methods depends on the forecasting horizon h and on the shape of the impulse response function
(transitory vs. permanent shocks). Therefore, we structure the analysis of our results accord-
ingly. To begin with, we report average results for all DGPs and different forecasting horizons
h. We list in Table 2 the average coverage rates, the average lengths and the relative frequen-
cies of correct implied signs for nominal 90% asymptotic and bootstrap confidence intervals
obtained by averaging the quantities over all response functions but over different forecasting
horizons h. For instance, the first panel shows for each DGP averages of the results for all θ̂jk,h

over all horizons h = 0, . . . 48 and all impulse responses j, k = 1, . . . , K, while in the second
panel shows results for h = 0, . . . , 12.

The overall average coverage values in the first panel suggest that the four considered meth-
ods usually lead to intervals with empirical coverage lower than the nominal level. In some
cases, especially for DGPs with many variables (e.g. DGP (D) and (E)), the empirical coverage
is substantially lower (51% compared to 90% nominal coverage), implying that the underlying
estimation uncertainty will be understated. There is not much to choose between the asymp-
totic CIA and the Hall interval CIH . Average coverage for both methods are typically very
similar, an exception is given for DGP (B) where the asymptotic intervals is notably closer to
the nominal level. Interestingly, the studentized Hall interval, CISH , has typically lower cov-
erage rates than the Hall percentile interval (CIH). In contrast, the Efron interval CIS has the
highest average empirical coverage in all considered cases. With exception to the two-variable
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DGP (F), the bootstrap intervals are on average somewhat wider. The coverage advantage of
CIS in comparison to CIH can only be explained by its different location, while location and
length may be the source of the relative advantage with respect to the asymptotic interval CIA

and the studentized Hall interval CISH .
For applied researchers the third evaluation criterion may be the most interesting one. A

particular method is considered to work satisfactory if it is able to indicate the sign of the true
underlying impulse response function with high probability. The corresponding results of our
experiments are summarized in the last four columns of Table 2. Averaging over all horizons
(first panel) we find that the asymptotic and the Hall interval do the best job in indicating the
sign of the impulse response correctly for all but the relatively simple DGP (F), in which the
Efron method is only marginally better than CIA. Note that despite its good coverage proper-
ties, the Efron interval has often the lowest probability of indicating the correct sign. A possible
explanation is that the Efron interval is located such that it includes the zero line, hence indicat-
ing no significant effect, while the underlying response is positive or negative. Moreover, we
find that using the studentized Hall interval does indicate the correct signs less often than using
the Hall percentile interval CIH . This is probably due to its comparably long interval length.

A more disaggregated view on the results is presented in the last four panels of Table 2. In-
stead of averaging over all considered horizons h, we present average results for h = 0, . . . , 12,
h = 13, . . . , 24, h = 25, . . . , 36 and h = 37, . . . , 48 to check whether our results are different
for different horizons. Moving down the table (considering longer horizons), we find a tendency
of increasing coverage rates, sometimes above the nominal level. This may be partly driven by
the long-run zero restrictions on some response functions that also imply ‘more precise’ inter-
vals but visual inspection of Figure 1 also suggests a similar effect for responses to permanent
shocks. The relative performance of the intervals is, however, by and large similar when differ-
ent h are considered. In particular, we still find that the Efron interval has the highest coverage.
The relative length of the intervals only changes considerably for DGP (F) with different h: For
short and medium horizons the asymptotic interval is about twelve times larger than the boot-
strap interval, while it is only three times as wide for large h. Indicating the right sign is easier
for all intervals when h is large. This is due to the fact that some of the responses are close
to zero due to the long-run restrictions which is reflected relatively precisely by the intervals.
Moreover, even responses to permanent shocks may have adjusted to their long-run values for
large h which makes indicating their sign a lot easier. Nevertheless, CIA and CIH still do the
best job in indicating the right sign.

