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Abstract
Option pricing models are calibrated to market data of plain vanil-

las by minimization of an error functional. From the economic view-
point, there are several possibilities to measure the error between the
market and the model. These different specifications of the error give
rise to different sets of calibrated model parameters and the resulting
prices of exotic options vary significantly. These price differences often
exceed the usual profit margin of exotic options.

We provide evidence for this calibration risk in a time series of
DAX implied volatility surfaces from April 2003 to March 2004. We
analyze in the Heston and in the Bates model factors influencing these
price differences of exotic options and finally recommend an error func-
tional. Moreover, we determine the model risk of these two stochastic
volatility models for the time series and consider its relation to cali-
bration risk.
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1 Introduction

Recently, there has been a considerable interest, both from a practical
and a theoretical point of view, in the risks involved in option pric-
ing. Schoutens et al. (2004) have analyzed model risk in an empirical
study and Cont (2004) has put this risk into a theoretical framework.
Another source of risk is hidden in the calibration of models to market
data. This calibration risk exceeds often the profit margin for exotic
options and hence is also of fundamental interest for the banking in-
dustry. Moreover, calibration risk exists even if an appropriate model
has been chosen and model risk does not exist anymore.

Calibration risk arises from the different possibilities to measure
the error between the observations on the market and the correspond-
ing quantities in the model world. A natural approach to specify
this error is to consider the absolute price (AP) differences, see e.g.
Schoutens et al. (2004). But the importance of absolute price differ-
ences depends on the magnitude of these price. Hence, another useful
way for measuring the error are relative price (RP) differences, see e.g.
Mikhailov et al. (2003). As models are often judged by their capability
to reproduce implied volatility surfaces other measures can be defined
in terms of implied volatilities. There are again the two possibilities of
absolute implied volatilities (AI) and relative implied volatilities (RI).
We consider these four ways to measure the difference between model
and market data and explore the implications for the pricing of exotic
options.

To this end, we focus on the popular stochastic volatility model
of Heston. In order to analyze the influence of the goodness of fit on
calibration risk we consider in addition the Bates model which is an
extension of the Heston model with similar qualitative features. These
two models are calibrated to plain vanillas on the DAX. In order to
get reliable results we use a time series of implied volatility surfaces
from April 2003 to March 2004. Because of the computationally in-
tense Monte Carlo simulations for the pricing of the exotic options we
consider only one trading day in each week of this period. As exotic
options we consider down and out puts, up and out calls and cliquet
options for 1, 2 or 3 years to maturity. In this framework we determine
the size of calibration risk and analyze factors influencing it.

Besides calibration risk there is also model risk which represents
wrong prices because a wrong parametric model has been chosen. We
consider also model risk between the Heston and the Bates model and
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analyze the relation between the two forms of risk in pricing exotic
options.

Section 2 introduces the models and describes their risk neutral
dynamics that we use for option pricing. Moreover, this section con-
tains information about the data used for the calibration. Section 3
describes the calibration method and defines the error functionals an-
alyzed in this work. The goodness of fit is shown by representative
surfaces and statistics on the errors. In Section 4, we present the exotic
options that we consider for calibration risk and price these products
by simulation. In Section 5, we analyze the model risk for the two
stochastic volatility models under the four error functionals. In the
last Section 6, we summarize the results and draw our conclusions.

2 Models and Data

In this section, we describe briefly the Heston model and the Bates
model for which we are going to analyze calibration risk. Moreover,
we provide some descriptive statistics of the implied volatility surfaces
that we use as input data for the calibration.

2.1 Heston model

We consider the popular stochastic volatility model of Heston (1993):

dSt

St
= µdt+

√
VtdW

1
t

where the volatility process is modelled by a square-root process:

dVt = ξ(η − Vt)dt+ θ
√
VtdW

2
t

and W 1 and W 2 are Wiener processes with correlation ρ.

The volatility process remains positive if its volatility θ is small
enough with respect to the product of the mean reversion speed ξ and
the average volatility level η:

ξη >
θ2

2
. (1)
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The dynamics of the price process are analyzed under a martingale
measure under which the characteristic function of log(St) is given by:

φH
t (z) = exp{ −(z2 + iz)V0

γ(z) coth γ(z)t
2 + ξ − iρθz

}

×
exp{ ξηt(ξ−iρθz)

θ2 + iztr + iz log(S0)}

(cosh γ(z)t
2 + ξ−iρθz

γ(z) sinh γ(z)t
2 )

2ξη

θ2

where γ(z) def=
√
θ2(z2 + iz) + (ξ − iρθz)2, see e.g. Cont et al. (2004).

