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On Local Times of Ranked Continuous Semimartingales;

Application to Portfolio Generating Functions

Raouf Ghomrasni∗
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We derive the decomposition of the ranked continuous semimartingales i.e. order-
statistics processes. We apply it to portfolios generated by functions of the ranked market
weights. Thus we generalize recent results of Fernholz.
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local time, ranked processes.

MSC2000: 60H05, 60J65.

1 Introduction

The distribution of capital, i.e., the family of ranked market weights, starting with the
largest weight and going to the smallest, is of central importance in stochastic portfolio
theory, as are functionally generated portfolios. Usually we identify stocks by their names,
i.e., their subscripts, X1,X2,X3, etc. However, with regards to the distribution of capital,
it is advantageous to identify the stocks by their ranks rather than their names. Portfo-
lios generated by functions of the ranked market weights first appeared in Fernholz ([2]).
Fernholz derivations require that the processes X1, · · · ,Xn be pathwise mutually nondegen-

erate. Here, we shall extend Fernholz’s results in its full generality. The relative return of
a functionally generated portfolio satisfies a stochastic differential equation wich depends
on the local times associated with the changes in rank among the stocks.

Section 2 of the paper contains the decomposition of the ranked continuous semimartin-
gales i.e. order-statistics processes. As an interesting byproduct, we obtain an extension of
Ouknine’s formula [5, 6, 7]. In section 3 we use these decompositions to portfolio generated
by functions of the ranked market weights. Thus we generalize recent results of Fernholz
[2, 3].

∗Fakultät II, Institut für Mathematik, Sekr. MA 7-5, Technische Universität Berlin, Straße des 17. Juni

136 , D-10623 Berlin, Germany, e-mail: ghomrasni@math.tu-berlin.de. Financial support of the Deutsche

Forschungsgemeinschaft through the SFB 649 “Economic Risk” is gratefully acknowledged.
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2 Decomposition of Ranked Continuous Semimartingales

Definition 2.1 Let X1, · · · ,Xn be continuous semimartingales. For 1 ≤ k ≤ n, the k-th

rank process of X1, · · · ,Xn is defined by

X(k) = max
i1<···<ik

min(Xi1 , · · · ,Xik)

where 1 ≤ i1 and ik ≤ n.

Note that, according to Definition 2.1, for t ∈ IR+,

max
1≤i≤n

Xi(t) = X(1)(t) ≥ X(2)(t) ≥ · · · ≥ X(n)(t) = min
1≤i≤n

Xi(t)

so that at any given time, the values of the rank processes represent the values of the
original processes arranged in descending order (i.e. the (reverse) order statistics).

The following proposition shows that the rank processes derived from continuous semi-
martingales can be expressed in terms of the original processes, adjusted by local times.

Proposition 2.1 Let X1, · · · ,Xn be continuous semimartingales. For k ∈ {1, 2, · · · , n},
Let u(k) = (ut(k), t ≥ 0) : Ω × [0,∞[→ {1, 2, · · · , n} be any predictable process with the

property:

X
(k)
t = Xut(k)(t)

Then the k-th rank processes X(k), k = 1, · · · , n, are continuous semimartingales and we

have:

X(k)(t) = X(k)(0) +

n
∑

i=1

∫ t

0
1{us(k)=i} dXi(s) +

1

2

n
∑

i=1

∫ t

0
1{us(k)=i} ds L0

s((X
(k) − Xi)

+)

−
1

2

n
∑

i=1

∫ t

0
1{us(k)=i} ds L0

s((X
(k) − Xi)

−).

where L0
t (X) is the local time of the continuous semimartingale X at 0.

Proof: We adapt here the proof given by Chitashvili and Mania ([1]) for the decompo-
sition of the maximum of semimartingales (i.e. k = 1), we have,

X
(k)
t − X

(k)
0 =

n
∑

i=1

∫ t

0
1{us(k)=i} dXi

s +

n
∑

i=1

∫ t

0
1{us(k)=i} d (X(k)

s − Xi
s)

Where we used the property
∑n

i=1 1{us(k)=i} = 1 it follows,

X
(k)
t −X

(k)
0 =

n
∑

i=1

∫ t

0
1{us(k)=i} dXi

s +

n
∑

i=1

∫ t

0
1{us(k)=i} d (X(k)

s −Xi
s)

+−

n
∑

i=1

∫ t

0
1{us(k)=i} d (X(k)

s −Xi
s)