A different view on our results is presented in Table 3, where we distinguish the results
for responses to permanent and transitory shocks. This is instructive because permanent and
transitory shocks have different implications on the shape of the response functions and, con-
sequently, may affect the properties of the corresponding CIs. In Panel I of Table 3 we give
the results derived for responses to permanent shocks. Note that CIS still has average coverage
rates closest to the nominal level for most DGPs. In some cases, however, the studentized Hall
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interval now has highest coverage rates. Moreover, for the permanent shocks CIH and CISH

feature somewhat higher coverage rates than CIA which comes at the price of much wider inter-
vals (an exception is DGPs (F)). Note, however, that CIS indicates the right sign for many DGPs
with only low probability (as low as 23%), i.e. despite its relative accurate coverage the Efron
interval is not very informative about the underlying sign of responses to permanent shocks.
Checking our simulation results more closely, we find that this is due to the relative broad boot-
strap interval which is often located such that it includes the zero line. Indeed, the Efron interval
indicates no significant effect while our true response is considered to have a positive effect on
the variables in the system. While the Hall interval has the same length, it is obviously located
differently, such that it also indicates the right sign more often. CIA, CIH and CISH perform
very similarly with respect to the sign criterion. This result may be somewhat surprising given
that CIA is necessarily symmetric and the Hall intervals can in principle be asymmetric. We
give the results for transitory shocks in Panel II of Table 3. Except for CISH , we now find a clear
tendency for coverage rates to increase in comparison to results in Panel I. In particular, for CIS

we sometimes find higher than nominal coverage. Higher and more similar coverage rates are
probably due to the long-run zero restrictions on the underlying impulse response functions. In
contrast, the studentized Hall interval is much less precise in the case of transitory shocks (see
also Figure 1). Interestingly, we also find comparable interval lengths (except for DGP (F)) and
even cases where the bootstrap intervals CIS and CIH are smaller than the asymptotic interval.
Note, however, that the studentized Hall interval is typically much longer than the asymptotic
one.

In addition, we find that CIS does usually the best job in indicating the response sign. This is
not surprising given that the true sign of responses to transitory shocks is often ‘zero’ and given
that the Efron interval contains the zero more often than the other intervals. We also note that
differences between the strategies in terms of our sign criterion are usually smaller for transitory
than for permanent shocks.

From the results in Table 3 we conclude that CIA, CIS , CIH and CISH for responses to
permanent shocks may be very different. In contrast, our results suggest that different intervals
for responses to transitory shocks are much more alike.

In addition to the results discussed so far, we have also used non-normal errors (skewed and
leptokurtic distributions as in Kilian (1998b)) for generating Monte Carlo time series. Although
one would expect an advantage for the bootstrap method in this situation, the results are very
similar to the ones given in Table 2 and 3. Consequently, they are not given here to conserve
space.

4 Empirical Example

To illustrate the different CI properties discussed in the Monte Carlo comparison of Section 3,
we apply all four CI construction methods in a structural VECM modeling U.S. macroeconomic
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data. In particular, we reconsider the three-variable SVECM first analyzed by King et al. (1991).
The model we estimate is a cointegrated VAR for the log of output qt, the log of consumption
ct and the log of investment it that was also the basis for DGP (A) in Section 3. In other words,
yt = (qt, ct, it)

′.
We apply the usual two-step procedure for estimating the structural VECM. In a first step we

estimate the reduced form VECM. In our case, we follow the original study in specifying the
reduced form model. For this purpose we set the cointegration rank r = 2. The cointegration
vectors are identified such that they may be interpreted as the great ratios between consumption,
investment and income. Our reduced form model is the corresponding estimated VECM with
8 lags of ∆yt and an unrestricted constant. Secondly, we recover the structural shocks by
imposing enough identifying restrictions. In this example with K = 3 variables and with
r = 2 a maximum number of two shocks may have transitory effects (see discussion in Section
2). Consequently, there will be one permanent shock in this system. The permanent shock is
identified by restricting the long-run effects of the last two structural shocks in the system to
zero (as in the original paper by King et al. (1991)). In other words, the identified long-run
impact matrix is given by

