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Abstract

State price densities (SPD) are an important element in applied quan-
titative finance. In a Black-Scholes model they are lognormal distributions
with constant volatility parameter. In practice volatility changes and the
distribution deviates from log-normality. We estimate SPDs using EU-
REX option data on the DAX index via a nonparametric estimator of the
second derivative of the (European) call price function. The estimator
is constrained so as to satisfy no-arbitrage constraints and it corrects for
intraday covariance structure. Given a low dimensional representation of
this SPD we study its dynamic for the years 1995–2003. We calculate
a prediction corridor for the DAX for a 45 day forecast. The proposed
algorithm is simple, it allows calculation of future volatility and can be
applied to hedging exotic options.

Key words and Phrases: option pricing, state price density estimation,
nonlinear least squares, confidence intervals

1 Introduction

The dynamics of option prices carries information on the changing (risk
neutral) implied state price densities (SPD). Fitting SPDs over time pro-
vides useful insight into the behavior of the economic agents and the time
inhomogeneity of the market. Knowledge of the SPD leads us also to pric-
ing schemes for exotic options. Figure 1 displays the observed prices of
European call options written on the DAX for the 16. January 1995 (ab-
breviated as 19950116). The left panel shows the ensemble of call option
prices for different strikes and maturities as a free structure together with
a smooth surface. The right panel shows the option prices only for the
shortest maturity (4 days). In 1995, one observed every day such a point
cloud with about 500 data points. In todays more liquid option markets
this number has increased approximately 10 times. In our empirical study
we will consider the time period up to 2003 thus also covering the more
recent liquid option market.

The SPD bears important information on the behaviour and expecta-
tions of the market and is used for pricing and hedging (Fengler, Härdle,
Mammen 2003). The most important application of SPD is that it allows
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Figure 1: Option prices plotted against strike price and time to maturity with
two-dimensional kernel regression surface (left) in January 1995 and the ensem-
ble of the call option prices with shortest time to expiry against strike price
(right) on 16. January 1995 (19950116). CASE financial data base MD*base.

to price options with complicated payoff functions simply by (numerical)
integration of the payoff with respect to this density.

Prices Ct(K, T ) of European options with strike price K observed at
time t and expiring at time T allow to deduce the state price density in
the following form (Breeden and Litzenberger 1978):

f(K) = exp{r(T − t)}∂2Ct(K, T )

∂K2
. (1)

Equation (1) is often used to estimate the state price density by the means
of nonparametric regression.

Kernel smoothers were in this framework proposed and successfully ap-
plied by, e.g., Aı̈t-Sahalia and Lo (1998), Aı̈t-Sahalia and Lo (2000), Aı̈t-
Sahalia, Wang and Yared (2000) or Huynh, Kervella, and Zheng (2002).
Aı̈t-Sahalia and Duarte (2003) proposed a method for nonparametric es-
timation of the SPD under the appropriate constraints. Another sophis-
ticated approach based on smoothing splines allowing to include the re-
quired constraints is described and applied on simulated data in Yatchew
and Härdle (2005). An extensive overview of parametric and other esti-
mation techniques can be found, e.g., in Jackwerth (1999). An application
to option pricing is given in Buehler (2004). In these papers, the focus
was on the smoothing technique rather than on a no-arbitrage argument.
A crucial element of local volatility models, that are directly connected
with the call price surface displayed in Figure 1, is the absence of arbi-
trage (Dupire 1994). Highly numerically efficient pricing algorithm, e.g.,
by Andersen and Brotherton-Ratcliffe (1997), rely heavily on no arbitrage
properties. Kahalé (2004) proposed a procedure that requires solving a set
of nonlinear equations with no guarantee of a unique solution. Moreover,
for that algorithm the data feed alread is (unrealistically) expected to be
arbitrage free (Fengler 2005). In addition, the covariance structure of the
quoted option prices is rarely incorporated into the estimation procedure.

In this paper we develop a simple estimation technique in order to
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construct SPD estimates satisfying the non-arbitrage constraints and to
study the development of the estimated SPDs over time. The proposed
technique involves contrained LS-estimation and enables us to construct
confidence intervals for any future SPD. This, of course, is a vital feature
for the trading floor where the derived (implied) volatility surfaces for
different strikes and maturities are displayed for proper judgement of risk
and return.

In the next two sections we construct an estimate of the SPD based
on the observed call option prices satisfying all shape constraints given in
Subsection 2.1 and we show that such estimate exists. In Section 4, we ap-
ply our estimation technique on option prices observed in year 1995. Some
generalizations and natural models for covariance structure are proposed
in Section 5. We will demonstrate that the true covariance structure of
the option prices exhibits correlations depending both on the strike price
and time of the trade. The dynamics of the estimated SPDs in years
1995–2003 is studied in Section 6.

