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Abstract

There are two main research traditions for analyzing market basket data

that exist more or less independently from each other, namely exploratory and

explanatory model types. Exploratory approaches are restricted to the task

of discovering cross-category interrelationships and provide marketing managers

with only very limited recommendations regarding decision making. The latter

type of models mainly focus on estimating the effects of category-level marketing

mix variables on purchase incidences assuming cross-category dependencies. We

propose a procedure that combines these two modeling approaches in a novel

two-stage procedure for analyzing cross-category effects based on shopping bas-

ket data: In a data compression step we first derive a set of market basket

prototypes and generate segments of households with internally more distinctive

(complementary) cross-category interdependencies. Utilizing the information on

categories that are most responsible for prototype construction, segment-specific

multivariate logistic models are estimated in a second step. Based on the data-

driven way of basket construction, we can show significant differences in cross-

effects and related price elasticities both across segments and compared to the

global (segment-unspecific) model.

Keywords: Marketing, Choice Models, Market Basket Analysis, Cross-Category

Effects, Segmentation

JEL-classification: C31, C33, C35, C63, M31

1 Introduction

A market or shopping basket is representing the result of a specific consumer’s decision

making process on the choice or non-choice of product categories among the assort-

ment offered by a retail outlet during one and the same shopping trip. Retail managers

are interested in better understanding the interdependency structure among categories

purchased jointly by their customers for several reasons. Traditionally, insights into

cross-category dependencies and corresponding marketing mix effects are of particu-

lar interest for optimizing the overall profitability of retail category management (cf.,

Müller-Hagedorn 1978; Manchanda et al. 1999; Song and Chintagunta 2003; Chen et

al. 2005). However, most of the attempts towards this direction are restricted to fairly

small selections of (sub-) categories. Naturally, today’s large retail assortments not
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only make the consideration of complete category ranges prohibitive but also man-

agerially inexpediently. Nevertheless, in most empirical applications both types and

numbers of included categories seem to be rather guided by analytical viability than

by sound managerial considerations. Hence, the question arises which categories to

be included in models for predicting cross-category effects that adequately represent

consumers multicategory decisions.

More recently, numerous retailers have equipped members of their loyalty programs

with bar-coded plastic cards and provided various incentives (such as discounts or check

cashing privileges) to encourage their regular customers to present their membership

cards at each purchase occasion (cf., e.g., Passingham 1998). Combined with mod-

ern point-of-sale (POS) scanning technologies, those retailers are nowadays collecting

tremendous amounts of personally identifiable POS transaction data. Among other

things, the latter are dissembling valuable behavioral information on cross-category

purchase patterns of their prime customers. Furthermore, the meaningful linkage of

such household-level purchase transaction histories with relevant data on respective

store characteristics and marketing activities can provide valuable managerial support

for designing and targeting segment-specific (or even individually) customized cross-

and up-selling initiatives within advanced customer relationship management (CRM)

programs (Rossi et al. 1996).

As a consequence of these developments and corresponding managerial require-

ments, the analytical focus for studying cross-category dependencies and associated

marketing-mix effects needs to be shifted to a more disaggregate (i.e., individual or

customer segment) level. In particular, to satisfy decision support needs in the frame-

work of an effective management of loyalty card programs, information on customer

segment-specific rather than aggregate cross-category effects is called for. In the next

section, it is briefly reviewed that conventional approaches to market basket analysis

exhibit inherent limitations to efficiently accommodate such information.

Following, we propose a procedure that combines two different schools of thought

prevalent in the literature on market basket analysis in a stepwise manner. Within this

analytical framework both the issue of adequate (i.e., consumer centric) category selec-

tion and segment construction can be suitably resolved. The methodology’s capability

to contribute to the above sketched information needs is illustrated in an empirical

application study.
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2 Linking exploratory and explanatory approaches

to market basket analysis

There are two main research traditions for analyzing market basket data that ex-

ist more or less independently from each other, namely exploratory and explanatory

types of models (for an overview cf. Mild and Reutterer 2003; Boztuğ and Silberhorn

2006). Exploratory approaches are restricted to the task of discovering distinguished

cross-category interrelationships based on observed co-occurrence frequency patterns

of jointly purchased items or product categories. In the marketing literature, this is

also referred to as ’affinity analysis’ (Russell et al. 1999). The majority of attempts

contributed to this research field so far, however, are examining cross-category pur-

chase effects on the aggregate level of household demand only. This especially applies

to methods aiming at a parsimonious representation of pair-wise symmetric association

measures derived from cross-tabulations of joint purchases across multiple categories

(e.g., Böcker 1978; Dickinson et al. 1992; Julander 1992; Lattin et al. 1996).

In marketing research practice, meaningful cross-correlational structures are merely

’determined’ by visual inspection. Thus, the marketing analyst is usually aiming at

a parsimonious representation of the cross-category associations in a compressed and

meaningful fashion. Multidimensional scaling techniques or hierarchical clustering are

typically employed to accomplish this task. Besides the drawback of an ’average’ (or

aggregate) market view, the practical relevance of such attempts obviously suffers from

their limitations to relatively small number of categories that are allowed for symmetric

pair-wise relationships only.

The latter constraints are successfully resolved by a huge amount of research on

association rule discovery, which initially was presented in the data mining literature

(see, e.g., Agrawal et al. 1995; Anand et al. 1998; Brin et al. 1998; Hahsler et al. 2006)

and have seen recent applications in the marketing-related literature (Chen et al. 2005;

Van den Poel et al. 2004). Following a probabilistic concept, such rule mining tech-

niques derive asymmetric implications (rules) for disjoint subsets of items or categories

based on co-occurrence frequencies (associations) aggregated across households’ and

shopping baskets. Mining association rules is capable of dealing with both very large

number of categories (or even single items) and shopping baskets. Albeit consider-

able advances, the issue of an ’average’ (or aggregate) market view also applies to the

various rule mining techniques.