C(1)B =



∗ 0 0
∗ 0 0
∗ 0 0


 ,

where ∗ as before denotes unrestricted elements. In our framework, no further identifying as-
sumptions are needed for the permanent shock (see also Breitung et al. (2004)). In contrast to
the original paper we also identify the two transitory shocks for ML estimation of the struc-
tural parameters. To disentangle the two transitory shocks, we need to impose one additional
restriction on the contemporaneous impact matrix B and for illustrative purposes we impose a
recursive structure on the transitory shocks,

B =



∗ ∗ ∗
∗ ∗ 0
∗ ∗ ∗


 ,

i.e. the second transitory shock does not affect the second variable on impact. Using this iden-
tification scheme we estimate the structural parameters in B, the implied structural impulse
response functions and the corresponding asymptotic (CIA), Efron bootstrap (CIS), Hall boot-
strap (CIH) and studentized Hall bootstrap (CISH) intervals with nominal coverage of 95%.
CIS , CIH and CISH have been obtained using 1000 bootstrap draws. Moreover, we have used
100 inner bootstrap replications for constructing the studentized Hall interval.

The impulse response functions together with the three intervals (CIA, CIS , CIH) are given
in Figure 3. The first column shows the response of output, consumption and investment to the
permanent shock. From Figure 3 we find that the three intervals in the first column differ sub-
stantially as we would have expected from our simulation results in Section 3. The symmetric
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asymptotic confidence band CIA indicates a significant positive impact on all three variables.
The Hall interval CIH for the permanent shock is fairly asymmetric. In fact, the lower limit of
the Hall interval is very similar to the lower limit of the asymptotic interval. However, the upper
limit is much bigger than the upper limit of CIA. Consequently, the bootstrap interval is much
wider which illustrates a typical result from our simulation study. Our example also illustrates
that despite fairly different interval length, CIA and CIH suggest at all horizons the same sign
for the response to the permanent shock precisely because of the asymmetry of CIH . Judg-
ing significance according to the Efron interval CIS leads to completely different conclusions.
Note that the upper limit of CIS is very similar to the lower limit of CIA. However, due to the
asymmetry of CIS , the zero line is included in all intervals and consequently no significant re-
sponses can be diagnosed. This illustrates another simulation result, namely that the Efron CIs
contain the zero line more often than the other methods and consequently are less informative
with respect to the sign of the impulse responses.

Visual inspection of the responses to transitory shocks reveals that the three intervals are
much more alike than in the case of permanent shocks. In particular, we find that for h > 8 all
three intervals allow the same interpretation of the impulse responses. However, as in the case
of permanent shocks, the Efron interval CIS includes the zero line almost always, hence being
again not very informative with respect to the sign.

Figure 4 shows a comparison between the Hall percentile interval (CIH) and the studentized
Hall interval (CISH). It is evident from that figure that the studentized Hall interval is wider
and much more asymmetric than CIH . In line with the results from Figure 3, also the two Hall
intervals are much more alike for the two transitory shocks.

5 Concluding Remarks

We have investigated the finite sample properties of different confidence interval construction
methods in the framework of structural vector error correction models (SVECMs) by means of
a Monte Carlo study. We have focused on the comparison of four methods that have been often
used in practice for constructing SVECM impulse response CIs but whose finite sample prop-
erties have been unknown to date. In the Monte Carlo design, we have included DGPs that are
based on empirical SVECM studies. Therefore, we have covered a wide range of models with
typical size, dynamics and identification schemes. We find that all methods produce coverage
rates slightly below the nominal level for short response horizons. In addition, we also find a
tendency of increasing coverage at larger horizons. This suggests that all intervals are more
accurate at medium and long-run horizons.