2 Construction of the estimate

The fair price of a European call option with payoff (ST−K)+ = max(ST−
K, 0), with ST denoting the price of the stock at time T , t the current
time, K the strike price, and r the risk free interest rate, can be written
as:

Ct(K, T ) = exp{−r(T − t)}
+∞Z
0

(ST −K)+f(ST )dST , (2)

i.e., as the discounted expected value of the payoff with respect to the SPD
f(.). For the sake of simplicity of the following presentation, we assume
in the rest of the paper that the discount factor exp{−r(T − t)} = 1. In
applications, this is achieved by correcting the observed option prices by
the known risk free interest rate r and the time to maturity (T − t) in (2).

Our data set contains the observed option prices for various strike
prices and maturities. Other variables are the interest rate, date, and
time. We will analyze the option prices as a function of the strike price
for fixed date and time to expiry. An example of such data set is displayed,
for 16th January 1995 and for the shortest time to expiry, τ = T − t = 4
days, on the right panel in Figure 1.

Let us denote the i-th observation of the strike price by Ki and the
corresponding option price, divided by the discount factor exp{−r(T −t)}
from (2), by Ci = Ct,i(Ki, T ). In practice, one observes option prices
repeatedly for a small number of distinct strike prices. Therefore, it is
useful to adopt the following notation. Let C = (C1, . . . , Cn)> be the
vector of the observed option prices at day t. The corresponding vector
of the strike prices has the following structure:

K =

0BBB@
K1

K2

...
Kn

1CCCA =

0BBB@
k11n1

k21n2

...
kp1np

1CCCA ,

where k1 < k2 < · · · < kp, nj =
Pn

i=1 I(Ki = kj) with I(.) denoting the
the indicator function and 1n a vector of ones of length n.
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EXAMPLE 1 An example is given in Figure 1. In the left panel we
display all European call prices on DAX traded on 16th January 1995
against the strike price and the maturity. In order to see the structure of
the data set more clearly, we include also a kernel surface.

One can observe that options are traded only for few strike prices.
Restricting ourselves only to the shortest maturity, we obtain the right
panel of Figure 1. Here, at t = 19950116, n = 575 call options were
observed on a grid of p = 8 strike prices k1 = 2000, . . . , k8 = 2300.

2.1 Assumptions and constraints

For fixed time t and time to maturity τ = T − t, the i-th observed option
price (corresponding to strike price K) follows the model

Ct,i(Ki, T ) = µ(Ki) + εi, (3)

where εi are i.i.d. N(0, σ2) distributed variables. Heteroskedasticity can
be incorporated in model (3) if we assume that the random errors εi have
N(0, σ2

Ki
) distribution. The assumptions on the distribution of random

errors will be investigated in more detail in Subsection 4.3.
Harrison and Pliska (1981) characterized the absence of arbitrage by

the existence of a unique risk neutral SPD f(.). From formula 2 and prop-
erties of a probability density it follows that the function of the true con-
ditional means µ(.) has to satisfy the following no-arbitrage constraints:

1’. it is positive,

2’. it is decreasing in K,

3’. it is convex,

4’. its second derivative exists and it is a density (i.e., nonnegative and
it integrates to one).

Let us now have a look at functions satisfying Constraints 1’–4’.

LEMMA 1 Suppose that µ satisfies Constraints 1’–4’. Then we have for
the first derivative, µ(1)(.), that limx→+∞ µ(1)(x) = 0 and limx→−∞ µ(1)(x) =
−1.

Proof:
Constraint 4’ implies that the first derivative, µ(1), exists and that it is
differentiable. lim

x→+∞
µ(1)(x) exists since the function µ(1) is increasing

(Constraint 3’) and bounded (Constraint 2’). Next, lim
x→∞

µ(1)(x) = 0

since a negative limit would violate Constraint 1’ for large x (µ(1)(x)
cannot be positive since µ(x) is decreasing). Finally, Constraint 4’, 1 =
∞R
−∞

µ(2)(x)dx = lim
x→+∞

µ(1)(x)− lim
x→−∞

µ(1)(x), implies that lim
x→−∞

µ(1)(x) =

−1. �

2.2 Existence and uniqueness

In this subsection we address the issue of existence and uniqueness of a
regression function, Ĉ(.), satisfying the required assumptions and con-
straints.

In practice, we don’t deal with a continuous function. Hence, we re-
state Constraints 1’–4’ for discrete functions, defined only on a finite set of
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distinct points, say k1 < · · · < kp, in terms of their function values, C(ki),

and their scaled first differences, C
(1)
ki,kj

= {C(ki)− C(kj)}/{ki − kj}.