−

We note the fact:
{us(k) = i} ⊂ {X(k)

s = Xi(s)}

Therefore, using the following formula

1

2
L0

t (X) =

∫ t

0
1{(Xs=0)} dXs

2



which is valid for non-negative continuous semimartingales X.
�

We can give a more explicit decomposition as follows:

Corollary 2.1 Let X1, · · · ,Xn be continuous semimartingales.Then the k-th rank processes

X(k), k = 1, · · · , n, are continuous semimartingales and we have:

X(k)(t) = X(k)(0)+

n
∑

i=1

∫ t

0
1{us(k)=i} dXi(s)+

1

2

n
∑

i=k+1

L0
t (X

(k)−X(i))−
1

2

k−1
∑

i=1

L0
t (X

(i)−X(k)).

where L0
t (X) is the local time of the continuous semimartingale X at 0.

Proof: We fixe i = 1, · · · , n and we deal with
∫ t

0 1{us(k)=i} ds L0
s((X

(k) − Xi)
+)

∫ t

0
1{us(k)=i} ds L0

s((X
(k) − Xi)

+) =
n

∑

j=1

∫ t

0
1{us(k)=i}∩{Xi=X(j)} ds L0

s((X
(k) − Xi)

+)

=

n
∑

j=1

∫ t

0
1{us(k)=i}∩{Xi=X(j)} ds L0

s((X
(k) − X(j))+)

We, conclude by noting:

n
∑

i=1

∫ t

0
1{us(k)=i}∩{Xi=X(j)} ds L0

s((X
(k) − X(j))+) = L0

t ((X
(k) − X(j))+)

Indeed,

∫ t

0
1{us(k)=i}∩{Xi=X(j)} ds L0

s((X
(k) − X(j))+)

=

∫ t

0
1{us(k)=i}∩{Xi=X(j)} × 1{X(k)−X(j)=0} ds L0

s((X
(k) − X(j))+)

=

∫ t

0
1{us(k)=i}∩{Xi=X(k)} × 1{X(k)−X(j)=0} ds L0

s((X
(k) − X(j))+)

=

∫ t

0
1{us(k)=i}ds L0

s((X
(k) − X(j))+)

�

In the particular case considered by Fernholz (see [2]) of rank processes derived from
pathwise mutually nondegenerate absolutely continuous semimartingales

Corollary 2.2 (Fernholz)
Let X1, · · · ,Xn be pathwise mutually nondegenerate absolutely continuous semimartingales,

and for t ∈ [0, T ], let pt be the random permutation of {1., n} such that for k = 1, · · · , n,

Xpt(k)(t) = X(k)(t), and pt(k) < pt(k + 1) if X(k)(t) = X(k+1)(t).

3



Then the k-th rank processes X(k), k = 1, · · · , n, are continuous semimartingales and we

have:

X(k)(t) = X(k)(0)+
n

∑

i=1

∫ t

0
1{ps(k)=i} dXi(s) +

1

2
L0

t (X
(k) −X(k+1)) −

1

2
L0

t (X
(k−1) −X(k)).

where L0
t (X) is the local time of the continuous semimartingale X at 0.

Now, we state the solution to Problem 4.1.13 stated in Fernholz’s book:

Corollary 2.3 Let X1, · · · ,Xn be continuous semimartingales.Then the k-th rank processes

X(k), k = 1, · · · , n, are continuous semimartingales and we have:

X(k)(t) =X(k)(0) +

n
∑

i=1

∫ t

0
1{ps(k)=i} dXi(s) +

1

2
L0

t (X
(k) − X(k+2)) +

1

2
L0

t (X
(k) − X(k+1))

−
1

2
L0

t (X
(k−2) − X(k)) −

1

2
L0

t (X
(k−1) − X(k)).

where L0
t (X) is the local time of the continuous semimartingale X at 0.

Theorem 2.1 Let X1, · · · ,Xn be continuous semimartingales.Then we have:

n
∑

i=1

L0
t (X

(i)) =
n

∑

i=1

L0
t (Xi)

where L0
t (X) is the local time of the continuous semimartingale X at 0.

Proof:
We recall first that L0

t (Z) = L0
t (Z

+) for every semimartingale Z. Hence, it is enough
to consider the case where X1, · · · ,Xn are non-negatives continuous semimartingales. We
need to check the following equality holds:

n
∑

i=1

1{X(i)=0} dX(i) =

n
∑

i=1

1{Xi=0} dXi

From Corollary 2.1, we have

dX(k) =
n

∑

i=1

1{ut(k)=i} dXi +
n

∑

i=k+1

1{X(k)−X(i)=0}d (X(k)−X(i))−
k−1
∑

i=1

1{X(i)−X(k)=0}d (X(i)−X(k)).

