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Abstract
The background for the general mathematical link between utility and information

theory investigated in this paper is a simple financial market model with two kinds of small
traders: less informed traders and insiders, whose extra information is represented by an
enlargement of the other agents’ filtration. The expected logarithmic utility increment, i.e.
the difference of the insider’s and the less informed trader’s expected logarithmic utility
is described in terms of the information drift, i.e. the drift one has to eliminate in order
to perceive the price dynamics as a martingale from the insider’s perspective. On the one
hand, we describe the information drift in a very general setting by natural quantities
expressing the probabilistic better informed view of the world. This on the other hand
allows us to identify the additional utility by entropy related quantities known from
information theory. In particular, in a complete market in which the insider has some
fixed additional information during the entire trading interval, its utility increment can
be represented by the Shannon information of his extra knowledge. For general markets,
and in some particular examples, we provide estimates of maximal utility by information
inequalities.
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Key words and phrases: enlargement of filtration; logarithmic utility; utility maximiza-

tion; heterogeneous information; insider model; Shannon information; information difference;
entropy; differential entropy.
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Introduction

A simple mathematical model of two agents on a financial markets taking their portfolio
decisions on the basis of different information horizons has attracted much attention in recent
years. Both agents are small, and unable to influence the price dynamics of the risky assets
constituting the market. One agent just acts on the basis of the evolution of the market, the
other one, the insider, possesses some additional knowledge at every instant of the continuous
trading interval. This basic fact is modelled by associating two different filtrations with each
agent, from which they make their portfolio decisions: the less informed agent, at time t, just
has the σ−field Ft, corresponding to the natural evolution of the market up to this time, at
his disposal for deciding about future investments, while the insider is able to make better
decisions, taking his knowledge from a bigger σ−field Gt ⊃ Ft. We give a short selection of
some among many more papers dealing with this model, just indicating the most important
mathematical techniques used for its investigation. Methods are focused on martingale and
stochastic control theory, and techniques of enlargement of filtrations (see Yor , Jeulin , Jacod
in [JY85]), starting with the conceptual paper by Duffie, Huang [DH86], mostly in the initial
enlargement setting, i.e. the insider gets some fixed extra information at the beginning of
the trading interval. The model is successively studied on stochastic bases with increasing
complexity: e.g. Karatzas, Pikovsky [PK96] on Wiener space, Grorud, Pontier [GP98] allow
Poissonian noise, Biagini and Oksendal [BO03] employ anticipative calculus techniques. In
the same setting, Amendinger, Becherer and Schweizer [ABS03] calculate the value of insider
information from the perspective of specific utilities. Baudoin [Bau01] introduces the concept
of weak additional information consisting in the knowledge of the law of some random element.
Campi [Cam03] considers hedging techniques for insiders in the incomplete market setting.
It is clear that the expected utility the insider is able to gain from final wealth in this simple
model will be bigger than the uninformed traders’ utility, for every utility function. And
in fact many of the quoted papers deal with the calculation of a better informed agent’s
additional utility.

In Amendinger et al. [AIS98], in the setting of initial enlargements and logarithmic utility,
a crucial and natural link between the additional expected logarithmic utility and informa-
tion theoretic concepts was made. The insider’s logarithmic utility advantage is identified
with the Shannon entropy of the additional information. In the same setting, Gasbarra,
Valkeila [GV03] extended this link by interpreting the logarithmic utility increment by the
Kullback-Leibler information of the insider’s additional knowledge from the perspective of
Bayesian modelling. In the environment of this utility-information paradigm the papers
[Imk96], [IPW01], [Imk02], [Imk03], Corcuera et al. [CIKHN03], and Ankirchner et al. [AI05]
describe additional utility, treat arbitrage questions and their interpretation in information
theoretic terms in increasingly complex models of the same base structure, including some
simple examples of progressive enlargements. It is clear that utility concepts different from
the logarithmic one correspond on the information theoretic side to the generalized entropy
concepts of f−divergences.

In this paper we shall continue the investigation of mathematical questions related to
the link between utility and information theory in the most general setting of enlargements
of filtrations: besides assuming eventually that the base space be standard, to ensure the
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existence of regular conditional probabilities, we shall let the filtration of the better informed
agent just contain the one of the natural evolution of knowledge. To concentrate on one kind
of entropy in this general setting, we shall consider logarithmic utility throughout. In this
framework, Ankirchner et al. [AI05] calculate the maximal expected utility of an agent from
the intrinsic point of view of his (general) filtration, and relate the finiteness of expected
utility via the (NFLVR) condition to the characterization of semimartingales by the theorem
of Dellacherie-Meyer-Mokobodski. The compensator in the Doob-Meyer decomposition of
underlying asset price processes with respect to the agent’s filtration is determined by the
information drift process. In this paper we shall give a general analysis of the nature of
this process, and relate it to measuring the difference of the information residing in the two
filtrations, independently of the particular price dynamics. The basic observation we start
with in Section 2 identifies the information drift process with Radon-Nikodym densities of
the stochastic kernel in an integral representation of the conditional probability process and
the conditional probability process itself. This observation allows for an identification of the
additional utility by the information difference of the two filtrations in terms of Shannon
entropy notions in Section 5, again independent of particular price dynamics of the financial
market.

The paper is organized as follows. In the preparatory Section 1, we recall the main results
about the connection between finite utility filtrations, properties of the price dynamics from
the perspective of different agents, and properties of the information drift from Ankirchner
et al. [AI05]. In Section 2 (Theorems 2.6 and 2.10) properties of the conditional proba-
bility processes with respect to the agents’ filtrations and the information drift process are
investigated in depth, and lead to the identification of the information drift by subjective
conditional probability quantities. The description of the additional utility in terms of en-
tropy notions is more easily obtained, if the additional information in the bigger filtration
comes in discrete bits along a sequence of partitions of the trading interval, leading to step-
wise ”initial enlargements” which ultimately converge to the big filtration as the mesh of the
partitions shrinks to 0. This is done in Section 5 (Theorem 5.8), after being prepared in
Sections 3 and 4 by a general investigation of the convergence properties of information drifts
going along with the convergence of such discretized enlargements to the big filtration. In
the final Section 6, general facts known from Shannon information theory (see Ihara [Iha93])
are applied to estimate the expected maximal logarithmic utility of a better informed agent
via the identification theorem of Section 5, in several particular cases. Entropy maximizing
properties of Gaussian random variables play an important role.

1 Preliminaries

In this preparatory section we define the financial market model and recall some basic facts
about expected utility maximization. Our favorite utility function will be the logarithmic
one, for which we will then compare the maximal expected utilities of agents on the market
who act on the background of asymmetric information. Recalling a result from [AI05], we
will describe the utility increment of a better informed agent by the respective information
drift of the agents’ filtrations.
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Let (Ω,F , P ) be a probability space with a filtration (Ft)0≤t≤T , where T > 0 is a fixed
time horizon. We consider a financial market with one non-risky asset of interest rate nor-
malized to 0, and one risky asset with price St at time t ∈ [0, T ]. We assume that S is a
continuous (Ft)−semimartingale with values in R and write A for the set of all S−integrable
and (Ft)−predictable processes such that θ0 = 0. If θ ∈ A, then we denote by (θ · S) the
usual stochastic integral process. For all x > 0 we interpret

x + (θ · S)t, 0 ≤ t ≤ T,

as the wealth process of a trader possessing an initial wealth x and choosing the investment
strategy θ on the basis of his knowledge horizon corresponding to the filtration (Ft).
Throughout this paper we will suppose the preferences of the agents to be described by
the logarithmic utility function. Furthermore we suppose that the traders’ total wealth has
always to be strictly positive, i.e. for all t ∈ [0, T ]

x + (θ · S)t > 0 a.s. (1)

Strategies θ satisfying equation (1) will be called x−superadmissible. The agents want to
maximize their expected logarithmic utility from their wealth at time T . So we are interested
in the exact value of

u(x) = sup{E log(x + (θ · S)T ) : θ ∈ A x− superadmissible}.

Sometimes we will write uF (x), in order to stress the underlying filtration. The expected
logarithmic utility of the agent can be calculated easily, if one has a semimartingale decom-
position of the form

St = Mt +
∫ t

0
ηs d〈M,M〉s, (2)

where η is a predictable process. Such a decomposition is given for a large class of semi-
martingales. For example, if S satisfies the property (NFLVR), then it may be decomposed
as in equation (2) (see [DS95]). As is shown in a forthcoming PhD thesis [Ank05], finiteness
of u(x) implies already such a decomposition to exist. Hence a decomposition as in (2) may
be given even in cases where arbitrage exists. We state Theorem 2.9 of [AI05].

Proposition 1.1. Suppose S can be decomposed into S = M + η · 〈M,M〉. Then for any
x > 0 the following equation holds

u(x) = log x +
1
2
E

∫ T

0
η2

s d〈M,M〉s. (3)

This proposition motivates the following definition.

Definition 1.2. A filtration (Gt) is called finite utility filtration for S, if S is a (Gt)−semi-
martingale with decomposition dS = dM + ζ · d〈M,M〉, where ζ is (Gt)−predictable and
belongs to L2(M), i.e. E

∫ T
0 ζ2 d〈M,M〉 < ∞. We write

F = {(Ht) ⊃ (Ft)
∣∣(Ht) is a finite utility filtration for S}.
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We now compare two traders who take their portfolio decisions not on the basis of the same
filtration, but on the basis of different information flows represented by the filtrations (Gt)
and (Ht) respectively. Suppose that both filtrations (Gt) and (Ht) are finite utility filtrations.
We denote by

S = M + ζ · 〈M,M〉 (4)

the semimartingale decomposition with respect to (Gt) and by

S = N + β · 〈N,N〉 (5)

the decomposition with respect to (Ht). Obviously,

〈M,M〉 = 〈S, S〉 = 〈N,N〉

and therefore the utility difference is equal to

uH(x)− uG(x) =
1
2
E

∫ T

0
(β2 − ζ2) d〈M,M〉.