2.2 Bates model

Bates (1996) extended the Heston model by considering jumps in the
stock price process:

dSt

St
= µdt+

√
VtdW

1
t + dZt

dVt = ξ(η − Vt)dt+ θ
√
VtdW

2
t

where Z is a compound Poisson process with intensity λ and jumps k
that have a lognormal distribution:

log(1 + k) ∼ N(log(1 + k)− δ2

2
, δ2).

We analyze the dynamics of this model under a martingale measure
under which the characteristic function of log(St) is given by:

φB
t (z) = exp{tλ(e−δ2z2/2+i{log(1+k)− 1

2
δ2}z − 1)}

× exp{ −(z2 + iz)V0

γ(z) coth γ(z)t
2 + ξ − iρθz

}

×
exp{ ξηt(ξ−iρθz)

θ2 + izt(r − k) + iz log(S0)}

(cosh γ(z)t
2 + ξ−iρθz

γ(z) sinh γ(z)t
2 )

2ξη

θ2

where γ(z) def=
√
θ2(z2 + iz) + (ξ − iρθz)2, see e.g. Cont et al. (2004).

The Bates model has eight parameters while the Heston model has
only five parameters. Because of these three additional parameters the
Bates model can better fit observed surface but parameter stability is
more difficult to achieve.
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mean number mean number mean money-
of maturities of obervations ness range

short maturities 3.06 64 0.553
(0.25 ≤ T < 1.0)
long maturities 5.98 76 0.699

(1.0 ≤ T )
total 9.04 140 0.649

Table 1: Description of the implied volatility surfaces.

2.3 Data

Our data consists of EUREX-settlement volatilities of European op-
tions on the DAX. We consider the time period from April 2003 to
March 2004. Since March 2003 the EUREX trades plain vanillas with
maturities up to 5 years. Until March 2004 it has not changed its
range of products. Hence, the data is homogeneous in sense that the
implied volatility surfaces are derived from similar products.

From this time period we analyze the surfaces from all the Wednes-
days when trading has taken place. Thus, we consider 51 implied
volatility surfaces. We exclude observations that are deep out of the
money because of illiquidity of these products. More precisely, we con-
sider only options with moneyness m = K/S0 ∈ [0.75, 1.35] for small
times to maturity T ≤ 1. As we analyze exotic options with maturity
in 1, 2 or 3 years we exclude also plain vanillas with time to maturity
less than 3 months.

Some information about the resulting implied volatility surfaces
are summarized in table 1. The surfaces contain in the mean 140
transformed prices and nine maturities with a mean moneyness range
of 65%.

The values of the underlying in the considered period are shown in
figure 1. This figure contains also the (interpolated) implied volatilities
for 1 year to maturity with strike at spot level. Hence, the market of
the DAX went up in this period while the implied volatilities went
down as figure 1 shows.

We approximate the risk free interest rates by the EURIBOR. On
each trading day we use the yields corresponding to the maturities of
the implied volatility surface. As the DAX is a performance index it
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Figure 1: DAX and ATM implied volatility with 1 year to maturity on the
trading days from 01 April 2003 to 31 March 2004.

is adjusted to dividend payments. Thus, we do not consider dividend
payments explicitly.

3 Calibration

In this section, we specify the calibration routine and describe the
four error functionals. The calibration results illustrate that the plain
vanilla prices can be well replicated by the Heston and the Bates
model.

3.1 Calibration method

Carr & Madan (1999) found a representation of the price of a Euro-
pean call option by one integral for a whole class of option pricing
models. Their method that is applicable to the Heston (1993) model
is based on the characteristic function of the log stock price under the
risk neutral measure.

Carr and Madan showed that the price C(K,T ) of a European call
option with strike K and maturity T is given by

C(K,T ) =
exp{−α ln(K)}

π

∫ +∞

0
exp{−iv ln(K)}ψT (v)dv

for a (suitable) damping factor α > 0. The function ψT is given by

ψT (v) =
exp(−rT )φT {v − (α+ 1)i}
α2 + α− v2 + i(2α+ 1)v
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where φT is the characteristic function of log(ST ), see Section 2.
For the minimization we consider the following four objective func-

tions based on the root weighted square error:

AP def=

√√√√ n∑
i=1

wi(Pmod
i − Pmar

i )2

RP def=

√√√√ n∑
i=1

wi(
Pmod

i − Pmar
i

Pmar
i

)2

AI def=

√√√√ n∑
i=1

wi(IV mod
i − IV mar

i )2

RI def=

√√√√ n∑
i=1

wi(
IV mod

i − IV mar
i

IV mar
i

)2

where mod refers to a model quantity and mar to a quantity observed
on the market, P to a price and IV to an implied volatility. The index
i runs over all nt observations of the surface on day t. The weights wi

are non negative with
∑

iwi = 1. Hence, the objective functions can
be interpreted as mean average errors.