The idea of representing cross-category purchase effects at a more disaggregate level
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was introduced into the marketing community only recently (Schnedlitz et al. 2001;

Decker and Monien 2003; Decker 2005). The authors employ various neural network

architectures with unsupervised learning rules as a data compression device that results

in a mapping of binary-valued vectors of category incidences within retail transactions

onto a set of so-called prototypes. In their empirical applications, they illustrate that

each of these prototypes is (post-hoc) responsible for a specific class of market baskets

with internally more pronounced (complementary) cross-category purchase interdepen-

dencies as compared to the aggregate case.

Despite their usefulness for discovering meaningful cross-category interrelationships

patterns, the managerial value of exploratory approaches to market basket analysis is

obviously limited. Since no a-priori assumptions regarding the distinction between

’response’ and ’effect’ category is made and, more specifically, no marketing variables

are directly incorporated in the analytical framework they provide marketing man-

agers with only very limited recommendations regarding decision making. In contrary,

explanatory (or predictive) types of models for analyzing market basket data mainly fo-

cus on estimating the effects of marketing-mix variables on category purchase incidence

by explicitly accounting for cross-category dependencies among the retail assortment.

Most of such explanatory models for market basket analysis introduced so far are

either conceptualized as logit- or probit-type specifications within the framework of

random utility theory (excellent state-of-the field reviews are provided by Russell et

al. 1997, 1999; Seetharaman et al. 2004; Boztuğ and Silberhorn 2006). Modeling ap-

proaches that contribute to the estimation of segment-specific or even individual level

marketing-mix effect parameters as claimed in the introduction of this paper include

works by Russell and Kamakura (1997), Andrews and Currim (2002), Ainslie and Rossi

(1998), Manchanda et al. (1999), Seetharaman et al. (1999) or Chib et al. (2002).

One practical problem with explanatory models, however, is that the set of cate-

gories to be incorporated in the model and analyzed simultaneously for cross-category

effects on the selected response category is rather limited (typically, up to the size of

four to five categories). Indeed, significant improvements of powerful Markov chain

Monte Carlo simulation methodologies can help to successfully alleviate estimation

problems, multivariate logit or probit approaches are confronted with when the num-

ber of product categories to be analyzed is increasing. Nevertheless, real-world retail

assortments are typically consisting of dozens of potentially relevant product categories

which still entail severe computational problems or the necessity to impose constraints

on excessively large covariance matrices. Yet another problem concerns the rather ad

hoc selection of relevant categories for basket creation, which often needs to be guided
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by managerial intuition or practical considerations within the respective problem con-

text.

To overcome the limitations inherent to both exploratory attempts (lack of im-

plications for managerial decision making) and explanatory models (issue of proper

category selection and computational restrictions) for analyzing market basket data,

we next introduce a procedure that combines the specific merits of both approaches.

Since segment-level results are intended, approaches that avoid early data aggregation

are preferred in an exploratory step for complexity reduction. Thus, the estimation of

segment-specific marketing-mix and cross-category effects on category choices is pre-

ceded by a data-driven strategy for basket construction and segment generation.

3 Analyzing segment-specific cross-category effects

The proposed analytical framework proceeds in the following stepwise manner: In a

first step, shopping baskets from a customer transaction database are compressed onto

a set of basket prototypes using a similar methodology as employed by Schnedlitz

et al. (2001) and Decker and Monien (2003). These basket prototypes are consti-

tuting a ’generic’ (i.e., customer-unspecific) classification of the observed market bas-

kets which is characterized by more distinguished complementary cross-category co-

incidences within each of the derived shopping basket classes. In the subsequent stage

of segment construction, we account for heterogeneity across customers by designating

best-fitting basket class assignments. Finally, segment-specific adapted explanatory

cross-category effect models including marketing-mix variables are estimated based on

a multivariate logistic model specification similar to the Russell and Petersen (2000)

approach.

3.1 Compression of market baskets and segment construction

As a starting point, for each customer n = 1, ..., N included in a retail transaction

database a sequence of tn purchase incidence decisions across a set of J categories is

observed. Consistent with prior work, these multicategory choice decisions are consid-

ered as ’pick-any/J ’ data (Manchanda et al. 1999; Russell and Petersen 2000). Hence,

each shopping basket is represented as an J-dimensional binary vector xh = {0, 1}J ,

with h being a pointer to the elongated arrangement {t1, t2, ..., tN} of ’stacked’ trans-

action sequences. This data format implies that utilization of the customer-specific
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provenance of shopping baskets (indicated by xn
h for the tn transactions realized by

customer n) is postponed to a later stage of the analysis.

The task of finding a partition of the data into a fixed number of K ’generic’ basket

classes C = {c1, c2, . . . , cK} with more distinguished complementary joint purchase

incidences within the detected classes requires resolution of the following objective

function (’minimum dispersion criterion’):

∑

k

∑

h∈ck

d(xh, p(xh)) → min
C,P

(1)

where P = (p1, p2, . . . , pK) denotes a set of prototypes or centroids with pk ∈ <J∀k and

d(·) being a distance measure. Minimization of (1) is also known as the principal point

or K-centroids problem in the clustering and classification literature (Jain and Dubes

1988; Bock 1999). For any optimum configuration (C∗, P ∗) the condition p∗(xh) =

arg min{d(xh, pk), k = 1, . . . , K} holds and warrants that each basket xh is mapped

onto it’s minimum distant or closest prototype. Furthermore, when using the Euclidean

distance metric it can be shown that the prototypes p∗k are equal to class-specific

means for the corresponding partition as generated by the optimal prototypes under

stationarity conditions (Bock 1999).