It follows:

1{X(k)=0} dX(k) =

n
∑

i=1

1{ut(k)=i} 1{X(k)=0} 1{Xi=X(k)}dXi +

n
∑

i=k+1

1{X(k)−X(i)=0}1{X(k)=0} d (X(k) − X(i))

−
k−1
∑

i=1

1{X(i)−X(k)=0}1{X(k)=0} d (X(i) − X(k)).

=

n
∑

i=1

1{ut(k)=i} 1{Xi=0}dXi +

n
∑

i=k+1

1{X(i)=0}1{X(k)=0} d (X(k) − X(i))

−
k−1
∑

i=1

1{X(i)=0}1{X(k)=0} d (X(i) − X(k)).

4



Now we may choose our ut(·) as a bijection on {1, · · · , n}, we denote its inverse by vt(·)

1{X(k)=0} dX(k) =

n
∑

i=1

1{vt(i)=k} 1{Xi=0}dXi +

n
∑

i=k+1

1{X(i)=0}1{X(k)=0} d (X(k) − X(i))

−
k−1
∑

i=1

1{X(i)=0}1{X(k)=0} d (X(i) − X(k)).

By summation over the index k = 1, · · · , n we obtain our result.
�

In particular,

Corollary 2.4 Ouknine’s formula
Let X and Y be semimartingales. It is shown that

L0
t (X ∨ Y ) + L0

t (X ∧ Y ) = L0
t (X) + L0

t (Y )

where L0
t (X) (t ≥ 0) denotes the local time at 0 of X.

3 Portfolio Generating Functions

Theorem 3.1 Let M be a market of stocks X1, · · · ,Xn. Let S be a function defined on a

neighborhood U of ∆n. Suppose that there exists a positive C2 function S defined on U .

Then S generates the portfolio π such that for k = 1, · · · , n,

πpt(k)(t) =
(

Dk log S(µ(·)(t)) + 1 −
n

∑

j=1

µ(j)(t)Dj log S(µ(·)(t))
)

µ(k)(t),

for all t ∈ [0, T ], a.s., with a drift process Θ that satisfies

dΘ(t) =
−1

2S(µ(t))

n
∑

i,j=1

DijS(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t)dt

−
1

2

n
∑

k=1

πpt(k)(t)

n
∑

i=k+1

dL0
t ((log(µ(k)) − log(µ(i))))

+
1

2

n
∑

k=1

πpt(k)(t)

k−1
∑

i=1

dL0
t ((log(µ(i)) − log(µ(k))))

Hence,

5



d log(Zπ(t)/Zµ(t)) =
n

∑

i=1

Dilog S(µ(·)(t)) dµ(i)(t)

−
1

2

n
∑

i,j=1

Dilog S(µ(·)(t))Dj log S(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t)dt

−
1

2

n
∑

k=1

πpt(k)(t)

n
∑

i=1

1{ut(k)=i}dL0
t ((log(µ(k)) − log(µi))

+)

+
1

2

n
∑

k=1

πpt(k)(t)
n

∑

i=1

1{ut(k)=i}dL0
t ((log(µ(k)) − log(µi))

−)

Remark 3.1 The theorem above extend Fernholz’s theorem where the assumption for X1, · · · ,Xn

of pathwise mutually nondegenerate was needed.

Proof :
Itô’s formula implies that:

d log S(µ(·)(t)) =

n
∑

i=1

Di log S(µ(·)(t))dµ(i)(t)

+
1

2S(µ(·)(t))

n
∑

i,j=1

DijS(µ(·)(t)) d < µi, µj >t

−
1

2

n
∑

i,j=1

Di log S(µ(·)(t))Dj log S(µ(·)(t)) d < µi, µj >t

Now let us consider the relative return process log(Zπ(t)/Z(t)). We have

d log(Zπ(t)/Zµ(t)) =

n
∑

i=1

πi(t)d log µi(t) + γ⋆
π dt

=
n

∑

k=1

πpt(k)(t) d log µ(k)(t) +
1

2

n
∑

k=1

πpt(k)(t)
n

∑

i=1

1{ut(k)=i}dL0
t ((log(µ(k)) − log(µi))

+)

−
1

2

n
∑

k=1

πpt(k)(t)
n

∑

i=1

1{ut(k)=i}dL0
t ((log(µ(k)) − log(µi))

−) + γ⋆
π dt

=
n

∑

k=1

πpt(k)(t)

µ(k)(t)
dµ(k)(t) +

1

2

n
∑

k=1

πpt(k)(t)
n

∑

i=1

1{ut(k)=i}dL0
t ((log(µ(k)) − log(µi))