We choose the weights in such a way that on each day all maturities
have the same influence on the objective function. In order to make
different surfaces comparable each maturity gets the weight 1/nmat

where nmat denotes the number of maturities in this surface. More-
over, we assign the same weight to all points of the same maturity.
This leads to the weights

wi
def=

1
nmatni

str

where ni
str denotes the number of strikes with the same maturity as

observation i. This weighting leads asymptotically to a uniform den-
sity on each maturity.

Given these weights we measure the average time to maturity of
an implied volatility surface by a modified duration:

n∑
i=1

τiwi∑n
i=1wi
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where τi is the time to maturity of the option i. The mean duration
of the 51 surfaces is 2.02 and the minimal (maximal) is 1.70 (2.30).
Thus, the point of balance for the maturities lies around 2 for our time
series of surfaces. As we analyze exotic options with 1, 2 or 3 years
time to maturity this point of balance confirms a correct weighting for
our purposes.

As prices we consider only out of the money prices. Thus, we use
call prices for strikes higher (or equal) than the spot and put prices for
strikes below the spot. This approach ensures to compare only prices
of similar magnitude. It has no impact on the errors based on implied
volatilities. Because of the put call parity the use of OTM options
has nor an impact on the absolute price error (AP). But the relative
prices are weighted in such a way that the observations around the
spot receive less weight. Hence, only the relative price error (RP) is
influenced by this choice of prices.

In order to estimate the model parameters we apply a stochastic
global optimization routine and minimize the objective functions with
respect to the model parameters. In addition to some natural con-
straints on the range of the parameters we have taken into account
inequality 1 that ensures the positivity of the volatility process.

Sometimes the objective function that is minimized contains in
addition to the error measure a regularization term. Regularization
can be necessary for two reasons: The error function may have several
global minima and thus the regularization is necessary in order to get
a unique minimum. Besides this static problem it is also important to
find parameters on subsequent days that lead to similar prices (and
greeks) of exotic options. This time stability is essential for the prac-
tical applicability of the calibration. We have discovered in tests on
simulated and real data that our algorithm finds a unique solution
whatever the starting conditions are. As we do not consider subse-
quent trading days in our analysis the time stability is not essential
in our case. Hence we omit a regularization term.

3.2 Calibration results

We have considered the implied volatility surfaces of each Wednesday
in the period from April 2003 to March 2004 on which trading has
taken place. Thus, we have analyzed 51 surfaces. Each of these has
been calibrated with respect to the four error functions described in
Section 3.1. These calibrations have been done for the Heston and the
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mean AP RP AI RI
objective fct. [E−2] [E−2] [E−2]

AP 7.3 9.7 0.81 3.1
RP 11. 6.1 0.74 2.9
AI 9.4 7.3 0.68 2.6
RI 8.8 7.0 0.70 2.5

Table 2: Calibration errors in the Heston model for 51 days.

Bates model.
The resulting errors of these 408 calibrations have been summa-

rized in table 2 for the Heston model and in table 3 for the Bates
model. Descriptive statistics on the calibrated parameters are given
in the appendix in table 9 for the Heston model and in table 10 for the
Bates model. Figure 2 shows the fit of the implied volatility surface
in the Heston model on a day that is representative for the AI error.

Table 2 reports in each line the means of the four errors when the
objective function given in the left column is minimized. In the Heston
model, we get a mean absolute price error of 7.3 and a mean relative
price error of 9.7% when we calibrate with respect to AP. Using the
RP error functional we get the opposite result with a mean absolute
price error of 11 and a mean relative price error of 6.1%. The errors
based on implied volatilities are smaller for the RP objective function
than for the AP objective function. The results for the AI and RI
objective functionals differ only slightly: the mean absolute implied
volatility error is about 0.68% and the mean relative implied volatil-
ity error is about 2.5%. Moreover, the price errors for these objective
functions lie between the price errors of the other two objective func-
tions. The calibration w.r.t. RI gives the best overall fit because it
has the smallest RI error and the second best errors for the rest. The
meaning of these error measures is illustrated by figure 2 which shows
an implied volatility fit that is representative for an AI error of 0.68%.
In order to make the AP errors comparable for different days (with
different values of the spot) we have computed the mean of AP/DAX
as 0.21, 0.34, 0.27, 0.25 for the four error functionals.

