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1 Introduction

Environmental costs and benefits are increasingly used to justify industrial policies since

environmental considerations play a major role in the allocation of public funds through

mechanisms such as the European Green Deal1 or the US Infrastructure Bill.2 Numer-

ous challenges remain however when claiming environmental benefits due to the inherent

di�culty of accurately quantifying the impact of simple policies in a complex real world

setting, where consumers, firms, and the environment interact. In this paper, we focus on

one type of policy which has been implemented broadly and has received detailed attention

in the economic literature: the introduction of dynamic pricing for residential electricity

(Joskow and Wolfram, 2012). Advocates of dynamic pricing argue that electricity prices

faced by consumers ought to reflect the time-varying nature of the marginal cost of electric-

ity production. To our knowledge, this is the first paper to use household-level electricity

consumption data to demonstrate the impacts of time-varying electricity rates on short

term operating costs and emissions associated with power generation. In our investigation,

a relatively straightforward change in prices leads to complicated (and not necessarily an-

ticipated) changes in consumer behavior, which combined with the production function of

utilities results in a somewhat mixed impact on the environment. The paper also highlights

the challenge of using currently available data to provide such a quantification, and presents

a cautionary tale of claiming blanket environmental benefits for dynamic pricing policies.

Policies such as the introduction of time-varying pricing for residential electricity pro-

vide an ideal test case for exploring our question. They are very widespread and have been

analyzed extensively, and it is common to find claims of environmental benefits made about

them. The adoption of these policies is broad across the developed world due to the growing

interest in market-based demand side management among both regulators and utilities.3

Proponents of dynamic pricing argue that time-varying electricity rates help consumers

1See https://eur-lex.europa.eu.
2See https://www.whitehouse.gov/american-jobs-plan/.
3The California Public Utilities Commission has ordered the state’s three investor-owned utilities

to transition most of their customers to time of use (TOU) electricity rates beginning in 2019. Nearly
seven million households will face the new rate structures (Roth, 2019). Similarly, major utilities such
as ComEd, which serves approximately 3.5 million customers, are in various stages of implementing
TOU rates (Thill, 2019).

1
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better manage their energy consumption while reducing utility production costs (Public

Utilities Commission of the State of California, 2016). Additionally, it is claimed that these

price schemes, by reducing energy demand, may improve air quality and yield significant

health benefits since electricity generation is a major source of both global and local air

pollutants. Electricity production accounted for 27 percent of U.S. greenhouse gas emis-

sions in 2018, primarily Carbon Dioxide (CO2).4 Power plants are also major sources of

Sulfur Dioxide (SO2) and Nitrogen Oxides (NOx), which impose considerable health costs

(Burtraw and Mansur, 1999; Deschenes et al., 2017; Chan et al., 2018).5

When quantifying the magnitudes of production cost savings and environmental ben-

efits, however, there are many factors that can be of impact, from design features of the

program to the geography of implementation. Cost savings depend importantly on con-

sumer price elasticity, and various features of program design have been shown to moderate

household response to price changes (Jessoe and Rapson, 2014; Harding and Lamarche,

2016; Harding and Sexton, 2017; Fowlie et al., 2017). Geographic variation in local popu-

lation, temperature/atmospheric conditions, and source of power generation can also alter

the marginal damage of emissions (Gra↵-Zivin et al., 2014; Holland et al., 2016).

In order to provide a rigorous evaluation of the causal e↵ect of time-varying electricity

rates on short term operating costs and emissions, we proceed by quantifying these impacts

using several datasets. We use high frequency data on household electricity consumption

from a randomized control trial (RCT), which allows us to consistently estimate behavioral

e↵ects resulting from the introduction of the policies. We then supplement this with data

on utility generation costs and data on grid-level, power plant emissions of SO2, NOx, and

CO2. Specifically, we evaluate the behavioral response of households who are randomly as-

signed to face higher electricity rates during peak-demand hours and given a programmable

communicating thermostat (PCT) relative to households in a control group who remained

on a standard block tari↵ without any form of automation technology. The behavioral

responses of treated households are then evaluated in terms of their emissions impact and

operating cost savings for the utility conducting the experiment using estimates of marginal

4Source: https://www.epa.gov/ghgemissions.
5SO2 contributes to smog and acid rain, and NOx, combined with Volatile Organic Compounds

(VOCs), heat, and sunlight, creates ozone. Both are also important sources of particulate matter
(PM).

2
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emissions and marginal generation costs.

First, we quantify the behavioral response of the households in the RCT. These results

are similar to and complement Harding and Lamarche (2016), which analyze a di↵erent

treatment in the same experimental program. We find that households indeed respond to

higher prices, with average energy savings ranging from 22 to 46 percent depending on the

peak to o↵-peak price ratio. Moreover, households, with the aid of automation technology,

shift consumption from peak to o↵-peak hours, but do not engage in strategic pre-cooling

before periods of elevated prices. This is an important finding because peak demand hours,

when marginal production costs are highest, coincide with the lowest marginal rate of

emissions in the region of the experiment. Such load shifting behavior that reallocates

energy use to o↵-peak hours implies that while the utility may see generation cost savings,

the overall benefits of dynamic prices could be tempered by net emissions increases. Our

results, when scaling our estimated treatment e↵ects by marginal emissions and marginal

production costs, reflect the trade-o↵ between reducing operating expenses and pollution.

Second, we find that operating costs fall by roughly 20 cents per household per day in

response to the highest peak price increase (about 10 times the non-peak rate). Assuming

that 5 million households, which roughly corresponds to the population served by the NERC

region containing the experiment, are treated with the current price scheme, our mean

treatment e↵ect estimates imply aggregate cost savings of $24.1 million (in 2011 dollars)

during the four months of the experiment from June to September of 2011. In contrast to

claims of blanket environmental benefits, we find that the emissions impacts are varied: we

estimate net decreases in NOx on average (213 tons during the treatment period), but net

increases in SO2 (561 tons) and CO2 (119,000 tons).

Third, we present back-of-the-envelope net benefit calculations after monetizing the im-

pact from emissions using PM2.5-induced premature mortality for SO2 and NOx (both

precursors to PM2.5), and a range of Social Cost of Carbon (SCC) values for CO2. Re-

ductions in NOx emissions increase overall benefits by $1.2 million, but the net benefits of

the program are largely tempered by losses from increased SO2 emissions ($21 million) and

CO2 emissions ($1.4 to $14 million, depending on the SCC used). Overall, we find impacts

that range from a net benefit of $2.8 million (SCC=$12/ton) to a net cost of $10.1 million

(SCC=$120/ton). When extrapolating from our results it is important to keep in mind that
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the impact will di↵er across regions and time periods. We show the extent of this variation

by presenting a series of counterfactuals demonstrating the extent to which the same policy

applied in di↵erent regions of the country would have produced a di↵erent set of results

even assuming the same behavioral response. This points to the importance of conducting

detailed analyses such as the one presented in this paper when claiming environmental costs

and benefits of policies in the energy sector.

Our paper also connects to the broader literature on the impact of dynamic electricity

pricing. While a significant number of papers document the behavioral response to dynamic

pricing, most of the literature ignores the more fundamental questions of whether it ulti-

mately makes a di↵erence both socially and financially. We complement recent work using

experiments to understand the ways in which energy consumption responds to dynamic

electricity pricing (Allcott, 2011; Burkhardt et al., 2019; Faruqui et al., 2013; Jessoe and

Rapson, 2014; Harding and Lamarche, 2016; Wolak, 2010; Fowlie et al., 2017; Bollinger and

Hartmann, 2020).6 In particular we provide additional evidence on the impact of unin-

tentional load shifting. On the one hand, automation may increase consumer sensitivity

to prices; on the other hand, it may increase emissions in regions where o↵-peak marginal

emissions are high relative to peak hour marginal emissions.

This paper also contributes to a growing literature that evaluates the environmental

e↵ects of supplying energy to the electricity grid (Holland and Mansur, 2008; Cullen, 2013;

Gra↵-Zivin et al., 2014; Callaway et al., 2018; Holland et al., 2016, 2020). Holland and

Mansur (2008) are the first to demonstrate that the emissions impact of real-time electric-

ity pricing is ambiguous due to heterogeneity in the source of power generation across the

country and at di↵erent times of the day using aggregated electricity demand data.7 By

contrast, this paper takes advantage of the availability of micro-data to measure the impact

of a policy on consumer behavior at hourly frequency. We further identify the underlying

6See Harding and Sexton (2017) for a comprehensive review of this literature.
7That variation in marginal emissions moderates environmental e↵ects has also been shown in

the context of electric vehicle adoption (Gra↵-Zivin et al., 2014), subsidies for wind power (Cullen,
2013), and investments in renewable energy generation and energy e�ciency (Callaway et al., 2018).
A recent literature also demonstrates how unanticipated natural gas price decreases from the shale
boom changed the generation mix of electricity production and impacted carbon emissions (Cullen
and Mansur, 2017; Fell and Ka�ne, 2018; Linn and Muehlenbachs, 2018; Holladay and LaRiviere,
2017).
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mechanism that leads to ambiguous environmental impacts from a large scale RCT. Dy-

namic prices induce consumer load-shifting behavior over the course of the day, which, when

coupled with the pattern of emissions from the generating plants, impacts the environment

in multiple ways. This illustrates how a relatively simple pricing policy leads to complex

environmental outcomes when consumer and firm behavior interact.

Section 2 presents our data sources and preliminary evidence of the behavioral responses

from the RCT. We also provide evidence that there are no systematic di↵erences between

households in the treatment and control groups before the implementation of the program.

Section 3 presents models and methods, describing the empirical strategy for estimating

residential household electricity demand and the associated impacts on emissions and op-

erating costs. Section 4 reports the results, and Section 5 concludes.

2 Data and Preliminary Evidence

Data on emissions, production costs, and electricity consumption come from the fol-

lowing sources: (1) emissions data are from the Environmental Protection Agency’s (EPA)

Continuous Emission Monitoring System (CEMS), (2) regional electricity demand comes

from Federal Energy Regulatory Commission (FERC), (3) data on electricity production

costs are reported by the utility implementing the RCT, and (4) household consumption

data are recorded from the RCT. The first two sources of data on emissions and electricity

demand are available at the electricity-grid level for each hour; electricity generation costs

are available for each hour at each node controlled by the utility; finally, the RCT provides

household-level consumption in 15-minute intervals. We first provide an overview of each

source of data, and follow with summary statistics and preliminary evidence to motivate

our investigation.