+)

−
1

2

n
∑

k=1

πpt(k)(t)

n
∑

i=1

1{ut(k)=i}dL0
t ((log(µ(k)) − log(µi))

−) + γ⋆
π dt

−
1

2

n
∑

k=1

πpt(k)(t)d < log µk(·) >t

Let assume that the weights πi, i = 1, · · · , n satisfy:

πpt(k)(t)

µ(k)(t)
= Dk log S(µ(·)(t)) + ϕ(t)

6



In this case:

n
∑

i=1

πpt(i)(t)

µ(i)(t)
dµ(i)(t) =

n
∑

i=1

Dilog S(µ(·)(t)) dµ(i)(t) + ϕ(t)
n

∑

i=1

dµ(i)(t)

=

n
∑

i=1

Dilog S(µ(·)(t)) dµ(i)(t)

Now we consider the last summation γ⋆
π dt − 1

2

∑n
k=1 πpt(k)(t)d < log µk(·) >t. It follows

γ⋆
π dt −

1

2

n
∑

k=1

πpt(k)(t)d < log µk(·) >t =

n
∑

i,j=1

Dilog S(µ(·)(t))Dj log S(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t)

Finally,

d log(Zπ(t)/Zµ(t)) =

n
∑

i=1

Dilog S(µ(·)(t)) dµ(i)(t)

−
1

2

n
∑

i,j=1

Dilog S(µ(·)(t))Dj log S(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t)dt

+
1

2

n
∑

k=1

πpt(k)(t)
n

∑

i=1

1{ut(k)=i}dL0
t ((log(µ(k)) − log(µi))

+)

−
1

2

n
∑

k=1

πpt(k)(t)
n

∑

i=1

1{ut(k)=i}dL0
t ((log(µ(k)) − log(µi))

−)

�

Corollary 3.1 In the particular case studied by Fernholz, where we assume the stocks

X1, · · · ,Xn are pathwise mutually nondegerate, we have:

d log(Zπ(t)/Zµ(t)) =

n
∑

i=1

Dilog S(µ(·)(t)) dµ(i)(t)

−
1

2

n
∑

i,j=1

Dilog S(µ(·)(t))Dj log S(µ(·)(t))µ(i)(t)µ(j)(t)τ(ij)(t)dt

+
1

2

n−1
∑

k=1

(πpt(k+1)(t) − πpt(k)(t))dL0
t ((log(µ(k)) − log(µ(k+1)))

3.1 Examples of Rank-Dependent Portfolios

As considered by Fernholz, we have more generally:

Example. (The biggest stock) Let S = x(1).

7



d log(Zπ(t)/Zµ(t)) =
1

(µ(1)(t))
dµ(1)(t) −

1

2
τ(11)(t) dt

−
1

2
πpt(1)(t)

n
∑

i=1

1{ut(1)=i}dL0
t ((log(µ(1)) − log(µi)))

Hence,

d log(Zπ(t)/Zµ(t)) = d log µ(1)(t) −
1

2
πpt(1)(t)

n
∑

i=1

1{ut(1)=i}dL0
t ((log(µ(1)) − log(µi)))

Equivalently,

d log(Zπ(t)/Zµ(t)) = d log µ(1)(t) −
1

2
πpt(1)(t)

n
∑

i=1

dL0
t ((log(µ(1)) − log(µ(i))))

Since the local time component of the drift process is decreasing, the long-term relative
performance of π will suffer if there are many changes of leadership in the market.

Example. (The size effect)
The size effect is the observed tendency of small stocks to have higher long-term returns
than large stocks. Let 1 < m < n and suppose

SL(x) = x(1) + · · · + x(m).

Then the drift dΘ is given by:

dΘt := −
1

2

m
∑

k=1

µ(k)

SL

n
∑

i=m+1

dL0
t (log µ(k) − log µ(i))

If we specify, the Fernholz’s case, we obtain:

dΘt := −
1

2

µ(m)

SL
dL0

t (log µ(m) − log µ(m+1))

Similarly,
SS(x) = x(m+1) + · · · + x(n).

Then the drift dΘ is given by:

dΘt := +
1

2

n
∑

k=m+1

µ(k)

SL

m−1
∑

i=1

dL0
t (log µ(i) − log µ(k))

Since the drift process is monotonically increasing, it is likely that the return on small-
stock index will eventually be greater than that of the large-stock index. Hence, the higher
long-term return of small-stock index is due to the increasing drift process, and the relative
level of small-stock risk is irrelevant.

8
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