The calibrated parameters which are described in the appendix by
table 9 form two groups because the parameters for the RP, AI and RI
calibration are quite similar. The start volatility V0 and the average
volatility level η are both about 7% for all objective functionals. For
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mean AP RP AI RI
objective fct. [E−2] [E−2] [E−2]

AP 7.0 13. 0.76 2.8
RP 12. 5.1 0.67 2.6
AI 8.9 6.4 0.60 2.3
RI 8.7 6.2 0.62 2.2

Table 3: Calibration errors in the Bates model for 51 days.

the AP calibration we get a reversion speed ξ = 0.9, a volatility of
volatility of θ = 0.34 and a correlation ρ = −0.82. The other cali-
brations lead to similar parameters with a reversion speed ξ = 1.3, a
volatility of volatility of θ = 0.44 and a correlation ρ = −0.75. As the
correlations are significantly below −1 the calibrated Heston models
have really two stochastic factors.

The Bates model exhibits similar qualitative results as the Heston
model: The AP and the RP calibrations differ widely while the AI
and the RI calibrations lead to similar results. The Bates model can
regarded as an extension of the Heston model. The additional three
parameters for the jumps in the spot process lead for all errors func-
tionals to better calibration results: The AP error is reduced (in the
mean) by 4%, RP error by 16%, the AI and the RI error both by 12%.

The calibrated parameters of the Bates model are given in table 10.
As in the Heston model they form two groups with the AP calibration
on the one hand and the RP, AI and RI calibrations on the other hand.
The parameters ξ, η, θ and V0 are similar to the calibrations for the
Heston model. Only the correlation ρ rises to a level of −0.93 for all
objective functions. Hence, this criterion for distinguishing between
the two groups disappears. It is replaced by the expected number of
jumps per year: For the AP calibration we expect (in the mean) a
jump every three years while we expect every two years a jump for
the other calibrations. It is interesting that all calibrations lead to a
mean jump up of about +8% for the returns. The expected jumps
upwards correspond to the market going up as shown in figure 1.

Schoutens et al. (2004) found that the Heston and the Bates op-
tion model can both be calibrated well to the EuroStoxx50. In sum-
marizing the results of this section we can say that also DAX implied
volatility surfaces can be replicated well by these models for different
error functionals. As Schoutens et al. (2004), we find that the Bates

9
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Figure 2: Implied volatilities in the Heston model for the maturities 0.26,
0.52, 0.78, 1.04, 1.56, 2.08, 2.60, 3.12, 3.64, 4.70 (left to right, top to bottom)
for AI parameters on 25/6/2003. Red solid: model, blue dotted: market.
X-axis: moneyness.
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model gives only slightly better fits for the AP calibration. In addition
we have shown that it leads to a considerable improvement in the fit
for the other objective functions.

4 Exotic Options

We come now to the analysis of the price differences of exotic options
for calibrations w.r.t. different error measures. We consider barrier
and cliquet options. The prices of these products are calculated by
Monte Carlo simulations using Euler discretizations.

4.1 Simulation

We price all exotic options by Monte Carlo simulations. To this end,
we use for each derivate product 1000000 paths generated by Euler
discretization, see e.g. Glasserman (2004). For each exotic option we
consider three maturities: 1 year, 2 years and 3 years. We analyze
three exotic options: up & out calls, down & out puts and cliquet
options. These products are described in the following sections where
remaining parameters are also specified.

The payoffs of barrier options depend on the minimum or maxi-
mum of the underlying price process in some time interval. We ap-
proximate this quantity by a discrete minimum with one observation
for each trading day. Thus, we use 250 time steps to simulate a process
for a year.

The calibration results are presented in following sections together
with a discussion of the options. The accuracy of the Monte Carlo
results is given by the relative standard error in table 4. Thus, this
table confirms that the estimators have sufficiently small variance after
1000000 paths compared to the price differences we observe in tables
5 to 7.

4.2 Barrier Options

For the barrier options that are very popular on the market we con-
sider two types: up & out calls and down & out puts.
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Heston Bates
T = 1 T = 2 T = 3 T = 1 T = 2 T = 3

up and out calls 0.17 0.10 0.08 0.17 0.11 0.09
down and out puts 0.18 0.11 0.08 0.19 0.12 0.10

cliquet options 0.06 0.05 0.05 0.07 0.06 0.05

Table 4: Maximal relative standard error in percent of Monte Carlo simula-
tions. (Maximum over all time points and all objective functions)

4.2.1 Up and out call options

The prices of up and out calls with strike K, barrier B and maturity
T on an underlying (St) are given by

exp(−rT ) E[(ST −K)+1{MT <B}]

where

MT
def= max

0≤t≤T
St.