2.1 Data Sources

Emissions: The EPA’s Continuous Emission Monitoring System (CEMS) provides grid-

wide emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOx)

from all fossil fuel generating plants with at least 25 megawatts of generating capacity

(U.S. EPA, 2011). Hourly emissions of each pollutant are reported at the generating unit
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level. We average hourly emissions from all generating units in the NERC region between

12:01 a.m. July 1, 2011 and 11:59 p.m. September 30, 2011.

Region-wide Electricity Demand: The Federal Energy Regulatory Commission

(FERC) mandates that balancing authorities and planning regions report grid electricity

demand for each hour of every day via FERC form 714 (FERC, 2011). The sum of hourly

demand for the NERC region containing the experiment is computed for each hour. To

simplify the relationship between consumption and emissions, the amount of energy traded

between regions is assumed to be zero. Identification of grid-wide emissions per marginal

megawatt of electricity demand follows from this simplification.

Marginal Generation Costs: The utility that implemented the randomized exper-

iment makes data available data on the marginal costs of electricity generation, or the

“locational marginal price” (LMP). The LMP is a measure of the cost to provide an ad-

ditional megawatt of electricity to the grid. The cost varies between nodes of the grid

according to the time of day, distance to the nearest type of generating plant (e.g. coal vs.

wind), and the amount of loss or congestion along the physical transmission infrastructure.

In addition, the LMP reflects balancing authorities’ attempts to vary dispatch order to

minimize costs, where cheaper generating units are employed before more expensive ones.

LMPs are computed in five-minute increments. We average the LMP over each hour and

across all nodes operated by the utility running the experiment.

Household-level Electricity Consumption: Household consumption data are from

a large-scale randomized controlled trial (RCT) for a dynamic pricing scheme in the residen-

tial market for electricity. Due to a confidentiality agreement, the organization running the

trial will be referred to as ‘the Utility’. The Utility tested how a new price regime impacted

the daily profile of residential electricity consumption. Consumers facing the new price

regime were also provided with technologies designed to facilitate information access and

price change responses. Household energy use for the months of June through September

of 2011 was subsequently monitored with smart meters that report consumption in fifteen

minute intervals. We aggregate household-level energy consumption over each hour to match

the temporal frequency of emissions and generation costs. In addition to consumption data,

6



measures of household income and age/family structure are available. Households are cat-

egorized into ‘low,’ ‘middle,’ and ‘high’ groups, where low income households have yearly

earnings below $30,000, median income households have yearly earnings averaging around

$50,000, and high income households have yearly earnings above $75,000.8 In the Online

Appendix, we use this information to investigate the impact of dynamic pricing among low-

and high-income households.

The price treatment studied in this paper exposed a subset of households (i.e., the

treatment group) to a variable peak price (VPP) pricing scheme, where a flat rate of $0.045

per kilowatt (kW) hour, or simply 4.5¢/kWh, is charged during o↵ peak hours and higher

rates are charged during the peak hours of 2 p.m. through 7 p.m. on weekdays (excluding

Independence Day and Labor Day). The peak rates, based on generation costs, could

be low (4.5¢/kWh), medium (11.3¢/kWh), high (23¢/kWh), or critical (46¢/kWh), and

are announced by 5 p.m. on the previous day. Households have multiple observations

of consumption at each hour for each price level because there are multiple days of each

price type observed throughout the summer. Specifically, there were respectively 52, 24,

and 12 medium, high, and critical price days during the treatment period. The remaining

households (i.e., the control group) remained on a standard block tari↵, which charged

8.4¢/kWh for the first 1400 kW used in a month and 9.68¢/kWh for usage above that level.

To better inform households about the peak price period, members of the treatment

group were given automation technology. All treated households were provided with a

programmable communicating thermostat (PCT), which allowed households to automate

adjustments to interior temperature in response to price changes. Households also had

access to a web portal that reported the amount of electricity that was consumed during

the previous fifteen minute usage interval, as well as the current price of electricity. Control

households did not receive any type of technology intervention.

Assignment to treatment was based on a randomization after opt-in design.9 Assignment

to the treatment group was enforced successfully in most cases, although a few households

8Households are also categorized into a family-structure and age group: ‘young’ households are
those under the age of 45 with no children, ‘family’ households consist of middle-aged families with
children, and ‘mature’ households consist of older empty nest households, who are age 65 or older.

9Based on a pilot study during the previous year, demographics predicted to have low partici-
pation rates received additional advertising.
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changed treatment status because of technical di�culties. In total, 1,461 households in the

RCT are examined in this analysis, 978 of which belonged to the control group and 483 of

which belonged to the treatment group. Table 1 presents a breakdown of the sample by

household characteristics and treatment status.

Our sample of households is older and has higher income than the national average.10

However, a comparison of the share of households in each income or family structure cate-

gory across treatment groups suggests that demographic characteristics are fairly balanced.

In subsequent analysis, we take our main treatment e↵ects specification to pre-treatment

consumption data to assess balance in baseline energy consumption by treatment status.

2.2 Descriptive Evidence

Figure 1 compares the average hourly consumption of treated with control households for

di↵erent VPP levels (medium, high, and critical). These raw data reveal several important

features of consumer behavior. First, higher prices yield larger reductions in electricity use.

The average peak-hour reduction in electricity consumption for treatment groups (relative

to the control group) is 0.25 kW under a medium rate, and increases to 0.63 and 0.81

kW under high and critical rates, respectively. Variation in marginal peak prices within

households enables us to assess the price responsiveness of individual households.

Second, there is clear visual evidence of load shifting: households facing VPP rates

consume less electricity during peak periods, but relatively more during the following hours.

Third, while treated households shift consumption to post-peak hours, there is little evidence

of strategic pre-cooling, which is consistent with previous work examining consumption

of customers of the same utility in a parallel experiment (Harding and Lamarche, 2016).

Households do not appear to take advantage of low prices during the morning to proactively

reduce temperatures before the high peak price in the afternoon. Prior work has found

that marginal CO2 emissions are higher during o↵-peak hours compared to on-peak hours,

particularly for the Eastern interconnection (Gra↵-Zivin et al., 2014). This reflects the use

of coal to meet base-level electricity demand and cleaner natural gas to meet additional

10For instance, between 44 to 52 percent of households in the RCT have an annual income above
$75,000, compared to 32 percent nationally (based on the 2010 Current Population Survey). See
www.census.gov/data/tables/time-series/demo/income-poverty/cps-hinc/hinc-01.2010.html.

8
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demand during peak hours. Taken together with Figure 1, this makes clear how load-

shifting as a result of dynamic pricing and automation can reduce the overall net benefits of

these programs given the tradeo↵ between utility generation costs and emissions impacts.

We also note that behavior at the mean masks considerable heterogeneity in price re-

sponses across the consumption distribution. Figure 1 also reports the 10th and 90th

percentiles of the distribution of electricity usage by hour and treatment status. While

the evidence reveals a similar pattern in terms of savings during the peak hours with con-

siderable load shifting, it is interesting to see that medium and high price levels seem to

a↵ect low-usage households proportionally more than high-usage households. These het-

erogeneous e↵ects may imply that dynamic pricing schemes entail important distributional

consequences.

2.3 A Falsification Exercise

The RCT employed in our study allows us to examine the di↵erences in electricity usage

by treatment status before the implementation of the program, as we have access to the

2010 data for the month of September. The data collected before the implementation of

the program does not include information for all households considered in the 2011 sample

due to a variety of technical reasons at the time of the pilot implementation.

With these caveats in mind, we employ 2010 data to compare the average hourly con-

sumption of treated with control households as in Figure 1. The left panel of Figure 2

shows hourly usage, and in contrast to the 2011 data, we see similar average consumption

behavior between households in the treatment and control group, as expected. To examine

systematic di↵erences more rigorously, we estimate a model for the logarithm of electricity

usage on a treatment variable indicating whether the household was in the treatment group

in 2011 and weather variables, which are described in the next section. We estimate the

model by hour and report the e↵ect of the treatment variable on electricity usage in the

right panel of Figure 2. We provide point-wise confidence intervals obtained by clustering

the standard errors at the household level. We see, as expected, that the estimated treat-

ment e↵ect fluctuates around zero when we consider di↵erent hours of the day, including

the period from 2 p.m. to 7 p.m. The evidence convincingly shows that the use of dynamic

pricing and the enabling technology in 2011 do not lead to energy reductions in 2010. We
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interpret this as strong evidence in favor of pre-treatment balance.

3 Models and Methods

Consider emissions Et,h at hour h on day t by Et,h = f(v(Yt,h),Wt,h), where Yt,h is

electricity consumption at the household level and Wt,h is a vector of weather variables.

The function v(·) aggregates individual consumption into a region specific measure (e.g.,

mean load). Consider also that electricity consumption at the household level is Yt,h =

g(Pt,h,Wt,h, Xt,h), where Pt,h denotes the price of electricity and the vector Xt,h includes

exogenous factors that a↵ect individual consumption but not directly emissions in the region

(e.g., income, air conditioning, etc.). The e↵ect of an increase in the price of electricity on

emissions is  t,h := @Et,h/@Pt,h = fY ·gP , where fY is the partial derivative of the composite

function f � v with respect to usage, and gP is the partial e↵ect of the rate on usage.

Alternatively, the change in emissions due to the change in prices can be obtained simply

by evaluating emissions Et,h at two di↵erent price levels:

�Et,h = f(v(g(Pt,1,Wt,h, Xt,h),Wt,h)� f(v(g(Pt,0,Wt,h, Xt,h),Wt,h), (3.1)

where Pt,0 denotes a standard rate and Pt,1 denotes a peak price. Importantly, equation

(3.1) states clearly the main identification issue. The change in emission �Et,h cannot

be estimated directly using observational data because one cannot simultaneously observe

emissions and household consumption at the standard and peak prices at the same hour on

the same day. Our empirical strategy is to utilize a reliable RCT to overcome the di�culty

of identifying changes on electricity usage from changes in prices.

