ECDNETOR

A Service of 2Bய

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Amez, Simon; Denecker, Floor; Ponnet, Koen; De Marez, Lieven; Baert, Stijn

Working Paper
 Mobile DNA and Sleep Quality

IZA Discussion Papers, No. 14816

Provided in Cooperation with:

IZA - Institute of Labor Economics

Suggested Citation: Amez, Simon; Denecker, Floor; Ponnet, Koen; De Marez, Lieven; Baert, Stijn (2021) : Mobile DNA and Sleep Quality, IZA Discussion Papers, No. 14816, Institute of Labor Economics (IZA), Bonn

This Version is available at: https://hdl.handle.net/10419/250477

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

I Z A Institute of Labor Economics

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 14816

Mobile DNA and Sleep Quality

Simon Amez
Floor Denecker
Koen Ponnet
Lieven De Marez
Stijn Baert

OCTOBER 2021

DISCUSSION PAPER SERIES

IZA DP No. 14816

Mobile DNA and Sleep Quality

Simon Amez
Ghent University

Floor Denecker
IMEC-MICT-Ghent University
Koen Ponnet
IMEC-MICT-Ghent University

Lieven De Marez
IMEC-MICT-Ghent University

Stijn Baert

Ghent University, University of Antwerp, Université catholique de Louvain, IZA and IMISCOE

[^0]
ABSTRACT

Mobile DNA and Sleep Quality

Previous studies have demonstrated a strong negative association between smartphone use and sleep quality. However, the majority of these studies quantified smartphone use with subjective self-reported metrics. In contrast, the current study contributes to the literature by objectively logging university students' smartphone use and investigating the association thereof with sleep quality. The extensive, nuanced smartphone usage information obtained from this logging also enables us to explore the validity of several mechanisms theorised to underlie the previously reported negative association between smartphone use and sleep quality. In contrast to earlier research, we do not find a significant association between sleep quality and the duration or frequency of students' daily smartphone use. However, students with the internalised habit of launching a greater number of applications per session ('gateway habits') experience worse sleep quality. This finding is consistent with literature showing that smartphone-related stress is more strongly associated with checking habits stemming from 'fear-ofmissing- out' than with overall screen time.

JEL Classification: I10, L86

Keywords:
mobile DNA, smartphone use, smartphone use logging, fear-of-missing-out, gateway habits, sleep quality

Corresponding author:

Simon Amez
Ghent University
Sint-Pietersplein 6
9000 Ghent
Belgium
E-mail: Simon.Amez@UGent.be

1. Introduction

Mobile phone ownership has risen sharply over the last decade. Only 35\% of United States citizens owned a smartphone in 2011 compared to 81% eight years later (Pew Research Center, 2019). The ubiquity of smartphones is most evident among Americans aged 18-29. According to the Pew Research Center (2019), 96\% of individuals in this demographic own a smartphone and 58% of them state that their smartphone is the primary device with which they access the Internet. Tertiary education (college and university) students comprise a large percentage of Americans in this age group. However, their smartphone usage patterns have been recently linked to negative socio-economic consequences such as lower exam scores (Amez \& Baert, 2020; Amez et al., 2019; Felisoni \& Godoi, 2018), worse mental health (Li et al., 2015), and reduced physical fitness (Lepp et al., 2013).

In addition to the effect of smartphone use on these socio-economic factors, recent studies have also explored whether heavy smartphone use affects students' sleep quality (Amez et al., 2020; Christensen et al., 2016). Indeed, this literature provides four different mechanisms supporting a negative effect of heavy smartphone use on sleep quality. First, there is a trade-off between sleep duration and the amount of time spent on a smartphone, commonly referred to as time displacement' (Cain \& Gradisar, 2010; Foerster et al., 2019; Hysing et al., 2015). Stated otherwise, for every minute a student spends on her/his smartphone, (s)he loses one minute of sleep. Second, certain smartphone activities, such as playing video games, may lead to both psychological and physiological arousal, in turn interfering with sleep quality (Exelmans \& Van den Bulck, 2017; Mauri et al., 2011). Third, students often feel the need to be continuously accessible and the desire not
to miss out on anything happening online (i.e. 'FOMO', fear-of-missing-out; Thomée et al., 2010). This FOMO may lead to smartphone-related stress (van der Schuur et al., 2018) and the ensuing production of stress hormones such as cortisol (Sanford et al., 2014), which have been shown to interfere with sleep (Zeiders et al., 2011). Fourth, the production of the sleep-inducing hormone melatonin is inhibited by the bright (blue) light emitted by smartphone screens (Boniel-Nissim et al., 2015; Higuchi et al., 2005), potentially interfering with an individual's ability to fall asleep (Orzech et al., 2016).

Studies probing the association between sleep quality and smartphone use among tertiary education students have operationalised the independent variable 'smartphone use' in a number of ways. First, a substantial proportion of these studies specifically focussed on smartphone use in the hours preceding bedtime. For example, by analysing survey data from 516 American undergraduate students, Li et al. (2015) found a significant negative association between night-time cell phone use and sleep quality. In contrast, other studies have focussed on how 'problematic smartphone use' (i.e. inordinate phone use and/or a smartphone addiction that presents with symptoms similar to those of substance use disorders; Elhai et al., 2019) was associated with sleeping problems. For instance, a recent meta-analysis revealed a significant negative association between problematic smartphone use and sleep quality in a general adult population (Yang et al., 2020). In addition, in a survey of more than 600 Korean university students, Min et al. (2017) reported that self-reported susceptibility to smartphone addiction was significantly associated with poor sleep quality. Similarly, Demirci et al. (2015) and Eyvazlou et al. (2016) reported a negative association between excessive smartphone use and sleep quality among university students in Turkey and Iran, respectively. Finally, to
our knowledge, Amez et al. (2020) were the only authors to investigate the association between students' sleep quality and overall smartphone use (i.e. irrespective of the specific time of smartphone use or the addictive characteristics thereof). They found that increased smartphone use was associated with reduced odds of good sleep quality. Moreover, this negative association was stronger for female than for male students.