We choose as strike K and barrier B

K = 1− 0.1T
B = 1 + 0.2T

where T denotes time to maturity. Up and out calls with such strikes
and barriers are widely traded on the market.

Up and out call options have the payoff profile of European call
options if the underlying has not fallen below the barrier. Otherwise
their payoff is zero. Thus, up and out calls are path dependent exotic
options.

We want to analyze the difference between the prices of the exotic
options when the underlying model has been calibrated w.r.t. different
errors. To this end, we have calibrated the Heston and the Bates model
to implied volatility or price data on each day w.r.t. the four error
functionals introduced in Section 3.1. Hence we have four time series
of calibrated model parameters that are described in Section 3.2. By
Monte Carlo simulations we calculate on each day the prices of up and
out calls for the four sets of model parameters. In this way we get four

12
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0.9

0.95

1
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1.2
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Figure 3: Relative prices of the up and out calls in the Heston model for 3
years to maturity.

time series of up and out call prices corresponding to the four error
measures. As we are interested how the price varies over the four error
functionals we consider the quotients of the up and out call prices.

The six possible time series of price quotients are shown in figure
3 for 3 years to maturity in the Heston model. In the boxplots the
central red line gives the median and the box contains 50% of the
observations. Hence, the AP prices lie in the mean about 6% over the
other prices and the AP prices are in 75% of the 51 days at least 4%
higher than the other prices. The RP prices are about 2% below the
AI or RI prices which are very similar to each other.

We analyze the influence of time to maturity on these price dif-
ferences by considering also 1 year and 2 years to maturity (and by
adjusting the barrier and the strike appropriately). The medians of the
price quotients are presented in table 5 for all three times to maturity.
This table shows that the price differences become smaller for shorter
times to maturity for the AP prices. The other price differences re-
main almost constant. For 1 year to maturity the price differences are
about 2% − 3% and the AP prices are lower than the other prices.
For 2 years to maturity the AP prices are again higher than the other
prices.
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AP/RP AP/AI AP/RI RP/AI RP/RI AI/RI
Heston T = 1 0.986 0.968 0.967 0.984 0.984 0.999

T = 2 1.051 1.024 1.022 0.979 0.978 0.998
T = 3 1.072 1.059 1.048 0.980 0.976 0.994

Bates T = 1 0.988 0.985 1.002 1.002 1.006 1.012
T = 2 1.070 1.083 1.104 0.970 0.986 1.018
T = 3 1.106 1.123 1.129 0.972 0.975 1.013

Table 5: Median of price quotients of up and out calls.

AP/RP AP/AI AP/RI RP/AI RP/RI AI/RI

0.8

0.9

1

1.1

1.2

1.3

1.4

up and out calls, T=3

Figure 4: Relative prices of the up and out calls in the Bates model for 3
years to maturity.
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In order to analyze the influence of the goodness of fit on the price
differences we consider also the Bates model. The boxplots of the price
quotients in this model are given in figure 4 for 3 years to maturity.
Compared to the Heston boxplots the boxes are longer in the Bates
model. Thus there is more variation between the prices for different
error functionals. Moreover the median differences between the AP
prices and the other prices are bigger than in the Heston model - espe-
cially for AP/AI and AP/RI. The differences between RP, AI and RI
are similar to those in the Heston model. The corresponding results
for 1 year and 2 years to maturity are presented in table 5. Quantita-
tively the situation is similar to the Heston model: For shorter times
to maturity the price differences decrease - especially for AP prices.

Thus, the price differences in the Heston and in the Bates model
are similar between the RP, AI and RI prices while the AP price dif-
ferences are bigger in the Bates model. Moreover, the variation of the
price differences is higher in the Bates model.

4.2.2 Down and out put options

The prices of the down and out puts with strike K, barrier B and
maturity T on an underlying (St) are given by

exp(−rT ) E[(ST −K)+1{mT >B}]

where

mT
def= min

0≤t≤T
St.

For our analysis, we use the strike K and the barrier B

K = 1 + 0.1T
B = 1− 0.2T

where T denotes time to maturity. The strikes and barriers are set in
analogy to the up and out calls. Such down and out puts are again a
typical product on the exotics markets.