In order to investigate the e↵ect of dynamic pricing following this simple conceptual

framework, we need to estimate fY and gP by modeling the emission and household con-

sumption equations. The next sections present the models and proposed approach to esti-

mate changes in emissions based on a dynamic pricing policy. We first focus on estimating

treatment e↵ects, and then obtain changes in electricity usage induced by the policy. Based

on these changes, we identify variations in emissions after considering marginal emissions

of electric demand.

10



3.1 Household Level Models

We pursue a modeling approach first suggested by Ramanathan et al. (1997), which was

employed by Harding and Lamarche (2016) for the evaluation of a similar (but distinct)

dynamic pricing model. We denote electricity usage by Y k

i,t,h
, where household i is observed

at hour h on day t, facing a price level k. As explained before, the price level k can be

medium, high or critical for the treated households or the standard rate for the households

in the control group. Also, recall that all treated customers face the same price level k on

day t. The model includes a treatment indicator and, as standard in the literature, a vector

of weather variables. The variable Di(k) indicates the treatment status of each household

i. The variable takes a value of 1 if price level k is announced to the treated households by

5 p.m. the previous day, and 0 for control households. Moreover, we consider temperature

and dew point variables, included in the vector Wi,t,h.

We estimate the average treatment e↵ect of the VPP price scheme on household elec-

tricity consumption considering the following model:

log(Y k

i,t,h) = ↵h + �k

hDi(k) + b(Wi,t,h) + ✏ki,t,h (3.2)

where the response variable is the natural logarithm of electricity consumption Y k

i,t,h
and

b(Wi,t,h) flexibly controls for the non-linear relationship between weather and electricity

consumption. Specifically, we introduce weather controls in b(·) as a linear combination

of temperature and dew point approximated by cubic B-splines. The intercept ↵h can be

interpreted as a fixed e↵ect for every hour that captures variation in average electricity usage

among control households throughout the course of day that is independent of the e↵ect

of weather. Finally, the error term, ✏i,t,h, captures remaining, unobserved determinants of

demand and is allowed to be correlated over time for a given household.

The parameters of interest are �k

h
for h 2 {0, . . . , 23}. We expect �k

h
to be negative

from h = 14 through h = 19 since greater VPP prices occur during those hours, and

letting k 2 {1, 2, 3} index medium, high and critical prices, we expect �1
h
> �2

h
> �3

h
when

h 2 {14, . . . , 19}. The parameter exp(�k

h
)� 1 represent the percentage change in electricity

consumption among treated households facing price k during hour h relative to households

facing the standard rate during the same hour.
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Consistent estimation of a causal average treatment e↵ect rests on the random assign-

ment of households to the treatment group. The previous evidence reported in Figure 2

strongly suggests that the randomized experiment was successfully carried out, and the pol-

icy had a remarkably high degree of compliance among treated participants.11 Therefore,

equation (3.2) is estimated, at each hour h and price level k, by standard semi-parametric

methods based on cubic B-splines. The standard errors are clustered at the household level.

While the evidence presented in Figure 1 is descriptive, it does provide tentative evidence

that dynamic pricing has a di↵erent impact across the distribution of electricity usage.

Motivated by these empirical lessons, we estimate quantile treatment e↵ects considering

the conditional quantile function corresponding to equation (3.2):

Qlog(Y k
i,t,h)

(⌧ |Di(k),Wi,t,h) = ↵h(⌧) + �k

h(⌧)Di(k) + b(Wi,t,h; ⌧), (3.3)

where ⌧ 2 (0, 1). As before, the parameters of interest are the sequence of �k

h
(⌧)’s for

each hour of the day at a particular peak price level k. The parameter �k

h
(⌧) measures the

di↵erence between the quantile functions of the treatment and control groups, evaluated

at a given quantile ⌧ . They are similar in spirit to the average treatment e↵ect param-

eter in equation (3.2), but rather than measuring the di↵erence between two conditional

mean models, the quantile treatment e↵ect measures the distance between two conditional

quantile functions (Koenker, 2005, 2017).

We estimate (3.3) considering semiparametric quantile regression, where the nonpara-

metric function is estimated using B-splines, and evaluate treatment e↵ects at two quantiles,

⌧ 2 {0.1, 0.9}. We cluster the standard errors at the household level by using the bootstrap

(Hagemann, 2017).

3.2 System Level Models

We now turn our attention to our model of emissions. Following previous work (Gra↵-

Zivin et al., 2014), we estimate marginal emissions by regressing hourly emissions from

11Considering TOU pricing rather than VPP, Harding and Lamarche (2016) investigate the im-
pact of a few households who switched assignments after the initial randomization due to technolog-
ical incompatibilities with the provided devices. They use the initial assignment as an instrument,
finding no significantly di↵erent results due to possible non-compliance issues.
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generating units within the NERC region for each day, Et,h, on hourly electricity demand

on each day, qt,h:

Et,h =
23X

h=0

�h (Hh · qt,h) +
23X

h=0

9X

m=7

↵hm (Hh ·Mm) +
9X

m=7

↵mMm +
23X

h=0

↵hHh + ✏t,h (3.4)

where ↵m and ↵h are month- and hour- fixed e↵ects that capture changing electricity use

cycles during di↵erent parts of the summer, and Mm and Hh are indicator variables for hour

of the day and month of the year. The marginal emissions of pollutant Et,h attributable to

an increase in grid demand at each hour of the day are given by the sequence �0, . . . , �23. In

the next sections, we consider three power plant emissions: Carbon Dioxide (CO2), Sulfur

Dioxide (SO2), and Nitrogen Oxides (NOx).

Since wholesale electricity prices are generally not passed on to consumers, consumer

demand does not depend on emissions. The identifying assumption is that the level of

demand in the NERC region, qt,h, is una↵ected by the adoption of VPP rates in the RCT.

This assumption is supported by the data as dynamic pricing a↵ected 483 households out

of an estimated 5 million households in the region. Grid level consumer electricity demand,

qt,h, can therefore be treated as exogenous in this context.

Lastly, we define the hourly marginal generation cost as �h = E(MCt,h,j). This param-

eter is the expected value of the cost of supplying one additional megawatt of electricity

to a node, or location, in the service area of the Utility. Nodes are denoted by j and we

have information on locational marginal price (LMP), or marginal cost (MC), for 42 nodes

controlled by the Utility at each hour of the day. The hourly marginal generation cost is

estimated by the average of the reported locational marginal price across all nodes and days

in the period of analysis.

3.3 Projecting Hourly Changes Under Dynamic Prices

Following closely the conceptual framework discussed above, we now obtain the change

in emissions induced by the e↵ect of dynamic pricing on household electricity demand. We

also introduce a parameter that captures the impact of dynamic pricing on generation costs.

First, we compute the average number of kilowatts conserved by implementing the

dynamic price policy. We apply the percent change in consumption due to VPP k, exp(�k

h
)�
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1, to the expected value of electricity consumption at hour h among households in the control

group, µk

h
= E(Y k

t,h
). Then, the change in consumption during hour h is given by:

�Y k

h = (exp(�k

h)� 1) · µk

h, (3.5)

where �Y k

h
is measured in kW. Next, we multiply the change in energy consumption for

each hour with the marginal emissions rate �h estimated from equation (3.4) to compute

the associated quantity change in each pollutant, �Ek

h
. The change in emissions during

hour h for VPP k is given by:

�Ek

h = �Y k

h · �h = (exp(�k

h)� 1) · µk

h · �h. (3.6)

We similarly define the change in hourly production costs, �Ck

h
, by multiplying the marginal

generation cost in hour h, �h, by the hourly level change in consumption for each VPP level

k, �Y k

h
:

�Ck

h = �Y k

h · �h = (exp(�k

h)� 1) · µk

h · �h. (3.7)

The advantage of our approach is that the parameters in equations (3.5), (3.6), and

(3.7) are simple to estimate considering the methods introduced in the previous sections.

Moreover, the parameter µk

h
can be estimated by the average hourly consumption among

households in the control group (who did not experience price changes and do not have access

to a PCT). Although these parameters are defined at the mean level, it is straightforward

to accommodate these formulas to estimate the e↵ects at the low and high conditional

quantiles of the distribution of electricity usage. For instance, we estimate the change in

electricity usage at the ⌧ -th quantile by [�Y k

h
(⌧) = (exp(�̂k

h
(⌧))� 1) · µ̂k

h
.

Finally, the information o↵ered by hourly changes in emissions and production costs

might not provide a complete picture of the e↵ects of dynamic pricing. The evidence in

Figure 1 suggests that households facing VPP rates consume less electricity during peak

periods, but relatively more during the subsequent hours. Therefore, we obtain daily net

changes in household emissions and generation costs. Consider, for instance, emission Ek

h
.

We aggregate the hourly changes over all hours of the day for each price level k following
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the formula:

�Ek =
23X

h=0

�Ek

h =
23X

h=0

(exp(�k

h)� 1) · µk

h · �h, (3.8)

which is interpreted as the daily average household e↵ect of dynamic pricing on emissions.

Generation costs associated with electricity consumption and corresponding impacts at the

⌧ -th quantile of the conditional distribution of electricity consumption are calculated by

accommodating (3.8).

Standard errors for these parameters including the one defined in equation (3.8) are

obtained using the bootstrap. Specifically, the procedure draws from the original sample

of treated and control households from each respective group with replacement. In each

draw, considering a bootstrap sample, we are able to obtain bootstrap estimates of the

parameters defined above, including the mean of Y k

h
for the control group. It is important

that each draw preserves selected households’ entire consumption path over the summer in

order to account for learning e↵ects, varying consumer engagement with the experiment, and

idiosyncratic inter-day correlations from each household’s daily schedule. Standard errors

and 95% confidence bands are computed using 400 iterations of the bootstrap procedure.

4 Results

This section presents experimental results of the dynamic pricing scheme on emissions

and production costs. Before we turn our attention to the benefits and costs of the policy,

we present results for the household- and system-level parameters.