Since the purchase incidences are encoded as (typically extremely sparse) binary

vectors and we aim at detecting complementary cross-effects, the well-known asym-

metric Jaccard coefficient giving more weight to joint purchases than to common zeros

(i.e., non-purchases) is preferred here as a distance measure. A simple extension of the

Jaccard coefficient for measuring the distance between a binary market basket vector

and a real-valued prototype is given as follows:

d(xh, pk) = 1− (xh, pk)

||xh||2 + ||pk||2 − (xh, pk)
, (2)

where (xh, pk) denotes the scalar product of vectors xh and pk. Notice that the sub-

trahend in expression (2) is often referred to as the Tanimoto similarity coefficient

(Anderberg 1973).

The probably most prominent approach for solving the principal point problem

is the iterative K-means clustering algorithm. Based on a given initial partition the

K-means method minimizes criterion (1) recursively with respect to C(τ) → P (τ) →
C(τ +1) → P (τ +1) . . . and converges after a finite number of iterations τ . Albeit any

arbitrary distance measure can be embedded in the algorithm (cf., MacQueen 1967;

Anderberg 1973) it is predominantly implemented using Euclidean distances — hence,

the term K-means. Though convergence to the next local minimum is guaranteed, the
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quality of the final cluster solution heavily depends on the starting partition. To cope

with this ’algorithmic variability’ (Gordon and Vichi 1998; Hornik 2005), generation

of cluster ensembles with different random initializations and subsequent selection of

the ’best fitting’ partition or heuristics for obtaining ’proper starting values’ are rec-

ommended. Such strategies entailing the evaluation of multiple partitions, however,

makes K-means methods computationally expensive and impractical when the number

of data points becomes very large and high-dimensional, which is typically the case for

shopping basket data derived from several hundred thousands of retail transactions

and large assortment sizes.

Fortunately, there are also other methods available to solve the principal point

problem. Descending from the field of machine learning, numerous ’online’ versions of

K-means type clustering are available known as competitive learning or vector quan-

tization (VQ) algorithms (cf. Ripley 1996; Hastie et al. 2001). In contrast to ’off-line’

K-means clustering, the VQ approach minimizes (1) via stochastic approximation.

This is accomplished by directly manipulating the prototype system in a sequential

updating scheme. Since only one single data point (e.g., a shopping basket accruing at

the electronic retail POS check-out systems) is required at each iteration, adaptive VQ-

type partitioning techniques are suitable to process data sets of practically unlimited

size. The algorithm adopted here for market basket quantization proceeds as follows:

1. Start with a random initialization of the set of prototypes P by drawing K ’seed

points’ from the input data set.

2. Compute the distances between a randomly chosen market basket vector xh and

each prototype pk according to (2).

3. Determine the minimum distant (’winning’ or ’best fitting’) prototype d(xh, p
∗
k) =

min{d(xh, pk), k = 1, . . . , K} to xh.

4. Update the ’winning’ prototype

p∗k := p∗k + α(τ)(xh − p∗k)

where α(τ) is a ’learning rate’ monotonically decreasing with iteration time τ ;

to fulfill the conditions for stochastic approximation this is conceived such that

limτ→∞ α(τ) = 0.

5. Repeat steps 2-4 until convergence (i.e., if prototype improvements are becoming

very small) or the pre-specified maximum number of iterations is reached.
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Notice that the above VQ procedure differs from more conventional implementa-

tions in some respect. Due to data sparsity we are advocating Jaccard distances for

determination of the ’winner’ p∗k but perform an Euclidean-like updating following step

4. The important practical reason for doing so is that after convergence we obtain

centroids that coincide with respective class means and therefore can be interpreted as

empirical expectations of observing a value of unity (cf., Leisch 2006). Consequently, in

the present context, each j-element of an optimal prototype vector p∗k denotes the pur-

chase incidence probability of the corresponding product category within the ’generic’

class of shopping baskets c∗k. Exceptionally (un-)marked combinations of these class-

conditional probabilities are indicative for (weaker) stronger cross-category purchase

complementarities at the basket class level and will serve as a basis for further inves-

tigation.

As the term ’generic’ suggests, the prototypes generated after convergence still

apply to the pooled data set and does not yet recognize the customer identities behind

the realized shopping baskets. To account for customer heterogeneity, knowledge about

the customers’ tendencies to fluctuate across the partition of basket classes is utilized.

Next, construction of customer segments is based on a simple majority ’voting’ for

best-fitting class assignments. For each customer n we therefore calculate the following

average distance-weighted number of basket class k assignments:

vn
k :=

1

tn

tn∑

h=1

(1− d(xn
h, p∗k)){xn

h∈ck} ∀k (3)

Though the sum across all K classes is not necessarily unity, this voting-measure

is conceptually similar to fuzzy class memberships. In fact, vn
k represents the ’degree

of belongingness’ of customer n to basket class k. Taking respective maximum values

provide the final segmentation of customers:

sk = {n ∈ N |vn
k = max

l=1,...,K
(vn

l )} (4)

where sk indicates those customers whose past multicategory choice decisions can be

characterized most accurately by the prototypical pattern represented by basket class

k and are therefore assigned to the corresponding segment.