Our comparison of alternative methods leads to different results for responses to perma-
nent and transitory shocks: If responses to permanent shocks are analyzed, the four considered
methods may lead to substantially different confidence intervals. We find that asymptotic and
Hall percentile bootstrap intervals have similar coverage rates. Although the former interval
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is usually asymmetric and much wider, both indicate the right sign of the underlying response
equally often and allow similar interpretations. In contrast, despite its relatively good coverage
properties the Efron bootstrap interval includes the zero line more often and consequently indi-
cates the correct sign less often. Moreover, according to our simulation results the studentized
Hall bootstrap interval typically does not show its theoretical advantages in terms of coverage,
interval length and its ability to indicate the right sign. Interestingly, the intervals for responses
to transitory shocks are much more alike. All methods (with the exception of the studentized
Hall interval) have similar coverage properties and produce intervals of comparable length in
this case. We have presented an empirical example based on a three-dimensional SVECM for
U.S. data which illustrates our main findings from the simulation study.

Based on our Monte Carlo evidence, it appears that applied researchers have little to choose
between the asymptotic and the Hall bootstrap intervals in SVECMs. In contrast, the Efron
bootstrap interval may be less suitable for applied work as it is less informative about the sign
of the underlying impulse response function. Moreover, the computationally demanding stu-
dentized Hall interval does not show its theoretical advantage and is often outperformed by the
other methods.

An interesting result is the remarkable accuracy of asymptotic interval even in models with
many variables and lags. Even if the error distribution is skewed or leptokurtic, gains from
using bootstrap methods are apparently very limited. These results are in contrast to results
from previous studies for unrestricted VARs by e.g. Kilian (1998b) who finds that bootstrap
methods usually produce much more accurate confidence intervals.
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Table 1: DGPs based on empirical VECMs
K r p modulia

DGP (A): 3 2 9 y′t = (ct, it, qt), β′ =
(

1 0 −1
0 1 −1

) 1.00; 0.93; 0.90; 0.84;
0.82; 0.81; 0.80; 0.79;
0.70; 0.68; 0.66; 0.65;
0.54

Structural identification:

C(1)B =



∗ 0 0
∗ 0 0
∗ 0 0


 , B =



∗ ∗ ∗
∗ ∗ 0
∗ ∗ ∗


, Ref.: King et al. (1991)

DGP (B): see DGP (A) but with p = 2.
1.00; 0.90; 0.76; 0.32;
0.28;

DGP (C): 6 3 9 y′t = (ct, it,mt, qt, R, ∆pt),

β′ =




1 0 0 −1.13 0.003 0.009
0 1 0 −1.06 −0.001 0.005
0 0 1 −0.97 0.016 −0.031




1.00; 1.00; 1.00; 0.94;
0.92; 0.91; 0.90; 0.89;
0.88; 0.87; 0.84; 0.83;
0.82; 0.81; 0.78; 0.79;
0.77; 0.66; 0.09;

Structural identification:

C(1)B =




∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ 0 0 0 0




, B =




∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




, Ref.: King et al. (1991)

DGP (D): see DGP (C) but with p = 2.
1.00; 1.00; 1.00; 0.89;
0.75; 0.52; 0.39; 0.34;
0.18; 0.02;

DGP (E): 5 3 2 y′t = (m3t, πt, R
s
t , yt, R

l),

β′ =




1 0 0 −1.36 0.10
0 1 0 0.07 −0.51
0 0 1 0.03 −0.77


 1.00; 0.92; 0.70; 0.57

0.36; 0.28;

Structural identification:

C(1)B =




∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ 0 0 0
∗ ∗ 0 0 0
∗ ∗ 0 0 0




, B =




∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




, Ref.: Coenen & Vega (2001)

DGP (F): 2 1 7 y′t = (πt, Ut), β′ = (1,−1)
1.00; 0.92; 0.76; 0.74
0.72; 0.66; 0.63

Structural identification: C(1)B =
(∗ 0
∗ 0

)
, B =

(∗ ∗
∗ ∗

)
, Ref.: Ribba (2003b)

Note: The remaining VECM parameters for DGPs (A) to (F) are obtained by estimating a VECM with
p − 1 lags of ∆yt for given β. An unrestricted constant is included in all models. aEntries are the
moduli of the nonzero eigenvalues of the respective VAR companion matrix. Structural identification:
∗ denotes an unrestricted element.
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Table 2: Average coverage rate, length and relative frequency of correct implied sign for nomi-
nal 90% asymptotic and bootstrap confidence intervals

