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Graphical data representation is an important tool for model selection in
bankruptcy analysis since the problem is highly non-linear and its numeri-
cal representation is much less transparent. In classical rating models a con-
venient representation of ratings in a closed form is possible reducing the
need for graphical tools. In contrast to that non-linear non-parametric mod-
els achieving better accuracy often rely on visualisation. We demonstrate an
application of visualisation techniques at different stages of corporate default
analysis based on Support Vector Machines (SVM). These stages are the se-
lection of variables (predictors), probability of default (PD) estimation and
the representation of PDs for two and higher dimensional models with colour
coding. It is at this stage when the selection of a proper colour scheme be-
comes essential for a correct visualisation of PDs. The mapping of scores into
PDs is done as a non-parametric regression with monotonisation. The SVM
learns a non-parametric score function that is, in its turn, non-parametrically
transformed into PDs. Since PDs cannot be represented in a closed form,
some other ways of displaying them must be found. Graphical tools give this
possibility.

Keywords: company rating, default probability, support vector machines,
colour coding

JEL classification: C14, G33, C45
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1 Company Rating Methodology

Application of statistical techniques to corporate bankruptcy started in the
60’s with the development of computers.1 The first technique introduced was
discriminant analysis (DA) for univariate [3] and multivariate models [1]. Af-
ter DA the logit and probit models were introduced in [14] and [16]. Nowadays
these models are widely used in practice, i.e. they are at the core of the rat-
ing solutions at most European central banks. The solution in the traditional
framework is a linear function (a hyperplane in a multidimensional feature
space) separating successful and failing companies. A company score is com-
puted as a value of that function. In the case of the probit and logit models the
score can be directly transformed into a probability of default (PD), which de-
notes the probability with which a company can go bankrupt within a certain
period. The major disadvantages of these popular approaches is the linearity
of the solution and, in the case of logit and probit models, the prespecified
form of the link function between PDs and the linear combination of predictors
(Figure 1).

In Figure 1 successful and failing companies are denoted with black trian-
gles and white quadrangles respectively. There is an equal number of compa-
nies of both classes in the sample. Following the DA and logit classification
rule, which give virtually the same result, we are more likely to find a fail-
ing company above and to the right from the straight line. This may lead to
a conclusion that companies with significantly negative values of operating
profit margin and equity ratio can be classified as successful. This, for exam-
ple, allows for companies with liabilities much greater than total assets to be
classified as successful. Such a situation is avoided by using a non-linear clas-
sification method, such as the SVM, which produces a non-linear boundary.

Following a traditional approach we would expect a monotonic relationship
between predictors and PDs, like the falling relation for the interest coverage
ratio (Figure 2). However, in reality this dependence is often non-monotonic
as for such important indicators as the company size or net income change. In
the latter case companies that grow too fast or too slow have a higher prob-
ability of default. That is the reason for contemplating non-linear techniques
as alternatives. Two prominent examples are recursive partitioning [4] and
neural networks [17]. Despite the strength of the two approaches they have
visible drawbacks: orthogonal division of the data space in recursive parti-
tioning that is usually not justified and heuristic model specification in neural
networks.

1 The authors are grateful to the German Bundesbank for providing access to
the unique database of the financial statements of German companies. The data
analysis took place on the premises of the German Bundesbank in Frankfurt. The
work of R. A. Moro was financially supported by the German Academic Exchange
Service (DAAD) and German Bundesbank. This research was supported by the
Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.
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Fig. 1. A classification example. The boundary between the classes of solvent and
insolvent companies was estimated using DA and logit regression (two indistinguish-
able linear boundaries) and an SVM (a non-linear boundary).
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Fig. 2. One year cumulative PDs evaluated for several financial ratios on the Ger-
man Bundesbank data. The ratios are net income change, K21 (gray), net interest
ratio, K24 (red), interest coverage ratio, K29 (pink) and logarithm of total assets,
K33 (blue). The k-nearest-neighbours procedure was used with the size of the win-
dow being around 8% of all observations. The total number of observations is 553500.
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Recursive partitioning, also known as classification and regression trees
(CART) performs classification by orthogonally dividing the data space. At
each step only a division (split) along one of the axes is possible. The axis
is chosen such, that a split along it reduces the variance in each of the sub-
spaces and maximises the variance between them. Entropy based criteria can
also be used. The visible drawback is the orthogonal division itself which im-
poses severe restrictions on the smoothness of the classifying function and
may not adequately capture the correlation structure between the variables.
Orthogonal division means that the separating hyperplane can only consist
of orthogonal segments parallel to the coordinate grid, whereas the boundary
between the classes has a smoothly changing gradient.