3.2 Explanatory analysis using multivariate logistic models

Utilizing the now available information on most distinguished categories responsible for

prototype and subsequent segment construction, segment-specific multivariate logistic
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models (cf. Hruschka 1991; Hruschka et al. 1999; Russell and Petersen 2000) are esti-

mated in the second (explanatory) step of our procedure. A suitable model for segment

k members n ∈ sk utilizes shopping baskets comprising categories corresponding to the

top elements of basket prototype pk. To obtain a model close to standard approaches

of describing choice decisions (with respect to random utility theory), a utility function

including marketing-mix parameters and household specific variables is chosen. Using

an extended version of a multivariate logistic model (Boztuğ and Hildebrandt 2006),

the utility function U has the following form

U(i, n, t) = βi + δ1i ln[TIMEint + 1] + δ2iLOYALin

+ γi ln(PRICEint) + ξiDISPLAYint +
∑

i6=j

θintC(j, n, t) + εint

= V (i, n, t) + εint

(5)

with category i, consumer n and time t. β is a category dummy variable and θ the

cross-category parameter. The stochastic error term εint is assumed extreme value

distributed, as in a standard multinomial logit (MNL) model. The utility in (5) is

close to a standard MNL model for a single category; where the cross-category-term

is used to cope for cross-category dependence. C(j, n, t) is a binary variable, which is

one if consumer n purchases category j at time t and zero otherwise.

Household specific variables are the time and a measure of loyalty for each category,

where TIME is the time in weeks since the last purchase for a consumer in the category.

LOYAL is defined as LOYALin = ln m(i,n)+0.5
m(n)+1

. m(n) accounts for the purchases of a

consumer in the initial period, and m(i, n) is the number of purchases in category i

during the initial period. LOYAL is a measure for the loyalty for one specific category

of a consumer.

The marketing-mix variables are price and display. PRICE is described by an index

of prices of a category by calculating the mean of prices of all purchased products in a

specific category during one week. DISPLAY is the mean number of available displays

per category calculated for each week. The cross-category variable θ is decomposed

by θijn = ψij + η SIZEn with SIZE being the mean basket size for consumer n in the

initial period. θ is assumed as symmetric, so ψ has to be constrained to be symmetric.

X(i, b) is a 0-1-coded dummy variable, which takes the value of one, if category i is

included in basket b and zero otherwise. Here, only the choice of a product in a specific

category is inspected, but not the inner-category choice.

The probability choosing one specific category, conditional on the choices in the
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other categories, can be expressed as

P (C(i, n, t) = 1|C(j, n, t) for j 6= i) =
1

1 + exp(−V (i, k, t))
. (6)

The market basket of a consumer n at time t is described by an q-tuple B(n, t) with

B(n, t) = {C(1, n, t), . . . , C(q, n, t)}, C(i, n, t) = 1 if consumer n purchases in category

i at time t. This kind of choice representation induces 2q different baskets. We exclude

the Null basket (no choice in any category) in our analysis, so we end up with 2q − 1

possible baskets. Using Besag’s Factorization theorem (Besag 1974; Cressie 1991), the

utility function (6) and the binary description of a choice for a category, the probability

of choosing a specific basket b is (Russell and Petersen 2000)

P (B(n, t) = b) =
exp{µ(b, n, t)}∑
b∗ exp{µ(b∗, n, t)}

µ(b, n, t) =
∑

i

βiX(i, b) +
∑

i

(δ1i ln[TIMEint + 1] + δ2iLOYALin)X(i, b)

+
∑

i

(γi ln(PRICEint) + ξiDISPLAYint)X(i, b)

+
∑
i<j

θijnX(i, b)X(j, b)

(7)

The model in (7) looks like a standard MNL approach with an additional cross-

effects term described by θijn. It should be kept in mind, that this model is not a result

of an extension of a standard model, but is derived using methods from spatial statistics.

To explain the different outcomes of µ(b, n, t) in (7), we present in table 1 exemplary

a two-category case with only TIME and PRICE as explanatory variables. The θ

parameter is only present if both categories are purchased simultaneously. It measures

a bivariate relationship, which obtains more than one time in a basket containing at

least three categories.

Purchase in category 1

yes no

Purchase

in

category

2

β1 + TIME1nt + PRICE1nt

yes +β2 + TIME2nt + PRICE2nt β2 + TIME2nt + PRICE2nt

+θ12

no β1 + TIME1nt + PRICE1nt 0

Table 1: Values for µ(b, n, t) in a two-category case
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For managers, not only the parameter estimates are important, but especially cross-

price elasticities. The price elasticities are defined relative to categories, but not to

baskets. The sum over all baskets containing category i is named as BC(i)nt, whereas

BC(i, j)nt contains all baskets with category i and j. The summation over all possible

baskets (including the null basket) is described as BC(all)nt. Therefore, the probability

of choosing one basket, which includes category i is

Λ(i, j)nt =
BC(i)nt

BC(allnt)
(8)

and for a basket containing category i and j

Λ(i, j)nt =
BC(i, j)nt

BC(allnt)
(9)

The cross-price elasticities are defined as the percentage in change selecting category i

with respect to a change in category j as

E(i, j)nt =
∂(log Λ(i)nt)

∂(log PRICEjnt)
(10)

This leads to the following expressions calculating the own and cross-price elasticities

E(i, i)nt = γi(1− Λ(i)nt)

E(i, j)nt = γjΛ(j)nt(S(i, j)nt − 1), i 6= j

with

S(i, j)nt =
Λ(i, j)nt

Λ(i)ntΛ(j)nt

(11)

In expression (11), γi and γj are expected to be negative (as usually is expected

for price parameters). If they are not negative, they are set to a negative value. The

own price elasticities are always negative, whereas the cross-price elasticities can be

negative or positive as well. A negative elasticity implies a complementary relationship,

a positive one a substitutional association between the inspected categories.