Coverage EC Length AL Sign CS

DGP h CIA CIS CIH CISH
ALA

ALH

ALA

ALSH
CIA CIS CIH CISH

(A) 0 - 48 0.859 0.896 0.841 0.816 0.942 0.915 0.885 0.794 0.839 0.812
(B) 0 - 48 0.750 0.862 0.685 0.677 0.906 0.536 0.865 0.710 0.808 0.752
(C) 0 - 48 0.732 0.823 0.729 0.714 0.815 0.789 0.776 0.765 0.734 0.710
(D) 0 - 48 0.573 0.644 0.569 0.507 0.902 0.631 0.832 0.738 0.799 0.751
(E) 0 - 48 0.680 0.727 0.665 0.619 0.858 0.715 0.837 0.802 0.763 0.658
(F) 0 - 48 0.847 0.844 0.843 0.893 5.215 0.631 0.931 0.947 0.882 0.773
(A) 0 - 12 0.796 0.814 0.730 0.754 1.008 0.847 0.719 0.666 0.678 0.677
(B) 0 - 12 0.780 0.854 0.681 0.679 0.946 0.803 0.754 0.665 0.664 0.631
(C) 0 - 12 0.615 0.722 0.622 0.645 0.808 0.697 0.661 0.765 0.621 0.616
(D) 0 - 12 0.665 0.727 0.605 0.569 0.864 0.827 0.697 0.616 0.647 0.603
(E) 0 - 12 0.665 0.716 0.665 0.634 0.791 0.711 0.741 0.691 0.670 0.626
(F) 0 - 12 0.857 0.918 0.849 0.926 12.505 0.523 0.833 0.833 0.611 0.364
(A) 13 - 24 0.872 0.920 0.829 0.800 0.976 0.923 0.888 0.818 0.802 0.775
(B) 13 - 24 0.784 0.885 0.726 0.676 0.882 0.672 0.901 0.725 0.819 0.718
(C) 13 - 24 0.747 0.860 0.731 0.711 0.813 0.774 0.774 0.780 0.724 0.698
(D) 13 - 24 0.620 0.672 0.601 0.520 0.879 0.767 0.854 0.755 0.807 0.728
(E) 13 - 24 0.681 0.736 0.649 0.614 0.870 0.742 0.806 0.841 0.700 0.601
(F) 13 - 24 0.823 0.873 0.788 0.915 12.266 0.514 0.850 0.868 0.649 0.236
(A) 25 - 36 0.883 0.924 0.892 0.840 0.914 0.942 0.965 0.848 0.924 0.878
(B) 25 - 36 0.736 0.863 0.679 0.673 0.898 0.428 0.908 0.728 0.872 0.810
(C) 25 - 36 0.782 0.865 0.775 0.739 0.824 0.831 0.829 0.806 0.781 0.747
(D) 25 - 36 0.532 0.608 0.555 0.479 0.905 0.539 0.891 0.792 0.869 0.824
(E) 25 - 36 0.686 0.728 0.670 0.612 0.889 0.724 0.889 0.840 0.810 0.668
(F) 25 - 36 0.800 0.818 0.763 0.888 7.524 0.570 0.853 0.868 0.858 0.691
(A) 37 - 48 0.889 0.933 0.923 0.875 0.865 0.950 0.979 0.854 0.964 0.930
(B) 37 - 48 0.698 0.845 0.654 0.682 0.895 0.240 0.908 0.728 0.889 0.860
(C) 37 - 48 0.794 0.852 0.799 0.764 0.815 0.860 0.852 0.806 0.819 0.786
(D) 37 - 48 0.466 0.562 0.514 0.457 0.963 0.373 0.897 0.799 0.885 0.863
(E) 37 - 48 0.687 0.728 0.694 0.615 0.889 0.682 0.919 0.846 0.880 0.741
(F) 37 - 48 0.830 0.856 0.823 0.880 3.402 0.418 0.959 0.977 0.949 0.842
Note: CIA, CIS , CIH and CISH denote the asymptotic, the standard percentile interval, the Hall percentile
and the studentized Hall interval (see Sections 2.1 and 2.2). ALA/ALH and ALA/ALSH are the relative average
interval lengths. Results are based on DGPs (A) to (F) given in Table 1. Table entries are based on averaging
the respective quantity over all response functions in the system and over horizons h given in the second
column.
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Table 3: Average coverage rate, length and relative frequency of correct implied sign for nomi-
nal 90% asymptotic and bootstrap confidence intervals: permanent vs. transitory shocks