Although the currently available literature clearly supports a negative association between university students' smartphone use and their sleep quality, we believe that certain methodological limitations may compromise the validity of these findings. First, previous work primarily utilised cross-sectional research designs without exogenous variation in smartphone use, preventing us from drawing causal interpretations (Hale \& Guan, 2015). Second, both smartphone use and sleep quality are typically measured through survey questions. These self-reported data may be susceptible to recall and/or social desirability biases, as well as underestimation bias due to an internalised unawareness of the intensity and nature of one's smartphone habits (Chen et al., 2016; Fossum et al., 2014; Liu et al., 2019). As such, earlier research has shown only a moderate correlation between selfreported smartphone use and actual logged data (Araujo et al., 2017; Boase \& Ling, 2013). Notably, research on the negative consequences of students' smartphone use on another outcome, academic performance, has shown different results depending on whether smartphone use was self-reported or objectively tracked (Amez \& Baert, 2020). In addition to these methodological limitations, few studies have focussed on the mechanisms underlying the observed negative association between students' smartphone use and their sleep quality (Amez et al., 2020).

The present study sought to fill the latter two gaps in the literature. First,
rather than relying upon students' self-reported smartphone use, we tracked their actual smartphone use with an in-house mobile application, mobileDNA (Anrijs et al., 2018). mobileDNA yields objective information on when and how students use their smartphones. Specifically, we can capture when students use their smartphones, which applications they launch, and how much time they spend on their smartphones. Second, we also used these detailed data to explore the validity of the aforementioned mechanisms theorised to underlie the observed negative association between sleep quality and students' smartphone use. As such, we go beyond overall smartphone use as an independent variable, which allows us to get a more nuanced picture on its association with sleep quality.

The remainder of this manuscript is structured as follows. First, we explain the data collection procedure and discuss the characteristics of our study sample. Next, we report the results of our empirical analyses. Finally, we discuss our main findings, acknowledge the limitations of our study, and provide directions for future research.

2. Data

2.1. Participants and procedure

First-year students registered for one of five different study programmes (business and economics; engineering; pharmaceutical sciences; political and communication sciences; and psychological sciences) at Ghent University, Belgium, were recruited during the fall semester of 2018. All freshmen students enrolled in a primary course from each curriculum were approached directly by the principal investigator at the
start of a lecture and asked whether they wished to participate. To obtain a homogeneous sample, non-freshmen students from other programmes who were taking the course as an elective course were excluded.

Students were required to complete three tasks to be included in our study sample. First, students were asked to immediately fill out a written questionnaire during the attended course. Second, students were invited to download mobileDNA and to keep the application active for the next two weeks. ${ }^{1}$ Third, the written questionnaire contained a clause in which students consented to have their survey responses be linked to the information provided by mobileDNA. The researchers explained at the beginning of the survey that students were under no obligation to participate and could withdraw from the study at any time. Students were assured that their answers would remain confidential and anonymous.

Ultimately, 95 students met all three inclusion criteria. Fifty-two students (54.7%) were female and 43 (45.3%) were male. On average, participating students were 18.5 years old; this result is in line with expectations since Belgian students typically begin university at age 18 . We also performed t-tests to examine whether the students in our sample differed substantially from their peers ($n=1,421$) who attended the same classes but were not included in our final sample, with respect to (i) sleep quality, (ii) age, and (iii) gender. Compared to their peers, study participants experienced very similar sleep quality ($p=0.308$) and were representative with respect to age ($p=0.370$). Therefore, although female students were slightly underrepresented in our sample ($p=0.002$), the students in our study

[^1]were fairly representative of the target population of the freshmen students attending classes within the five study programmes. We elaborate further on this issue in the Conclusion section.

2.2. Measures

To meet the need for objective quantification of smartphone use, as discussed in the Introduction section, students' smartphone use was tracked with mobileDNA. Overall smartphone use was measured in two ways. First, overall smartphone use was defined as the average amount of time students spent on their smartphones per day. As shown in Table 1, the participating students actively used their smartphones for an average of more than three hours (mean $(M)=3.049$, standard deviation $(S D)=1.770)$, or approximately 183 minutes, per day. To obtain a second metric of overall smartphone use, we tracked the frequency of students' daily appevents, defined as the action of launching a mobile application. During the two-week study, on average, students launched an application approximately 103 times per day.

<Table 1 about here>

We also analysed more detailed characteristics of students' smartphone use to validate the mechanisms potentially underlying the aforementioned negative associations thereof with sleep quality discussed in the Introduction section.

First, the extent to which students experience FOMO and related physiological arousal may depend on the reasons for which they use their devices. Therefore, as suggested by Lissak (2018), we divided all applications used into nine different application categories: (i) social media, (ii) communication, (iii) tools, (iv),
productivity, (v) video, (vi) music, (vii) news, (viii) entertainment, and (ix) games. ${ }^{2}$ As presented in Table 1, students primarily used their smartphones to access social media, watch videos, and play games. This finding is in line with those of Allcott et al. (2020), who reported that American adults spend almost half of their smartphone time on the so-called FITSBY applications (Facebook, Instagram, Twitter, Snapchat, web browsers, and YouTube).

Second, two of the theoretical mechanisms discussed above suggest that especially smartphone use at night may be a particular detriment to good sleep quality. Specifically, the blue light emitted from smartphone screens suppresses the production of melatonin (Higuchi et al., 2005), whereas smartphone-related stress may induce cortisol production (Sanford et al., 2014). To test whether smartphone use at a particular time of day is more strongly associated with worse sleep quality, we calculated students' smartphone use according to specific time intervals: (i) during the day (i.e. between 6 am and 9 pm); (ii) in the evening (i.e. between 9 pm and 12 am); and (iii) at night (i.e. between 12 am and 6 am). Unsurprisingly, in absolute terms, students used their smartphones the most during the longest time interval (i.e. during the day). However, students' hourly smartphone use was slightly higher during the evening.

Third, the aforementioned time displacement mechanism predicts a linear relationship between sleep quality and overall duration of smartphone use.