The neural network (NN) is a network of linnear classifiers (neurons)
that are connected with one another in a prespecified way. The outputs of
some of the neurons are inputs for others. The performance of a NN greatly
depends on its structure that must be adapted for solving different problems.
The network must be designed manually that requires a substantial experience
from the operator. Moreover, NNs mostly do not povide a global solution but
only a local one. This feature, as well as too much heuristics create many
obstacles on the way of using NNs at the rating departments of banks.

We would like to have a model that is able to select a classifying function
based on very general criteria. The SVM is a statistical technique that in many
applications, such as optical character recognition and medical diagnostics,
showed very good performance. It has a flexible solution and is controlled by
adjusting only few parameters. Its overall good performance and flexibility
make the SVM a suitable candidate [9].

Within a rating methodology each company is described by a set of vari-
ables x, such as financial ratios. Financial ratios, such as debt ratio (leverage)
or interest coverage (earnings before interest and taxes to interest) charac-
terise different sides of company operation. They are constructed on the basis
of balance sheets and income statements. For example, the Bundesbank uses
32 ratios (predictors) computed using the company statements from its cor-
porate bankruptcy data base. The predictors and basic statistics are given in
Table 1. The whole Bundesbank data base covers the period 1987–2005 and
consists of 553500 anonymised statements of solvent and insolvent companies.
Most companies appear in the database several times in different years.

The class y of a company can be either y = −1 (‘successful’) or y = 1
(‘bankrupt’). Initially, an unknown classifier function f : x → y is estimated
on a training set of companies (xi, yi), i = 1, ..., n. The training set represents
the data for companies which are known to have survived or gone bankrupt. In
order to obtain PDs from the estimated scores f , rating practitioners usually
rely on prespecified rating classes (i.e. BBB, C, AA, etc.). A certain range of
scores and PDs belong to each rating class. The ranges are computed on the
basis of historical data. To derive a PD for a newly scored company its score
f is compared with the historical values of f ’s for each class. Basing on the
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similarity of the scores a company is assigned to one particular class. The PD
of this class becomes the PD of the company.
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Fig. 3. One year probabilities of default for different rating grades [5].

Company bond ratings play an important role in determining the cost of
debt refinancing since they reflect the probability of defaulting on the debt
(Figure 3). One can notice that the differences between the classes in terms
of PDs are not the same. For example, the PD increases by 6.7% or 24 times
between classes BBB and B, but only by 0.07 or 8 times between classes AAA
und A. The colours for coding PDs must be selected so that perceptually the
classes would look equidistant, no matter what their absolute PD is. This
can be achieved by using an appropriate colour scheme and colour distance
scaling. The use of the HLS colour scheme in combination with a logarithmic
colour scaling will be demonstarated in section 6.

2 The SVM Approach

The SVM [18] is a regression (and classification) technique that is based on
margin maximisation (Figure 4) between two data classes. The margin is
the distance between the hyperplanes bounding each class where in a linear
perfectly separable case no observation may lie. The classifier function used
by the linear SVM is a hyperplane symmetrically surrounded with a margin
zone. It can be shown [9] that by maximising the margin one reduces the
complexity of such a classifier. By applying kernel techniques the SVM can
be extended to learn non-linear classifying functions (Figure 5).

In Figure 4 misclassifications are unavoidable when using linear classify-
ing functions (linearly non-separable case). To account for misclassifications
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Fig. 4. The separating hyperplane x⊤w + b = 0 and the margin in a non-separable
case. The observations marked with bold crosses and zeros are support vectors. The
hyperplanes bounding the margin zone equidistant from the separating hyperplane
are represented as x⊤w + b = 1 and x⊤w + b = −1.
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Fig. 5. Mapping from a two-dimensional data space into a three-dimensional space
of features R

2 7→ R
3 using a quadratic kernel function K(xi, xj) = (x⊤

i xj)
2. The

three features correspond to the three components of a quadratic form: x̃1 = x2

1, x̃2 =√
2x1x2 and x̃3 = x2

2, thus, the transformation is Ψ(x1, x2) = (x2

1,
√

2x1x2, x
2

2)
⊤. The

data separable in the data space with a quadratic function will be separable in the
feature space with a linear function. A non-linear SVM in the data space is equivalent
to a linear SVM in the feature space. The number of features will grow fast with d
and the degree of the polynomial kernel p, which equals 2 in our example, making
the closed-form representation of Ψ such as here practically impossible
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the penalty ξi is introduced, which is related to the distance from the hyper-
plane bounding observations of the same class to observation i. ξi > 0 if a
misclassification occurs. All observations satisfy the following two constraints:

yi(x
⊤
i w + b) ≥ 1 − ξi, (1)