Panel I: Permanent Shocks

Coverage EC Length AL Sign CS

DGP h CIA CIS CIH CISH
ALA

ALH

ALA

ALSH
CIA CIS CIH CISH

(A) 0 - 48 0.762 0.802 0.833 0.862 0.665 0.554 0.870 0.539 0.872 0.872
(B) 0 - 48 0.679 0.906 0.680 0.702 0.310 0.235 0.719 0.228 0.711 0.708
(C) 0 - 48 0.570 0.693 0.616 0.630 0.711 0.597 0.637 0.549 0.620 0.619
(D) 0 - 48 0.561 0.647 0.576 0.572 0.582 0.527 0.731 0.510 0.730 0.728
(E) 0 - 48 0.596 0.628 0.628 0.649 0.745 0.578 0.762 0.602 0.735 0.701
(F) 0 - 48 0.842 0.880 0.820 0.911 9.921 0.638 0.891 0.899 0.898 0.542

Panel II: Transitory Shocks

Coverage EC Length AL Sign CS

DGP h CIA CIS CIH CISH
ALA

ALH

ALA

ALSH
CIA CIS CIH CISH

(A) 0 - 48 0.907 0.943 0.846 0.793 1.081 1.097 0.892 0.921 0.822 0.793
(B) 0 - 48 0.786 0.839 0.688 0.665 1.204 0.692 0.938 0.952 0.857 0.774
(C) 0 - 48 0.848 0.916 0.811 0.773 0.889 0.926 0.876 0.919 0.816 0.775
(D) 0 - 48 0.581 0.642 0.565 0.462 1.130 0.705 0.904 0.901 0.847 0.768
(E) 0 - 48 0.727 0.782 0.686 0.602 0.922 0.791 0.879 0.914 0.779 0.634
(F) 0 - 48 0.814 0.855 0.793 0.895 8.074 0.375 0.856 0.873 0.629 0.518

Note: CIA, CIS , CIH and CISH denote the asymptotic, the standard percentile interval, the Hall percentile
and the studentized Hall interval (see Sections 2.1 and 2.2). ALA/ALH and ALA/ALSH are the relative average
interval lengths. Results are based on DGPs (A) to (F) given in Table 1. Entries in Panel I are obtained by
averaging the respective quantity over all response functions to permanent shocks in the system and over
horizons h given in the second column. Accordingly, Panel II gives the results from averaging over results
for transitory shocks.
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Figure 1: Empirical coverage of different impulse response intervals. Results for DGP (A)
from Table 1 based on 1000 Monte Carlo replications with 500 bootstrap draws each. 100 inner
bootstrap replications have been used for the studentized Hall interval. Nominal coverage is
90%.
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Figure 2: Average length of different impulse response intervals. Results for DGP (A) from
Table 1 based on 1000 Monte Carlo replications with 500 bootstrap draws each. 100 inner
bootstrap replications have been used for the studentized Hall interval. Nominal coverage is
90%.
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ε3 → i

Figure 3: 95% impulse response intervals in SVECM for the log output qt, the log of consump-
tion ct and the log of investment it. Point estimate (—), asymptotic interval CIA (- - -), Hall
bootstrap interval CIH (+ · · · + · · ·+) and Efron bootstrap interval CIS (♦ · · ·♦ · · ·♦). The
bootstrap intervals are based on 1000 bootstrap replications.
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ε1 → q
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ε1 → i