[^2]However, the observed negative impact of smartphone use on students' sleep quality may depend on the specific distribution of this smartphone use. For example, the influence of ten 3-minute sessions may differ from that of one uninterrupted 30minute session. Moreover, students who check their smartphones very regularly for short periods of time may experience a higher level of FOMO (Thomée et al., 2010), whereas students who 'bundle' their smartphone use - and thereby multitask less may experience less smartphone-related stress (Hysing et al., 2015). Therefore, we constructed two variables to capture how students distribute their smartphone use. That is, we counted (i) the number of daily periods, including night-time hours, in which students did not use their smartphones for at least one uninterrupted hour (M $=1.643, \mathrm{SD}=0.795$) and (ii) logged the average number of different applications a student launched from the moment (s)he picked up the smartphone until the end of the smartphone session $(M=3.510, S D=1.747)$.

Finally, students' sleep quality was measured with the subjective sleep quality component of the validated and widely used Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989). Although this scale is subjective, previous research has shown that participants' self-reported sleep quality is consistent with objective sleep quality metrics (Akerstedt et al., 2016; Hoch et al., 1987). Specifically, in the written questionnaire, students were asked, 'During the past month, how would you rate your sleep quality overall?'; the four possible answer choices were: 'very bad' (score 0), 'fairly bad' (score 1), 'fairly good' (score 2), and 'very good' (score 3). The average sleep quality score in our sample was 1.968 ($\mathrm{SD}=0.592$), which approximates 'fairly good' sleep quality.

3. Results

We examine the association between multiple characteristics of students' objectively measured smartphone use and their reported sleep quality by means of linear regression analyses (ordinary least squares; OLS). Ordered logistic regression analyses yield very similar results and are available upon reasonable request.

First, we regress students' sleep quality on their (i) daily smartphone use measured in hours and (ii) their daily smartphone frequency measured in appevents. We keep gender and age constant - analyses controlling for additional variables such as perceived health and relationship status yield very similar results and are available upon reasonable request. The results presented in Table 2 show there are no statistically significant associations between sleep quality and overall smartphone use. ${ }^{3}$ This finding is in contrast with those of previous studies reporting a significant negative association within different age groups. As mentioned above, a potential explanation for this discrepant result may relate to the fact that smartphone use is tracked objectively in the current study. Indeed, other research pertaining to the socio-economic consequences of smartphone use has shown that negative associations are weaker or non-existent when objective metrics are used (Amez \& Baert, 2020). Moreover, this contradiction with previous findings suggests that focussing on overall smartphone use may not be sufficient to detect associations with sleep quality, as this variable does not provide information

[^3]pertaining to when and how students use their smartphones.

<Table 2 about here>

In particular, as aforementioned, the association between smartphone use and sleep quality may depend upon the specific purpose for which individuals use their phones. That is, certain applications categories may induce a greater degree of psychological and physiological arousal than others, potentially resulting in worse sleep. Therefore, in Table 3, we estimate the association between sleep quality and students' daily use of individual smartphone application categories (model (1) to (9)), as well as all application categories together (10). Similarly, in Table 4, we estimate the association between students' sleep quality and the frequency with which they use each application category. In these regression models, except for model (10), overall smartphone use is kept constant, to prevent an application category variable from picking up the effect of another category.

With the exception of the 'tools' application category, we do not find any significant associations. This observation is surprising, particularly for applications in the 'social media' category, as Woods and Scott (2016) previously linked the use of these applications to poor sleep quality. We believe that the negative association found herein between sleep quality and students' use of 'tools' applications is a statistical artefact for two reasons. First, this application category only represents a negligible fraction of students' smartphone use. Second, there is no theoretical mechanism that may underlie this particularly strong association.

<Table 3 about here>

<Table 4 about here>

Next, to test the aforementioned mechanisms suggesting that smartphone
use at night is particularly detrimental to students' sleep quality, we regress students' sleep quality on smartphone use according to the time of day, i.e. during the day, in the evening, and at night. In Table 5, models (1), (2), and (3) present estimates of the association between sleep quality and students' smartphone use during each of these three time periods. In model (4), the three independent variables are included jointly. Similarly, in models (5) through (8), we regress students' sleep quality on the daily frequency with which they use their smartphones during these three time periods. We do not find any significant associations between sleep quality and daytime or evening smartphone use. However, the results of models (3), (4), (7) and (8) demonstrate a statistically significant negative association between sleep quality and night-time smartphone use. These findings are consistent with those of Exelmans and Van den Bulck (2016) and Li et al. (2015), and are consistent with the theory that suppressed melatonin production prohibits good sleep (Higuchi et al., 2005). However, these estimates may also be indicative of reverse causality (discussed in more detail below).

<Table 5 about here>

Finally, Table 6 presents the estimation results of regressing the students' PSQI sleep quality component on the distribution of their smartphone use, keeping overall smartphone use constant. We do not find any significant association between students' sleep quality and the number of periods per day that they do not use their smartphones for at least one hour. In contrast, the average number of appevents per session is negatively associated with students' PSQI sleep quality scores. This association is robust to the inclusion of other independent variables and is significant both in statistical and economic terms. Specifically, students with an average number of app-events that is 1 SD higher have a self-reported sleep
quality that is 0.233 SD lower. ${ }^{4}$
The latter finding does not corroborate our a priori expectation that students who 'bundle' the time spent on their smartphones - and thereby multitask less may experience less smartphone-related stress. However, the consistent launching of multiple applications per session may indicate that students are experiencing FOMO, thereby supporting the idea that stress-hormones induced by smartphonerelated stress lead to reduced sleep quality (Orzech et al., 2016). Alternatively, this particular behaviour may be indicative of so-called 'gateway habits', i.e. checking habits that may function as a gateway to the use of other smartphone functions and content (Oulasvirta et al., 2012). Ultimately, these habits may also be related to stress, and therefore to lower sleep quality.

<Table 6 about here>

4. Conclusion

In the current study, we contributed to the empirical literature investigating the association between smartphone use and sleep quality in two substantial ways. First, to our knowledge, this study is the first to objectively track smartphone use to investigate this association. Second, the extensive and detailed information gathered with an in-house developed tracking application allowed us to explore the empirical validity of potential theoretical mechanisms proposed to underlie

[^4]associations between smartphone use and sleep quality.
In contrast to the available literature, we did not find a significant association between students' overall smartphone use and their sleep quality. This finding corroborates the results of previous studies of the impact of smartphone use on academic performance, which reported that associations are weaker when objectively logged data, rather than self-reported metrics, are used.