4 Empirical Application

Notice that from a data analytical standpoint the type of data illustrated in the in-

troduction of this paper is equivalent to traditional household scanner data, with the
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notable difference that they do not cover competitive information. For illustration pur-

poses of our approach, we therefore use the well-known ZUMA data set set1. A total

number of 470,825 retail transactions with pick-any choices among an assortment of

J = 65 categories reported from 4,424 households over a period of one year were first

subject to the data compression step and subsequent segment formation. The data

contains information about the purchase date and which product was chosen by whom

(and therefore also the chosen category). Additionally, we know how many items were

purchased at which price and if the product was placed on a display or not. Almost all

categories, which are present in a common supermarket, are reported, with the exemp-

tion of fresh products as meat and fruits. So it is possible to describe daily purchases

containing all regular purchased items by a standard household. After an examination

of the derived classification of shopping baskets and household segments, in the follow-

ing we compare parameter estimates for segment-specific multivariate logistic model

specifications with those resulting from an aggregate counterpart.

4.1 Construction of basket classes and household segments

In the clustering literature many authors expressed their doubts about the existence

of ’quasi-natural’ groupings in empirical data sets (cf., e.g., Dubes and Jain 1979;

Aldenderfer and Blashfield 1984). Even though one is apt to accept this assumption, it

is very unlikely that this ’natural’ grouping is detectable with an efficiently manageable

and managerially acceptable number of classes in light of the excessively large and high-

dimensional data set of joint category purchase incidences at hand. In fact, finding a

number of classes that balances adequate fit with the data (in terms of low within-

class dispersion) and parsimony is not an easy task. Numerous heuristics exist to help

the analyst in this respect (for a comparative overview see Milligan and Cooper 1985;

Dimitriadou et al. 2002). Once combined, however, they often yield ambiguous or

even contradictory recommendations. Nevertheless, in order to avoid obvious inferior

solutions, the derived partition of shopping baskets can be required to be ’structurally

stable’ in a sense that replications of the same algorithm on different samples from the

1The data used for this analysis are part of a subsample of the 1995 GfK ConsumerScan Household
panel data and were made accessible by ZUMA. The ZUMA data set includes all households having
continuously reported product purchases during the entire year 1995. For a description of this data
set cf. Papastefanou, G. 2001. The ZUMA data file version of the GfK ConsumerScan Household
Panel. In: Papastefanou, G., Schmidt, P., Börsch-Supan, A., Lüdkte, H., Oltersdorf, U. (Eds.), Social
and Economic Analyses of Consumer Panel Data, Zentrum für Umfragen, Meinungen und Analysen
(ZUMA), Mannheim, pp. 206-212.
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data set return similar partitions (Strehl and Ghosh 2002; Hornik 2005).

To cope with the size of the data set, we split it randomly into several smaller sub-

sets and used those for successive clusterings similar to the CLARA (Clustering LARge

Applications) procedure by Kaufman and Rousseeuw (1990). After each clustering, a

classification of the entire data is accomplished by assigning each of the remaining

shopping basket not belonging to the current sample to the class represented by the

closest prototype. The k-medoid partitioning method employed within the standard

CLARA procedure, however, was substituted by the above described VQ algorithm.

Furthermore, each VQ replication was initialized with the ’optimal’ prototypes for the

previous sample as long as the partitioning quality of the entire data set is further

enhanced. To measure the quality of the current classification the average Jaccard

distance between each basket and it’s ’best-fitting’ prototype is computed. Hence, the

prototype system is allowed to be continuously improved until the overall classification

quality degrades (which is usually the case after a few iterations).

Given the number of classes K, 100 reiterations of this procedure yield a collection

of individual solutions. For a sequence of increasing K these ’cluster ensembles’ (Hornik

2005) can serve as a basis for further inspection of structural stability. As a measure

of partition agreement the popular Rand index (Rand 1971; Hubert and Arabie 1985)

was used to compare each possible pair of the K partitions. The box plots depicted

in figure 1 nicely illustrate that the correspondence between partitions (and hence, the

stability) is dramatically improved with increasing number of classes.

Representative for the various measures of internal cluster validity, we computed

the statistic proposed by Davies and Bouldin (1979) to fortify the decision on a suitable

number of classes. A traditional approach is to plot the index values by number of

classes and to hope that an obvious ’elbow’ or kink indicating the correct number

of classes is observable. Though this is usually done by visual inspection, it can be

formalized by looking at the most significant local peak of the index curve (Thorndike

1953). Using the procedure described by Dimitriadou et al. (2002) we determined

the recommended class number based on this ’elbow-heuristic’ for the complete set of

cluster ensembles. The resulting distribution of recommendation frequencies is shown

in figure 2. As expected, no clear recommendation in favor of a specific number of

classes can be derived from this picture.

Bearing in mind that from a practitioner’s view partitions with 20 or even more

classes are becoming managerially prohibitive, priority is given to solutions with smaller

class numbers but still structurally stable partitioning results. Putting the available
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Figure 1: Distribution of the Rand index for increasing number of classes
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Figure 2: Number of classes recommendations based on the Davies-Bouldin statistic

pieces of information together, a number of K = 14 basket classes seems to provide

a decent and adequate representation of the observed shopping baskets. Hence, we

further elaborate on this solution for the data compression step of the proposed pro-
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cedure.