1. C(ki) > 0, i = 1, . . . , p,

2. ki < kj implies that C(ki) ≥ C(kj),

3. ki < kj < kl implies that −1 ≤ C
(1)
ki,kj

≤ C
(1)
kj ,kl

≤ 0.

It is easy to see that Constraints 1–3 are discrete versions of Constraints 1’–
4’.

From now on, similarly as in Robertson, Wright and Dykstra (1988),
we think of the collection, C, of functions satisfying Constraints 1–3 as
a subset of a p-dimensional Euclidean space, where p is the number of
distinct ki’s. The constrained regression, Ĉ, is in this setting the closest
point of C to the vector C of the observed option prices with distances
measured by the usual Euclidean distance

d(f, C) = (f − C)>(f − C) =

nX
i=1

{f(Ki)− C(Ki)}2. (4)

From this point of view, the regression function, Ĉ, consists only of
the values of the function in the points k1, . . . , kp. The first and second
differences are used to approximate the first and the second derivatives,
respectively.

We claim that the set, C, of functions satisfying Constraints 1–3, has
the following properties

1. C is closed in the topology induced by the metric given by Euclidean
distance,

2. C is convex, i.e., if f, g ∈ C and 0 ≤ a ≤ 1, then af + (1− a)g ∈ C.

LEMMA 2 Assume that Ĉ ∈ C is the regression of C(Ki), i = 1, . . . , n,
on k1 < · · · < kp under Constraints 1–3. If a and b are constants such
that a ≤ C(Ki) ≤ b, ∀i, then a− (kp − k1) ≤ Ĉ(ki) ≤ b + (kp − k1).

Proof:
It is not possible that Ĉ(ki) lies below a or above b for all ki’s (otherwise
we would get a better fit only by shifting Ĉ(ki)). The bounds now follow
from Constraint 3. �

THEOREM 1 A regression, Ĉ = arg minf∈C d(f, C), satisfying Con-
straints 1–3 exists.

Proof:
Lemma 2 implies that Ĉ belongs to a subset, S, of C bounded below by
a− (kp − k1) and above by b + (kp − k1). Thinking of the functions as of
points in Euclidean space, it is clear that the continuous function d(f, C)
attains its minimum on the closed and bounded set S. �

REMARK 1 Suppose that C is any convex set of functions on X and C
is a given function on X . If Ĉ = arg minf∈C d(f, C) then for every f ∈ C,

nX
i=1

{C(Ki)− Ĉ(Ki)}>{Ĉ(Ki)− f(Ki)} ≥ 0. (5)

There exists at most one function Ĉ satisfying (5).
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Figure 2: Illustration of the dummy variables for call options.

Proof:
See Robertson, Wright and Dykstra (1988, Theorem 1.3.1). �

COROLLARY 1 A regression, Ĉ, satisfying Constraints 1–3 exists and
it is unique.

Proof:
It follows from Theorem 1 and Remark 1. �

2.3 Linear model

The configuration of data, under Constraints 1–3 of Subsection 2.1, can
be easily described using regression models with constraints.

In the following, we fix the time t and the expiry date T and we omit
these symbols from the notation. In Subsection 2.2 we have noted that
the option prices are repeatedly observed for a small number p of distinct
strike prices. This situation is visible in our data, e.g., in the right hand
panel in Figure 1 we have 575 observations observed at p = 8 distinct
strike prices.

For simplicity of the following presentation we display the coefficients
βi in the situation with only four distinct strike prices (p = 4) in Figure 2.
Defining the expected values of the option prices given strike price, µj =
µ(kj) = E{C(kj)}, we can write

µp = β0,

µp−1 = β0 + β1,

µp−2 = β0 + 2β1 + β2,

µp−3 = β0 + 3β1 + 2β2 + β3,

...

µ1 = β0 + (p− 1)β1 + (p− 2)β2 + · · ·+ βp−1.

Thus, we fit our data using coefficients βj , j = 1, . . . , p. The conditional
means µi, i = 1, . . . , p are replaced by the same number of parameters βj ,
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j = 0, . . . , p − 1 which allow to impose the shape constraints in a more
natural way.

The interpretation of the coefficients βj can be seen from Figure 2.
β0 is the mean option price at point 4. Constraint 1’, Subsection 2.1,
implies that it has to be positive. β1 is the difference between the mean
option prices at point 4 and point 3; Constraint 2’ implies that it has
to be positive. The next coefficient, β2, approximates the change in first
derivative in point 3 and it can be interpreted as an approximation of
the second derivative in point 3. Constraint 3’ implies that β2 has to be
positive. Similarly, β3 is an estimate of the (positive) second derivative in
point 2. Constraint 4’ can be rewritten as β2 + β3 ≤ 1.