However, we did find a robust and significant negative association between students' sleep quality and the number of applications they launch per smartphone session. Checking a greater number of applications per session may be indicative of a higher level of FOMO, thereby leading to more smartphone-related stress. As such, this finding is consistent with the theory that hormones induced by smartphone-related stress lead to worse sleep quality.

Taken together, our findings show that (i) objectively logged smartphone usage data are necessary to accurately measure the (potential) consequences of smartphone use; and (ii) that a singular focus on overall smartphone use may be insufficient to estimate associations thereof with students' sleep quality.

Our study must be interpreted in view of its limitations and in the context of directions for future research. First, although our target population was very broad, consisting of freshmen students from multiple faculties and study programmes, our final sample size was rather limited. Similarly, Allcott et al. (2020) invited more than three million people to participate in their recent smartphone usage study; however, only slightly more than 5,000 individuals installed their mobile application. A potential explanation for this result is that the requirement to install an application may be perceived as intrusive. Nevertheless, future studies aiming to replicate our work should seek to base their findings on a larger sample than that used herein. A
second limitation of our research design relates to the fact that mobileDNA is only available for smartphones that run the Android operating system, as Android smartphone users may differ substantially from those of other smartphone users. However, it was somewhat comforting in this respect that our sample turned out to be representative of the target population with respect to sleep quality and age.

Third, although our study enabled us to capture how and when students used their smartphones, we did not observe why they used their smartphones. In this respect, previous studies have shown that self-control (Exelmans, 2019) is a driver of intense, habitual smartphone use (Oulasvirta et al., 2012). Given our finding that the number of app-events per session was negatively linked with sleep quality, future studies should further investigate the role of gateway habits in the association between students' smartphone use and their sleep quality.

Fourth, our analyses are based on cross-sectional observational data, preventing us from drawing causal interpretations. This concern is especially relevant to a secondary result of our study, i.e. the observed association between night-time smartphone use and poor sleep quality. As Tavernier and Willoughby (2014) previously reported, smartphone use may be a result of poor sleep quality, rather than a cause. Specifically, students may use their smartphones as a distraction when they are unable to fall asleep. A potential methodological solution to this problem may be to adopt an instrumental variable approach, such as that used in Baert et al. (2020). However, exogenous predictors of the rich information on students' smartphone use as yielded by our tracking application may be challenging to identify.

Finally, but related to the former limitation, although tracking students' smartphone use yields extensive information, it does not consider the potential
influence of other (mobile) devices (Hale \& Guan, 2015). Specifically, students may use other technologies such as televisions, tablet computers, or laptops in addition to their smartphones. As such, the smartphone usage data logged by our application may capture the effects of media multitasking (van der Schuur et al., 2018). Future studies should attempt to control for the use of multiple devices, ideally by objectively tracking each one.

References

Akerstedt, T., Schwarz, J., Gruber, G., Lindberg, E., Theorell-Haglow, J. (2016). The relation between polysomnography and subjective sleep and its dependence on age - poor sleep may become good sleep. Journal of Sleep Research, 25(5), 565-570.

Allcott, H., Gentzkow, M., Song, L. (2020). Digital addiction. Mimeo.
Amez, S., Baert, S. (2020). Smartphone use and academic performance: A literature review. International Journal of Educational Research, 103, 101618.

Amez, S., Vujić, S., De Marez, L., Baert, S. (2019). Smartphone use and academic performance: First Evidence from longitudinal data. IZA Discussion Papers, 12862.

Amez, S., Vujić, S., Soffers, P., Baert, S. (2020). Yawning while scrolling? Examining gender differences in the association between smartphone use and sleep quality. Journal of Sleep Research, 29(6), e12971.

Anrijs, S., Bombeke, K., Durnez, W., Van Damme, K., Vanhaelewyn, B., Conradie, P., Smets, E., Cornelis, J., De Raedt, W., Ponnet, K., De Marez, L. (2018).

MobileDNA: Relating physiological stress measurements to smartphone usage to assess the effect of a digital detox. In: Stephanidis, C. (ed.) HCI International 2018 - Posters' Extended Abstracts. HCI 2018. Communications in Computer and Information Science, vol. 851.

Araujo, T., Wonneberger, A., Neijens, P., de Vreese, C. (2017). How much time do you spend online? Understanding and improving the accuracy of selfreported measures of internet use. Communication Methods and Measures, 11, 173-190.

Baert, S., Vujić, S., Amez, S., Claeskens, M., Daman, T., Maeckelberghe, A., Omey, E., De Marez, L. (2020). Smartphone use and academic performance: Correlation or causal relationship? Kyklos, 73(1), 22-46.

Boase, J.A., Ling, R. (2013). Measuring mobile phone use: Self-report versus log data. Journal of Computer-Mediated Communication, 18, 508-519.

Boniel-Nissim, M., Lenzi, M., Zsiros, E., de Matos, M.G., Gommans, R., HarelFisch, Y., Djalovski, A., van der Sluijs, W. (2015). International trends in electronic media communication among 11- to 15-year-olds in 30 countries from 2002 to 2010: Association with ease of communication with friends of the opposite sex. European Journal of Public Health, 25, 41-45

Buysse, D.J., Reynolds, C.F., Monk, T.H., Berman, S.R., Kuper, D.J. (1989). The Pittsburgh Sleep Quality Index (PSQI): A new instrument for psychiatric research and practice. Psychiatry Research, 28, 193-213.

Cain, N., Gradisar, M. (2010). Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Medicine, 11, 735-742.

Chen, L., Yan, Z., Tang, W.J., Yang, F.Y., Xie, X.D., He, J.C. (2016). Mobile
phone addiction levels and negative emotions among Chinese young adults: The mediating role of interpersonal problems. Computers in Human Behavior, 5, 856866.

Christensen, M.A., Bettencourt, L., Kaye, L., Moturu, S.T., Nguyen, K.T., Olgin, J.E., Pletcher, M.J., Marcus, G.M. (2016). Direct measurements of smartphone screen-time: Relationships with demographics and sleep. Plos One, 11, e0165331.