Seg. Most distinguished complementary product categories Relative size (%)

k (top five j-elements of prototype pk) basket household

1 Milk, soft cheese, curd, coffee, soft drinks 13.2 20.2

2 Cream, milk, soft cheese, curd, yogurt 13.3 15.2

3 Yogurt, milk, curd, soft cheese, soft drinks 11.9 14.4

4 Hard cheese, soft cheese, milk, yogurt, curd 11.6 11.5

5 Soft cheese, toilet paper, wine, cereals, instant coffee 5.0 0.4

6 Curd, soft cheese, pudding, cling films, coffee cream 3.5 1.2

7 Coffee, coffee cream, spirits, filter paper, soft cheese 6.2 5.0

8 Pet food, milk, milk products, coffee, soft cheese 3.7 5.5

9 Toothpaste, detergent, bath add., soap, dishwashing l. 5.1 0.1

10 Water, beer, milk, lemonade, coffee 9.9 16.0

11 Soft drinks, water, lemonade, soft cheese, milk 5.2 2.8

12 Beer, milk, soft drinks, lemonade, coffee 5.1 7.4

13 Frozen veget., ice, froz. cookies, instant meal & fish 3.6 0.1

14 Tea, cola drinks, mayonnaise, lemonade, soft drinks 2.7 0.3

Bold: Class-conditional purch. prob. pjk > .75; Italic: Class-conditional purch. prob. pjk > .25

Table 2: Main characteristics of shopping basket classes and household segments

Table 2 provides a summary of the most important features of the derived shopping

basket classes and corresponding household segments. As a result of the exploratory

part of our procedure, each basket class can now be best characterized by it’s generic

profile of prototypical category purchase probabilities, with combinations of particu-

larly outstanding values signalling stronger degrees of cross-category purchase comple-

mentarities. Hence, further examination of those categories exhibiting highest class-

conditional purchase incidences in the subsequent (explanatory) step for estimating

segment-specific cross-category effects models is recommended. In table 2 a selection

of those five categories represented with the highest respective prototype values is high-

lighted for each of the basket classes. Quite obviously, they can be further organized

into two different substructures: One is characterized by differential combinations of

various dairy products (classes no. 1 to 4) and another is dominated by categories of

beverages (classes no. 10 to 12). Most of the remaining classes are representing either

some mixture types of the former or are marked by strongly discriminating product

categories like pet food, etc. The last two columns of table 2 also provide information

on the relative magnitudes of basket classes and corresponding segments. Although

partly considerable differences can be observed (which is due to the specific assignment
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rule adopted for segment construction), the two substructures can be clearly detected

both on the generic basket class and segment level.
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Figure 3: Category choice probabilities according to prototype no. 1
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Figure 4: Category choice probabilities according to prototype no. 10

Let us therefore draw our further attention on two representative segments out

of these diverse substructures, namely segment no. 1 and segment no. 10. Consider,

for example, the pictorial representation of the before-mentioned prototypical profile

of category choice probabilities representing household segment no. 1 according to the

solid line in the right-hand side graph of figure 3. Instead, the grey bars are repre-

senting the unconditional purchase probabilities. From the right-hand side graph in

the same figure (emphasizing the top ten categories in terms of class-conditional prob-

abilities) it becomes obvious that the purchase behavior of this segment of households

is clearly dominated by remarkably high purchase incidences of the milk category and

only moderate class-conditional choice probabilities in the remaining dairy categories.

Albeit different with regard to the dominance of only one single category, household

segment no. 10 is marked by high purchase incidences in the equally dominating min-

eral water category, followed by the beer and lemonade categories (see figure 4). Milk,
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in contrast, is expected to be chosen less frequently by the households assigned to this

segment as compared to the aggregate (segment-unconditional) case.

Of course, other basket classes are characterized by their own prototypical basket

compositions (i.e., cross-category purchase interdependencies) that are clearly distinc-

tive from those further investigated here.

4.2 Investigating segment-specific versus aggregate cross-

category effects

As already claimed, one of the primary purposes of the data compression step employed

prior to the model-based estimation of cross-category purchase effects is the reduction

of model complexity and to provide a data driven strategy for selection of categories

that are meaningful and relevant to a specific segment of households. Consequently,

estimation of segment-specific multivariate logistic models according to stage two of

our procedure was restricted to the respective most distinguished product categories

including associated marketing-mix variables.

For illustration purposes, we exemplary describe the estimation results of the multi-

variate logistic models for two household segments only, namely for the above described

segments no. 1 and no. 10. All other results are available from the authors upon request.

For segment no. 1, we inspected the five top categories according it’s corresponding

prototype (milk, soft cheese, curd, coffee, and soft drinks), while for segment no. 10 we

used four categories (water, beer, milk, and lemonade). 893 households are members

of segment no. 1 with a total number of 117,570 purchase occasions. Out of these at

least one of the previously selected five categories was purchased on 89,340 occasions.

Segment no. 10 comprises 709 households with a total number of 69,736 transactions

and 38,912 purchase occasions containing at least one of the four categories of interest.

First, we present the parameter estimates for both prototypes for all consumers

and for the segment-specific consumers in table 3.
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Prototype 1 Prototype 10

all segment all segment

β1 −3.60 12.48 −10.32 −7.40

(2.01) (6.32) (1.90) (5.78)

β2 −0.71 −1.22 14.04 19.99

(0.09) (0.20) (2.41) (5.97)

β3 −1.08 −1.61 −3.56 0.43

(0.47) (0.98) (2.29) (4.98)

β4 −0.58 −1.26 1.62 3.73

(0.19) (0.41) (1.12) (2.92)

β5 −2.55 −4.64

(0.55) (1.18)

δ11 −0.79 −1.02 −0.29 −0.30

(0.02) (0.07) (0.02) (0.07)

δ12 −0.30 −0.21 −0.36 −0.45

(0.02) (0.03) (0.02) (0.05)

δ13 −0.37 −0.43 −0.84 −0.59

(0.02) (0.03) (0.02) (0.04)

δ14 −0.04 0.04 −0.49 −0.79

(0.02) (0.03) (0.02) (0.06)

δ15 −0.54 −0.47

(0.02) (0.03)

δ21 0.67 0.73 0.48 0.17

(0.01) (0.04) (0.01) (0.03)