In practice, we start with the construction of a design matrix which
allows us to write the above model in the following linear form. For
simplicity of presentation, we again set p = 4:0BB@

µ1

µ2

µ3

µ4

1CCA =

0BB@
1 3 2 1
1 2 1 0
1 1 0 0
1 0 0 0

1CCA
0BB@

β0

β1

β2

β3

1CCA . (6)

Ignoring the constraints on the coefficients would lead to a simple linear
regression problem. Unfortunately, this approach does not have to lead,
and usually does not, to interpretable and stable results.

Model (6) in the above form can be reasonably interpreted only if the
observed strike prices are equidistant and if the distances between the
neigbouring observed strike prices are equal to one. If we want to keep
the interpretation of the parameters βj as the derivatives of the estimated
function, we should use the design matrix

∆ =

0BBBBBBB@

1 ∆1
p ∆1

p−1 ∆1
p−2 · · · ∆1

3 ∆1
2

1 ∆2
p ∆2

p−1 ∆2
p−2 · · · ∆2

3 0
...

...

1 ∆p−2
p ∆p−2

p−1 0 · · · 0 0
1 ∆p−1

p 0 0 · · · 0 0
1 0 0 0 · · · 0 0

1CCCCCCCA
(7)

where ∆i
j = max(kj − ki, 0) denotes the positive part of the distance

between ki and kj , the i-th and the j-th (1 ≤ i ≤ j ≤ p) sorted distinct
observed values of the strike price.

The vector of conditional means µ can be written in terms of the
parameters β as follows0BBB@

µ1

µ2

...
µp

1CCCA = µ = ∆β = ∆

0BBB@
β0

β1

...
βp−1

1CCCA . (8)

The constraints on the conditional means µj can now be expressed as
conditions on the parameters of the model (8). Namely, it suffices to
request that βi > 0, i = 0, . . . , p− 1 and that

Pp−1
j=2 βj ≤ 1.

The model for the option prices can now be written as

C(K) = X∆β + ε, (9)

where X∆ is the design matrix obtained by repeating each row of matrix
∆ ni-times, i = 1, . . . , p.
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3 Implementing the constraints

In order to impose Constraints 1–3 on parameters βi, i = 0, . . . , p− 1, we
propose the following reparametrization of the model in terms of param-
eters θj , j = 0, . . . , p− 1:

β0(θ) = exp(θ0),

β1(θ) = exp(θ1),

...

βp−1(θ) = exp(θp−1),

under the constraint that
Pp−1

j=2 exp(θj) < 1. Clearly, the parameters
βi(θ) satisfy the constraints

βi(θ) > 0, i = 0, . . . , p− 1,
p−1X
j=2

βj(θ) < 1.

This means that the parameters β2(θ), . . . , βp−1(θ) can be considered as
point estimates of the state price density (the estimates have to be positive
and integrate to less than one). Furthermore, in view of Lemma 1, it is
worthwhile to note that the parameters satisfy also

−
kX

j=1

βj ∈ (−1, 0), for k = 1, . . . , p− 1.

The model (9) rewritten in terms of parameters θi, i = 0, . . . , p is a
nonlinear regression model which can be estimated using standard maxi-
mum likelihood methods. The main advantage of the maximum likelihood
estimator (MLE) is that the asymptotic distribution is well known and
that the asymptotic variance of the estimator can be approximated using
numerical methods implemented in many statistical packages.

Using the data displayed in the right hand plot in Figure 1, we ob-
tain the estimates displayed in Figure 3. The top plot displays the orig-
inal data, the second plot shows the estimate of the first derivative, and
the third plot shows the estimate of the second derivative, i.e., the state
price density. Actually, all plots contain two curves, both obtained using
model (9). The thick line is calculated using the parameters βi without
constraints whereas the thin line uses the reparametrization βi(ξ) given
in Subsection 3.1. In Figure 3, these two estimates coincide since the
model maximizing the likelihood without constraints, by chance, fulfills
the constraints (∃ξ : βi = βi(ξ), i = 0, . . . , p−1) and hence it is clear that
the same parameters maximize also the constrained likelihood.

The situation, in which the estimates with and without constraints
differ, is displayed in Figure 4. Notice that the difference between the two
regression curves is small whereas the difference between the estimates of
the state price density (i.e., the second derivative of the curve) is surpris-
ingly large. The unconstrained estimate shows very unstable behaviour
on the left hand side of the plot. The constrained version behaves more
reasonably. Very small differences between the fitted lines in the top plot
in Figure 4 leads to huge differences in the estimates of second derivative.