Demirci, K., Akgönül, M., Akpinar, A. (2015). Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. Journal of Behavioural Addictions, 4(2), 85-92.

Elhai, J.D., Levine, J.C., Hall, B.J. (2019). The relationship between anxiety symptom severity and problematic smartphone use: A review of the literature and conceptual frameworks. Journal of Anxiety Disorders, 46, 45-52.

Exelmans, L. (2019). Electronic media use and sleep: A self-control perspective. Current Sleep Medicine Reports, 5, 135-140.

Exelmans, L., Van den Bulck, J. (2016). Bedtime mobile phone use and sleep in adults. Social Science \& Medicine, 148, 93-101.

Exelmans, L., Van den Bulck, J. (2017). Binge viewing, sleep, and the role of pre-sleep arousal. Journal of Clinical Sleep Medicine, 13, 1001-1008.

Eyvazlou, M., Zarei, E., Rahimi, A., Abazari, M. (2016). Association between overuse of mobile phones on quality of sleep and general health among occupational health and safety students. Chronobiology International, 33(3), 293300.

Felisoni, D.D., Godoi, A.S. (2018). Cell phone usage and academic
performance: An experiment. Computers \& Education, 117, 175-187.

Foerster, M., Henneke, A., Chetty-Mhlanga, S., Röösli, M. (2019). Impact of adolescents' screen time and nocturnal mobile-phone related awakenings on sleep and general health symptoms: A prospective cohort study. International Journal of Environmental Research and Public Health, 16(3), 518.

Fossum, I.N., Nordnes, L.T., Storemark, S.S., Bjorvatn, B., Pallesen, S. (2014). The association between use of electronic media in bed before going to sleep and insomnia symptoms, daytime sleepiness, morningness, and chronotype. Behavioral Sleep Medicine, 12(5), 343-357.

Hale, L., Guan, S. (2015). Screen time and sleep among school-aged children and adolescents: A systematic literature review. Sleep Medicine Reviews, 21, 5058.

Higuchi, S., Motohashi, Y., Liu, Y., Maeda, A. (2005). Effects of playing a computer game using a bright display on presleep physiological variables, sleep latency, slow wave sleep and REM sleep. Journal of Sleep Research, 14(3), 267273.

Hoch, C.C., Reynolds, C.F., Kupfer, D.J., Berman, S.R., Houck, P.R., Stack, J.A. (1987). Empirical note: Self-report versus recorded sleep in healthy seniors. Psychophysiology, 24(3), 293-299.

Hysing, M., Pallesen, S., Stormark, K.M., Jakobsen, R., Lundervold, A.J., Sivertsen, B. (2015). Sleep and use of electronic devices in adolescence: results from a large population-based study. BMJ Open, 5(1), e006748.

Lepp, A., Barkley, J.E., Sanders, G.J., Rebold, M., Gates, P. (2013). The relationship between cell phone use, physical and sedentary activity, and
cardiorespiratory fitness in a sample of US college students. International Journal of Behavioral Nutrition and Physical Activity, 10, 79.

Li, J., Lepp, A., Barkley, J.E. (2015). Locus of control and cell phone use: Implications for sleep quality, academic performance and subjective well-being. Computers in Human Behavior, 52, 450-457

Lissak, G. (2018). Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environmental Research, 164, 149-157.

Liu, S., Wing, Y.K., Hao, Y., Li, W., Zhang, J., Zhang, B. (2019). The associations of long-time mobile phone use with sleep disturbances and mental distress in technical college students: A prospective cohort study. Sleep, 42(2), zsy213.

Mauri, M., Cipresso, P., Balgera, A., Villamira, M., Riva, G. (2011). Why is Facebook so successful? Psychophysiological measures describe a core flow state while using Facebook. Cyberpsychology, Behavior, and Social Networking, 14, 723-731.

Min, K.B., Jin-young, M., Hyun-Jin, K., Hye-Jin, K. (2017). Association between smartphone addiction proneness and poor sleep quality in Korean university students. European Psychiatry, 41, S332-S332.

Orzech, K.M., Grandner, M.A., Roane, B.M., Carskadon, M.A. (2016). Digital media use in the 2 h before bedtime is associated with sleep variables in university students. Computers in Human Behavior, 55, 43-50.

Oulasvirta, A., Rattenbury, T., Ma, L., Raita, E. (2012). Habits make
smartphone use more pervasive. Personal and Ubiquitous Computing, 16, 105-114.

Pew Research Center (2019). Mobile technology and home broadband 2019. https://www.pewresearch.org/internet/wp-content/uploads/sites/9/2019/06/PI_2019.06.13_Mobile-Technology-and-HomeBroadband_FINAL2.pdf.

Sanford, L.K., Suchecki, D., Meerlo, P. (2014). Stress, arousal, and sleep. In: Meerlo, P., Benca, R.M., Abel, T. (eds.) Sleep, Neuronal Plasticity and Brain Function (pp. 379-410). Berlin.

Tavernier, R., Willoughby, T. (2014). Sleep problems: Predictor or outcome of media use among emerging adults at university. Journal of Sleep Research, 23, 389-396.

Thomée, S., Dellve, L., Harenstam, A., Hagberg, M. (2010). Perceived connections between information and communication technology use and mental symptoms among young adults - a qualitative study. BMC Public Health, 10, 66.
van der Schuur, W.A., Baumgartner, S.E., Sumter, S.R. (2018). Social media use, social media stress, and sleep: Examining cross-sectional and longitudinal relationships in adolescents. Health Communication, 1-8.
van der Schuur, W.A., Baumgartner, S.E., Sumter, S.R., Valkenburg, P.M. (2018). Media multitasking and sleep problems: A longitudinal study among adolescents. Computers in Human Behavior, 81, 316-324.

Woods, H.C., Scott, H. (2016). \#Sleepyteens: Social media use in adolescence is associated with poor sleep quality, anxiety, depression and low selfesteem. Journal of Adolescence, 51, 41-49.

Yang, J., Fu, X., Liao, X., Li, Y. (2020). Association of problematic smartphone
use with poor sleep quality, depression, and anxiety: A systematic review and metaanalysis. Psychiatry Research, 284, 112686.