Down and out put options have the payoff profile of European put
options if the underlying has been below the barrier during the life
time of the option. Otherwise their payoff is zero.

As described above, we calculate on each day the prices of the down
and out puts for the four parameter sets. The resulting six time series
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Figure 5: Relative prices of the down and out puts in the Heston model for
3 years to maturity.

of price quotients are shown in the figure 5 for 3 years to maturity
in the Heston model. The AP prices are (in the mean) about 3.5%
smaller than the other prices and 75% of the AP prices are at least
2% smaller than the other prices. The RP prices lie above the prices
from the calibrations to implied volatilities. These AI and RI prices
are quite similar so that we can identify again the two groups that we
have already observed for the up and out calls.

Compared to the up and out calls the price differences are smaller
for the down and out puts. This can be seen also from table 6 that re-
ports the median of the price quotients for 1, 2 and 3 years to maturity.
This table shows that the price differences change for increasing time
to maturity: For 1 year to maturity the AP prices lie above the other
prices but with increasing time to maturity the AP prices become rel-
atively smaller. The RP and AI prices remain on a comparable level
for all times to maturity and the RI prices tend to this level for longer
times to maturity.

The situation in the Bates model that gives better fits to the plain
vanilla data is given by figure 6 and table 6. The AP prices lie about
7% below the other prices. Thus this difference is bigger than in the
Heston model. The other price quotient lie still in the mean on the
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AP/RP AP/AI AP/RI RP/AI RP/RI AI/RI
Heston T = 1 1.025 1.031 1.005 1.007 0.980 0.977

T = 2 0.983 0.994 0.984 1.011 0.997 0.986
T = 3 0.960 0.969 0.968 1.014 1.008 0.996

Bates T = 1 1.021 1.012 1.019 1.004 1.006 0.998
T = 2 0.968 0.975 0.966 1.031 1.022 0.990
T = 3 0.922 0.935 0.931 1.026 1.022 0.995

Table 6: Median of price quotients of down and out puts.

AP/RP AP/AI AP/RI RP/AI RP/RI AI/RI

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

down and out puts, T=3

Figure 6: Relative prices of the down and out puts in the Bates model for 3
years to maturity.

17



same level but the their variance has grown compared to the Heston
model.

The situation for the barrier options can be summarized as follows:
The AP prices differ significantly from the other prices for both barrier
options. While the AP prices are higher for up and out calls they are
lower for down and out puts relatively to the other prices. In this
sense the situation is symmetrical. The differences become bigger for
longer times to maturity and the better fit of the Bates model does
not lead to smaller price differences.

4.3 Cliquet Options

We consider cliquet options with prices

exp(−rT ) E[H]

where the payoff H is given by

H
def= min(cg,max[fg,

N∑
i=1

min{cil,max(f i
l ,
Sti − Sti−1

Sti−1

)}]).

Here cg (fg) is a global cap (floor) and cig (f i
g) is a local cap (floor) for

the period [ti−1, ti].
We consider three periods with ti = T

3 i (i = 0, . . . , 3) and the caps
and floors are given by

cg = ∞
fg = 0

cil = 0.08, i = 1, 2, 3

f i
l = −0.08, i = 1, 2, 3

Cliquet options have many parameters. Hence, this specification can-
not give representative picture of all the traded cliquets. But these
caps and floors are typical because the option holder cannot loose
money and the returns is bounded above only by the local return
bounds.

Cliquet options pay out basically the sum of the returns Ri
def=

Sti−Sti−1

Sti−1
. In order to reduce risk local and global floors f are intro-

duced for the returns R. In the same way the returns are bounded
above by local and global caps c.
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The distributions of the six time series of price quotients for cliquet
options are described in figure 7 for 3 years to maturity in the Heston
model. The differences are smaller than in the case of the barrier
options. The AP prices lie above the other prices but the difference
is significant only for the AP and RP prices. The differences between
the other prices is also small. Thus, we cannot recognize directly from
this figure the two groups that we identified for the barrier options.

Table 7 that reports the median price differences for 1, 2 and 3
years to maturity gives some insight into this situation: The AP prices
are about 2% smaller than the other prices for 1 year to maturity.
With increasing time to maturity the AP prices grow relatively and
are about 1.5% higher than the other prices for 3 years to maturity.
As table 7 confirms the other prices remain relatively constant for
different times to maturity. Thus there are again the two groups that
we have identified for the barrier options: The changing AP prices on
the one hand and the constant other prices on the other hand.