Furthermore, the equations (4) and (5) imply

M = N − (ζ − β) · 〈M,M〉 a.s. (6)

If Gt ⊂ Ht for all t ≥ 0, equation (6) can be interpreted as the semimartingale decomposition
of M with respect to (Ht). In this case one can show that the utility difference depends only
on the process µ = ζ − β. We therefore use the following notion.

Definition 1.3. Let (Gt) be a finite utility filtration and S = M +ζ ·〈M,M〉 the Doob-Meyer
decomposition of S with respect to (Gt). Suppose that (Ht) is a filtration such that Gt ⊂ Ht

for all t ∈ [0, T ]. The (Ht)−adapted measurable process µ satisfying

M −
∫ ·

0
µt d〈M,M〉t is a (Ht)− local martingale

is called information drift (see [Imk03]) of (Ht) with respect to (Gt).

The following proposition relates the information drift to the expected logarithmic utility
increment.

Proposition 1.4. Let (Gt) and (Ht) be two finite utility filtrations such that Gt ⊂ Ht for all
t ∈ [0, T ]. If µ is the information drift of (Ht) w.r.t. (Gt), then we have

uH(x)− uG(x) =
1
2
E

∫ T

0
µ2 d〈M,M〉.

Proof. See Theorem 2.13 in [AI05]. �

So far we only required the information drift to be measurable and adapted. Due to the
continuity of S we have the following.

Proposition 1.5. The information drift, provided it exists, may be chosen to be predictable.
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Proof. Suppose µ is a measurable and (Gt)−adapted process such that

M −
∫ ·

0
µt d〈M,M〉t

is a (Gt)−local martingale. We denote by pµ the predictable projection of µ with respect to
(Gt). We will show that M −p µ · 〈M,M〉 remains a (Gt)−local martingale.

Let τ be stopping time localizing M such that M τ , the martingale M stopped at τ , is
bounded. To simplify notation we assume M τ = M . Let 0 ≤ s < t, A ∈ Gs and ε > 0. Then

E(1A(Mt −Ms+ε)) = E

(
1A

∫ t

s+ε
µr d 〈M,M〉r

)
= E

(
1AE

[∫ t

s+ε
µr d 〈M,M〉r

∣∣Gs

])
= E

(
1AE

[∫ t

s+ε

pµr d 〈M,M〉r
∣∣Gs

])
= E

(
1A

∫ t

s+ε

pµr d 〈M,M〉r
)

(see Theorem 57, Chapter VI in [DM78]). By dominated convergence the left hand side of
this equation converges to E(1A(Mt−Ms)) as ε ↓ 0. The right hand side converges by similar
arguments. Hence we obtain

E(1A(Mt −Ms)) = E

(
1A

∫ t

s

pµr 〈M,M〉r
)

,

which means that M − pµ · 〈M,M〉 is a (Gt)−martingale. �

We close this section by recalling some basic properties of information drifts.

Lemma 1.6. Suppose the filtration (Ft) is a finite utility filtration with respect to which the
Doob-Meyer decomposition of S is given by S = M + η · 〈M,M〉. Let (Ht) be a filtration
satisfying Ft ⊂ Ht for all t ∈ [0, T ] and suppose that (Ht) has an information drift µ with
respect to (Ft). Then the following properties hold true.

i) If µ belongs to L2(M), then the maximal expected utility uH(x) is finite for all x > 0.

ii) The set of finite utility filtrations F is equal to the set of all filtrations containing (Ft)
and possessing an information drift λ with respect to (Ft) such that λ ∈ L2(M).

iii) If (Ht) is a finite utility filtration, then µ is orthogonal to L2
F (M), the subspace of (Ft)-

predictable processes in L2(M).

iv) If (Gt) is a filtration such that Ft ⊂ Gt ⊂ Ht for all t ∈ [0, T ], then there is also
an information drift κ of (Gt) with respect to (Ft). More precisely, κ is equal to the
L2(M)−projection of µ onto the subspace of the (Gt)−predictable processes.
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Proof. Properties i) and ii) are obvious. For property iii) let S = N + β · 〈N,N〉 denote
the Doob-Meyer decomposition of S relative to (Ht), and let θ ∈ L2

F (M). Since θ is adapted
to both (Ft) and (Ht), the integrals (θ · M) and (θ · N) are square integrable martingales
with expectation zero. Therefore,

E

∫ T

0
θµ d〈M,M〉 = E

[∫ T

0
θβ d〈M,M〉 −

∫ T

0
θη d〈M,M〉

]
= E

[∫ T

0
θ dM −

∫ T

0
θ dN

]
= 0.

Thus, µ is orthogonal to L2
F (M). For property iv) we refer again to [AI05]. �

2 General enlargements

Assume again that the price process S is a semimartingale of the form

S = M + η · 〈M,M〉

with respect to a finite utility filtration (Ft). Moreover, let (Gt) be a filtration such that
Ft ⊂ Gt, and let α be the information drift of (Gt) relative to (Ft). And for simplicity of
notation suppose in this section that time horizon is infinite, i.e. T = ∞. We shall aim
at describing the relative information drift α by basic quantities related to the conditional
probabilities of the larger σ−algebras Gt with respect to the smaller ones Ft, t ≥ 0. Roughly,
modulo some tedious technical details to be specified below, the relationship is as follows.
Suppose for all t ≥ 0 there is a regular conditional probability Pt(·, ·) of F given Ft, which can
be decomposed into a martingale component orthogonal to M , plus a component possessing
a stochastic integral representation with respect to M with a kernel function kt(·, ·). Then
we shall see that, provided α is square integrable with respect to d〈M,M〉 ⊗ P , the kernel
function at t will be a signed measure in its set variable. Moreover, this measure is absolutely
continuous with respect to the conditional probability, if restricted to Gt, and α coincides
with their Radon-Nikodym density.

We shall even be able to show that this relationship also makes sense in the reverse
direction. Roughly, if absolute continuity of the stochastic integral kernel with respect to
the conditional probabilities holds, and the Radon-Nikodym density is square integrable, the
latter will turn out to provide an information drift α in a Doob-Meyer decomposition of S in
the larger filtration.

We shall finish the section with an illustration of this fundamental relationship by dis-
cussing some simple examples of particularly enlarged filtrations.

The discussion of the details of this fundamental relationship requires some care with the
complexity of the underlying filtrations and state spaces. Of course, the need to work with
conditional probabilities first of all confines us to spaces on which they exist. Let therefore
(Ω,F , P ) be a standard Borel probability space (see [Par77]) with a filtration (F0

t )t≥0 con-
sisting of countably generated σ−algebras, and M a (F0

t )−local martingale. We will also deal
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with the smallest right-continuous and completed filtration containing (F0
t ), which we denote

by (Ft). We suppose that F0 is trivial and that every (Ft)−local martingale has a continuous
modification. Since F0

t is a subfield of a standard Borel space, there exist regular conditional
probabilities Pt relative to the σ−algebras F0

t . Then for any set A ∈ F the process

(t, ω) 7→ Pt(ω, A)

is an (F0
t )−martingale with a continuous modification (see e.g. Theorem 4, Chapter VI

in [DM78]). Note that the modification may not be adapted to (F0
t ), but only to (Ft).

Furthermore it is no problem to assume that the processes Pt(·, A) are modified in a way
such that Pt(ω, ·) remains a measure on F for PM−almost all (ω, t), where PM is a measure
on Ω× R+ defined by PM (Γ) = E

∫∞
0 1Γ(ω, t)d〈M,M〉t, Γ ∈ F ⊗ B+.

It is known that each of these martingales may be uniquely written (see e.g. [RY99],
Chapter V)

Pt(·, A) = P (A) +
∫ t

0
ks(·, A)dMs + LA

t , (7)

where k(·, A) is (Ft)−predictable and LA satisfies 〈LA,M〉 = 0.

Now let (G0
t ) be another filtration on (Ω,F , P ) satisfying

F0
t ⊂ G0

t

for all 0 ≤ t ≤ T . We assume that each σ−field G0
t is generated by a countable number of

sets, and denote by (Gt) the smallest right-continuous and completed filtration containing
(G0

t ). It is clear that each σ−field in the left-continuous filtration (G0
t−) is also generated by a

countable number of sets. We claim that the existence of an information drift of (Gt) relative
to (Ft) for the process M depends on whether the following condition is satisfied or not.

Condition 2.1. kt(ω, ·)
∣∣
G0

t−
is a signed measure and satisfies

kt(ω, ·)
∣∣∣∣
G0

t−

� Pt(ω, ·)
∣∣∣∣
G0

t−

for PM−a.a (ω, t).

Remark 2.2. Unfortunately, we have to distinguish between the filtrations (F0
t ), (G0

t ) and
their extensions (Ft), (Gt). The reason is that the regular conditional probabilities consid-
ered exist only with respect to the smaller σ−fields. On the other hand, we use stochastic
integration techniques which were developed only under the assumption that the underly-
ing filtrations satisfy the usual conditions, and this necessitates working also with the larger
σ-fields.

Let us next state some essential properties of the Radon-Nikodym density process existing
according to our condition.

Lemma 2.3. Suppose Condition 2.1 satisfied. Then there exists an (Ft ⊗ Gt)−predictable
process γ such that for PM−a.a. (ω, t)

γt(ω, ω′) =
dkt(ω, ·)
dPt(ω, ·)

∣∣∣∣
G0

t−

(ω′).
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Remark 2.4. Note that γt(ω, ·) is Gt−−measurable. This is due to the fact that the pre-
dictable σ−algebra does not change by taking the left-continuous version of the underlying
filtration.