Zeiders, K.H., Doane, L.D., Adam, E.K. (2011). Reciprocal relations between objectively measured sleep patterns and diurnal cortisol rhythms in late adolescence. Journal of Adolescent Health, 48, 566-571.

Table 1. Summary Statistics

	Mean	Standard deviation
A. Control Variables		
Female (frequency)	0.547	-
Age (years)	18.505	1.138
B. Overall smartphone use		
Daily smartphone use (hours)	3.049	1.770
Daily smartphone frequency (app-events)	103.106	74.715
C. Smartphone use by application category		
Daily smartphone use (hours): social	1.004	0.783
Daily smartphone use (hours): communication	0.559	0.416
Daily smartphone use (hours): tools	0.052	0.061
Daily smartphone use (hours): productivity	0.097	0.166
Daily smartphone use (hours): video	0.572	0.616
Daily smartphone use (hours): music	0.056	0.077
Daily smartphone use (hours): news	0.094	0.179
Daily smartphone use (hours): entertainment	0.224	0.464
Daily smartphone use (hours): games	0.374	0.680
D. Smartphone use by time of day		
Daily smartphone use (hours): during the day	2.212	1.322
Daily smartphone use (hours): in the evening	0.627	0.431
Daily smartphone use (hours): at night	0.215	0.282
E. Smartphone use by distribution		
Number of periods per day of at least one hour without smartphone use	1.643	0.795
Average app-events per session	3.510	1.747
F. Sleep quality		
PSQI subjective sleep quality component	1.968	0.592
Number of observations	dinary variables. The following abbreviation is used: PSQ	
Notes. See the Data section for a description of each variable. Standard de Sleep Quality Index).	r binary	ation is used: PSQI

Table 2. Estimated Associations between Sleep Quality and Overall Smartphone Use

	(1)	(2)
Estimation method		OLS
Dependent variable	$-0.014(0.035)$	-
Daily smartphone use	-	$-0.001(0.001)$
Daily smartphone frequency	$-0.177(0.124)$	$-0.180(0.124)$
Female	$0.059(0.057)$	$0.061(0.056)$
Age	$1.025(1.047)$	$0.994(1.028)$
Intercept	95	95
Number of observations		
Notes. The presented values are coefficient estimates, with standard errors in parentheses. ***,**, and * indicate significance at the 1\%, $\% \%$, and 10% significance level,		
respectively. The following abbreviations are used: OLS (ordinary least squares) and PSQI (Pittsburgh Sleep Quality Index).		

Table 3. Estimated Associations between Sleep Quality and Smartphone Use Duration by Application Category

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Estimation method	OLS									
Dependent variable	PSQI subjective sleep quality component									
Daily smartphone use	$\begin{aligned} & \hline-0.012 \\ & (0.041) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.037) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.034) \end{gathered}$	$\begin{aligned} & \hline-0.015 \\ & (0.036) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.045) \end{gathered}$	$\begin{aligned} & \hline-0.002 \\ & (0.036) \end{aligned}$	$\begin{aligned} & \hline-0.014 \\ & (0.035) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.017 \\ & (0.036) \end{aligned}$	$\begin{aligned} & \hline-0.029 \\ & (0.040) \\ & \hline \end{aligned}$	
Daily smartphone use: social	$\begin{aligned} & \hline-0.010 \\ & (0.091) \end{aligned}$	-	-	-	-	-	-	-	-	$\begin{aligned} & \hline-0.008 \\ & (0.083) \end{aligned}$
Daily smartphone use: communication	-	$\begin{aligned} & -0.177 \\ & (0.158) \end{aligned}$	-	-	-	-	-	-	-	$\begin{aligned} & -0.078 \\ & (0.152) \end{aligned}$
Daily smartphone use: tools	-	-	$\begin{gathered} -2.787^{* * *} \\ (1.021) \end{gathered}$	-	-	-	-	-	-	$\begin{gathered} -2.606^{* *} \\ (1.071) \end{gathered}$
Daily smartphone use: productivity	-	-	-	$\begin{gathered} 0.052 \\ (0.379) \end{gathered}$	-	-	-	-	-	$\begin{gathered} 0.395 \\ (0.394) \end{gathered}$
Daily smartphone use: video	-	-	-	-	$\begin{aligned} & -0.117 \\ & (0.130) \end{aligned}$	${ }^{-}$	-	-	-	$\begin{aligned} & -0.073 \\ & (0.108) \end{aligned}$
Daily smartphone use: music	-	-	-	-	-	$\begin{aligned} & -1.275 \\ & (0.810) \end{aligned}$	-	-	-	$\begin{aligned} & -1.218 \\ & (0.845) \end{aligned}$
Daily smartphone use: news	-	-	-	-	-	-	$\begin{aligned} & -0.113 \\ & (0.347) \end{aligned}$	${ }^{-}$	-	$\begin{aligned} & -0.006 \\ & (0.356) \end{aligned}$
Daily smartphone use: entertainment	-	-	-	-	-	-	-	$\begin{gathered} 0.037 \\ (0.137) \end{gathered}$	${ }^{-}$	$\begin{gathered} 0.024 \\ (0.133) \end{gathered}$
Daily smartphone use: games	${ }^{-}$	${ }^{-}$	${ }^{-}$	${ }^{-}$	${ }^{-}$	${ }^{-}$	${ }^{-}$	-	$\begin{gathered} 0.080 \\ (0.104) \\ \hline \end{gathered}$	$\begin{gathered} 0.066 \\ (0.094) \\ \hline \end{gathered}$
Female	$\begin{aligned} & \hline-0.176 \\ & (0.125) \end{aligned}$	$\begin{aligned} & \hline-0.184 \\ & (0.124) \end{aligned}$	$\begin{gathered} \hline-0.238^{*} \\ (0.122) \end{gathered}$	$\begin{aligned} & \hline-0.178 \\ & (0.125) \end{aligned}$	$\begin{aligned} & \hline-0.192 \\ & (0.125) \end{aligned}$	$\begin{aligned} & \hline-0.198 \\ & (0.123) \end{aligned}$	$\begin{aligned} & \hline-0.182 \\ & (0.125) \end{aligned}$	$\begin{aligned} & \hline-0.180 \\ & (0.125) \end{aligned}$	$\begin{aligned} & -0.169 \\ & (0.124) \end{aligned}$	$\begin{gathered} \hline-0.279^{* *} \\ (0.128) \end{gathered}$
Age	$\begin{gathered} 0.059 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.056 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.086 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.059 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.057 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.059 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.059 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.059 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.058 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.085 \\ (0.057) \end{gathered}$
Intercept	$\begin{gathered} 1.019 \\ (1.054) \\ \hline \end{gathered}$	$\begin{gathered} 1.127 \\ (1.050) \\ \hline \end{gathered}$	$\begin{gathered} 0.643 \\ (1.021) \\ \hline \end{gathered}$	$\begin{gathered} 1.011 \\ (1.057) \\ \hline \end{gathered}$	$\begin{gathered} 1.052 \\ (1.049) \\ \hline \end{gathered}$	$\begin{gathered} 1.072 \\ (1.039) \\ \hline \end{gathered}$	$\begin{gathered} 1.038 \\ (1.053) \\ \hline \end{gathered}$	$\begin{gathered} 1.021 \\ (1.053) \\ \hline \end{gathered}$	$\begin{gathered} 1.038 \\ (1.050) \\ \hline \end{gathered}$	$\begin{gathered} 0.779 \\ (1.053) \\ \hline \end{gathered}$
Number of observations	95	95	95	95	95	95	95	95	95	95