ξi ≥ 0. (2)

With the normalisation of w, b and ξi as in (1) the margin equals to 2/ ‖w‖.
The convex objective function to be minimised given the constraints (1) and
(2) is:

1

2
‖w‖

2
+ C

n∑

i=1

ξi. (3)

The parameter C called capacity is related to the width of the margin
zone. The smaller the C is, the bigger margins are possible. Using well estab-
lished theory for optimisation of convex functions [6] we can derive the dual
Lagrangian:

LD =
1

2
w(α)⊤w(α) −

n∑

i=1

αi −

n∑

i=1

δiαi +

n∑

i=1

γi (αi − C) − β

n∑

i=1

αiyi (4)

for the dual problem:
min

αi,δi,γi,β
max

wk,b,ξi

LD, (5)

Here for a linear SVM:

w(α)⊤w(α) =

n∑

i=1

n∑

j=1

αiαjyiyjx
⊤
i xj . (6)

For obtaining non-linear classifying functions in the data space a more general
form is applicable:

w(α)⊤w(α) =

n∑

i=1

n∑

j=1

αiαjyiyjK(xi, xj). (7)

The function K(xi, xj) is called a kernel function. Since it has a closed form
representation, the kernel is a convenient way of mapping low dimensional data
into a highly dimensional (often infinitely dimensional) space of features. It
must satisfy the Mercer conditions [15], i.e. be symmetric and semipositive
definite or, in other words, represent a scalar product in some Hilbert space
[19].

In our study we applied an SVM with an anisotropic Gaussian kernel

K(xi, xj) = exp
{
−(xi − xj)

⊤r−2Σ−1(xi − xj)/2
}

, (8)

where r is a coefficient and Σ is a variance-covariance matrix. The coefficient
r is related to the complexity of classifying functions: the hgher the r is, the
lower is the complexity. If kernel functions allow for sufficiently rich feature
spaces, the performances of SVMs are comparable in terms of out-of-sample
forecasting accuracy [18].
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3 Company Score Evaluation

The company score is computed as:

f(x) = x⊤w + b, (9)

where w =
∑n

i=1
αiyixi and b = 1

2
(x+ + x−)⊤w; x+ and x− are the obser-

vations from the opposite classes for which constraint (1) becomes equality.
By substituting the scalar product with a kernel function we will derive a
non-linear score function:

f(x) =

n∑

i=1

K(xi, x)αiyi + b. (10)

The non-parametric score function (10) does not have a compact closed
form representation. This necessitates the use of graphical tools for its visu-
alisation.

4 Variable Selection

In this section we describe the procedure and the graphical tools for selecting
the variables of the SVM model used in forecasts. We have two most im-
portant criteria of model accuracy: the accuracy ratio (AR), which will be
used here as a criterion for model selection, (Figure 6) and the percentage of
correctly classified out-of-sample observations. Higher values indicate better
model accuracy.
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Fig. 6. The power curves for a perfect (green), random (red) and some real (blue)
classification models. The AR is the ratio of two areas A/B. It lies between 0 for a
random model with no predictive power and 1 for a perfect model.
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We start model selection from the simplest, i.e. univariate models and
then pick up the one with the highest AR. The problem that arises is how
to determine the variable which provides the highest AR across possible data
samples. For a parametric model we would need to estimate the distribution
of the coefficients at the variables and, hence, their confidence intervals. This
approach, however, is practically irrelevant for non-parametric models.

Instead we can compare goodness of models with respect to some accuracy
measure, in our case AR. Firstly we will estimate the distributions of AR for
different models. This can be done using bootstrapping [12]. We randomly
select training and validation sets as subsamples of 500 solvent and 500 in-
solvent companies each. We used the 50/50 ratio since this is the worst case
with the minimum AR. The two sets are not overlapping, i.e. do not contain
common observations. For each of these sets we apply the SVM with parame-
ters that provide the highest AR for bivariate models (Figure 7) and estimate
ARs. Then we perform a Monte Carlo experiment: repeat the generation of
subsamples and computing of ARs 100 times. Each time we will record the
ARs and then estimate their distribution.