4.1 Dynamic Impact of Prices

We begin by estimating average and quantile treatment e↵ects for each price level k,

which are computed from the full sample consisting of all weekdays in June, July, August,

and September. The results for the mean treatment e↵ect and quantile treatment e↵ect

parameters are presented in the Online Appendix (Tables S.1-S.3). At each hour h, these

estimates are obtained using 1,461 households observed during 52 medium price days, 24

high price days, or 12 critical price days, corresponding to samples sizes that range between

17,532 to 75,972 observations. We then obtain point estimates for �Y k

h
and present them
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in Figure 3. For instance, the change in consumption in the first panel at h = 14 is

�0.52 ⇡ (exp(�0.21) � 1) ⇥ 2.75, which is obtained based on the average consumption in

kilowatts for the control group as shown in the first panel of Figure 1, and the estimate of

the treatment parameter shown in Table S.1.

Figure 3 presents the changes in household electricity consumption measured in kilowatts

at each hour of the day. The vertical dotted lines at h = 14 and h = 19 indicate the peak

hours, that is, the hours of the day when the price of electricity increases. The results across

columns show estimates based on di↵erent price levels, while the results across rows show

estimates based on di↵erent parts of the consumption distribution. For instance, prices

increase from a flat or low rate of $0.045 during non-peak hours to $0.113 (i.e., medium

price, as shown in the first column), $0.23 (high), or $0.46 (critical) during peak hours,

representing a price increase of between 2.5 to over 10 times the non-peak rate for the

treatment group. Moreover, the average treatment e↵ects are presented in the first row,

and the quantile treatment e↵ects estimated at the 0.1 and 0.9 quantiles are presented in

the last two rows. All impacts are evaluated at the average consumption among control

group households in the corresponding hour.

The treatment e↵ect is characterized by a large reduction in consumption at the very

beginning of the peak period that tapers o↵ over the afternoon. The magnitude of the

reduction increases with peak price rates, where the largest drop in consumption (at hour

15) increases from -0.6 kilowatts during medium peak prices to -1.8 kilowatts during critical

peak prices. The reductions range from 22 to 46 percent, which represent negative price

elasticities similar to those found in the recent literature.12 Moreover, the results suggest

that low-usage households exhibit the most extreme response to changes in the peak price.

The estimated reduction at the 0.1 quantile of the conditional distribution is approximately

two times larger than the estimated mean treatment e↵ect. In contrast, households consum-

ing at the 0.9 quantile of the conditional distribution are much less responsive to elevated

peak prices.

12Jessoe and Rapson (2014) consider a di↵erence-in-di↵erences model, in contrast to our approach
of estimating treatment e↵ects that are allowed to vary by hour. The variation in the price of
electricity is also di↵erent and in the range of between 200 to 600 percent with a one-day-ahead
notice. Having in mind these di↵erences, our results imply elasticities that range between -0.06 to
-0.10, which are slightly larger compared to the estimated elasticity of -0.12 implied by their results.
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For all price treatments, we also see clear evidence of load shifting, particularly in the

immediate post-peak period between 8 p.m. and 12 a.m. and, to a lesser extent, during the

early morning hours from 12 a.m. to 7 a.m. This behavior occurs at the mean as well as

the high and low quantiles of the conditional distribution of energy use. These responses

are compatible with a household that takes advantage of the programmable communicating

thermostat to reallocate cooling hours away from the period of elevated prices. Automation

technology reduces consumption at the beginning of the peak period by raising the allowable

interior temperature. As homes warm up, thermostats turn on to maintain the new, higher

temperature. Thermostats then reset to the default temperature when the peak period

ends, prompting an increase in energy consumption to return the household to the initial

lower temperature.

4.2 Marginal Emissions and Generation Costs

We next use estimates of marginal emissions and marginal generation costs to evaluate

the environmental and economic consequences of load shifting in response to dynamic prices.

The first three panels in Figure 4 report estimates for �h in equation (3.4) for SO2, CO2, and

NOx emissions. The point estimate is interpreted as the marginal emission (in pounds) from

a kilowatt increase in electricity demand at hour h. The last figure reports the hourly average

locational marginal price (LMP, measured in dollars) to provide a kilowatt of electricity to

customers of the Utility.

The daily pattern of marginal emissions is consistent with the literature and reflects the

sources of base load power and peak power employed to meet electricity demand. During

the late night and early morning, demand across the NERC region is low and mostly pow-

ered by coal plants. As demand rises during peak hours, relatively cleaner gas power plants

are dispatched to respond to increasing grid demand, which decrease marginal emissions

relative to o↵-peak hours. Moreover, solar power, with zero marginal emissions, is available

during the day and further reduces marginal emissions. This pattern suggests that marginal

increases in electricity consumption during the afternoon (peak hours) generate fewer ad-

ditional emissions than during the night. In contrast, average LMP is highest during the

afternoon hours. Together, these figures highlight the need to balance environmental and

economic objectives in VPP price schemes: load shifting from peak to non-peak hours may
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reduce total generation costs at the expense of increasing global and local pollutants (in the

short-run and without changes in the generation mix or capacity).

To quantify the tradeo↵, we multiply the estimated treatment e↵ects for the three

di↵erent price levels by marginal emissions and marginal costs to recover the hourly change

in emissions and production costs. Impacts are plotted in Figures 5 through 8, and Table 2

reports the net impact on emissions and generation costs by summing the average treatment

impacts over the course of the day according to equation (3.8).

We begin with sulfur emissions changes reported in Figure 5. It is clear that the conflu-

ence of high marginal emissions and significant increases in consumption during the early

morning hours results in a statistically significant increase in sulfur emitted during o↵-peak

hours. The load shifting to o↵-peak hours with higher marginal emissions causes an over-

all net increase. Following Table 2, daily SO2 emissions increase between 0.001 and 0.006

pounds per household, depending on the price treatment and household consumption level.

The estimated daily increase is largest if one considers the response among low-usage house-

holds at the 0.1 quantile of the conditional consumption distribution, particularly for high

and critical price treatments.

A similar pattern of statistically significant increases in emissions during o↵-peak hours

is borne out in the estimates for CO2 (Figure 6) and NOx (Figure 7). However, whether

the net impact on emissions is positive or negative depends on both the price and quantile

of household consumption. At the mean, net CO2 emissions range from an increase of

approximately a pound per day per household in response to medium peak prices to a

decrease of almost a pound in response to critical peak prices. The net decreases in CO2 at

critical peak prices are driven by households at the lower quantiles of consumption, where

critical peak prices lead to a daily reduction in CO2 emissions of almost 2.4 pounds per

household. Daily NOx emissions fall during high and critical peak price days, ranging from

-0.001 to -0.01 pounds per household per day. At medium peak prices, e↵ects range from

a small increase of 0.001 to a small decrease of a similar magnitude at the 0.1 quantile,

although this result is insignificant at standard levels.

The change in production costs for the Utility (Figure 8) reflects net savings in oper-

ating costs associated with peak shaving due to dynamic prices. The Utility reduces the

production costs to supply a treated household during the peak hours. While increased
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demand during o↵-peak hours results in some cost increases for the Utility, reductions in

production costs to supply treated households during the peak hours generally outweigh

o↵-peak cost increases. If we focus our attention on e↵ects significantly di↵erent than zero,

cost savings range from 4.6 to 41.7 cents per household per day and increase as peak prices

shift from medium to critical (Table 2). Reductions in costs are largest if we consider results

at the 0.1 quantile, where savings are 33.6 and 41.7 cents per household per day in response

to high and critical prices. Savings are generally lower at the 0.9 quantile of consumption,

ranging between -8 to -4.6 cents per household per day.

4.3 Measuring Total Impacts

We now employ the experimental estimates to evaluate the e↵ects of an universal adop-

tion of the dynamic pricing scheme in the regulatory region, where it is estimated that 5

million households reside. Our analysis below is based on average treatment e↵ects and

results based on quantile treatment e↵ects are presented in the Online Appendix.

Based on the mean estimates presented in Table 2, the production costs associated with

supplying power for a single high peak price day would fall by $589,000 if every household

in the entire regulatory region received treatment of the dynamic price scheme with a

programmable control thermostat. For a critical peak price, savings increase to $982,000

per day. Scaling the daily estimates by the number of each type of VPP day, the total

change in production costs during the experiment is $24.1 million.13

How do these estimated cost savings compare to the changes in emissions associated with

load shifting? We next present back-of-the-envelope calculations to assess the net impacts

accounting for emissions. In order to answer the question, we first calculate aggregate

changes in emissions (Table 3) and then monetize the impacts (Table 4).

Panel A of Table 3 reproduces the daily mean treatment e↵ects from Table 2. As for

the case of generation costs, Panel B shows changes in emissions considering the number

of households residing in the NERC region during weekdays in June, July, August, and

September. Scaling the mean treatment e↵ect by the number of each VPP price day and

the number of households, our estimates imply an increase in SO2 emissions of 1.1 million

13As noted before, there were 52 medium peak price days, 24 high peak price days, and 12 critical
peak price days during the experiment.
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pounds. However, as shown in Panel C, this increase is relatively small in comparison

to the average monthly SO2 emissions in the NERC region. The estimated price-induced

increase in monthly SO2 emissions is 0.66 percent of monthly emissions.14 Applying similar

calculations to the other pollutants, we find increases in CO2 of 238 million pounds and

decreases in NOx of 0.4 million pounds.

Table 4 presents the total monetized value of emissions (Panel A) and net impacts after

factoring production cost savings (Panel B).15 We recover the dollar value of changes in

SO2 and NOx (both PM2.5 precursors) using sector-specific PM2.5 benefits per ton (BPT)

from the EPA Benefits Mapping and Analysis Program (EPA, 2018).16 For evaluating CO2

impacts, we use a range of Social Cost of Carbon (SCC) values generated by the U.S.

Interagency Working Group (IWG, 2010).17

The increase in sulfates of 561 tons yields a loss of $21.1 million using a benefit per-

ton (BPT) of $37,692. To the extent that SO2 emissions may have non-health impacts

on ecological systems, recreation, and visibility (Burtraw et al., 1997), this estimated loss

is a lower bound. Moreover, carbon emissions increase by 119 thousand tons, generating

losses of $1.4, $4.8, and $7.1 million under SCC values of $12, $40, and $60. A higher SCC

value of $120 increases CO2 damages to $14.3 million.18 Lastly, nitrate emissions decrease

as a result of the observed pricing scheme by 213 tons, increasing overall benefits by $1.2

14Using CEMS data from July through September, we find that the average monthly SO2 emis-
sions is approximately 42.2 million pounds for the NERC region. The estimates reported in Panel
C of Table 3 are obtained by excluding weekends.