Notes. The presented values are coefficient estimates, with standard errors in parentheses. ***, **, and *indicate significance at the $1 \%, 5 \%$, and 10% significance level, respectively. In model (10), we do not control for overall smartphone use to avoid multicollinearity. The following abbreviations are used: OLS (ordinary least squares) and PSQI (Pittsburgh Sleep Quality Index).

Table 4. Estimated Associations between Sleep Quality and Smartphone Use Frequency by Application Category

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Estimation method	OLS									
Dependent variable	PSQI subjective sleep quality component									
Daily smartphone frequency	$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$	$\begin{aligned} & \hline-0.000 \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.000 \\ & (0.001) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.000 \\ & (0.001) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.001) \\ \hline \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$	$\begin{aligned} & \hline-0.001 \\ & (0.001) \\ & \hline \end{aligned}$	
Daily smartphone frequency: social	$\begin{gathered} 0.003 \\ (0.003) \end{gathered}$	-	-	-	-	-	-	-	-	$\begin{aligned} & -0.000 \\ & (0.002) \end{aligned}$
Daily smartphone frequency: communication	-	$\begin{aligned} & -0.000 \\ & (0.004) \end{aligned}$	${ }^{-}$	-	-	-	-	-	-	$\begin{gathered} 0.001 \\ (0.003) \end{gathered}$
Daily smartphone frequency: tools	-	(0.004)	$\begin{gathered} -0.017^{*} \\ (0.010) \end{gathered}$	${ }^{-}$	-	-	-	-	-	$\begin{gathered} -0.022^{* *} \\ (0.010) \end{gathered}$
Daily smartphone frequency: productivity	-	-	(0.010)	$\begin{aligned} & -0.006 \\ & (0.004) \end{aligned}$	-	-	-	-	-	$\begin{aligned} & -0.004 \\ & (0.004) \end{aligned}$
Daily smartphone frequency: video	-	-	-	-	$\begin{aligned} & -0.013 \\ & (0.016) \end{aligned}$	${ }^{-}$	-	-	-	$\begin{aligned} & -0.013 \\ & (0.017) \end{aligned}$
Daily smartphone frequency: music	-	-	-	-	-	$\begin{aligned} & -0.015 \\ & (0.010) \end{aligned}$	-	-	-	$\begin{aligned} & -0.008 \\ & (0.011) \end{aligned}$
Daily smartphone frequency: news	-	-	-	-	-	(0.010)	$\begin{aligned} & -0.006 \\ & (0.010) \end{aligned}$	${ }^{-}$	-	$\begin{aligned} & -0.006 \\ & (0.012) \end{aligned}$
Daily smartphone frequency: entertainment	-	-	-	-	-	-	-	$\begin{gathered} 0.026 \\ (0.017) \end{gathered}$	${ }^{-}$	$\begin{gathered} 0.022 \\ (0.020) \end{gathered}$
Daily smartphone frequency: games	${ }^{-}$	${ }^{-}$	${ }^{-}$	${ }^{-}$	${ }^{-}$	${ }^{-}$	${ }^{-}$	(0.017)	$\begin{gathered} 0.010 \\ (0.007) \\ \hline \end{gathered}$	$\begin{gathered} 0.008 \\ (0.008) \\ \hline \end{gathered}$
Female	$\begin{aligned} & \hline-0.188 \\ & (0.124) \end{aligned}$	$\begin{aligned} & \hline-0.179 \\ & (0.124) \end{aligned}$	$\begin{gathered} \hline-0.217^{*} \\ (0.124) \end{gathered}$	$\begin{aligned} & \hline-0.186 \\ & (0.123) \end{aligned}$	$\begin{aligned} & \hline-0.206 \\ & (0.128) \end{aligned}$	$\begin{aligned} & \hline-0.203 \\ & (0.124) \end{aligned}$	$\begin{aligned} & \hline-0.183 \\ & (0.124) \end{aligned}$	$\begin{aligned} & \hline-0.180 \\ & (0.123) \end{aligned}$	$\begin{aligned} & \hline-0.178 \\ & (0.123) \end{aligned}$	$\begin{gathered} \hline-0.273^{\star *} \\ (0.128) \end{gathered}$
Age	$\begin{gathered} 0.061 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.060 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.067 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.077 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.057 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.060 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.062 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.066 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.089 \\ (0.057) \end{gathered}$
Intercept	$\begin{array}{r} 0.993 \\ (1.030) \\ \hline \end{array}$	$\begin{gathered} 0.999 \\ (1.039) \\ \hline \end{gathered}$	$\begin{gathered} 0.952 \\ (1.017) \\ \hline \end{gathered}$	$\begin{gathered} 0.716 \\ (1.038) \\ \hline \end{gathered}$	$\begin{gathered} 1.133 \\ (1.044) \\ \hline \end{gathered}$	$\begin{array}{r} 1.031 \\ (1.022) \\ \hline \end{array}$	$\begin{gathered} 0.975 \\ (1.033) \\ \hline \end{gathered}$	$\begin{gathered} 0.852 \\ (1.026) \\ \hline \end{gathered}$	$\begin{gathered} 0.841 \\ (1.027) \\ \hline \end{gathered}$	$\begin{gathered} 0.636 \\ (1.051) \\ \hline \end{gathered}$
Number of observations	95	95	95	95	95	95	95	95	95	95