At the end of this procedure we obtain an empirically estimated distribu-
tion of AR on bootstrapped subsamples. The median AR provides a robust
measure to compare different variables as predictors. The same approach can
be used for comparing SVM with DA and logit regression in terms of predic-
tive power. We compute AR for the same subsamples with the SVM, DA and
logit models. The median improvements in AR for the SVM over DA and the
SVM over the logistic regression are also reported below.

We will start this procedure with all univariate models with 33 variables
K1-K9, K11-K33 as they are denoted at the Bundesbank and variable K10,
which is a standard normal random variable used as a reference (Table 1).
For each model the resulting distribution of ARs will be represented as box
plots (Figure 8). The red line depicts medians. The box within each box plot
shows the interquartile range (IQR), while the whiskers span to the distance
of 3/2 IQR in each direction from the median. Outliers beyond that range are
denoted with circles.

Basing on Figure 8 we can conclude that variables K5 (Debt Cover) and
K29 (Interest Coverage Ratio) provide the highest median AR around 50%.
We can also notice that variables K12, K26 and K28 have a very low accuracy:
their median ARs do not exceed 11.5%. The model based on random variable
K10 has AR equal zero, in other words, it has no predictive power whatsoever.
For the next step we will select variable K5 that was included in the best
univariate model.

For bivariate models we will select the best predictor from the univariate
models (K5) and one of the rest that delivers the highest AR (K29) (Figure
9). This procedure will be repeated for each new variable added. The AR is
growing until the model has eight variables, then it slowly declines. Median
ARs for the models with eight variables are shown in Figure 10.
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Accuracy Ratio
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Fig. 7. The relationship between an accuracy measure (AR) and the coefficient r
in the SVM formulation. Higher r’s correspond to less complex models. The median
ARs were estimated on 100 bootstrapped subsamples of 500 solvent and 500 insol-
vent companies both in the training and validation sets. A bivariate SVM with the
variables K5 and K29 was used. We will be using r = 4 in all SVMs used in this
chapter.

We have also conducted experiments with subsamples of the size of 5000
observations. The change of median was extremely small (one–two orders of
magnitude smaller than the interquartile range). The interquartile range got
narrower as it was expected, i.e. the difference between models with bigger
samples is only more statistically significant. Thus, proving that if the differ-
ence is significant on a sample of 1000 observations, it can be guaranteed that
this will remain so for bigger samples.

The SVM based on variables K5, K29, K7, K33, K18, K21, K24, K33 and
K9 attains the highest median AR of around 60.0%. For comparison we plot
an improvement in AR for the SVM vs. DA and logit regression on the same
100 subsamples. The data used in the DA and logit models were processed
as following: if xi < q0.05(xi) then xi = q0.05(x) and if xi > q0.95(xi) then
xi = q0.95(xi); i = 1, 2, . . . , 8; qα(xi) is an α quantile of xi. Thus, the DA and
logit regression applied were robust versions not sensitive to outliers. Without
such a procedure the improvement would be much higher.
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Table 1. Summary Statistics. qα is an α quantile. IQR is the interquartile range.

Var. Name Group q0.01 Median q0.99 IQR

K1 Pre-tax profit margin Profitability -26.9 2.3 78.5 5.9
K2 Operating profit margin Profitability -24.6 3.8 64.8 6.3
K3 Cash flow ratio Liquidity -22.6 5.0 120.7 9.4
K4 Capital recovery ratio Liquidity -24.4 11.0 85.1 17.1
K5 Debt cover Liquidity -42.0 17.1 507.8 34.8
K6 Days receivable Activity 0.0 31.1 184.0 32.7
K7 Days payable Activity 0.0 23.2 248.2 33.2
K8 Equity ratio Financing 0.3 14.2 82.0 21.4
K9 Equity ratio (adj.) Financing 0.5 19.3 86.0 26.2
K10 Random Variable Test -2.3 0.0 2.3 1.4
K11 Net income ratio Profitability -29.2 2.3 76.5 5.9
K12 Leverage ratio Leverage 0.0 0.0 164.3 4.1
K13 Debt ratio Liquidity -54.8 1.0 80.5 21.6
K14 Liquidity ratio Liquidity 0.0 2.0 47.9 7.1
K15 Liquidity 1 Liquidity 0.0 3.8 184.4 14.8
K16 Liquidity 2 Liquidity 2.7 63.5 503.2 58.3
K17 Liquidity 3 Liquidity 8.4 116.9 696.2 60.8
K18 Short term debt ratio Financing 2.4 47.8 95.3 38.4
K19 Inventories ratio Investment 0.0 28.0 83.3 34.3
K20 Fixed assets ownership r. Leverage 1.1 60.6 3750.0 110.3
K21 Net income change Growth -50.6 3.9 165.6 20.1
K22 Own funds yield Profitability -510.5 32.7 1998.5 81.9
K23 Capital yield Profitability -16.7 8.4 63.1 11.0
K24 Net interest ratio Cost struct. -3.7 1.1 36.0 1.9
K25 Own funds/pension prov. r. Financing 0.4 17.6 84.0 25.4
K26 Tangible asset growth Growth 0.0 24.2 108.5 32.6
K27 Own funds/provisions ratio Financing 1.7 24.7 89.6 30.0
K28 Tangible asset retirement Growth 1.0 21.8 77.8 18.1
K29 Interest coverage ratio Cost struct. -1338.6 159.0 34350.0 563.2
K30 Cash flow ratio Liquidity -14.1 5.2 116.4 8.9
K31 Days of inventories Activity 0.0 42.9 342.0 55.8
K32 Current liabilities ratio Financing 0.3 58.4 98.5 48.4
K33 Log of total assets Other 4.9 7.9 13.0 2.1