15All values are converted to 2011 dollars using the Consumer Price Index for All Urban Con-
sumers (CPI-U), U.S. city average series for all items. Moreover, for convenience, we change the unit
of emissions measurement from pounds (Table 3) to tons (Table 4). One ton equals 2,000 pounds.

16Specifically, the methodology calculates health damages in three steps: (1) predict the annual
average ambient concentrations of SO2 and NOx from di↵erent sectors using source apportionment
photochemical modeling. For this analysis, we apply the estimates for the electricity sector; (2)
estimate the number of premature deaths for the PM2.5 precursors, SO2 and NOx, and monetize
using the Value of a Statistical Life (VSL). The estimates of PM2.5 on premature mortality are from
Krewski et al. (2009); (3) divide PM2.5-related health impacts by the levels of SO2 or NOx to arrive
at per ton benefit values. See EPA (2018) for a detailed description.

17The SCC varies depending on underlying assumptions about the discount rate, among other
factors (Nordhaus, 2017). As there is no consensus about the appropriate discount rate to evaluate
intergenerational e↵ects, it is customary to present a range of values under di↵erent discount rates
(Metcalf and Stock, 2017).

18The SCC values of $12, $40, and $60 correspond to average values using discount rates of 5, 3
and 2.5 percent (IWG, 2010). The SCC value of $120 is the 95th percentile estimate under a 3%
discount rate.
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million under a BPT of $5,654. Overall, combined with the production cost savings of $24.1

million, the estimated impact of the program in the regulatory region ranges from a net

benefit of $2.8 million (SCC=$12/ton) to a net cost of $10.1 million (SCC=$120/ton).

Net benefits depend on BPT values and, crucially, the behavioral response to the pricing

scheme. The utility clearly gains in terms of cost reductions. Whether the treatment

consisting of dynamic pricing and a programmable thermostat yields positive environmental

benefits, however, is ambiguous. In this experimental evaluation, SO2 and CO2 emissions

increase, but NOx decreases. Interestingly, net emissions vary with the VPP level. Under

medium prices, all three pollutants increase, whereas we observe net decreases in both

carbon and nitrates under critical prices and sulfate emissions, while still positive, see the

lowest increase. This highlights the potential role for electricity pricing policy to increase

net benefits through optimal rate design (e.g., by varying peak to non-peak price ratios or

the number of certain peak price days).

Beyond overall net impacts, price-induced consumption increases (local) pollutants at

the power source. An expansive literature documents the spatial correlation between pol-

lution and populations of low socioeconomic status (Banzhaf et al., 2019). With power

generation and its associated pollutants being no exception (Fowlie et al., 2012; Holland

et al., 2019), dynamic pricing schemes may exacerbate inequitable pollution distribution.

Moreover, while our results may suggest that increasing energy prices could improve net

benefits (and reduce inequitable pollution at power generation sources), this, too, may place

disproportionate burden on lower income consumers since the same energy price increase

represents a larger budget share for low income households (Robinson, 1985; Hassett et

al., 2009; Grainger and Kolstad, 2010). In this respect, careful choice of how revenues are

recycled may mitigate some of the adverse distributional e↵ects of energy price increases

(Metcalf, 1999; Burtraw et al., 2009).

4.4 Impacts by Region

Dynamic pricing schemes have been employed in various regions across the nation.

According to data from the U.S. Energy Information Administration (EIA), there were

49 states with positive enrollment in some form of dynamic pricing program in 2019.19

19See https://www.eia.gov/electricity/data/eia861/.
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Figure S.4 shows total residential customer enrollment in these types of programs by Census

Division from 2013 to 2019. While the number of customers has steadily grown in some

areas (e.g., Pacific, East North Central, and Mountain Census divisions), growth has stalled

in other regions (e.g., South Atlantic and West North/South Central divisions). With such

varying trajectories in mind, we apply our results to evaluate the emissions and generation

cost impacts at di↵erent locations.

We combine our emissions impacts from the current RCT with the marginal emissions

and generation cost estimates from Gra↵-Zivin et al. (2014). Specifically, we multiply our

household treatment e↵ect estimates (in kWh by time-of-day) with time-of-day and region-

specific marginal emissions and generation cost estimates (in lbs/kWh) from Gra↵-Zivin et

al. (2014). Per household emissions impacts are scaled up based on the number of each

VPP price day in the treatment period and then monetized using benefits-per-ton (BPT)

values from the previous section. We calculate impacts on generation costs using a similar

procedure. These estimates are presented in Figure 9, with corresponding values in Table

5.

Figure 9 clearly demonstrates that the same dynamic pricing program dispatched to

di↵erent areas, holding constant the behavioral response, yields vastly di↵erent outcomes.

The WECC and ERCOT interconnections would see net benefits, whereas the Eastern in-

terconnection would result in net costs. This echoes much of the previous literature showing

heterogeneous welfare implications of electric vehicle policies. For example, increased dam-

ages from CO2 emissions are lowest in the WECC interconnection, similar to what is found

in Gra↵-Zivin et al. (2014). However, the nature of the heterogeneity has some notable

di↵erences as well. Our exercise finds that within the Eastern interconnection, dynamic

pricing yields carbon savings in the NPCC region. In contrast, Gra↵-Zivin et al. (2014) find

net carbon emission costs. Our cost savings are due to load-shifting behavior re-weighting

emissions from the peak period of 2pm to 7pm (where marginal CO2 emissions is 1.34

lbs/kWh on average) to late evening from 8pm to 12am (where marginal CO2 emissions is

1.11 lbs/kWh on average).20 In addition, while our results suggest that dynamic pricing

in the ERCOT and SPP regions would likely yield net benefits, customer enrollment data

reveal limited growth in dynamic pricing in the West South Central Census division (Fig-

20This can be seen in Table 2 from Gra↵-Zivin et al. (2014).
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ure S.4). Taken at face value, our simple exercise demonstrates that considerations beyond

controlling emissions and generation costs underlie the implementation of such programs.

5 Conclusion

Environmental benefits are increasingly used by policy makers to justify the implementa-

tion of various policies. Particularly, in the energy sector it is claimed that pricing strategies

can help utilities reduce generation costs, while potentially improving environmental qual-

ity. The latter is especially important for gaining public support given the health impacts

of local pollutants, such as PM2.5 and its precursors, and the expected climate damages

from global pollutants. It is, however, unclear whether pricing policies will unambiguously

yield environmental benefits in the presence of unintended consequences such as when con-

sumers respond to higher peak prices by shifting consumption to other times of the day

when marginal emissions per kWh of electricity are higher.

This paper provides a rigorous attempt to quantify the short-run financial benefits to

the utility and broader environmental impact of time-varying residential electricity rates.

In order to precisely measure the causal impact of the policy on behavior we analyze data

from a large-scale RCT. We find that consumers, enabled with programmable communicat-

ing thermostats and notified of price increases a day in advance, shift demand from peak

to o↵-peak hours in response to increased electricity rates. This load-shifting response un-

ambiguously reduces operating costs for the utility. The impacts on emissions are varied.

Depending on the source-generation mix of a region, the net e↵ect on emissions from shift-

ing electricity demand from peak to o↵-peak hours may yield net increases in emissions.

We demonstrate how the overall net benefits of a dynamic pricing program are underscored

by considerable heterogeneity across geographic regions.

We highlight the challenges of claiming environmental benefits that result from such

policies. The unintended consequences of the policies are crucial in light of recent e↵orts

to support clean energy development. In March of 2021, the Biden-Harris administration

proposed the American Jobs Plan, which included investing $100 billion to modernize power

generation in the U.S., part of the administration’s e↵ort to attain 100 percent carbon-free
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electricity by 2035.21 There has been no significant public investment in renewable energy

at the federal level since the American Recovery and Reinvestment Act of 2009. This new

proposal, if passed, may encourage a new wave of investment in renewable energy programs.

Our findings highlight the importance for utilities to engage in a comprehensive assessment

of such investment decisions depending on where these investment decisions take place.
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Figures

Figure 1: Average Hourly Consumption by Household Treatment Status
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Note. The figure shows average consumption by treatment status obtained using hourly data on electricity usage in
kW. The figure also shows usage at the 10th percentile and 90th percentile of the distribution of usage for treated
households and households in the control group.
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Figure 2: Treatment E↵ect of Households in 2010 (Pre-Treatment Period)
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Note. The figure presents estimates of the treatment e↵ect on electricity consumption during the summer of 2010 for
households that would be treated with the VPP pricing scheme in 2011.
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Figure 3: The Impact of Dynamic Pricing on Household Electricity Usage
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Note. Level changes in electricity consumption among treated households for each hour of the day is measured in
kW. The shaded areas represent 95% point-wise confidence intervals.
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Figure 4: Marginal Emissions and Marginal Locational Price of Electricity Demand
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Note. The first three figures report marginal emissions for each hour obtained from estimating equation (3.4). The
shaded areas represent 95% point-wise confidence intervals. The last figure shows the average locational marginal
price, with confidence intervals based on the standard deviation.
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Figure 5: Estimated Changes in SOx Emissions
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Note. The figure shows changes in SOx emissions for each hour under treatment with dynamic pricing. The shaded
areas represent 95% point-wise confidence intervals.
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Figure 6: Estimated Changes in CO2 Emissions
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Note. The figure shows changes in CO2 emissions for each hour under treatment with dynamic pricing. The shaded
areas represent 95% point-wise confidence intervals.
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Figure 7: Estimated Changes in NOx Emissions
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Note. The figure shows changes in NOx emissions for each hour under treatment with dynamic pricing. The shaded
areas represent 95% point-wise confidence intervals.
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Figure 8: Estimated Changes in Marginal Generation Costs
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Note. The figure shows changes in marginal generation costs under treatment with dynamic price. The shaded areas
represent 95% point-wise confidence intervals.
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Figure 9: Heterogeneous Treatment E↵ects by Region