The relative prices of the cliquet options in the Bates model are
presented in figure 8 for 3 years to maturity. Here we see that the AP
prices are about 7% smaller than the other prices. The RP prices lie
about 2% under the AI prices that are 3% higher than the RI prices.
The RP and RI prices are similar. Thus, there are quite big differences
for the cliquet options in the Bates model. Moreover, the variance is
larger relative to the Heston model. Table 7 describes the situation of
different times to maturity and shows that the AP prices grow rela-
tively with increasing time to maturity while the other prices remain
relatively constant for different times to maturity.

Comparing the results for the two barrier options and the cliquets
we see in all cases two groups, the AP prices and the other prices. The
AP prices differ a lot from the other prices and in addition change
relatively for different times to maturity. Moreover, the variance of
the price quotient with AP prices is bigger in general than for the
other price quotients. The other group of RP, AI and RI prices shows
similar prices and small variances. The Bates model that gives better
fits has higher price differences (with higher variances).
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AP/RP AP/AI AP/RI RP/AI RP/RI AI/RI
Heston T = 1 0.983 0.976 0.989 0.993 1.006 1.013

T = 2 1.002 0.991 1.000 0.989 0.998 1.010
T = 3 1.022 1.008 1.014 0.987 0.992 1.005

Bates T = 1 0.917 0.899 0.917 0.987 1.005 1.024
T = 2 0.931 0.903 0.923 0.980 0.999 1.029
T = 3 0.946 0.912 0.933 0.976 0.995 1.029

Table 7: Median of price quotients of cliquet options.

AP/RP AP/AI AP/RI RP/AI RP/RI AI/RI

0.96

0.98

1

1.02

1.04

1.06

cliquet options, T=3

Figure 7: Relative prices of the cliquet options in the Heston model for 3
years to maturity.
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Figure 8: Relative prices of the cliquet options in the Bates model for 3 years
to maturity.

5 Model risk

In the last section, we have described the price differences that result
from the calibration w.r.t. the four error functionals. In this section
we consider model risk, consider its relation to calibration risk and
compare our results with the findings of Schoutens et al. (2004). Model
risk is generally understood as the risk of wrong prices because a wrong
parametric model has been chosen for the stochastic process of the
underlying.

In order to analyze this model risk for the two stochastic volatility
models, we consider the quotients of the prices of the exotic options
in the Bates model and the corresponding prices in the Heston model.
The distribution of these quotients for up and out calls with 3 years to
maturity is described by the figure 9. The prices in the Bates model
lie below the prices in the Heston model for all four error functionals:
The difference varies between 2% for the AP prices and 6% for the RI
prices. Thus model risk is not independent of the calibration method,
i.e. calibration risk. The results for smaller times to maturity are
given in table 8. The table suggests that model risk does not change
significantly for different times to maturity.
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Figure 9: Bates prices over Heston prices for up and out calls with 3 years
to maturity on 51 days.

AP RP AI RI
up and out calls T = 1 0.973 0.953 0.944 0.941

T = 2 0.980 0.954 0.953 0.940
T = 3 0.983 0.957 0.950 0.939

down and out puts T = 1 0.933 0.892 0.877 0.878
T = 2 0.918 0.883 0.872 0.860
T = 3 0.916 0.881 0.873 0.860

cliquets T = 1 1.057 1.100 1.109 1.119
T = 2 1.076 1.128 1.130 1.144
T = 3 1.086 1.138 1.140 1.162

Table 8: Median of Bates prices over Heston prices.
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Figure 10: Bates prices over Heston prices for down and out puts with 3
years to maturity on 51 days.

The model risk of down and out puts is shown in figure 10 for 3
years to maturity. The prices in the Bates model lie below the prices
in the Heston model for all error functionals. Compared to the up
and out calls the model risk is bigger for the down and out puts: It
varies between 9% for AP prices and 14% for RI prices. But again we
observe the highest difference for RI prices and the smallest for AP
prices. Moreover, the variance is bigger than for the up and out calls.
Table 8 that gives the results for smaller times to maturity suggests
that the model risk becomes smaller for shorter times to maturity.

Finally, we consider the model risk of cliquet options in figure 11.
For these options the Bates prices lie above the corresponding Heston
prices for all calibration methods. The smallest price difference that
appears for the AP prices is about 8% while the biggest difference of
16% have the RI prices. Table 8 shows again smaller price differences
for shorter times to maturity.