Figure 11 represents the absolute improvement for SVM over robust DA
(upper line) and SVM over robust logit regression (lower line). We can see
that for all models containing variables K5, K29, K7, K33, K18, K21, K24
and one of the remaining variables the median AR was always higher for the
SVM. Thus, the SVM model is always dominating in accuracy DA and logit
regression with regard to AR.
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Fig. 8. Accuracy ratios for univariate SVM models. Box-plots are estimated basing
on 100 random subsamples. The AR for the model containing only random variable
K10 is zero.

5 Conversion of Scores into PDs

There is another way to look at the company score. It defines the distance
between companies in terms of the distance to the boundary between the
classes. The lower is the score, the farther is a company from the class of
bankrupt companies, therefore, we can assume, the lower PD it must have.
This means that the dependence between scores and PDs is assumed to be
monotonous. This is the only kind of dependence that was assumed in all
rating models mentioned in this chapter and the only one we use for PD
calibration.

The conversion procedure consists of the estimation of PDs for the obser-
vation of the training set with a subsequent monotonisation (step one and
two) and the computation of a PD for some new company (step three).

Step one is the estimation of PDs for the companies of the training set.
We used kernel techniques to preliminary evaluate PDs for observation i from
the training set, i = 1, 2, . . . , n:

P̃D(xi) =

∑n
j=1

Kh(xi, xj)I{yj=1}∑n
j=1

Kh(xi, xj)
(11)
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Fig. 9. Accuracy ratios for bivariate SVM models. Each model includes variable K5
and one of the remaining. Box-plots are estimated basing on 100 random subsamples.

Here a k-nearest-neighbour Gaussian kernel was used. h is the kernel band-
width.

The preliminary PDs evaluated in this way are not necessarily a mono-
tonical function of the score. The monotonisation of P̃Di, i = 1, 2, . . . , n is
achieved at step two using the Pool Adjacent Violator (PAV) algorithm ([2]
and [13]). As a result we obtain monotonised probabilities of default PD(xi)
for the observations of the training set.

Finally, at step three the PDs are computed for any observation described
with x as an interpolation between two PDs of the neighbouring, in terms of
the score, observations from the training set, xi and xi−1, i = 2, 3, . . . , n:

PD(x) = PD(xi) +
f(x) − f(xi−1)

f(xi) − f(xi−1)
{PD(xi) − PD(xi−1)} . (12)

If the score for an observation x lies beyond the range of scores for the training
set, then PD(x) equals to the score of the first neighbouring obseration of the
training set.

Figure 12 is an example of the cumulative PD curve (power curve) and
estimated PDs for a subsample of 200 companies. The PD curve has a plateau
area for the observations with a high score. Default probabilities can change
from 15% to 80% depending on the score.
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Fig. 10. Accuracy ratios for SVM models with eight variables. Each model includes
variables K5, K29, K7, K33, K18, K21, K24 and one of the remaining. Box-plots are
estimated basing on 100 random subsamples.

6 Colour Coding of PDs

The RGB colour space is based on three primary colours, red, green and blue,
that are mixed to produce other ones. It is the colour coding scheme that is
used in monitors and TV. It is, however, inconvenient for colour coding since
we would like to make adjustments only to the channel responsible for colour
while keeping lightness and saturation constant. This can be achieved with
the HLS colour space.