Note. Figure plots the per household impacts on emissions and generation costs from Table 5, panel B, which
extrapolates our treatment e↵ect estimates to other regions across the US using time-of-day marginal emissions and
generation cost estimates from Gra↵-Zivin et al. (2014).
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Tables

Table 1: Number of Households by Treatment Status

A. Control Group
Young Family Mature Total

High Income 152 156 198 506
Middle Income 66 81 59 206
Low Income 137 82 47 266

Total 355 319 304 978

B. Treatment Group
Young Family Mature Total

High Income 60 85 69 214
Middle Income 48 53 52 153
Low Income 69 29 18 116

Total 177 167 139 483
Note. The table presents the number of households in each income
and household-type bin for treatment and control groups.
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Table 2: Daily Changes in Emissions and Generation Costs

Mean Treatment 0.1 Quantile 0.9 Quantile

VPP1 VPP2 VPP3 VPP1 VPP2 VPP3 VPP1 VPP2 VPP3
SO2 0.002 0.003 0.002 0.003 0.006 0.004 0.001 0.002 0.002

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

CO2 1.094 0.097 -0.975 0.942 -0.944 -2.430 0.445 0.367 -0.025
(0.178) (0.235) (0.315) (0.310) (0.476) (0.572) (0.114) (0.164) (0.247)

NOx 0.001 -0.003 -0.005 -0.001 -0.007 -0.010 0.000 -0.001 -0.002
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

Marginal 0.007 -0.118 -0.196 -0.056 -0.336 -0.417 -0.001 -0.046 -0.080
Cost (0.010) (0.011) (0.015) (0.018) (0.020) (0.027) (0.006) (0.008) (0.012)

Note. The table presents the sum of point estimates during the day. Standard errors are presented in parenthesis. VPP1 means
Variable Peak Pricing with medium peak price, VPP2 means Variable Peak Pricing with high peak price, and VPP3 means Variable
Peak Pricing with critical price.
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Table 3: Total Impacts during the Experiment (June-Sep 2011)

A. Mean Treatment E↵ect per Day

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 0.002 1.094 0.001 0.007
VPP2 0.003 0.097 -0.003 -0.118
VPP3 0.002 -0.975 -0.005 -0.196

VPP1 VPP2 VPP3
# of VPP Day 52 24 12
# of Households 5,000,000

B. Impact for 5 Million Households

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 624,000 284,466,000 156,000 1,768,000
VPP2 360,000 11,580,000 -300,000 -14,124,000
VPP3 138,000 -58,494,000 -282,000 -11,778,000

Total 1,122,000 237,552,000 -426,000 -24,134,000

C. Impact relative to Average Monthly Emissions

SO2 (lbs) CO2 (tons) NOx (lbs)
Monthly Emissions 42,182,492 11,027,703 26,930,830

% of Average
Monthly Emissions 0.66% 0.27% -0.40%
Note. The table presents estimated aggregate changes in emissions. During the summer of the
experiment, there were 52 medium peak price days, 24 high peak price days, and 12 critical peak
price days. In Panel A, we reproduce the mean treatment e↵ects on emissions and production
cost for a single day from Table 2. In Panel B, we calculate the change in each pollutant and
production costs for the months of June through September assuming 5 million households were
treated with the VPP scheme. Specifically, we multiply the treatment e↵ect in lbs/household/day
by 5 million households and by the number of days with medium, high, or critical prices. Panel C
presents the percent average change in emissions in each month relative to the average monthly
emissions for the NERC region (1 ton = 2,000 lbs). We remove weekends in the calculation of
average monthly emissions for the NERC region to be consistent with the estimation sample.
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Table 4: Net Benefits under Regional Adoption

A. Total Change in Benefits and Costs

SO2 (tons) CO2 (tons) NOx (tons) Cost ($’s)
Treatment Impacts 561 118,776 -213 -24,134,000

SO2 Benefits VPP1 VPP2 VPP3 Total
$37,692/ton -11,759,951 -6,784,587 -2,600,758 -21,145,296

CO2 Benefits VPP1 VPP2 VPP3 Total
$12/ton -1,706,796 -69,480 350,964 -1,425,312
$40/ton -5,689,320 -231,600 1,169,880 -4,751,040
$60/ton -8,533,980 -347,400 1,754,820 -7,126,560
$120/ton -17,067,960 -694,800 3,509,640 -14,253,120

NOx Benefits VPP1 VPP2 VPP3 Total
$5,654/ton -440,998 848,073 797,189 1,204,264

B. Net Benefits under various SCC values

$12 $40 $60 $120

Net Benefits 2,767,656 -558,072 -2,933,592 -10,060,152
Note. The table presents the change in emissions (in tons) for 5 million households at the observed
number of each VPP price days from June through September. It then evaluates the monetary impact
using values of SO2, CO2, and NOx, where a range values for the Social Cost of Carbon (SCC) are
used. Monetary values are in 2011 dollars.
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Table 5: Heterogeneous Impacts by Region

A. Emissions (lbs) B. Impacts ($’s)

Emissions Costs Gen.
Interconnection CO2 SO2 NOX CO2 SO2 NOX Cost
WECC 5.83 0.0733 0.0525 0.12 1.38 0.15 -2.37
ERCOT 32.93 0.1912 -0.0918 0.66 3.60 -0.26 -8.89
Eastern 52.07 0.4960 0.1315 1.04 9.35 0.37 -3.38

Eastern NERC Emissions Costs Gen.
Region CO2 SO2 NOX CO2 SO2 NOX Cost
FRCC 120.01 0.6313 -0.0617 2.40 11.90 -0.17 -5.91
MRO 42.42 -0.9172 -0.1533 0.85 -17.29 -0.43 -3.26
NPCC -68.27 -0.5907 -0.6248 -1.37 -11.13 -1.77 -3.17
RFC 130.85 1.5168 0.4367 2.62 28.59 1.23 -4.73
SERC 5.72 0.1145 0.1319 0.11 2.16 0.37 -1.69
SPP 36.72 -0.0754 -0.2808 0.73 -1.42 -0.79 -2.10

$’s per ton $40 $37,692 $5,654
Note. Table extrapolates the estimated emissions impacts from the current RCT to all regions across
the nation using marginal emissions and generation cost estimates from Gra↵-Zivin et al. (2014). Panel
A multiplies our treatment e↵ect estimates (in kWh by time-of-day) with time-of-day marginal emissions
estimates (lbs/kWh or lbs/MWh) by region from Gra↵-Zivin et al. (2014). We scale the impacts based on
the number of each VPP price day in the treatment period (Jul-Sep). Panel B converts the emissions impact
into a $ value cost and calculates generation costs based on estimates from Gra↵-Zivin et al. (2014).
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In this Supplement, we present additional empirical results and robustness checks.

S.1 ARRA Smart Grid Investments

The implementation of time-varying pricing is achieved through significant public and

private investments in system-wide infrastructure. The benefits of these investments are

traditionally evaluated from a purely financial perspective. More recently, significant in-

terest has been dedicated under the heading of “sustainable finance” to understanding the

positive impact of various investments on the environment. No clear metric has emerged

however for best practices to quantify the benefits of such investments and typical studies

focus on firm valuations (Krueger, 2015). In the U.S., a major source of public investment

in the energy sector were grants awarded under the American Recovery and Reinvestment

Act of 2009 (ARRA). By increasing investment in renewable power, the ARRA aimed to

generate environmental benefits while spurring economic activity. It led to significant public

investments in modernizing U.S. energy infrastructure. It provided $4.5 billion investments

in the electric power grid. The energy industry provided additional funds for cost-shared

smart grid projects involving almost 100 electric utilities and totalled $8 billion. Numerous

infrastructure needs were addressed including the deployment of new technology, increasing

cybersecurity and resilience, collection of data, and the provision of smart in-home devices
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to customers. Funds from this grant program were also used to design and implement a se-

ries of RCTs involving time-varying pricing and enabling technologies. The pilot described

and evaluated in the paper is one such program.

While data confidentiality agreements prevent us from disclosing identifying details, we

also collected stock price data for 17 ARRA recipients that are also listed as electric or

power generation companies on the NYSE. We compare the stock price of these companies

with that of 14 other electric or power generation companies that did not receive ARRA

funding in Figure S.1. ARRA grant fund recipients had higher stock price valuations and

a higher stock price growth rate in the years after receiving public funds. The majority of

projects were implemented during 2010 and 2011 and finalized by 2015.

The causal estimated in the paper highlight an indirect channel through which energy

policies (in this case, the ARRA) can a↵ect behavior and outcomes. These estimates serve

as inputs into calculating the marginal value of public funds (MVPF). Comparison of the

MVPF for di↵erent policies can help to better allocate public dollars toward uses with

higher social welfare impacts (Hendren and Sprung-Keyser, 2020; Finkelstein and Hendren,

2020).

The core messages of this paper is however that the financial and environmental impact

of public investments is subtle when individual incentives interact with the reality of firm

production restrictions and not adequately captured by evaluating stock prices alone.

S.2 Dynamic Impacts of Prices

This section presents results for the mean treatment e↵ect, �k

h
, and quantile treatment

e↵ect, �k

h
(⌧). The point estimates are used to estimate changes in electricity consumption

induced by dynamic pricing as shown in Figure 3.

Table S.1 presents mean treatment e↵ects by hour of the day and price level. In columns,

we denote medium price level by VPP1, high price level by VPP2, and critical price level by

VPP3. For instance, the second column in the table shows �̂h for medium price level. The

table also o↵ers 95 percent confidence intervals for each point estimate. Moreover, Tables

S.2 and S.3 show quantile treatment e↵ect estimates, �̂k

h
(⌧), and their 95 percent confidence

intervals. Table S.2 presents results for the quantile function estimated at the 0.1 quantile

of the conditional distribution of electricity consumption, and Table S.3 presents results for

the quantile model estimated at the 0.9 quantile.
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S.3 Heterogeneous Dynamic Impacts

As discussed in the manuscript, increasing energy prices could improve net benefits while

they may place a disproportionate burden on low-income households since the same energy

price increase represents a larger budget share for low income households. Our study,

however, abstracts away from heterogeneity of treatment e↵ects with respect to income.

This section extends the analysis in the manuscript and estimates daily net impacts on

emissions and generation costs by price level and income of the household.