Proof. Let tni = i
2n for all n ≥ 0 and i ≥ 0. We denote by T the set of all tni . It is possible

to choose a family of finite partitions (P i,n) such that

• for all t ∈ T we have G0
t− = σ(P i,n : i, n ≥ 0 s.t. tni = t),

• P i,n ⊂ P i+1,n,

• if i < j, n < m and i 2−n = j 2−m, then P i,n ⊂ Pj,m.

We define for all n ≥ 0

γn
t (ω, ω′) =

∑
i≥0

∑
A∈Pi,n

1]tni ,tni+1](t)1A(ω′)
kt(ω, A)
Pt(ω, A)

.

Note that kt(ω,A)
Pt(ω,A) is (Ft)−predictable and 1]tni ,tni+1](t)1A(ω′) is (Gt)−predictable. Hence the

product of both functions, defined as a function on Ω2 × R+, is predictable with respect to
(Ft ⊗ Gt). It follows that each γn, and thus

γ = lim inf
n→∞

γn

is (Ft ⊗ Gt)−predictable.
Now fix t ≥ 0. We claim that kt(ω, ·) =

∫
· γt(ω, ω′)Pt(ω, dω′), and hence that γt(ω, ·) is the

density of kt(ω, ·) with respect to Pt(ω, ·), PM−a.s. For all n ≥ 0 let j = j(n) be the integer
satisfying tnj < t ≤ tnj+1 and denote by Qn the corresponding partition Pj,n. Observe that
(Qn) is an increasing sequence of partitions satisfying

σ(Qn : n ≥ 0) = G0
t−

and hence

γt(ω, ω′) = lim inf
n

γn
t (ω, ω′) = lim inf

n

∑
A∈Qn

1A(ω′)
kt(ω, A)
Pt(ω, A)

=
dkt(ω, ·)
dPt(ω, ·)

∣∣∣∣
G0

t−

.

�

Lemma 2.5. If (t, ω, ω′) 7→ θt(ω, ω′) is (Ft ⊗ Gt)−predictable and bounded, then∫ ∫ ∫
θt(ω, ω′) Pt(ω, dω′) d〈M,M〉t dP (ω) =

∫ ∫
θt(ω, ω) d〈M,M〉t dP (ω).

Proof. Let 0 ≤ r < s, A ∈ Fr, B ∈ Gr and

θt(ω, ω′) = 1]r,s](t)1A(ω)1B(ω′).

9



Then ∫ ∫ ∫
θt(ω, ω′) Pt(ω, dω′) d〈M,M〉t dP (ω)

=
∫ ∫ s

r
1A(ω)Pt(ω, B) d〈M,M〉t dP (ω)

=
∫ ∫ s

r
1A(ω)1B(ω) d〈M,M〉t dP (ω)

=
∫ ∫

θt(ω, ω) d〈M,M〉t dP (ω),

where the second equality holds due to results about optional projections (see Theorem 57,
Chapter VI, in [DM78]). By a monotone class argument this can be extended to all bounded
and (Ft ⊗ Gt)−predictable processes. �

Theorem 2.6. Suppose Condition 2.1 is satisfied and γ is as in Lemma 2.3. Then

αt(ω) = γt(ω, ω)

is the information drift of (Gt) relative to (Ft).

Proof. Suppose τ to be a stopping time such that M τ is a martingale. For 0 ≤ s < t and
A ∈ G0

s we have to show

E [1A(M τ
t −M τ

s )] = E

[
1A

∫ t

s
γu(ω, ω) d〈M,M〉τu

]
.

For notational simplicity write M τ = M and observe

E [1A(Mt −Ms)] = E [Pt(·, A)(Mt −Ms)]

= E

[
(Mt −Ms)

∫ t

0
ku(·, A) dMu

]
+ E[(Mt −Ms)LA

t ]

= E

[∫ t

s
ku(·, A) d〈M,M〉u

]
= E

[∫ t

s

∫
A

γu(ω, ω′) dPu(ω, dω′) d〈M,M〉u
]

= E

[
1A(ω)

∫ t

s
γu(ω, ω) d〈M,M〉u

]
,

where we used Lemma 2.5 in the last equation. �

Corollary 2.7. (Gt) is a finite utility filtration if and only if∫ ∫ ∫
γ2

t (ω, ω′) Pt(ω, dω′) d〈M,M〉t dP (ω) < ∞.

Proof. This follows immediately from Lemma 2.5. �

We now look at the problem from the reverse direction. Starting with the assumption
that (Gt) is a finite utility filtration, which amounts to E

∫ T
0 α2 d〈M,M〉 < ∞, we show the

validity of Condition 2.1.

10



In the sequel, (Gt) denotes a finite utility filtration and α its predictable information drift,
i.e.

M̃ = M −
∫ ·

0
αt d〈M,M〉t (8)

is a (Gt)−local martingale. To prove the main results (Theorems 2.10 and 2.12), we need the
following lemma.

Lemma 2.8. Let 0 ≤ s < t and P = {A1, . . . , An} be a finite partition of Ω into G0
s−measurable

sets. Then

E

∫ t

s

n∑
k=1

(
ku

Pu

)2

(·, Ak) 1Ak
d〈M,M〉u ≤ 4E

(∫ t

s
α2

u d〈M,M〉u
)

< ∞.

Proof. Let P = {A1, . . . , An} be a finite G0
s−partition. An application of Ito’s formula, in

conjunction with (7) and (8), yields

n∑
k=1

[1Ak
log Ps(·, Ak)− 1Ak

log Pt(·, Ak)]

=
n∑

k=1

[
−
∫ t

s

1
Pu(·, Ak)

1Ak
dPu(·, Ak)

+
1
2

∫ t

s

1
Pu(·, Ak)2

1Ak
d〈P (·, Ak), P (·, Ak)〉u

]
=

n∑
k=1

[
−
∫ t

s

ku

Pu
(·, Ak) 1Ak

dM̃u −
∫ t

s

ku

Pu
(·, Ak) 1Ak

αu d〈M,M〉u

−
∫ t

s

1
Pu(·, Ak)

1Ak
dLAk

u +
1
2

∫ t

s

(
ku

Pu

)2

(·, Ak) 1Ak
d〈M,M〉u

+
1
2

∫ t

s

1
Pu(·, Ak)2

1Ak
d〈LAk , LAk〉u

]
(9)

Note that Pt(·, Ak) log Pt(·, Ak) is a submartingale bounded from below for all k. Hence the
expectation of the left hand side in the previous equation is at most 0.

A priori it is not clear whether
n∑

k=1

∫ t

s

ku

Pu
(·, Ak) 1Ak

dM̃u

is integrable or not. Consider therefore for all ε > 0 stopping times defined by

τ ε
k =

{
∞ ω /∈ Ak

inf{t ≥ s : Pt(·, Ak) ≤ ε} else

and
τ ε = τ ε

1 ∧ . . . ∧ τ ε
n.

Observe that τ ε →∞ as ε ↓ 0 and that the stopped process
n∑

k=1

∫ t∧τε

s

ku

Pu
(·, Ak) 1Ak

dM̃u

11



has expectation zero, since

E

(∫ t∧τε

s

n∑
k=1

ku

Pu
(·, Ak) 1Ak

dM̃u

)2


= E

[∫ t∧τε

s

n∑
k=1

(
ku

Pu

)2

(·, Ak) 1Ak
d〈M,M〉u

]

≤ 1
ε2

E

[∫ t∧τε

s

n∑
k=1

(ku)2 (·, Ak) 1Ak
d〈M,M〉u

]

≤ 1
ε2

E

[
n∑

k=1

∫ t

s
d〈P (·, Ak), P (·, Ak)〉u

]
< ∞.

Similarly, one can show that the expectation of∫ t∧τε

s

1
Pu(·, Ak)

1Ak
dLAk

u

vanishes. Consequently we may deduce from equation (9) and the Kunita-Watanabe inequal-
ity

E
n∑

k=1

1
2

∫ t∧τε

s

(
ku

Pu

)2

(·, Ak) 1Ak
d〈M,M〉u

≤ E
n∑

k=1

[∫ t∧τε

s

ku

Pu
(·, Ak) 1Ak

αu d〈M,M〉u
]

≤ E

(∫ t∧τε

s

n∑
k=1

(
ku

Pu

)2

(·, Ak) 1Ak
d〈M,M〉u

) 1
2

E

(∫ t∧τε

s
α2

u d〈M,M〉u
) 1

2

,

which implies

E

∫ t∧τε

s

n∑
k=1

(
ku

Pu

)2

(·, Ak) 1Ak
d〈M,M〉u ≤ 4E

(∫ t∧τε

s
α2

u d〈M,M〉u
)

.

Now the proof may be completed by a monotone convergence argument. �

Let T and (P i,n)i,n≥0 be a family of partitions as in the proof of Lemma 2.3. We define
for all n ≥ 0

Zn
t (ω, ω′) =

∑
i≥0

∑
A∈Pi,n

1]tni ,tni+1](t)1A(ω′)
kt(ω, A)
Pt(ω, A)

.

Note that Zn is (Ft ⊗ Gt)−predictable. We are now able to prove a converse statement to
Theorem 2.6. Observe first

Lemma 2.9. For PM−almost all (ω, t) ∈ Ω × R+ the discrete process (Zm
t (ω, ·))m≥1 is an

L2(Pt(ω, ·))−bounded martingale.