Notes. The presented values are coefficient estimates, with standard errors in parentheses. ${ }^{* * *, ~ * *}$, and * indicate significance at the $1 \%, 5 \%$, and 10% significance level, respectively. In model (10), we do not control for overall smartphone use to avoid multicollinearity. The following abbreviations are used: OLS (ordinary least squares) and PSQI (Pittsburgh Sleep Quality Index).

Table 5. Estimated Associations between Sleep Quality and Smartphone Use by Time of Day

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Estimation method	OLS PSQI subjective sleep quality component							
Dependent variable								
Smartphone use: during the day	-0.019 (0.047)	-	-	-0.020 (0.071)	-	-	-	
Smartphone use: in the evening	-	0.062 (0.144)	-	0.287 (0.207)	-	-	-	-
Smartphone use: at night	-	-	-0.403^{*} (0.124)	$-0.577^{* *}$ (0.276)	-	-	-	-
Smartphone frequency: during the day	-	-	-	-	-0.001 (0.001)	-	-	-0.002 (0.002)
Smartphone frequency: in the evening	-	-	-	-	-	-0.000 (0.004)	-	0.011 (0.007)
Smartphone frequency: at night	-	-	-	-	-	-	$-0.020^{*}(0.010)$	$-0.026^{* *}(0.012)$
Female	-0.176 (0.124)	-0.174 (0.123)	-0.245^{*} (0.128)	-0.295** (0.131)	-0.179 (0.123)	-0.171 (0.124)	-0.242^{*} (0.128)	$-0.270^{* *}(0.128)$
Age	0.059 (0.057)	0.065 (0.057)	0.070 (0.056)	0.091 (0.057)	0.061 (0.056)	0.061 (0.056)	0.070 (0.056)	0.079 (0.056)
Intercept	1.021 (1.046)	0.829 (1.058)	0.892 (1.010)	0.441 (1.057)	0.992 (1.027)	0.943 (1.033)	0.907 (1.011)	0.702 (1.018)
Number of observations	95	95	95	95	95	95	95	95

Notes. The presented values are coefficient estimates, with standard errors in parentheses. ${ }^{* * *}$, ${ }^{* *}$, and ${ }^{*}$ indicate significance at the $1 \%, 5 \%$, and 10% significance level,
respectively. The following abbreviations are used: OLS (ordinary least squares) and PSQI (Pittsburgh Sleep Quality Index).

Table 6. Estimated Associations between Sleep Quality and Smartphone Use by Distribution

	(1)	(2)	(3)	(4)	(5)	(6)
Estimation method	OLS PSQI subjective sleep quality component					
Dependent variable						
Daily smartphone use	-0.020 (0.042)	-0.007 (0.034)	-0.010 (0.042)	-	-	
Daily smartphone frequency	-	-	-	-0.001 (0.001)	-0.000 (0.001)	-0.001 (0.001)
Number of periods per day of at least one hour without smartphone use	-0.025 (0.093)	-	-0.011 (0.091)	-0.034 (0.090)	-	-0.022 (0.089)
Average number of app-events per session	-	$-0.080^{* *}(0.035)$	$-0.079 * *(0.035)$	-	$-0.079^{* *}(0.035)$	$-0.078^{* *}(0.035)$
Female	-0.176 (0.124)	-0.220^{*} (0.122)	$-0.220 *(0.123)$	-0.179 (0.124)	-0.223* (0.122)	$-0.222^{*}(0.123)$
Age	0.057 (0.057)	0.063 (0.055)	0.063 (0.056)	0.060 (0.057)	0.064 (0.055)	0.064 (0.055)
Intercept	1.109 (1.098)	1.223 (1.027)	1.260 (1.075)	1.075 (1.056)	1.214 (1.010)	1.266 (1.037)
Number of observations	95	95	95	95	95	95

Notes. The presented values are coefficient estimates, with standard errors in parentheses. ${ }^{* * *}$, ${ }^{* *}$, and ${ }^{*}$ indicate significance at the $1 \%, 5 \%$, and 10% significance level, respectively. The following abbreviations are used: OLS (ordinary least squares) and PSQI (Pittsburgh Sleep Quality Index).

[^0]: Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.
 The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.
 IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

[^1]: ${ }^{1}$ Unfortunately, mobileDNA is only available for the Android operating system. Thus, students who owned a smartphone running another operating system were unable to participate. We return to the external validity of our sample below.

[^2]: ${ }^{2}$ Each application was assigned to a category based on an analysis of categories used in the Android Play Store. The most important applications (with respect to duration and frequency of use) were Instagram, Facebook, and Snapchat (social media); Facebook Messenger, Google Chrome, and WhatsApp (communication); Google, Clock, and Google Play (tools); Google Drive, Cold Turkey, and Forest (productivity); YouTube, Yelo, and Stievie (video); Spotify, Google Music, and Samsung Music (music); Twitter, Reddit, and VRT NWS (news); Netflix, 9GAG, and Google Play Games (entertainment); Clash of Clans, Subway Surfers, and Pokémon Go (games).

[^3]: ${ }^{3}$ This lack of association does not seem to be the result of our limited sample size because the estimated coefficients (-0.014 and -0.001) are insignificant in economic terms too. Given the associated standard errors (0.035 and 0.001 , respectively), rather small associations would have been distinguished from 0 .

[^4]: ${ }^{4} 0.233=(-0.079 \times 1.747) /(0.592)$. In this equation, -0.079 is the regression coefficient in column (3) of Table (6), 1.747 is the SD of average app-events per session (Table 1, Panel E), and 0.592 is the SD of the PSQI subjective sleep quality component (Table 1, Panel F).