Specifically, we estimate the net impacts considering households in the low-income group

and high-income group. The changes in consumption are presented in Figures S.2 and S.3.

Then, using Table S.4, we report the net impact on emissions and generation costs by

summing the average and quantile treatment impacts over the course of the day. Panel

A presents results for low-income households and Panel B presents results for high-income

households.

The results are mixed. If we concentrate on CO2 emissions, the results suggest that

low-income households are associated, in general, with larger daily reductions in emissions

than high-income households. This is explained by the load shifting behavior of low-income

households, who do not seem to significantly reallocate energy use to o↵-peak hours.

S.4 Measuring Total Impacts: Quantile Regression Results

A di�culty of measuring the impact in the same region using quantile regression esti-

mates relates to estimating the number of households whose price elasticities are similar

to the elasticity obtained in the low quantile of the conditional distribution of electricity

consumption. It is not possible to overcome this important challenge, but at the same time,

it is informative to uncover the heterogeneity of impacts to obtain a broader understanding

of the benefits and costs of emissions.

In our experimental sample, approximately 25 percent of households are low-income

households, with yearly earnings less than $30,000. The analysis presented in Tables S.5

and S.6 assume that the proportion of low-income households in the region is similar to the

proportion of low-income households in our experimental sample. While scaling the quantile

treatment e↵ects by 1.25 million households is likely to not be accurate, our estimates are

not expected to change the sign of the impacts.

Table S.5 presents results for the total impact by estimating consumption changes, �Y k

h
,

at the 0.1 quantile of the distribution. Then, Table S.6 presents the monetized value of these
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impacts. Lastly, Tables S.7 and S.8 show results based on estimating consumption changes

at the 0.9 quantile, assuming that 2.5 million households reside in the region (50 percent of

high-income households in the experimental sample).

S.5 Study Limitations

This study provides valuable insights for energy planning, although our conclusions

should be extrapolated with caution. The experiment was implemented in a state in the

south central region of the US. This region has been experiencing significant changes in

terms of how electricity is generated in the last decade, with coal declining and natural gas

and renewable resources such as wind becoming increasingly more important. In addition,

the population a↵ected by the randomized control trial, although large, is not necessarily

representative of the east and west of the U.S. Moreover, we employ electricity records over

the summer, when temperatures are high and the majority of households use air condi-

tioning. We believe that this can explain the shift in consumption at later hours in the

day, as well as the relatively high consumption at night. In light of these limitations, the

size and design of the experiment o↵er important evidence that we hope helps policy mak-

ing by highlighting the issues that need to be taken into account when dealing with the

heterogeneity of treatment e↵ects across the US.
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Figure S.1: Stock Prices for Recipients of ARRA Grants compared to Non-Recipients
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Figure S.2: Changes in Electricity Usage among Low Income Households
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Note. The figure shows level changes in electricity consumption among treated, low income households for each hour
of the day is measured in kW. The shaded areas represent 95% point-wise confidence intervals.
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Figure S.3: Changes in Electricity Usage among High Income Households
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Note. The figure shows level changes in electricity consumption among treated, high income households for each hour
of the day is measured in kW. The shaded areas represent 95% point-wise confidence intervals.
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Figure S.4: Residential Customers Enrolled in a Dynamic Pricing Program

Note. The figure shows the total residential customers by Census Division over the years 2013-2019 enrolled in some
type of dynamic pricing program as reported on Form EIA-861 to the U.S. Energy Information Administration. Data
were compiled from https://www.eia.gov/electricity/data/eia861/.
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Table S.1: Mean Treatment E↵ect (kW), Point Estimates

Hour VPP1 95% C.I. VPP2 95% C.I. VPP3 95% C.I.

0 0.125 0.081 0.169 0.140 0.100 0.180 0.148 0.104 0.192
1 0.123 0.083 0.164 0.149 0.101 0.197 0.154 0.107 0.200
2 0.131 0.093 0.169 0.155 0.116 0.193 0.156 0.112 0.199
3 0.124 0.093 0.156 0.164 0.122 0.206 0.162 0.120 0.204
4 0.129 0.095 0.163 0.171 0.128 0.213 0.168 0.124 0.212
5 0.149 0.114 0.184 0.190 0.146 0.233 0.169 0.126 0.211
6 0.106 0.076 0.137 0.130 0.091 0.169 0.115 0.071 0.158
7 0.028 -0.002 0.058 0.033 -0.001 0.067 0.038 -0.001 0.078
8 -0.003 -0.031 0.026 -0.031 -0.062 0.000 -0.009 -0.050 0.031
9 -0.023 -0.062 0.015 -0.049 -0.085 -0.013 -0.034 -0.082 0.013
10 -0.030 -0.071 0.010 -0.041 -0.078 -0.005 -0.041 -0.086 0.004
11 -0.032 -0.077 0.013 -0.038 -0.078 0.001 -0.026 -0.078 0.025
12 -0.033 -0.073 0.007 -0.027 -0.068 0.015 -0.020 -0.066 0.026
13 -0.032 -0.071 0.007 -0.020 -0.060 0.019 -0.115 -0.178 -0.052
14 -0.215 -0.262 -0.168 -0.428 -0.472 -0.385 -0.500 -0.563 -0.437
15 -0.242 -0.292 -0.191 -0.536 -0.579 -0.493 -0.608 -0.671 -0.546
16 -0.156 -0.204 -0.108 -0.353 -0.400 -0.306 -0.452 -0.504 -0.400
17 -0.081 -0.127 -0.034 -0.243 -0.284 -0.202 -0.321 -0.376 -0.266
18 -0.015 -0.052 0.022 -0.149 -0.186 -0.112 -0.185 -0.235 -0.135
19 0.104 0.074 0.134 0.090 0.060 0.120 0.064 0.015 0.113
20 0.130 0.098 0.162 0.158 0.126 0.190 0.119 0.072 0.167
21 0.152 0.118 0.186 0.167 0.138 0.197 0.157 0.112 0.202
22 0.142 0.108 0.176 0.142 0.109 0.175 0.146 0.100 0.191
23 0.125 0.089 0.162 0.141 0.109 0.173 0.156 0.109 0.203
Note. The table presents average treatment e↵ects and 95 percent point-wise confidence intervals. C.I. denotes
confidence interval. VPP1 means Variable Peak Pricing with medium price, VPP2 Variable Peak Pricing with
high price, and VPP3 Variable Peak Pricing with critical price.
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Table S.2: Quantile Treatment E↵ect (⌧ = 0.1), Point Estimates

Hour VPP1 95% C.I. VPP2 95% C.I. VPP3 95% C.I.

0 0.174 0.108 0.240 0.191 0.117 0.266 0.199 0.118 0.279
1 0.184 0.123 0.245 0.282 0.196 0.368 0.259 0.181 0.337
2 0.198 0.137 0.260 0.342 0.270 0.413 0.310 0.242 0.377
3 0.189 0.140 0.238 0.396 0.319 0.472 0.329 0.247 0.411
4 0.202 0.151 0.253 0.395 0.318 0.472 0.360 0.282 0.438
5 0.245 0.188 0.301 0.434 0.359 0.510 0.352 0.283 0.420
6 0.197 0.157 0.237 0.316 0.254 0.378 0.267 0.191 0.343
7 0.057 0.018 0.097 0.047 -0.009 0.103 0.042 -0.038 0.123
8 0.048 0.009 0.086 0.030 -0.014 0.075 0.059 -0.017 0.135
9 -0.008 -0.050 0.035 -0.040 -0.091 0.011 -0.006 -0.092 0.079
10 -0.034 -0.080 0.012 -0.076 -0.141 -0.010 -0.112 -0.205 -0.019
11 -0.077 -0.141 -0.014 -0.147 -0.243 -0.052 -0.173 -0.291 -0.055
12 -0.111 -0.171 -0.050 -0.227 -0.344 -0.110 -0.225 -0.357 -0.093
13 -0.158 -0.226 -0.089 -0.219 -0.338 -0.101 -0.256 -0.408 -0.103
14 -0.272 -0.349 -0.195 -0.623 -0.724 -0.521 -0.751 -0.908 -0.594
15 -0.529 -0.631 -0.427 -1.211 -1.308 -1.114 -1.342 -1.486 -1.199
16 -0.455 -0.571 -0.339 -1.131 -1.247 -1.015 -1.204 -1.345 -1.063
17 -0.329 -0.444 -0.214 -0.926 -1.051 -0.802 -1.065 -1.265 -0.866
18 -0.114 -0.211 -0.017 -0.602 -0.709 -0.495 -0.638 -0.776 -0.499
19 0.196 0.136 0.255 0.200 0.145 0.256 0.171 0.078 0.264
20 0.205 0.153 0.257 0.235 0.183 0.287 0.196 0.115 0.277
21 0.248 0.194 0.301 0.241 0.191 0.291 0.278 0.208 0.347
22 0.206 0.155 0.257 0.157 0.106 0.208 0.175 0.095 0.254
23 0.159 0.102 0.216 0.137 0.079 0.194 0.164 0.086 0.242
Note. The table presents point estimates and 95 percent point-wise confidence intervals estimated at the 0.1
quantile. C.I. denotes confidence interval. VPP1 means Variable Peak Pricing with medium price, VPP2 means
Variable Peak Pricing with high price, and VPP3 means Variable Peak Pricing with critical price.
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Table S.3: Quantile Treatment E↵ect (⌧ = 0.9), Point Estimates

Hour VPP1 95% C.I. VPP2 95% C.I. VPP3 95% C.I.