We therefore conclude that small errors in the estimates of the curve
may lead to large scale errors in the estimates of the first and second

8
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Figure 3: On 16th January 1995, the unconstrained estimate satisfies the con-
straints. Hence, it is equal to the constrained estimate. The top panel shows
the original data with the fitted lines. The second and the third panel show the
estimates of the first and second derivative, respectively.
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Figure 4: On 17th January 1995, the unconstrained estimate, displayed using
the thicker and darker line, does not satisfy the constraints. The top panel
shows the original data with and the two fitted lines. The estimates of the first
derivative in the second panel look rather different. The constrained estimate
of the second derivative in the bottom panel is clearly much more stable than
the unconstrained estimate.
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derivatives. The scale of this type of error seems to be limited by imposing
the shape constraints given in Subsection 2.1.

3.1 Reparametrization

The following reparametrization of the model in terms of parameters ξj ,
j = 0, . . . , p is useful for calculating the estimates:

β0(ξ) = exp(ξ0),

β1(ξ) =
exp(ξ1)Pp

j=1 exp(ξj)
,

...

βp−1(ξ) =
exp(ξp−1)Pp
j=1 exp(ξj)

.

The equality

exp(ξp)

(
p−1X
j=1

exp(ξj)

)−1

= 1−

(
p−1X
j=1

βj(ξ)

)−1

shows the meaning of the parameter ξp. Setting this parameter to −∞
would be the same as requiring that

Pp−1
j=2 βj(ξ) = 1.

3.2 Inverse transformation of model parameters

For the numerical algorithm, it is useful to know how to calculate ξs from
given βs. This is needed, for example, to obtain reasonable starting points
for the iterative procedure maximizing the likelihood.

LEMMA 3 Given β = (β1, . . . , βp)>, where βp = 1 −
Pp−1

i=1 βi, the pa-
rameters ξ = (ξ1, . . . , ξp)> satisfy the system of equations“

β1>p − Ip

”
exp ξ> = A exp ξ> = 0, (10)

where Ip is the (p× p) identity matrix. Furthermore,

rankA = p− 1. (11)

The system of equations (10) has infinitely many solutions which can be
expressed as

exp(ξ) =
`
A−A− Ip

´
z, (12)

where A− denotes the generalized inverse of A and where z is an arbitrary
vector in Rp such that the right hand side of (12) is positive.

Proof:
Parts (10) and (11) follow from the definition of β(ξ) and from simple
algebra (notice that the sum of rows of A is equal to zero). Part (12)
follows, e.g., from Anděl (1985, Theorem IV.18). �

It remains to choose the vector z in (12) so that the solution of the
system of equations (10) is positive.

PROPOSITION 1 The rank of the matrix A−A− Ip is 1. Hence, any
solution of the system of equations (10) is a multiple of the first column of
the matrix A−A−Ip. The vector z in (12) can be chosen, e.g., as z = ±1p,
where the sign is chosen so that the resulting solution is positive.
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Proof:
The definition of the generalized inverse is

AA−A−A = A(A−A− Ip) = 0. (13)

Lemma 3 says that rankA = p − 1. Hence, equation (13) implies that
rank(A−A− Ip) ≤ 1. Noticing that A−A 6= Ip means that rank(A−A−
Ip) > 0 and concludes the proof. �

3.3 The algorithm

The proposed algorithm consists of the following steps:

1. obtain a reasonable initial estimate β̂, e.g., by running the Pool-
Adjacent-Violators algorithm (Robertson, Wright and Dykstra 1988,
Chapter 1) on the unconstrained least squares estimates of the first
derivative of the curve,

2. transform the initial estimates β̂ into the estimates ξ̂ using the
method described in Subsection 3.2,

3. minimize the nonlinear least squares as described in Subsection 3.1
using numerical methods.

An application of this simple algorithm on real data is given in the next
section.

3.4 Asymptotic distribution

Assuming normality, the log-likelihood for the model (9) can be written
as:

l(C,X∆, θ, σ) = −n log σ − 1

2σ2
{C − X∆β(θ)}>{C − X∆β(θ)}, (14)

where X∆ is the design matrix given in (9). This normality assumption
will be justified later by a residual analysis. The maximum likelihood
estimator is defined as:

θ̂ = arg max
θ

l(C,X∆, θ, σ). (15)

Standard Maximum Likelihood theory (Serfling 1980) now says that
the estimator θ̂, defined as:

θ̂ = arg max
θ

l(C,X∆, θ, σ), (16)

has asymptotically a p-dimensional normal distribution with mean θ and
the variance given by the inverse of the Fisher information matrix:

F−1
n =


−E

„
∂2

∂θ∂θ>
l(C,X∆, θ, σ)

«ff−1

. (17)