12



Proof. Every statement in the sequel is meant to hold for PM−a.a. (ω, t) ∈ Ω× R+.
Let m ≥ 0, l ≥ 0 and j be the natural number such that ]tm+1

l , tm+1
l+1 ] ⊂]tmj , tmj+1]. We start

by proving that on ]tm+1
l , tm+1

l+1 ] we have

EPt(ω,·)[Zm+1
t (ω, ·)|Pj,m] = Zm

t (ω, ·).

For this, let B ∈ Pj,m and A1, . . . , Ak ∈ P l,m+1 such that A1 ∪ . . . ∪Ak = B. Note that

EPt(ω,·)[1B(·)Zm+1
t (ω, ·)] = EPt(ω,·)

[
k∑

i=1

1Ai(·)
kt

Pt
(ω, Ai)

]

=
k∑

i=1

kt(ω, Ai)

= kt(ω, B)

= EPt(ω,·)[1B(·)Zm
t (ω, ·)]

on ]tm+1
l , tm+1

l+1 ]. Consequently the process (Zm
t (ω, ·))m≥1 is a martingale (with respect to a fil-

tration depending on t). The martingale property implies that the sequence
∫

(Zn
t )2(ω, ω′) Pt(ω, dω′)

is increasing, and hence, by monotone convergence,

sup
n

E

∫ ∫
(Zn

t )2(ω, ω′) Pu(ω, dω′) d〈M,M〉t

= E

∫
sup

n

∫
(Zn

t )2(ω, ω′) Pu(ω, dω′) d〈M,M〉t.

By Lemma 2.8 and Lemma 2.5 we have

sup
n

E

∫ ∫
(Zn

u )2(ω, ω′) Pu(ω, dω′) d〈M,M〉u

= sup
n

E

∫
(Zn

u )2(ω, ω) d〈M,M〉u

= sup
n

E
∑
i≥0

∫ tni+1

tni

∑
A∈Pi,n

1A(ω)
(

kt(ω, A)
Pt(ω, A)

)2

d〈M,M〉u

≤ 4E

(∫
α2

u d〈M,M〉u
)

< ∞.

This shows that (Zn)n≥1 is an L2(Pt(ω, ·))−bounded martingale. �

We now will show that k can be chosen to be a signed measure. For this we identify
Pt(ω, ·) with another measure on a countable generator of G0

t−. We then apply the result that
two Banach space valued measures are equal, if they coincide on a generator stable for finite
intersections.

Theorem 2.10. The kernel k may be chosen such that

G0
t− 3 A 7→ kt(ω, A) ∈ R

is a signed measure which is absolutely continuous with respect to Pt(ω, ·)|G0
t−

, for PM−a.a.
(ω, t) ∈ Ω× [0,∞). This means that Condition 2.1 is satisfied.
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Proof. Lemma 2.9 implies that (Zm
t (ω, ·))m≥1 is an L2(Pt(ω, ·))−bounded martingale and

hence, for a.a. fixed (ω, t), (Zm
t (ω, ·))m≥1 possesses a limit Z. It can be chosen to be (Ft ⊗

Gt)−predictable. Take for example

Zt = lim inf
n

(Zn
t ∨ 0) + lim sup

n
(Zn

t ∧ 0).

Now define a signed measure by

k̃t(ω, A) =
∫

1A(ω′)Zt(ω, ω′)dPt(ω, dω′).

Observe that k̃t(ω, ·) is absolutely continuous with respect to Pt(ω, ·) and that we have for
all A ∈ Pj,m with j2−m ≤ t

k̃t(ω, A) = kt(ω, A)

for PM−a.a. (ω, t) ∈ Ω × R+. One may also interpret G0
t− 3 A 7→ k̃t(ω, A), as an

L2(M)−valued measure. By applying the stochastic integral operator, we obtain an L2(Ω)−valued
measure: G0

t− 3 A 7→
∫ t
0 k̃s(ω, A)dMs. Moreover,

Pt(ω, A) = P (A) +
∫ t

0
k̃s(ω, A) dMs + LA

t (ω) (10)

for all A ∈
⋃

j2−m≤t Pj,m. Since the LHS and both expressions on the RHS are measures
coinciding on a system which is stable for intersections, equation (10) holds for all A ∈ G0

t−.
Hence, by choosing kt(·, A) = k̃t(·, A) for all A ∈ G0

t−, the proof is complete. �

Remark 2.11. Since k is determined up to PM−null sets, we may assume that kt(ω, ·) is
absolutely continuous relative to Pt(ω, ·) everywhere.

We close this section with some examples showing how (well known) information drifts
can be derived explicitly, based on the formalism of Theorem 2.6. To this end it is not always
necessary to determine the signed measures kt(ω, ·) on the whole σ−algebras G0

t , but only on
some sub-σ−fields. This is the case for example, if

G0
t = F0

t ∨H0
t , 0 ≤ t ≤ T,

where (H0
t ) is some countably generated filtration on (Ω,F).

Now suppose that kt(ω, ·) is a signed measure on (H0
t−) satisfying

kt(ω, ·)
∣∣∣∣
H0

t−

� Pt(ω, ·)
∣∣∣∣
H0

t−

for PM−a.a (ω, t). Then we can show with the arguments of the proof of Lemma 2.3 that
there is an (Ft ⊗Ht)−predictable process β such that PM−a.e.

βt(ω, ω′) =
dkt(ω, ·)
dPt(ω, ·)

∣∣∣∣
H0

t−

(ω′).

The information drift of (Gt) relative to (Ft) is already determined by the trace of (βt). For
the corresponding analogue of Theorem 2.6 we shall give a more explicit statement.
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Theorem 2.12. The process
αt(ω) = βt(ω, ω)

is the information drift of (Gt) relative to (Ft).

Proof. Suppose T to be a stopping time such that MT is a martingale. For 0 ≤ s < t,
A ∈ H0

s and B ∈ F0
s we have to show

E
[
1A1B(MT

t −MT
s )
]

= E

[
1A1B

∫ t

s
βu(ω, ω) d〈M,M〉Tu

]
.

For simplicity assume MT = M , and observe, like in the proof of Thereom 2.6,

E [1A1B(Mt −Ms)] = E [1BPt(·, A)(Mt −Ms)]

= E

[
1A(ω)1B(ω)

∫ t

s
βu(ω, ω) d〈M,M〉u

]
.

�

Example 2.13. Let (Wt) be the standard Wiener process and (F0
t ) the filtration generated

by (Wt). Moreover, let (Yt) be a Gaussian process independent of F1 such that for each pair
s, t with 0 ≤ s < t the difference Yt − Ys is independent of Yt. We denote by wt the variance
of Yt.

We enlarge our filtration by

H0
t = σ(W1 + Ys : 0 ≤ s ≤ t) = σ(W1 + Yt) ∨ σ(Yt − Ys : 0 ≤ s ≤ t),

and put G0
t = F0

t ∨ H0
t , 0 ≤ t ≤ 1. Now observe that for all C ∈ σ(Yt − Ys : 0 ≤ s ≤ t) and

Borel sets B ∈ B(R) we have

Pt(·, {W1 + Yt ∈ B} ∩ C) = P (C)
∫

1B(x + W1 −Wt + Yt) dP

∣∣∣∣
x=Wt

= P (C)
∫

1B(y + x)φ1−t+wt(y)dy

∣∣∣∣
x=Wt

= P (C)
∫

B
φ1−t+wt(y −Wt)dy, 0 ≤ t < 1,

where
φv(y) =

1

(2πv)
1
2

e−
y2

2v .

Now observe that f(x, t) = P (C)
∫
B φ1−t+wt(y − x)dy is differentiable in x and satisfies

∂

∂x
f(x, t) = P (C)

∫
B

y − x

1− t + wt
φ1−t+wt(y − x) dy

for all 0 ≤ t < 1 and x ∈ R. By Ito’s formula

Pt(·, {W1 + Yt ∈ B} ∩ C) = f(0, 0) +
∫ t

0

∂

∂x
f(Ws, s) dWs + At, 0 ≤ t < 1,
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where A is a process of bounded variation. Note that A is also a martingale, and thus A = 0.
Hence

kt(·, {W1 + Yt ∈ B} ∩ C)

= P (C)
∫

B

y −Wt

1− t + wt
φ1−t+wt(y −Wt) dy

= P (C)
∫

1B(y + x)
y + x− x

1− t + wt
φ1−t+wt(y) dy

∣∣∣∣
x=Wt(ω)

=
∫
{W1+Yt∈B}∩C

W1(ω′) + Yt(ω′)−Wt(ω)
1− t + wt

dPt(ω, dω′)

As a consequence

βt(ω, ω′) =
kt(ω, dω′)
Pt(ω, dω′)

∣∣∣∣
H0

t

=
W1(ω′) + Yt(ω′)−Wt(ω)

1− t + wt
,

and by Theorem 2.12,

Wt −
∫ t

0

W1 + Ys −Ws

1− s + ws
ds, 0 ≤ t < 1,

is a martingale relative to (Gt).
Similar examples can be found in [CIKHN03], where the information drifts are derived in

a completely different way, though.