The model risk between the Heston and the Bates model can be de-
scribed for barrier and cliquet options as follows: Model risk measured
by the price differences in the two models increasing for longer times
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Figure 11: Bates prices over Heston prices for cliquet options with 3 years to
maturity on 51 days.

to maturity. Moreover, it is ordered w.r.t. the calibration method.
The calibration w.r.t. implied volatilities leads to bigger price differ-
ences as calibration w.r.t. prices. The model risk is smallest for AP
calibration and bigger for RP calibration. It is even bigger for the
AI calibration and the price differences are the biggest for RI cali-
brations. This emphasizes once more the importance of the implied
volatility surfaces and their calibration. Moreover, model risk differs
across option types.

Schoutens et al. (2004) consider up and out calls (with strike equal
to spot) and cliquet options with 3 years to maturity. For a barrier
50% above the spot, they find a model risk for the up and out calls
of about 14%. For the cliquet options Schoutens et al. do not find a
significant model risk. These results do not correspond in every respect
to our AP results. There may be several reasons for these different
results: While we look at a time series of 51 implied volatility surfaces
they focus one one day. They have analyzed the EuroStoxx50 and we
use DAX data.
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6 Conclusion

We have looked at the popular stochastic volatility model of Heston
and analyzed different calibration methods and their impact on the
pricing of exotic options. Our analysis was carried out for a time series
of DAX implied volatility surfaces from April 2003 to March 2004.

We have shown that different ways to measure the error between
the model and the market in the calibration routine lead to significant
price differences of exotic options in the sense that these differences
often exceed the profit margins of the products. We have considered
the four error measures that are defined by the root mean squared
error of absolute or relative differences of prices or implied volatilities.
Among these measures we have identified two groups: Calibrations
w.r.t. relative prices, absolute implied volatilities or relative implied
volatilities lead to similar prices of exotic options. Calibrations w.r.t.
absolute prices imply exotics prices that are quite different from the
prices of the first group. The price differences increase for longer times
to maturity. Moreover, the differences do not decrease in the Bates
model although it is an extension of the Heston model with similar
qualitative features and a better fit to plain vanilla data. The price
differences of exotic options differ also across option types and are
bigger for barrier options than for cliquets.

Moreover, we have looked at the model risk for these two option
pricing models. Model risk and calibration risk are not independent
because model risk is lowest for calibrations w.r.t. absolute prices
and highest for calibrations w.r.t. relative implied volatilities. As this
holds for all considered options model risk seems to be ordered w.r.t.
the error measure used in the calibration.

As model risk is bigger than calibration risk calibrations should
be carried out w.r.t. absolute prices if the choice of an appropriate
model is unclear. But if a model has already been chosen we suggest
to measure the error between the model and the market in terms of
(relative) implied volatilities because this error measure reflects best
the characteristics of the model that are essential for exotic options.
Moreover, we have demonstrated that this choice leads to good cal-
ibrations (e.g. relatively good fits and stable parameters). We have
also shown that the resulting prices of exotic options often lie in the
middle of the prices from the other calibrations and have the small-
est variance. Our results underline the importance of the implied
volatility surface and suggest that one should measure the error in the
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calibration in terms of implied volatilities.
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ξ η θ ρ V0

AP 0.87 0.07 0.34 -0.82 0.07
(0.48) (0.02) (0.08) (0.08) (0.02)

RP 1.38 0.07 0.44 -0.74 0.08
(0.35) (0.02) (0.06) (0.03) (0.02)

AI 1.32 0.07 0.43 -0.77 0.08
(0.40) (0.02) (0.06) (0.04) (0.02)

RI 1.20 0.07 0.41 -0.75 0.08
(0.35) (0.02) (0.06) (0.05) (0.02)

Table 9: Mean parameters (std.) in the Heston model for 51 days.

ξ η θ ρ V0 λ k δ
AP 0.92 0.07 0.33 -0.94 0.07 0.33 0.07 0.08

(0.50) (0.02) (0.08) (0.07) (0.02) (0.21) (0.03) (0.06)
RP 1.56 0.07 0.45 -0.89 0.08 0.54 0.05 0.08

(0.47) (0.02) (0.07) (0.07) (0.02) (0.23) (0.03) (0.06)
AI 1.43 0.07 0.43 -0.95 0.07 0.50 0.06 0.09

(0.44) (0.02) (0.06) (0.06) (0.02) (0.22) (0.03) (0.04)
RI 1.36 0.07 0.41 -0.93 0.07 0.52 0.05 0.08

(0.44) (0.02) (0.07) (0.09) (0.02) (0.26) (0.04) (0.08)

Table 10: Mean parameters (std.) in the Bates model for 51 days.
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