More precisely,

n1/2(θ̂ − θ)
L−→ Np(0,F−1

n ). (18)

The variance matrix of the asymptotic Normal distribution can be ap-
proximated using numerical maximization procedures.
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In order to implement the described algorithm numerically, it is useful
to express the contribution of the i-th row to the log-likelihood in the
following form:

li(θ) = − log σ − 1

2σ2
r2

i , (19)

where ∆j
i = 0 if j ≤ i and where ri denotes the i-th residual. The

derivative of (19) with respect to the unknown parameters θ0, . . . , θp is

∂li(θ)

∂θ0
=

1

σ2
ri exp(θ0),

∂li(θ)

∂θk
= − 1

σ2
ri

8><>:−∆i
p

exp(θ1) exp(θk)nPp
j=1 exp(θj)

o2

− · · ·+ ∆i
p−k+1

exp(θk)
nPp

j=1 exp(θj)− exp(θk)
o

nPp
j=1 exp(θj)

o2

− · · · −∆i
2
exp(θp−1) exp(θk)nPp

j=1 exp(θj)
o2

9>=>;
= − 1

σ2
riβk(θ)

8><>:∆i
p−k+1 − (∆i

p, . . . , ∆i
2)

0B@ β1(θ)
...

βp−1(θ)

1CA
9>=>; .

The above expressions are useful especially for the software implementa-
tion of the numerical minimization in the second step of the algorithm 3.3.

3.5 Put-Call parity

The prices of put options can be easily included in our estimation tech-
nique by applying the Put-Call parity of the option prices. Each put
option with price Pt(K, T ) corresponds to a call option with price

Ct(K, T ) = Pt(K, T ) + St −Ke−r(T−t).

In this way, the prices of the put options can be converted into the prices of
call options and used in our model (Franke, Härdle, Hafner 2004). Statis-
tically speaking, these additional observations will increase the precision
of the SPD and will lead to more stable results. In Section 5, we will
investigate also the covariance of the observed call and put option prices.

Another way to include the prices of the put options in our procedure
is to fit the two curves separately using two sets of parameters under the
assumptions of common SPD. The situation is displayed in Figure 5. The
natural assumption that the same SPD drives both the put and call option
prices leads to the following conditions on the coefficients αi and βi

αi = βp−i+1, for i = 2, . . . , p− 1

α1 = 1−
p−1X
i=1

βi.

The problem of estimating regression functions under such linear equality
constraints is solved, e.g., in Rao (1973).
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Figure 5: Illustration of the dummy variables for both call (β) and put (α)
options.

4 Application to DAX data

In order to illustrate the method, we apply it to DAX option prices on
two consecutive days. These days (16th and 17th January 1995) were
selected since they provide nice insight into the behaviour of the presented
methods.

The observed option prices on one day (16th January 1995) are plotted
on the left hand side of Figure 1 against maturity and strike price. The
shape of dependency of the option price on the strike price can be nicely
observed. For simplicity, in the following analyses we restrict ourselves
only to data for fixed maturity as displayed on the right plot in Figure 1.

In Figures 3 and 4 we observe the difference between the unconstrained
linear regression estimate and the constrained nonlinear regression esti-
mate described in Section 3.1.

In Figure 3, the unconstrained model incindentally satisfies all condi-
tions on the shape of the curve. Hence, the estimates of the curve itself
(1st plot) its first derivative (2nd plot) and the SPD (3rd plot) coincide.

On 17th January, the situation becomes more interesting and it il-
lustrates very clearly the advantages of the constrained estimator. In
Figure 4, we plot the unconstrained and the constrained estimates using
thick and thin line, respectively. Clearly, the difference between the fitted
data (1st plot) is very small. However, this small difference in the first
plot results in huge differences in the estimate of the first derivative (2nd
plot) and especially in the estimate of the second derivate, the SPD, in
the 3rd plot of Figure 4.

4.1 Interpretation of the estimates

The coefficients, β̂p−1, . . . , β̂2, plotted in the bottom panels of Figures 3
and 4 can be described as estimates of the changes of the first derivative
in that point. Since the first derivative of the curve corresponds to the
integrated SPD, the coefficients β̂p−1, . . . , β̂2 estimate probabilities asso-
ciated with the corresponding strike price. We interpret the coefficients as
a histogram-like estimator of the state price density. The asymptotic dis-
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tribution of the estimator, based on Maximum Likelihood theory is given
in Subsection 3.4.

4.2 Confidence intervals

We present two simple methods for calculating pointwise confidence inter-
vals for the SPD. The description of the x-axis in Figures 6 and 7 shows
the number of observations at each of the design points.