δ22 0.80 0.81 0.51 0.57

(0.01) (0.02) (0.01) (0.02)

δ23 0.66 0.57 0.70 0.51

(0.01) (0.02) (0.01) (0.017)

δ24 0.87 0.84 0.59 0.63

(0.01) (0.02) (0.01) (0.02)

δ25 0.46 0.43

(0.01) (0.01)
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Prototype 1 Prototype 10

all segment all segment

γ1 −1.90 4.52 −3.84 −3.42

(0.88) (2.76) (0.76) (2.32)

γ2 3.76 4.79 9.05 12.72

(0.58) (1.23) (1.46) (3.60)

γ3 −0.91 −1.33 −2.18 −0.02

(0.51) (1.06) (1.00) (2.18)

γ4 −0.08 0.34 1.38 2.20

(0.30) (0.65) (0.50) (1.31)

γ5 −0.88 −1.84

(0.30) (0.64)

ξ1 0 0 1.07 0.26

(-) (-) (0.77) (2.37)

ξ2 0 0 −0.84 −1.86

(-) (-) (0.53) (1.31)

ξ3 0 0 0 0

(-) (-) (-) (-)

ξ4 3.88 4.29 1.42 0.65

(0.55) (1.21) (0.54) (1.43)

ξ5 2.07 1.46

(0.54) (1.16)

ψ12 −0.27 −0.35 −0.13 −0.36

(0.01) (0.04) (0.01) (0.05)

ψ13 −0.14 −0.14 −1.25 −1.37

(0.01) (0.04) (0.02) (0.04)

ψ14 −0.46 −0.48 −0.05 −0.45

(0.01) (0.04) (0.02) (0.05)

ψ15 −0.18 −0.25 −0.91 −0.49

(0.01) (0.04) (0.02) (0.04)

ψ23 0.16 0.31 0.07 0.04

(0.01) (0.03) (0.02) (0.05)

ψ24 −0.27 −0.06 −0.73 −0.43

(0.01) (0.03) (0.02) (0.04)
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Prototype 1 Prototype 10

all segment all segment

ψ25 −0.09 0.15

(0.01) (0.03)

ψ34 −0.27 −0.08

(0.01) (0.03)

ψ35 −0.13 0.14

(0.01) (0.03)

ψ45 −0.22 0.06

(0.01) (0.03)

η 0.34 0.32 0.68 0.83

(0.01) (0.02) (0.01) (0.03)

Table 3: Parameter estimates for categories selected ac-

cording to prototype 1 and prototype 10, for all and

segment-specific consumers, the standard errors are given

in parentheses

In the first two columns of table 3, the estimation results for the top-five categories

(namely milk, soft cheese, curd, coffee, and soft drinks) of prototype 1 are shown. For

all categories, a positive and significant loyalty parameter (δ2·) is estimated. Com-

paring all consumers with the ones for the segment-specific consumers, the estimated

loyalty parameters are smaller, except for the milk category. Both effects can be

explained regarding the growing respectively falling percentage of purchasing the in-

spected categories. All estimated significant time parameters (δ1·) are negative, but in

the comparison, no clear relationship between all and the segment-specific consumers

can be detected. The price parameters (γ) are larger measured in absolute values

for the segment-specific consumers, this indicates a higher price sensibility for them.

For the rarely significant display parameters (ξ), no clear direction of the values can be

given. The cross-effects parameters (ψ and η) will be discussed in more detail regarding

hypothesis 1 (which will be presented later on).

For the four most distinguished categories of prototype 10 (namely water, beer,

milk, and lemonade), the estimation results are given in the last two columns of table 3.

We find similar results as for prototype 1. Especially, the price sensitivity (γ) is again

much higher (in absolute values) for the segment-specific consumers.

Turning now to a deeper inspection of the cross-category effects, we formulate the
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following statement:

Hypothesis 1: Segment-specific cross-effects (θ) are higher than those for all

consumers.

This hypothesis is based on the assumption that segment-specific households were

responsible for prototype construction. So their cross-category purchase patterns are

more revealed as for all consumers. Notice that cross-effects in table 4 and in table 5

are computed using the formula for cross-effects (θijn = ψij + η SIZEn) for an average

consumer (using the mean value for SIZE). We verify this hypothesis for all cross-

category relationships, except for milk (see table 4).

Milk Soft cheese Curd Coffee Soft drinks

Milk 0.501 0.636 0.313 0.593

Soft cheese 0.404 0.929 0.504 0.681

Curd 0.608 1.058 0.502 0.640

Coffee 0.268 0.694 0.669 0.557

Soft drinks 0.504 0.903 0.890 0.814

Table 4: Cross-effects of prototype 1 for an average consumer, in the upper triangle

values for all consumers, in the lower one for segment-specific ones

One possible reason could be that the class conditional purchase probability for

milk is one and substantially smaller for all consumers. Therefore, the within-segment

cross-effects for milk are lower regarding all consumers, because compared to the other

categories, joint purchases with other categories become less. Not surprisingly, all

cross-effects imply a complementary relationship, because the cross-category values

are positive. This result is as expected due to the prior data compression step, which

focuses on jointly purchased categories.

Water Beer Milk Lemonade

Water 0.975 −0.142 1.056

Beer 1.088 0.200 1.161

Milk 0.081 0.959 0.383

Lemonade 0.997 1.488 1.025

Table 5: Cross-effects of prototype 10 for an average consumer, in the upper triangle

values for all consumers, in the lower one for segment-specific ones

Hypothesis 1 is also inspected for prototype 10 in table 5. It is confirmed for the

cross-effects of beer with all other categories, and for milk with all others. It could
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only not be shown for the relationship between water and lemonade. Interestingly,

a negative cross-effect value which induces a substitutional relationship between milk

and water for all consumers changes to a positive one (a complementary relationship)

for the segment-specific consumers. The change in the relationship between these two

categories is quite interesting, because it shows that a segment-specific examination

could lead to different results regarding an overall view. So managers assume by

inspecting the all-consumer-results, that the consumers do decide between the purchase

of water and milk, but within the target group of consumers (the segment specific) the

opposite is true.