Example 2.14. Let (Wt) be the standard Wiener process and (Ft) the Wiener filtration. We
use the abbreviation W ∗

t = sup0≤s≤t Ws and consider the filtration enlarged by the random
variable G = 1[0,c](W ∗

1 ), c > 0. Again we want to apply Theorem 2.12 in order to obtain the
information drift of Gt = Ft ∨ σ(G). To this end let Zt = supt≤r≤1(Wr −Wt) and denote by
pt the density of Zt, 0 ≤ t < 1. Now,

Pt(·, G = 1) = P (W ∗
t ∨Wt + Zt ≤ c|Ft)

=
∫

1[0,c](y ∨ x + Zt)dP

∣∣∣∣
x=Wt,y=W ∗

t

= 1[0,c](y)
∫ c−x

0
pt(z)dz

∣∣∣∣
x=Wt,y=W ∗

t

,

for all 0 ≤ t < 1. Note that F (x, y, t) = 1[0,c](y)
∫ c−x
0 pt(z)dz is differentiable in x for all

0 ≤ t < 1 and x ∈ R, and by Ito’s formula

Pt(·, G = 1) = F (0, 0, 0) +
∫ t

0

∂

∂x
F (Ws,W

∗
s , s) dWs + At, 0 ≤ t < 1,

where A is a process of bounded variation. Hence

kt(·, G = 1) =
∂

∂x
F (Wt,W

∗
t , t), 0 ≤ t < 1.

Similarly, we have
Pt(·, G = 0) = H(Wt,W

∗
t , t), 0 ≤ t < 1,
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and
kt(·, G = 0) =

∂

∂x
H(Wt,W

∗
t , t), 0 ≤ t < 1,

where
H(x, y, t) = 1(c,∞)(y) + 1[0,c](y)

∫ ∞

c−x
pt(z)dz.

As a consequence

βt(ω, ω′) =
kt(ω, dω′)
Pt(ω, dω′)

∣∣∣∣
σ(G)

= 1{1}(G(ω′))
∂

∂x
log F (Wt(ω),W ∗

t (ω′), t)

+ 1{0}(G(ω′))
∂

∂x
log H(Wt(ω),W ∗

t (ω′), t), 0 ≤ t < 1.

3 Monotone convergence of information drifts

In the preceding section we established a general relationship between the information drift
and the regular conditional probabilities of filtrations. In this framework the knowledge of
the better-informed agent is described by a general enlarged filtration (Gt) of (Ft). We shall
now consider the question whether this situation may be well approximated by ”stepwise
initial” enlargements, for which we take Ft ∨Gti− for t ∈ [ti, ti+1), if the family (ti)0≤i≤n is a
partition of R+. One particularly important question in this context concerns the behavior of
the information drifts along such a sequence of discretized enlargements. Of course we expect
some convergence of the drifts. We shall establish this fact rigorously in the following section.
In the present section, we shall prepare the treatment of this problem by solving a somewhat
more general problem. Let (Gn

t )n∈N be an increasing sequence of finite utility filtrations and
supn uGn(x) be finite. We will show that the smallest filtration containing every (Gn

t ) is then
also a finite utility filtration.

Since we will not deal with regular conditional probabilities in this section, it is not
necessary to require our probability space (Ω,F) to be standard.

We use the terminology of Revuz and Yor [RY99]: H2(Ft) denotes the set of L2−bounded
continuous (Ft)−martingales, i.e. the space of continuous (Ft, P )−martingales M such that

sup
t≥0

E(M2
t ) < ∞.

We need the following characterization of H2(Ft).

Lemma 3.1. (Proposition 1.23 in [RY99]) A continuous (Ft)−local martingale belongs to
H2(Ft) if and only if the following two conditions hold

i) E(M2
0 ) < ∞ ,

ii) E(〈M,M〉∞) < ∞.

The properties i) and ii) are independent of the filtration considered. This is due to the
fact that the quadratic variation of M does not change under a new filtration (Gt) for which
M is still a semimartingale. We therefore have
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Lemma 3.2. Suppose M ∈ H2(Ft). Let (Gt) be a filtration such that M is still a (Gt)−semimartingale.
If

M = M̃ + A

is a Doob-Meyer decomposition with respect to (Gt) with A0 = 0, then M̃ belongs to H2(Gt).

Proof. Notice that M̃0 = M0 and 〈M,M〉 = 〈M̃, M̃〉. The claim follows now by applying
Lemma 3.1 twice. �

Now let M be a continuous (Ft)−local martingale and (Gn
t )n≥1 an increasing sequence of

filtrations, i.e. for all t ≥ 0 we have

Ft ⊂ G1
t ⊂ . . . ⊂ Gn

t ⊂ Gn+1
t ⊂ . . .

We assume that for all n ≥ 1 the process M is a (Gn
t )−semimartingale with Doob-Meyer

decomposition of the form

M = Mn +
∫ ·

0
µn

s d〈M,M〉s,

where µn is (Gn
t )−predictable. We then have the following asymptotic property.

Lemma 3.3. If the processes (µn)n∈N converge to some µ in L2(M), then

M −
∫ ·

0
µs d〈M,M〉s

is a local martingale with respect to Gt =
∨

n≥1 Gn
t , t ≥ 0.

Proof. Suppose the stopping time τ reduces M such that M τ is a bounded martingale.
Note that Lemma 3.2 implies that the stopped processes (Mn)τ are (Gt)−martingales.

For simplicity we assume M τ = M . Choose a constant C > 0 such that

|M | ≤ C, and E

∫ ∞

0
(µn

s )2 d〈M,M〉s ≤ C2 for all n ≥ 1.

Now let ε > 0, 0 ≤ s < t and A ∈ Gs. It suffices to show∣∣∣∣∣E [1A(Mt −Ms)]− E

[
1A

∫ t

s
µs d〈M,M〉s

] ∣∣∣∣∣ ≤ ε.

We start by choosing n0 such that

‖µn − µ‖L2(M) ≤
ε

4
√

E(〈M,M〉)∞

for all n ≥ n0.
Note that

⋃
n≥n0

Gn
s is an algebra generating the σ−algebra

∨
n≥1 Gn

s = Gs =
∨

n≥n0
Gn

s .
Hence we can find a sequence (Ai)i∈N of sets in

⋃
n≥n0

Gn
s such that P (A M Ai) → 0. A

subsequence of (1Ai)i∈N converges to 1A almost surely and therefore we may choose n ≥ n0

and Ã ∈ Gn
s satisfying P (Ã M A) ≤ ( ε

4C )2 and(
E

∫ t

s
(1A − 1Ã)2 〈M,M〉

) 1
2

≤ ε

4C
.
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Hence we have∣∣E [1A(Mt −Ms)]− E
[
1Ã(Mt −Ms)

] ∣∣ ≤
∣∣E [(1Ã − 1A)(Mt −Ms)

] ∣∣
≤ P (Ã M A)

1
2 (E(Mt −Ms)2)

1
2

≤ ε

2
.

By applying the Kunita-Watanabe inequality we get for n ≥ n0∣∣∣∣∣E
[
1A

∫ t

s
µu d〈M,M〉u

]
− E

[
1Ã

∫ t

s
µn

u d〈M,M〉u
] ∣∣∣∣∣

≤

∣∣∣∣∣E
[
1A

∫ t

s
(µu − µn

u) d〈M,M〉u
] ∣∣∣∣∣+

∣∣∣∣∣E
[
(1A − 1Ã)

∫ t

s
µn

u d〈M,M〉u
] ∣∣∣∣∣

≤
(

E

∫ t

s
1A d〈M,M〉

) 1
2
(

E

∫ ∞

0
(µs − µn

s )2 d〈M,M〉s
) 1

2

+
(

E

∫ t

s
(1A − 1Ã)2 d〈M,M〉

) 1
2
(

E

∫ ∞

0
(µn

s )2 d〈M,M〉s
) 1

2

≤ (E〈M,M〉)
1
2 ‖µ− µn‖L2(M) +

ε

4
≤ ε

2
,

and thus ∣∣∣∣∣E [1A(Mt −Ms)]− E

[
1A

∫ t

s
µu d〈M,M〉u

] ∣∣∣∣∣
≤

∣∣∣E [1A(Mt −Ms)]− E
[
1Ã(Mt −Ms)

] ∣∣∣
+

∣∣∣∣∣E [1Ã(Mt −Ms)
]
− E

[
1Ã

∫ t

s
µn

u d〈M,M〉u
] ∣∣∣∣∣

+

∣∣∣∣∣E
[
1Ã

∫ t

s
µn

u d〈M,M〉u
]
− E

[
1A

∫ t

s
µu d〈M,M〉u

] ∣∣∣∣∣
≤ ε

2
+ 0 +

ε

2
= ε.

�

We are now in a position to prove the main result of the section.

Theorem 3.4. If supn≥1 ‖µn‖2
L2(M) < ∞, then (µn) converges in L2(M) to a process µ.

Moreover,

M −
∫ ·

0
µd〈M,M〉

is a local martingale with respect to Gt =
∨

n≥1 Gn
t , t ≥ 0.

Proof. Set c = supn≥1 ‖µn‖2
L2(M). Let m ≥ n ≥ 1, and note that µm−µn is the information

drift of (Gm
t ) relative to (Gn

t ). Therefore, property iii) in Lemma 1.6 implies

‖µm‖2
L2(M) = ‖µn‖2

L2(M) + ‖µm − µn‖2
L2(M).
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Thus, c = limn→∞ ‖µn‖2
L2(M) and

‖µm − µn‖2
L2(M) = ‖µm‖2

L2(M) − ‖µn‖2
L2(M) ≤ c− ‖µn‖2

L2(M) → 0

as n → ∞. Therefore {µn}n≥1 is a Cauchy sequence in L2(M). By completeness of L2(M),
there exists a unique (Gt)−predictable process µ0 ∈ L2(M) such that limn→∞ µn = µ0 in
L2(M). By Lemma 3.3 the process M −

∫
µ0 d〈M,M〉 is a (Gt)−local martingale. �

4 Continuous and initial enlargements

In this section we relate general enlargements of filtrations to ”initial enlargements” along
discrete partitions of [0, T ], for finite horizon T. The knowledge of the insider is modeled by
an arbitrary filtration (Gt)t∈[0,T ], satisfying Gt ⊃ Ft, 0 ≤ t ≤ T . For s ∈ [0, T ] we set

Gs
t =

{
Ft, t < s

Ft ∨ Gs−, t ≥ s.