ε2 → q
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ε3 → q

ε3 → c

ε3 → i

Figure 4: 95% impulse response intervals in SVECM for the log output qt, the log of con-
sumption ct and the log of investment it. Point estimate (—), Hall bootstrap interval CIH

(+ · · · + · · ·+) and studentized Hall bootstrap interval CISH (4−−4−−4). The bootstrap
intervals based on 1000 bootstrap replications. 100 inner bootstrap replications have been used
for the studentized Hall interval.
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A Asymptotic Distribution of Structural Impulse Responses

The structural impulse response coefficients defined in Section 2.1 are given by

Θi = ΦiB. (A.1)

The corresponding estimated quantities are asymptotically normal as they are nonlinear func-
tions of asymptotically normal parameter estimators. More precisely,

√
Tvec(Θ̂i −Θi) → N(0, ΣΘi

). (A.2)

Vlaar (2004a) gives an explicit expression for the covariance matrix. Let Σγ = Σ−1
∆Y ⊗ Σu be

the covariance matrix of the VEC parameters, where Σ∆Y = plim ZZ ′/T with the definition
of Zt := (∆y′t, . . . , ∆y′t−p+2, β

′yt) and Z := (Z0, . . . , ZT−1)
′. Moreover, let ΣγB

be the covari-
ance matrix of the free structural parameters γB, which can be computed as the inverse of the
information matrix of γB in (2.3) (see also Amisano & Giannini (1997) for precise expressions).
Then the covariance matrix in (2.8) has the following structure.

ΣΘi
= (Fi + Gi)Σγ(Fi + Gi)

′ + HiΣγB
H ′

i, (A.3)

with F0 = 0,

Fi =
i−1∑
m=0

B′J(A′)i−1−mW ⊗ JAmJ ′, i = 1, 2, . . . , (A.4)

where J = (IK , 0, . . . , 0) is a K ×Kp matrix,

A :=




A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0
0 IK 0 0
... . . . ...

...
0 0 . . . IK 0




is the companion matrix of the VAR in levels corresponding to the VECM and W is the matrix
that relates the VAR parameters to the VEC parameters defined as

W :=




IK 0 · · · 0 0 IK

−IK IK
. . . 0 0 0

... . . . . . . . . . . . . ...

0 0 . . . −IK IK 0
0 0 0 0 −IK 0




(
IK(p−1) 0

0 β

)
.

Furthermore,

Hi = (IK ⊗ JAiJ ′)R⊥, i = 0, 1, . . . , (A.5)
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where R⊥ is an orthogonal complement of the restriction matrix R = [R∗′
l , R′

s]
′ and

Gi = (IK ⊗ JAiJ ′)Ḡ, i = 0, 1, . . . , (A.6)

where Ḡ is a complicated expression that involves the extra derivatives due to the stochastic
nature of the restriction matrix R. An explicit expression of Ḡ is derived by Vlaar (2004a) and
is given here for completeness:

Ḡ =− (IK2 −R′
⊥(R⊥(B′ ⊗ IK)(IK2 + KKK)(B⊗ IK)R′

⊥)−1R⊥(B′ ⊗ IK)

× (IK2 + KKK)(B⊗ IK))(vec(B)′ ⊗R+)

×
(

IK2 ⊗
(

Il

0s×l

)
Rl

) (
IK3 0K3×K

)

×


1K ⊗




1 0K 0K(K−1)

0K2 1 . . . 1
0K(K−1) 0K





⊗ IK

× [
(1′p−1 ⊗ C(1)′), (C(1)′Ψ′ − IK)α(α′α)−1]⊗ C(1),

(A.7)

where KKK is a K2 × K2 commutation matrix defined such that for any K × K matrix
M , vec(M ′) = KKKvec(M), R+ is the Moore-Penrose inverse of R and 1K denotes a K-
dimensional vector of ones. In addition, l and s denote the number of rows of Rl and Rs,
respectively.
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