0 0.084 0.052 0.115 0.079 0.047 0.111 0.104 0.052 0.155
1 0.076 0.042 0.111 0.103 0.067 0.138 0.094 0.046 0.142
2 0.067 0.034 0.099 0.101 0.069 0.132 0.104 0.061 0.148
3 0.051 0.018 0.083 0.103 0.068 0.138 0.095 0.049 0.142
4 0.043 0.011 0.075 0.086 0.044 0.129 0.102 0.054 0.150
5 0.053 0.023 0.083 0.093 0.050 0.136 0.101 0.050 0.151
6 0.042 0.015 0.069 0.066 0.026 0.106 0.067 0.018 0.116
7 -0.012 -0.040 0.016 0.018 -0.021 0.056 0.035 -0.015 0.084
8 -0.028 -0.056 0.001 -0.028 -0.066 0.010 0.011 -0.035 0.057
9 -0.012 -0.045 0.020 0.017 -0.022 0.055 -0.001 -0.050 0.049
10 0.000 -0.029 0.029 0.035 0.005 0.065 0.016 -0.026 0.058
11 0.006 -0.025 0.037 0.013 -0.016 0.042 0.004 -0.036 0.044
12 0.000 -0.026 0.027 0.002 -0.025 0.028 0.000 -0.031 0.031
13 0.000 -0.023 0.024 -0.009 -0.035 0.018 -0.059 -0.098 -0.020
14 -0.142 -0.171 -0.113 -0.252 -0.280 -0.224 -0.257 -0.297 -0.216
15 -0.109 -0.136 -0.082 -0.194 -0.221 -0.167 -0.208 -0.240 -0.176
16 -0.080 -0.103 -0.056 -0.142 -0.173 -0.111 -0.176 -0.210 -0.142
17 -0.042 -0.066 -0.018 -0.102 -0.121 -0.082 -0.146 -0.186 -0.106
18 -0.019 -0.036 -0.002 -0.080 -0.103 -0.056 -0.104 -0.138 -0.071
19 0.034 0.018 0.051 0.015 -0.006 0.037 -0.001 -0.036 0.033
20 0.065 0.044 0.086 0.084 0.060 0.108 0.073 0.041 0.104
21 0.082 0.057 0.106 0.090 0.066 0.115 0.088 0.048 0.128
22 0.082 0.059 0.105 0.081 0.053 0.109 0.088 0.046 0.130
23 0.076 0.051 0.102 0.066 0.038 0.095 0.087 0.043 0.131
Note. The table presents point estimates and 95 percent point-wise confidence intervals estimated at the 0.9
quantile. C.I. denotes confidence interval. VPP1 means Variable Peak Pricing with medium price, VPP2 means
Variable Peak Pricing with high price, and VPP3 means Variable Peak Pricing with critical price.
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Table S.4: Daily Changes in Emissions and Generation Costs by Income

A. Low Income

Mean Treatment 0.1 Quantile 0.9 Quantile

VPP1 VPP2 VPP3 VPP1 VPP2 VPP3 VPP1 VPP2 VPP3
SO2 0.001 0.001 0.000 0.002 0.002 -0.003 0.000 0.001 0.001

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

CO2 0.448 -0.734 -2.139 -0.503 -3.822 -7.832 0.010 0.192 0.557
(0.261) (0.269) (0.308) (0.492) (0.674) (0.871) (0.173) (0.201) (0.258)

NOx 0.000 -0.003 -0.005 -0.003 -0.011 -0.017 0.000 0.000 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.000) (0.000) (0.000)

Marginal -0.014 -0.122 -0.198 -0.117 -0.452 -0.619 -0.006 -0.011 -0.001
Cost (0.016) (0.013) (0.017) (0.031) (0.031) (0.047) (0.009) (0.010) (0.013)

B. High Income

Mean Treatment 0.1 Quantile 0.9 Quantile

VPP1 VPP2 VPP3 VPP1 VPP2 VPP3 VPP1 VPP2 VPP3
SO2 0.002 0.003 0.003 0.000 0.003 0.005 0.002 0.003 0.002

(0.000) (0.001) (0.001) (0.001) (0.001) (0.002) (0.000) (0.000) (0.001)

CO2 0.107 -1.115 -1.600 -2.516 -3.770 -2.478 1.001 0.868 -0.208
(0.292) (0.330) (0.409) (0.486) (0.629) (0.817) (0.184) (0.210) (0.299)

NOx -0.001 -0.005 -0.007 -0.007 -0.012 -0.011 0.001 0.000 -0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.000) (0.000) (0.001)

Marginal -0.060 -0.221 -0.280 -0.264 -0.523 -0.506 0.020 -0.033 -0.105
Cost (0.017) (0.013) (0.020) (0.030) (0.024) (0.036) (0.010) (0.010) (0.014)

Note. The table presents the sum of point estimates during the day separately for low income (Panel A) and high income (Panel
B) households. Standard errors are presented using parenthesis. VPP1 means Variable Peak Pricing with medium price, VPP2
means Variable Peak Pricing with high price, and VPP3 means Variable Peak Pricing with critical price.
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Table S.5: Total Impacts for 0.1 Quantile Treatment

A. 0.1 Quantile Treatment E↵ect per Day

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 0.003 0.942 -0.001 -0.056
VPP2 0.006 -0.944 -0.007 -0.336
VPP3 0.004 -2.430 -0.010 -0.417

VPP1 VPP2 VPP3
# of VPP Day 52 24 12
# of Households 1,250,000

B. Impact for 1.25 Million Households (June-Sep)

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 221,000 61,197,500 -52,000 -3,653,000
VPP2 168,000 -28,323,000 -216,000 -10,068,000
VPP3 61,500 -36,447,000 -147,000 -6,256,500

Total 450,500 -3,572,500 -415,000 -19,977,500

C. Impact relative to Average Monthly Emissions

SO2 (lbs) CO2 (tons) NOx (lbs)
Monthly Emissions 42,182,492 11,027,703 26,930,830

% of Average
Monthly Emissions 0.27% -0.004% -0.39%
Note. During the summer of the experiment, there were 52 medium peak price days, 24 high peak
price days, and 12 critical peak price days. In Panel A, we reproduce the 0.1 quantile treatment
e↵ects on emissions and production cost for a single day from Table 2. In Panel B, we calculate
the change in each pollutant and production costs for the months of June through September
assuming 1.25 million households were treated with the VPP scheme. Specifically, we multiply
the treatment e↵ect in lbs/household/day by 1.25 million households and by the number of days
with medium, high, or critical prices. Panel C presents the percent average change in emissions
in each month relative to the average monthly emissions for the NERC region (1 ton = 2,000
lbs). We remove weekends in the calculation of average monthly emissions for the NERC region
to be consistent with the estimation sample.
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Table S.6: Net Benefits for 0.1 Quantile Treatment

A. Total Change in Benefits and Costs

SO2 (tons) CO2 (tons) NOx (tons) Cost ($’s)
Treatment Impacts 225 -1,786 -208 -19,977,500

SO2 Benefits VPP1 VPP2 VPP3 Total
$37,692/ton -4,164,983 -3,166,141 -1,159,034 -8,490,157

CO2 Benefits VPP1 VPP2 VPP3 Total
$12/ton -367,185 169,938 218,682 21,435
$40/ton -1,223,950 566,460 728,940 71,450
$60/ton -1,835,925 849,690 1,093,410 107,175
$120/ton -3,671,850 1,699,380 2,186,820 214,350

NOx Benefits VPP1 VPP2 VPP3 Total
$5,654/ton 146,999 610,613 415,556 1,173,168

B. Net Benefits under various SCC values

$12 $40 $60 $120

Net Benefits 12,681,946 12,731,961 12,767,686 12,874,861
Note. The table presents the change in emissions (in tons) for 1.25 million households at the observed
number of each VPP price days from June through September. It then evaluates the monetary impact
using values of SO2, CO2, and NOx, where a range values for the Social Cost of Carbon (SCC) are
used. Monetary values are in 2011 dollars.
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Table S.7: Total Impacts for 0.9 Quantile Treatment

A. 0.9 Quantile Treatment E↵ect per Day

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 0.001 0.445 0.000 -0.001
VPP2 0.002 0.367 -0.001 -0.046
VPP3 0.002 -0.025 -0.002 -0.080

VPP1 VPP2 VPP3
# of VPP Day 52 24 12
# of Households 2,500,000

B. Impact for 2.5 Million Households (June-Sep)
SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)

VPP1 143,000 57,876,000 13,000 -117,000
VPP2 108,000 21,990,000 -42,000 -2,778,000
VPP3 51,000 -741,000 -48,000 -2,409,000

Total 302,000 79,125,000 -77,000 -5,304,000

C. Impact relative to Average Monthly Emissions

SO2 (lbs) CO2 (tons) NOx (lbs)
Monthly Emissions 42,182,492 11,027,703 26,930,830

% of Average
Monthly Emissions 0.18% 0.090% -0.07%
Note. During the summer of the experiment, there were 52 medium peak price days, 24 high
peak price days, and 12 critical peak price days. In Panel A, we reproduce the 0.9 quantile
treatment e↵ects on emissions and production cost for a single day from Table 2. In Panel B,
we calculate the change in each pollutant and production costs for the months of June through
September assuming 2.5 million households were treated with the VPP scheme. Specifically, we
multiply the treatment e↵ect in lbs/household/day by 2.5 million households and by the number
of days with medium, high, or critical prices. Panel C presents the percent average change in
emissions in each month relative to the average monthly emissions for the NERC region (1 ton =
2,000 lbs). We remove weekends in the calculation of average monthly emissions for the NERC
region to be consistent with the estimation sample.
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Table S.8: Net Benefits for 0.9 Quantile Treatment

A. Total Change in Benefits and Costs

SO2 (tons) CO2 (tons) NOx (tons) Cost ($’s)
Treatment Impacts 151 39,563 -39 -5,304,000

SO2 Benefits VPP1 VPP2 VPP3 Total
$37,692/ton -2,694,989 -2,035,376 -961,150 -5,691,515

CO2 Benefits VPP1 VPP2 VPP3 Total
$12/ton -347,256 -131,940 4,446 -474,750
$40/ton -1,157,520 -439,800 14,820 -1,582,500
$60/ton -1,736,280 -659,700 22,230 -2,373,750
$120/ton -3,472,560 -1,319,400 44,460 -4,747,500

NOx Benefits VPP1 VPP2 VPP3 Total
$5,654/ton -36,750 118,730 135,692 217,672

B. Net Benefits under various SCC values

$12 $40 $60 $120

Net Benefits -644,593 -1,752,343 -2,543,593 -4,917,343
Note. Table presents the change in emissions (in tons) for 2.5 million households at the observed number
of each VPP price days from June through September. It then evaluates the monetary impact using
values of SO2, CO2, and NOx, where a range values for the Social Cost of Carbon (SCC) are used.
Monetary values are in 2011 dollars.
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