Again the analysis of this section does not require our probability space (Ω,F) to be standard.

Remark 4.1. In the case where the σ−field Gs−, s ∈ [0, T ], is generated by a countable
number of events, say (An)n∈N, the enlarged filtration Gs

t can be viewed as initial enlargement
at time s in the classical sense. In that case Gs− = σ(1An : n ∈ N) and one has for t ∈ [0, T ],

Ft ∨ Gs− = Ft ∨ σ(1An : n ∈ N).

The set {0, 1}N can be endowed with a metric so that it becomes a Polish space with cor-
responding Borel-σ−field B({0, 1})⊗N. Hence, the filtration (Gs

t ) can be seen as initial en-
largement at time s induced by the random variable G : Ω → {0, 1}N, ω 7→ (1An(ω))n∈N. In
particular, the standard theory of initial enlargements is applicable. See Jeulin, Yor [JY85].

In the following, we assume that (Gs
t ) is for arbitrary s ∈ [0, T ] a finite utility filtration.

For 0 ≤ s ≤ t ≤ T we denote

π0([0, s)× (t, T ]) = F (s, t) =
1
2
E

∫ T

t

(
µs

r

)2
d〈M,M〉r,

where µs is a (Gs
t )−information drift. So far π0 is defined only on the set J = {[0, s)× (t, T ] :

s ≤ t}. As the next lemma shows π0 can be extended to a measure on the Borel sets of
D = {(s, t) ∈ R2 : 0 ≤ s < t ≤ T}.

Lemma 4.2. There exists a unique measure π on the Borel sets B(D) of D satisfying π|J =
π0.

Proof. Uniqueness is an immediate consequence of the measure extension theorem. In
order to show the existence of an extension it satisfies to verify the following property which
essentially amounts to countable additivity on a generating semiring (see Elstrodt [Els96]
Chapter II, Satz 3.8): For any (s, t) ∈ D and any sequence (sn, tn)n∈N in D with sn ≤ s,
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tn ≥ t and limn→∞(sn, tn) = (s, t) we have limn→∞ F (sn, tn) = F (s, t). Moreover, F (sn, tn) ≤
F (s, t) < ∞.

Let sn, tn, s and t as above. Without loss of generality we assume that (sn) is monoton-
ically increasing. For u ∈ [t, T ] we consider the filtrations (Gsn

r )r∈[u,T ], n ∈ N, over the time
interval [u, T ]. The filtrations are monotonically increasing with

∨
n∈N Gsn

r = Gs
r , r ∈ [u, T ].

Since (µsn
r )r∈[u,T ] are (Gsn

r )−information drifts, it follows (by Lemma 1.6) that

E

∫ T

u

(
µs − µsn

)
µsn d〈M,M〉 = 0.

In particular,

E

∫ T

u

(
µsn
)2

d〈M,M〉 ≤ E

∫ T

t

(
µs
)2

d〈M,M〉 < ∞.

By Theorem 3.4 the processes (µsn
r )r∈[u,T ] converge to the information drift (µs

r)r∈[u,T ] in
L2(M ; [u, T ]). Therefore, for any u ∈ (t, T ],

lim inf
n→∞

E

∫ T

tn

(
µsn
)2

d〈M,M〉 ≥ E

∫ T

u

(
µs
)2

d〈M,M〉.

Due to the continuity of M the right hand side of the previous equation tends to
E
∫ T
t

(
µs
)2

d〈M,M〉 as u ↓ t. Consequently, we obtain limn→∞ F (sn, tn) = F (s, t). �

The measure π describes the utility increase by additional information. As will be shown
below, π(D) is finite if and only if (Gt) is a finite utility filtration.

We now approximate the general filtration (Gt) by filtrations that can be seen as successive
initial enlargements. Let ∆ : 0 = s0 ≤ · · · ≤ sn = T , n ∈ N, be a partition of the interval
[0, T ]. We let for r ∈ [si, si+1), i = 0, . . . , n− 1,

G∆
r = Gsi− ∨ Fr.

Proposition 4.3. For i = 0, . . . , n−1, let µsi be a (Gsi
r )−information drift and set µ∆

r := µsi
r

for r ∈ [si, si+1). Then µ∆ is a G∆
t −information drift. Moreover,

1
2

∫ T

0

(
µ∆

r

)2
d〈M,M〉r = π(D∆),

where D∆ := {(s, t) ∈ D : ∃i ∈ {0, . . . , n− 1} with s < si and t > si}.

Proof. It is straightforward to verify that µ∆ is an information drift for (G∆
t ). Moreover,

1
2
E

∫ T

0

(
µ∆

r

)2
d〈M,M〉r =

1
2

n−1∑
i=0

E

∫ si+1

si

(
µsi

r

)2
d〈M,M〉r

=
1
2

n−1∑
i=0

(
E

∫ T

si

(
µsi

r

)2
d〈M,M〉r − E

∫ T

si+1

(
µsi

r

)2
d〈M,M〉r

)
=

n−1∑
i=0

π([0, si)× (si, si+1]) = π(D∆).

�

We can now state the main theorem of this section.
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Theorem 4.4. Let ∆n, n ∈ N, be a sequence of partitions of the interval [0, T ] the mesh of
which tends to 0. If π(D) is finite, then the information drifts µ∆n converge in L2(M) to a
(Gt)−information drift µ. Moreover, the utility gain of the insider satisfies

u(Gt, x)− u(Ft, x) =
1
2
E

∫ T

0
µ2 d〈M,M〉 = π(D).

If π(D) is infinite, then so is the utility gain of the insider.

The proof of the theorem is based on the following proposition.

Proposition 4.5. If π(D) < ∞, then there exists a (Gt)−information drift µ. Moreover,

1
2
‖µ‖2

L2(M) = π(D).

Proof. Let ∆n, n ∈ N, be as in the above theorem with the additional assumption that
∆n+1 is a refinement of ∆n for all n ∈ N. Then one has G∆n

t ⊂ G∆n+1

t for any t ∈ [0, T ].
By Proposition 4.3, 1

2‖µ
∆n‖2

L2(M) = π(D∆n) ≤ π(D). Due to Theorem 3.4 the information

drifts µ∆n converge to a (
∨

n∈N G
∆n
t ) = (Gt−)−information drift µ in L2(M). Using monotone

convergence we obtain that

π(D) = lim
n→∞

π(D∆n) = lim
n→∞

1
2
‖µ∆n‖2

L2(M) =
1
2
‖µ‖2

L2(M).

Since every cadlag (Gt−)−martingale is as well a (Gt)−martingale, µ is a (Gt)−information
drift. �

Proof of Theorem 4.4. Assume that π(D) is finite. Since the mesh of the partitions ∆n

tends to zero, one has limn→∞ 1D∆n (x) = 1 for all x ∈ D. Consequently, the dominated
convergence theorem yields

lim
n→∞

π(D∆n) = π(D). (11)

We established the existence of a (Gt)−information drift µ in Proposition 4.5. Recall that by
Lemma 1.6, the processes µ∆n and µ− µ∆n are orthogonal in L2(M). Consequently,

‖µ− µ∆n‖2
L2(M) = ‖µ‖2

L2(M) − ‖µ∆n‖2
L2(M).

Due to (11) the right hand side of the previous equation converges to 0. Hence, µ∆n converges
to µ in L2(M). The remaining statements are consequences of Proposition 4.5 and Proposition
1.4. �

5 Additional utility and entropy of filtrations

In this section we consider the link between the additional expected logarithmic utility of
a better informed agent and the entropy of the additional information he possesses. The
additional utility was firstly expressed in terms of a relative entropy in [PK96] (p. 1103)
for a particular example. More generally, [AIS98] discussed the link between the absolute
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entropy of a random variable describing initially available additional information and the
utility increment of better informed agents. Here we shall see that the expected logarithmic
utility increment is given by an integral version of relative entropies of the σ−algebras of the
filtration. This notion can best be understood as the limit of discrete entropy sums along a
sequence of partitions of the trading interval as the mesh goes to 0. Alternatively, we are able
to give an interpretation of the utility increment by Shannon information differences between
the filtrations of the agents. In particular, we shall see that this differences are independent
of any local martingales the filtrations may carry.

Suppose that the assumptions of Chapter 2 are satisfied. Moreover, we assume that M is
a continuous local martingale satisfying the (PRP) relative to (Ft) which simply means that
LA = 0. Equation (7) simplifies to

Pt(·, A) = P (A) +
∫ t

0
ks(·, A) dMs,

where k(·, A) is as in Chapter 2. Let again (G0
t ) be a filtration satisfying F0

t ⊂ G0
t and being

generated by countably many sets. To simplify notation we assume the filtration (G0
t ) to be

left-continuous. Let (Gt) be the smallest completed and right-continuous filtration containing
(G0

t ). In the following, we assume that (Gt) is a finite utility filtration and denote by µ its
predictable information drift, i.e.

M̃ = M −
∫ ·

0
µt d〈M,M〉t

is a (Gt)−local martingale. Recall that by Theorem 2.10 we may assume that kt(ω, ·) is
a signed measure. For a fixed r > 0 we define µr as the information drift of the initially
enlarged filtration (Gr

t ), defined as in the beginning of the preceding chapter. For stating the
main result we need the following lemma.

Lemma 5.1. Let 0 ≤ s < t and (Pm)m≥0 an increasing sequence of finite partitions such
that σ(Pm : m ≥ 0) = G0

s . Then

lim
m

E

∫ t

s

∑
A∈Pm

(
ku

Pu

)2

(·, A) 1A d〈M,M〉u = E

∫ t

s
(µs

u)2 d〈M,M〉u

and

lim
m

E

∫ t

s

∑
A∈Pm

ku

Pu
(·, A) 1A µs

u d〈M,M〉u = E

∫ t

s
(µs

u)2 d〈M,M〉u.