Notice that, in the unconstrained model, the estimates of the values of
the SPD are just the parameters of the linear regression model. Hence, the
confidence intervals for the parameters are also confidence intervals for the
SPD. These confidence intervals for 16th and 17th January are displayed
in the upper plots in Figures 6 and 7. The drawbacks of this method are
clearly visible. In Figure 6, the lower bounds of the confidence intervals
only asymptotically satisfy the condition of positivity. In Figure 7, we
observe large variability on the left-hand side of the plot (the region with
low number of observations). Again, some of the lower bounds are not
positive.

Clearly, the confidence intervals based on the unconstrained model
make sense only if the constraints are, by chance, satisfied. Even if this is
the case, there is no guarantee that the lower bounds will be positive.

The lower panels in Figures 6 and 7 display confidence intervals con-
ditional on the fact that

Pp
i=1 exp(θi) < 1. Using maximum likelihood

theory, we calculate confidence intervals for the parameters θ (rescaled
so that

Pp
i=1 exp(θi) = 1). Exponentiating the limits of these confidence

intervals leads to valid confidence intervals for parameters β.
In Figure 6, both type of confidence intervals provide very similar

results. The only difference is at the minimum and maximum value of
the independent variable (strike price) where the unconstrained method
provides negative lower bounds and the conditional method leads to very
large upper bounds of the confidence intervals.

In Figure 7, we plot the confidence intervals for January 17th. Here,
the unconstrained and the conditional methods lead to very different es-
timates. We can observe that the confidence intervals on the right hand
side are much narrower for the conditional method. On the left hand
side, both methods tend to provide confidence intervals that seem to be
overly wide. For the conditional method, we observe that the length of
the confidence intervals explodes when the estimated value of the SPD is
very close to zero and, at the same time, the number of observation in
that region (see the description of the x-axis) is small.

4.3 Residual analysis

The residuals on 17th January 1995 are plotted in Figure 8. The time of
trade (in hours) is denoted by the plotting symbol. The circle, square and
the star denote denote the trades carried out in the morning, midday and
in the afternoon, respectively. The size of the symbols corresponds to the
number of residuals lying in the respective areas.

The majority of the residuals correspond to the strike prices of 2075,-
and 2100,-DM. The variance fo the residuals is very low on the right hand
side of the plot and it rapidly increases when moving towards smaller
maturities. On the left hand side of the plot, for maturities smaller than
2000, we have only very few observations and cannot judge the residual
variability reliably.
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  12    8   86  174  239   41   11    4

  12    8   86  174  239   41   11    4

Figure 6: The unconstrained and constrained confidence intervals for SPD on
16th January 1995. The description on the x-axis shows the number of obser-
vations in each point.
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   3    2    1    2    2   26  157  180   18   10    4    5

Figure 7: Confidence intervals for SPD on 17th January 1995. The description
on the x-axis shows the number of observations in each point.
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Figure 8: The time dependency and the heteroscedasticity of the residuals dur-
ing one day (19950117). The circle, square and the star denote denote the trades
carried out in the morning, midday and in the afternoon, respectively. Size of
the symbols denotes number of residuals.
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Apart of the obvious heteroscedasticity we observe also a very strong
systematic movement in the SPD throughout the day: the circles, corre-
sponding to the first third of the day, are positive and all stars, denoting
the afternoon residuals, are negative. Similar patterns can be observed
every day—residuals corresponding to the same time are having the same
sign.

We conclude that the option prices naturally tend to follow the changes
of the market during the day. A model, describing this behaviour, will be
presented in the next Section 5.

5 Covariance structure

Up to now, we worked with the model

Ct(kj) = ∆j
eβ + εt (20)

or

Ct(kj) = ∆j
eβt + εt,eβt = eβt−1, (21)

where t is the time, eβ denotes the column vector of the unknown pa-
rameters, and ∆j denotes the j-th row of the matrix ∆ defined in (7),
i.e.,

∆j = (1, ∆j
p, ∆j

p−1, . . . , ∆
j
j+1, 0, . . . , 0| {z }

(j−1)

).

However, the residual analysis in Section 4.3 clearly shows that it is not
appropriate in this situation. Therefore, we will consider some general-
izations that would lead to a better fit of the data set.

5.1 Heteroscedasticity

Assume that the t-th observation, corresponding to the j-th exercise price
kj , can be written as

Ct(kj) = ∆j
eβt, (22)eβt = eβ + εt, (23)

i.e., there is a random error εt in the state price density eβt. Clearly, the
variance of the observed option prices C is then

Var C = σ2 diag(X∆X>∆ ), (24)

where X∆ is the design matrix in which each row of the matrix ∆ is
repeated nj times, j = 1, . . . , p.