We will represent the probability of default (PD) estimated with the SVM
as two-dimensional plots where each colour represents a specific PD. The PD
is a number that can be represented on a gray scale, e.g. in the RGB encoding
as (i, i, i) with i changing from 0 to 255, e.g. the colour R=255, G=0, B=0
corresponds to red, and R=255, G=0, B=255 to violet, etc..

The HLS stands for hue, lightness (or luminance) and saturation. By ad-
justing only hues and keeping luminance and saturation fixed we can generate
simulated colours from the range shown in Figure 14. The pure red colour
corresponds to H=0 or 360, the pure green to H=120 and the pure blue to
H=240.
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Improvement in AR (SVM vs. DA and Logit)
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Fig. 11. Median improvement in AR. SVM vs. DA (the upper line) and SVM
vs. logit regression (the lower line). Box-plots are estimated basing on 100 random
subsamples for the case of DA. Each model includes variables K5, K29, K7, K33,
K18, K21, K24 and one of the remaining

Red colour is often used in finance to highlight negative information, while
green and blue are used to convey positive information. Therefore, we would
like to code PDs with colours ranging from red for the highest PD to blue-
green for the most solvent company. For this end we normalise PDs so, that
the lowest PD corresponds to the hue equal 180 (green-blue) or 120 (green)
while the highest PD corresponds to the hue equal 0 (red). The resulting graph
that shows the data and PDs in the dimensions of variables K33 and K29 is
shown in Figures 15–17. The three figures correspond consequently to three
SVMs with high, average and high complexity. The saturation was fixed at
0.85 to make colours look more noble and the luminance was fixed at 0.46, the
maximum possible value for the chosen saturation. The HLS colours obtained
in this way were transformed into RGB ones and plotted by the XploRe ([8],
[7]) as a contour plot. The outliers that lie beyond the 5% and 95% quantiles
are plotted at the rand.

To produce the plot a grid was generated with 101 steps both in horizontal
and vertical directions. For each point of the grid a PD was estimated and
represented in the HLS colour encoding. Then the HLS colour was converted
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Fig. 12. PD (blue line) and cumulative PD (green line) estimated with the SVM
for a subsample of 200 observation from the Bundesbank data. The variables were
included into the model that achieved the highest AR: K5, K29, K7, K33, K18, K21,
K24 and K9. The higher is the score, the higher is the rank of a company.

into an RGB colour and plotted by the XploRe as a small filled quadrangle.
The quadranges evenly cover the whole area giving a continuous PD repre-
sentation. The contour lines can be also added to the graph as illustrated by
Figure 18.

7 Conclusion

In this chapter we demonstrated the application of graphical tools for variable
selection, data visualisation and financial information representation and dis-
cussed such essential aspects of graphical analysis as colour coding. We believe
that graphical analysis will have an increased importance as non-parametric
models, such as SVM, are becoming more and more popular. On the other
hand graphical representation can facilitate the acceptance of non-parametric
models in various areas, e.g. finance, medicine, sound and image processing,
etc. This will contribute to the development of those areas since non-linear
non-parametric models better represent reality and provide higher forecasting
accuracy.
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Fig. 13. The luminance and saturation dimensions of the HLS colour space. We
will keep luminance and saturation constant and encode the information about PDs
with hue.
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Fig. 15. Probability of default estimated for a random subsample of 500 failing and
500 surviving companies plotted for the variables K33 and K29. An SVM of high
complexity with the radial basis kernel 0.5Σ1/2 was used.
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Fig. 16. Probability of default estimated for a random subsample of 500 failing and
500 surviving companies plotted for the variables K33 and K29. An SVM of average
complexity with the radial basis kernel 4Σ1/2 was used.



Graphical Data Representation in Bankruptcy Analysis 21

Probability of Default

6 7 8 9 10 11
Company size, K33

0
5

10
15

20
25

In
te

re
st

 c
ov

er
ag

e 
ra

tio
, K

29
*E

2

10
20

30
40

50
60

P
ro

ba
bi

lit
y 

of
 D

ef
au

lt

Fig. 17. Probability of default estimated for a random subsample of 500 failing and
500 surviving companies plotted for the variables K33 and K29. An SVM of low
complexity with the radial basis kernel 100Σ1/2 was used.
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Probability of Default
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Fig. 18. Probability of default plotted for the variables K21 and K29. The bound-
aries of five risk classes are shown in blue, which correspond to the rating classes:
BBB and above (investment grade), BB, B+, B, B- and lower.
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