Proof. By Lemma 2.10 the process

Y m
u (ω, ω′) =

∑
A∈Pm

ku

Pu
(ω, A)1A(ω′), m ≥ 1,

is a L2−bounded martingale for PM−a.a. (ω, u) ∈ Ω× [s, t]. Hence (Y m) converges PM−a.s.
to the density

γu =
ku(·, dω′)
Pu(·, dω′)

∣∣∣∣
G0

s

.
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By Theorem 2.6 we have
γu(ω, ω′) = µs

u(ω)

PM−a.s. on Ω × [s, t] and hence the first result. In a similar way one can prove the second
statement. �

We next discuss the important concept of the additional information of a σ−field relative
to a filtration.

Definition 5.2. Let A be a sub-σ−algebra of F and R,Q two probability measures on F .
Then we define the relative entropy of R with respect to Q on the σ−field A by

HA(R‖Q) =


∫

log dR
dQ

∣∣∣
A

dR, if R � Q

∞, else.

Moreover, the additional information of A relative to the filtration (Fr) on [s, t] (0 ≤ s < t ≤
T ) is defined by

HA(s, t) =
∫
HA(Pt(ω, ·)‖Ps(ω, ·)) dP (ω).

The following lemma establishes the basic link between the entropy of a filtration enlarge-
ment and additional logarithmic utility of a trader possessing this information advantage.

Lemma 5.3. For 0 ≤ s < t we have

HG0
s
(s, t) =

1
2
E

∫ t

s
(µs

u)2 d〈M,M〉u.

Proof. Let (Pm)m≥0 be an increasing sequence of finite partitions such that σ(Pm : m ≥
0) = G0

s . Recall that by equation (9)∑
A∈Pm

[1A log Ps(·, A)− 1A log Pt(·, A)]

=
∑

A∈Pm

[
−
∫ t

s

ku

Pu
(·, A) 1A dM̃u −

∫ t

s

ku

Pu
(·, A) 1Aµu d〈M,M〉u

+
1
2

∫ t

s

(
ku

Pu

)2

(·, A) 1A d〈M,M〉u
]

Since M̃ is a local martingale, we obtain by stopping and taking limits if necessary

E
∑

A∈Pm

Ps(·, A) log
Pt(·, A)
Ps(·, A)

= E
∑

A∈Pm

∫ t

s

ku

Pu
(·, A) 1Aµu d〈M,M〉u −

1
2

∫ t

s

(
ku

Pu

)2

(·, A) 1A d〈M,M〉u.

Note that in the previous line µ may be replaced by µs, because (µ − µs) is orthogonal to
L2(M)(Gs) (see property iv) in Lemma 1.6). Applying Lemma 5.1 yields

lim
m

HPm(s, t) =
1
2
E

∫ t

s
(µs

u)2 d〈M,M〉u.
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Fatou’s Lemma implies
lim inf

m
HPm(s, t) ≥ HG0

s
(s, t).

On the other hand we have HPm(s, t) ≤ HG0
s
(s, t), since Pm ⊂ G0

s , and thus

lim
m

HPm(s, t) = HG0
s
(s, t),

which completes the proof. �

Let us now return to the stepwise approximation of a filtration enlargement along a se-
quence of partitions of the trading interval by ”initial enlargements”, and define their respec-
tive information increment.

Definition 5.4. Let ∆ : 0 = s0 ≤ · · · ≤ sn = T , n ∈ N, be a partition of the interval [0, T ]
and let µ∆ be the information drift of (G∆

r ). The additional information of (G∆
r ) relative to

(Fr) is defined as

H∆ =
n−1∑
i=0

HG0
si

(si, si+1).

Theorem 5.5. We have

lim
|∆|→0

H∆ =
1
2
E

∫ T

0
µ2

u d〈M,M〉u.

Proof. This follows from Theorem 4.4 and Lemma 5.3. �

Example 5.6. Let G0
t = F0

t ∨ σ(P), where P is a finite partition in FT . Then µ0 = µ and
by Lemma 5.3

HG0
0
(0, T ) =

1
2
E

∫ T

0
µ2

u d〈M,M〉u.

If F0 is trivial, then
HG0

0
(0, T ) = −

∑
A∈P

P (A) log P (A),

which is the absolute entropy of the partition P. Thus, the additional logarithmic utility of
an agent with information (Gt) is equal to the entropy of P. This example shows that there
is a link between logarithmic utility and the so-called Shannon information.

Definition 5.7. Let X and Y be two random variables in some measurable spaces. The
mutual information (or Shannon information) between X and Y is defined by

I(X, Y ) = H(PX,Y ‖PX ⊗ PY ).

Now let Z be a third random variable. The conditional mutual information of X and Y given
Z is defined by

I(X, Y |Z) = E
[
H(PX,Y |Z‖PX|Z ⊗ PY |Z)

]
,

provided the regular conditional probabilities exist.

25



If A is a sub-σ−algebra of F , then we write idA for the measurable map (Ω,F) →
(Ω,A), ω 7→ ω. For two sub-σ−algebras A and D we abbreviate

I(A,D) = I(idA, idD).

Since our probability space is standard, for any sub-σ−fields A,D, E of F there exists a
regular conditional probability PidA,idD|idE and we define

I(A,D|E) := I(idA, idD|idE).

The mutual information was introduced by Shannon as a measure of information. It plays
an important role in information theory (see, for instance, [Iha93]).

Theorem 5.8.

lim
|∆|→0

∑
i

I(G0
si

,F0
si+1

|F0
si

) =
1
2
E

∫ T

0
µ2

u d〈M,M〉u.

Proof. Note that for three random variables X, Y and Z we have

dP(X,Y )|Z

d(PX|Z ⊗ PY |Z)
=

dPX|(Y,Z)

dPX|Z
.

This property implies that one has for 0 ≤ s < t ≤ T ,

I(G0
s ,F0

t |F0
s ) =

∫ ∫
log

dPidG0
s
|idF0

t

dPidG0
s
|idF0

s

dP (ω′) dP (ω)

=
∫ ∫

log
Pt(·, dω′)
Ps(·, dω′)

∣∣∣∣
G0

s

dP (ω′) dP (ω)

= HG0
s
(s, t).

Thus the assertion is an immediate consequence of Theorem 5.5. �

This result motivates the following notion.

Definition 5.9. The information difference of (G0
r ) relative to (F0

r ) up to time T is defined
as

A(G0,F0) = lim
|∆|→0

∑
i

I(G0
si

,F0
si+1

|F0
si

).

Remark 5.10. Note that we did not use M in our definition of the information difference
of (G0

r ) relative to (F0
r ). However, by Theorem 5.8, the information difference may be repre-

sented in terms of any local martingale satisfying the (PRP).

Theorem 5.8 can be reformulated in the following way.

Theorem 5.11. The additional utility of an agent with information (Gt) is equal to the
information difference of (G0

r ) relative to (F0
r ), i.e.

uG(x)− uF (x) = A(G0,F0).
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If (Gt) is initially enlarged by some random variable G, then the information difference of
(G0

r ) relative to (F0
r ) coincides with the Shannon information between G and (F0

T ).

Lemma 5.12. Let G0
t = F0

t ∨σ(G), where G is a random variable with values in some Polish
space. Then

A(G0,F0) = I(G,F0
T |F0

0 ).

Proof. Let 0 ≤ s ≤ t. By standard arguments we have I(G0
s ,F0

t |F0
s ) = I(G,F0

t |F0
s ) and

I(G,F0
t |F0

0 ) = I(G, (F0
t ,F0

s )|F0
0 )

= I(G,F0
t |F0

s ) + I(G,F0
s |F0

0 )

(see e.g. [Iha93] Theorem 1.6.3.) By iteration we obtain for all partitions ∆∑
i

I(G0
si

,F0
si+1

|F0
si

) = I(G,F0
T |F0

0 ),

and hence the result. �

Theorem 5.13. Let G0
t = F0

t ∨ σ(G), where G is a random variable with values in some
Polish space. Then the additional logarithmic utility of an agent with information (Gt) is
equal to the Shannon information between G and (F0

T ) conditioned on F0, i.e.

uG(x)− uF (x) = I(F0
T , G|F0

0 ).

In particular, if F0
0 is trivial, then the additional utility is equal to I(F0

T , G).

Proof. This follows from Lemma 5.12 and Theorem 5.8. �

Remark 5.14. If G0
t = F0

t ∨ σ(G) and G is F0
T−measurable, then the mutual information

I(F0
T , G|F0

0 ) is equal to the conditional absolute entropy of G (see also [AIS98]).

Example 5.15. Let (Ω,F , P ) be the 1-dimensional canonical Wiener space equipped with the
Wiener process (Wt)0≤t≤1. More precisely, Ω = C([0, 1], R) is the set of continuous functions
on [0, 1] starting in 0, F the σ−algebra of Borel sets with respect to uniform convergence, P

the Wiener measure and W the coordinate process. (Ft)0≤t≤1 is obtained by completing the
natural filtration (F0

t )0≤t≤1. Suppose the price process S is of the form

St = exp(Wt + bt), 0 ≤ t ≤ 1,

with b ∈ R. We want to calculate the additional utility of an insider knowing whether the
price exceeds a certain level or not. More precisely, we suppose the insider to know the value
of

G = 1(c,∞)(S
∗
1),

where c > 0 and S∗1 = max0≤t≤1 St. By Remark 5.14 the additional utility is equal to the
entropy

H(G) = p log p + (1− p) log(1− p)
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where
p = P (S∗1 > c).