For merchandise managers, the cross-price elasticities (presented from table 6 to

table 9) are even more interesting. The values represent the change in percent of the

share of choice of the row category for a 1 % price increase in the column category. The

elasticities account for consumer heterogeneity and can be interpreted as the average

elasticities per week. Negative values imply a complementary relationship between the

inspected categories (as was also reported in the cross-category values in table 4 and

table 5).

Hypothesis 2: Segment-specific cross-price elasticities are higher than for all

consumers.

This proposition is made because segment-specific consumers are by definition

jointly purchasing the categories under investigation more often than the ’average’

consumers and therefore being more affected by price changes. This hypothesis can

be verified for all categories, except for milk for the prototype 1 (see table 6 for all

consumers and table 7 for the segment-specific consumers2).

Milk Soft cheese Curd Coffee Soft drinks

Milk −0.333 −0.071 −0.021 −0.001 −0.019

Soft cheese −0.040 −0.837 −0.038 −0.002 −0.029

Curd −0.052 −0.169 −0.222 −0.002 −0.032

Coffee −0.030 −0.109 −0.028 −0.022 −0.030

Soft drinks −0.052 −0.144 −0.035 −0.003 −0.248

Table 6: Cross-price elasticities of prototype 1 for all consumers

For milk, the change in the purchase probability is higher for all consumers. One

2For curd and coffee, nonsignificant values were estimated, but we used them to calculate the
elasticities. Also, some price parameters are positive, which leads to a wrong sign in the elasticities,
so we changed them to negative in the table but not in the calculation.
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Milk Soft cheese Curd Coffee Soft drinks

Milk −0.289 −0.028 −0.009 0.001 −0.011

Soft cheese −0.043 −1.249 −0.079 0.016 −0.105

Curd −0.063 −0.169 −0.463 0.022 −0.149

Coffee −0.037 −0.274 −0.081 0.114 −0.125

Soft drinks −0.054 −0.329 −0.097 0.022 −0.604

Table 7: Cross-price elasticities of prototype 1 for segment-specific consumers

reason could be that the segment-specific consumers do nearly always buy milk, inde-

pendently from the other categories. So a price change in the other categories do effect

them less in comparison to all consumers.

In prototype 10, the hypothesis 2 is fulfilled for most of the cross-price elasticities

(see table 8 and table 9). Only in the beer or milk category price changes have a smaller

impact on the choice share for the segment-specific consumers. This phenomenon can

be explained again because both categories are purchased anyway.

Water Beer Milk Lemonade

Water −1.332 −0.542 −0.046 −0.047

Beer −0.264 −2.935 −0.001 −0.053

Milk −0.004 −0.001 −0.042 −0.001

Lemonade −0.376 −0.874 −0.005 −0.628

Table 8: Cross-price elasticities of prototype 10 for all consumers

Water Beer Milk Lemonade

Water −1.008 −0.584 −0.000 −0.019

Beer −0.216 −3.504 −0.001 −0.321

Milk −0.047 −0.694 −0.007 −0.034

Lemonade −0.240 −1.105 −0.001 −1.091

Table 9: Cross-price elasticities of prototype 10 for segment-specific consumers

5 Discussion and outlook

We proposed and empirically illustrated a two-stage procedure that combines features

from exploratory with explanatory models for market basket analysis. It can be shown

that the employed data compression step is capable to identify customer segments
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with internally more distinctive and distinguished complementary cross-category in-

terdependencies as compared to the aggregate case. Moreover, in the second stage

of the proposed procedure, significantly different cross-effects and related cross-price

elasticities both across previously determined segments and compared to the ’average’

customer can be detected.

Both marketing analysts and retail marketing managers can directly benefit from

the proposed methodology in at least two ways: First, a data-driven strategy for select-

ing product categories to be included in models for predicting cross-category effects is

provided. The data compression task warrants that the selected categories adequately

represent the meaningful (sub-)structures of consumers multicategory decision making

processes. Secondly, information on segment-specific cross-category dependencies and

associated marketing-mix effects becomes available. Retail marketing managers mak-

ing use of this information can thus be assisted in designing targeted direct marketing

actions within their loyalty programs.

As a useful side effect, the procedure could also be potentially useful as a frame-

work for partitioning a retailer’s overall (and typically considerably large) portfolio of

product categories into smaller sub-portfolios as required in the category management

process. This could be accomplished by collecting the most distinguished categories

responsible for the formation of ’adjacent’ (e.g., for meaningful substructures of) basket

classes. These categories can be shown to be more ’homogeneous’ in terms of indepen-

dence with categories not included in a specific sub-portfolio and thus may be managed

more easily. Furthermore, retailers would be enabled to customize their marketing de-

cisions including pricing and promotional activities for each corresponding customer

segment to optimize profits across these sub-portfolios (see Manchanda et al. 1999).

Regarding the construction of customer segments, the proposed approach is flexible

enough to account for any (stronger or weaker) degree of cross-category complementar-

ities simply by introducing user-defined threshold weights in the voting scheme adopted

in the segment formation step. Finally, in order to expand the empirical performance

and to fine-tune the proposed procedure to other settings, further application studies

using different data sets including personalized retail transaction data for a variety of

retail industries can be recommended.
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