This may be calculated via Girsanov’s theorem. Namely we have

P (S∗1 > c) = P (∀t ∈ [0, 1] : max
t∈[0,1]

Wt + bt > log c)

=
∫ 1

0
exp

(
b log c− b2

2
s

)
| log c|√

2πs3
exp

(
−| log c|2

2s

)
ds.

6 Mutual information estimates

In this final section we apply some results from information theory to derive estimates for
the information of a better informed agent. This yields a priori estimates for the agent’s
additional expected logarithmic utility in the light of the preceding section. Among other
facts, the differential entropy maximizing property of Gaussian laws will play a role. We
adopt the notations of [Iha93].

Before we provide the information estimates, we summarize some basic facts of the mutual
information (see [Iha93], Theorem 1.6.3). For random variables X, Y , Z in some Borel spaces,
the following properties hold:

(I.1) I(X, Y |Z) ≥ 0 and, I(X, Y |Z) = 0 if and only if X and Y are independent given Z

(I.2) I(X, (Y, Z)) = I(X, Z) + I(X, Y |Z)

(I.3) If X is a continuous random variable with finite differential entropy, then

I(X, Y ) = h(X)− h(X|Y ).

For some fixed integer d ∈ N, let X be a F0
T−measurable Rd−valued random variable.

Moreover, denote by Y a d−dimensional r.v. that is independent of the σ−field F0
T . We

consider the enlarged filtration G0
t = F0

t ∨ σ(G), where G := X + Y .

Lemma 6.1. Suppose that the law of Y is absolutely continuous with respect to Lebesgue
measure and has finite differential entropy

h(Y ) = −
∫

dPY

dλd
(y) log

dPY

dλd
(y) dy.

Then

I(G,F0
T ) = h(X + Y )− h(Y ). (12)

Proof. Due to property (I.2), we have

I(G,F0
T ) = I(X + Y, X) + I(X + Y,F0

T |X).

Given X, the r.v.’s X + Y and idF0
T

are independent. Therefore, (I.1) and (I.3) lead to

I(G,F0
T ) = I(X + Y, X) = h(X + Y )− h(X + Y |X) = h(X + Y )− h(Y ).

�

Now assume the perturbation Y to be a Rd−valued centered Gaussian r.v. that is inde-
pendent of F0

T .
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Lemma 6.2. Suppose that X ∈ L2(P ) and let CX and CY denote the covariance matrices
of X and Y , respectively. Then

I(G,F0
T ) ≤ 1

2
log

det(CX + CY )
det(CY )

. (13)

Moreover, equality holds in equation (13) if X is Gaussian.

Proof. The distribution of Y is continuous with respect to Lebesgue measure and has finite
entropy. Therefore,

I(G,F0
T ) = h(X + Y )− h(Y ).

Let CX and CY denote the covariance matrices of X and Y , respectively. Due to the indepen-
dence of X and Y , the random variable X +Y has the covariance matrix CX+Y = CX +CY .
Next recall that the normal distribution maximizes the differential entropy under a covariance
constraint, i.e. h(X +Y ) ≤ h(Z), where Z is a centered Gaussian r.v. with covariance matrix
CX+Y . Therefore,

I(X, X + Y ) ≤ h(Z)− h(Y ).

Using the formula for the differential entropy of Gaussian measures (Theorem 1.8.1, [Iha93])
we obtain

h(Z)− h(Y ) =
1
2

log
(
(2πe)d det(CX+Y )

)
− 1

2
log
(
(2πe)d det(CY )

)
=

1
2

log
det(CX+Y )
det(CY )

.

If X is Gaussian, then h(X + Y ) = h(Z) and, hence, the second statement of the lemma
follows. �

Corollary 6.3. Assume that additionally to the assumptions of the above lemma, the equation
Y = κN is valid, where N is a d−dimensional standard normal r.v. and κ > 0. Then

I(G,F0
T ) ≤ 1

2

d∑
j=1

log
λj + κ

κ
,

where λj (j = 1, . . . , n) denote the eigenvalues of CX .

Proof. The proof follows easily by computing the determinants in Lemma 6.2. �

The proof of Lemma 6.2 is based on the fact that Gaussian distributions maximize the dif-
ferential entropy under a constraint on the covariance structure. Let us recall the construction
of entropy maximizing measures under a linear constraint.

Lemma 6.4. Let E ⊂ Rd be a measurable set, c > 0 and g : E → [0,∞) a measurable map.
Assume that there exist constants Z, t ≥ 0, such that the measure ν defined by

dν

dλd
(x) =

1
Z

e−tg(x),

is a probability measure satisfying Eν [g] = c. Then ν is the unique probability measure max-
imizing the differential entropy among all continuous probability measures µ on E satisfying
Eµ[g] = c.
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The entropy maximization problem is equivalent to minimizing the relative entropyH(·‖λd).
Hence, the problem can be treated under more general constraints by using results of (Csiszár
[Csi75], Theorem 3.1).

Proof. Let µ be a continuous probability measure on E with Eµ[g] = c. Then

H(µ‖ν) = Eµ log
dµ

dν
= Eµ log

dµ

dλd
+ Eµ log

dλd

dν

= −h(µ) + log Z + tEµg = −h(µ) + log Z + tEνg

= −h(µ)− Eν log
e−tg

Z
= −h(µ) + h(ν).

Since H(µ‖ν) ≥ 0 and H(µ‖ν) = 0 iff µ = ν, ν is the unique maximizer of the differential
entropy. �

Remark 6.5. The above lemma can be used to derive similar results as obtained in Lemma
6.2. For instance, for E := R and g(x) := |x| one obtains that the two-sided exponential
distribution maximizes the differential entropy under the constraint Eµg = c (c > 0). In
particular, the measure ν with dν

dλ(x) = (2c)−1 e−|x|/c satisfies

Eν [g] = c and h(ν) = 1 + log(2c).

Now let X be a real-valued r.v. in L1(P ). Moreover, let κ1 := E[|X − EX|] and Y be a
two-sided exponential distribution with E|Y | =: κ2. Then due to Lemma 6.1,

I(G,F0
T ) ≤ log

(κ1 + κ2

κ2

)
.

Example 6.6. We consider the classical stock market model with one asset. Let (F0
t )t∈[0,T ]

be a Brownian filtration generated by the Brownian motion (Bt)t∈[0,T ] and denote by (Ft) its
completion. The stock price is modeled by the process

St = S0 exp
{
Bt + bt

}
,

where S0 > 0 is the deterministic stock price at time 0 and b ∈ R. For some fixed times
t1, . . . , td ∈ (0, T ] (d ∈ N), let X := (Bti)i=1,...,d. We suppose that the insider bases his
investment on the filtration Gt =

⋂
s>tFs ∨ σ(G), where G = X + κN and N is a standard

normal r.v. in Rd that is independent of FT . Due to Lemma 6.2 the additional utility of the
insider is related to the eigenvalues of the matrix

t1 t1 . . . t1
t1 t2 . . . t2
...

...
...

t1 t2 . . . td

 .

Let us finish the section with an example for a general enlargement.

Example 6.7. We reconsider the classical stock market model of Example 6.6 with T := 1.
The knowledge of the insider at time t is modeled by Gt =

⋂
r>tFr ∨ σ((Gs)s∈[0,r]), where
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Gt := B1 + B̃g(1−t), (B̃t) is a Brownian motion independent of (Bt) and g : [0, 1] → [0,∞)
is a decreasing function. We are therefore in a setting similar to Example 2.13. We now
calculate the utility increment from the perspective of the notion of information difference of
filtrations. Let π be as in Section 4. For 0 ≤ s ≤ t ≤ 1 we have

π([0, s)× (s, t]) = I((Gu)u∈[0,s],F0
t |F0

s )

= I(Gs,F0
t |F0

s ) = I(Gs, Bt|F0
s ) + I(Gs,F0

t |F0
s , Bt)

= I(B1 + B̃g(1−s), Bt −Bs|F0
s )

= I(B1 −Bs + B̃g(1−s), Bt −Bs).

Using the formula for the differential entropy for Gaussian measures we obtain

π([0, s)× (s, t]) = h(B1 −Bs + B̃g(1−s))− h(B1 −Bt + B̃g(1−s))

=
1
2

log(2πe(1− s + g(1− s)))− 1
2

log(2πe(1− t + g(1− s)))

=
1
2

log
1− s + g(1− s)
1− t + g(1− s)

Alternatively one can express π([0, s)× (s, t]) as

π([0, s)× (s, t]) =
1
2

∫ t

s

1
1− u + g(1− s)

du.

For a partition ∆ : 0 = t0 ≤ · · · ≤ tm = 1 (m ∈ N) we consider D∆ as in Section 4. One has

π(D∆) =
n∑

i=1

π([ti−1, ti)× (ti, ti+1])

=
1
2

∫ 1

0

1
1− u + g(1−max{ti : ti ≤ u})

du

Next, choose a sequence of refining partitions (∆n) such that their mesh tends to 0. Then
the term in the latter integral is monotonically increasing in n and convergent. Hence, one
obtains

lim
n→∞

π(D∆n) =
1
2

∫ 1

0

1
1− u + g(1− u)

du.

On the other hand,
lim

n→∞
π(D∆n) = π(D) = uG(x)− uF (x).

Consequently the insider has finite utility if and only if
∫ 1
0

1
1−u+g(1−u) du < ∞ is finite. Now

suppose g(y) = Cyp for some C > 0 and p > 0. It is straightforward to show that the integral,
and hence the additional utility, is finite if and only if p ∈ (0, 1). This equivalence follows
also from results in [CIKHN03], where the authors compute explicitly the information drift.
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