REMARK 2 Assuming that the observations have the covariance struc-
ture (24), the least squares estimates do not change and

Var β̂ = σ2{X>∆ diag(X∆X>∆ )−1X∆}.

Another possible model for the heteroscedasticity would assume that
the changes are multiplicative rather than additive.

Ct(kj) = ∆j
eβt

log eβt = log eβ + εt
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This model leads to a variance of Ct(kj) that depends on the value of the
SPD:

Var Ct(kj) = σ2{β2
0+(∆j

p)2β2
1+(∆j

p−1)
2β2

2+(∆j
p−2)

2β2
3+· · ·+(∆j

j+1)
2β2

j }.

It is straightforward that Remark 2 applies also in this situation.

5.2 Covariance

Assume that there are random changes in the state price density coeffi-
cients eβt over time so that for equidistant time points t we have

Ct(kj) = ∆j
eβt,eβt = eβt−1 + εt, (25)

where, at fixed time t, eβt is the parameter vector and εi, i = t, t−1, . . . are
iid random vectors having iid components with zero mean and variance
σ2. For nonequidistant time points, let δt denote the time between the
t-th and (t− 1)-st observation. The model is

Ct(kj) = ∆j
eβt,eβt = eβt−1 + δ

1/2
t εt (26)

and it leads to the covariance matrix with elements

Cov{Ct−u(kj), Ct−v(ki)} = Cov(∆j
eβt−u, ∆i

eβt−v)

= σ2∆j∆
>
i

min(u,v)X
l=1

δt+1−l. (27)

The analogous model on the log scale is

Ct(kj) = ∆j
eβt,

log eβt = log eβt−1 + δ
1/2
t εt. (28)

Applying Taylor expansion we obtain an approximation of the covariance
structure as

Cov{Ct−u(kj), Ct−v(ki)} = Cov(∆j
eβt−u, ∆i

eβt−v)

.
= σ2∆j

eβt
eβ>t ∆>i

min(u,v)X
l=1

δt+1−l. (29)

5.3 Including put options

Similarly as the price of the call options, Ct(kj),we can write the model
for the price of the put options, Pt(kj), as

Pt(kj) = ∆P
j eα + δtεt (30)

or

Pt(kj) = ∆j eαt + δ
1/2
t εt,eαt = eαt−1, (31)
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where eαt denotes the column vector of the unknown parameters corre-
sponding to time t and ∆P

j denotes the corresponding row of the design
matrix, i.e.,

∆P
j = (1, ∆1

j , ∆
2
j , . . . , ∆

j−1
j , 0, . . . , 0| {z }

(p−j)

).

Using the relations between the α and β parameters, αi = βp−i+1, for
i = 2, . . . , p− 1. After some simplifications we obtain

Pt(kj) = ∆P
j eα + δ

1/2
t εt, (32)

where eα = (α0, α1, βp−1, βp−2, . . . , β2)
>. In this way, we obtain a joint

estimation strategy for both the call and put option prices:

Ct(kj) = ∆j
eβt,

Pt(kj) = ∆P
j eαt,„ eβteαt

«
=

„ eβt−1eαt−1

«
+ δ

1/2
t εt, (33)

which directly leads to the covariances

Cov{Pt−u(kj), Pt−v(ki)} = Cov(∆P
j eαt−u, ∆P

i eαt−v)

= σ2∆P
j (∆P

i )>
min(u,v)X

l=1

δt+1−l. (34)

and

Cov{Ct−u(kj), Pt−v(ki)}
= Cov(∆j

eβt−u, ∆P
i eαt−v)

= σ2

min(u,v)X
l=1

δt+1−l

p−1X
k=2

∆j
p+1−k∆p+1−k

i . (35)

5.4 Application

In Figure 9, we present the improvement achieved by considering both
the call and put option prices and by applying the covariance struc-
ture (29,34,35) that takes into account the correlations of the observed
option prices. In comparison with Figure 7, we observe the shorter length
of the confidence intervals.

The residual plots in Figure 10 omits large residuals that correspond
to the lowest and highest strike prices—the model doesn’t seem to cap-
ture the variability in these points very well. All the remaining residuals
plotted in the top panel of Figure 10 (using the same technique as in
Figure 8) do not display any time dependency anymore. The lower panel
of Figure 10 displays the histogram of the residuals. The distribution of
the residuals seems to be symmetric and not too far from Normal distri-
bution. However, the kurtosis of this distribution is too large and formal
tests reject normality.

The proposed estimation technique can be also naturally used for pre-
dictions. In order to predict and construct confidence intervals for the
SPD in time t + τ we enhance the model (33) by considering„ eβt+τeαt+τ

«
=

„ eβteαt

«
+ δ

1/2
t,τ εt,τ . (36)
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Figure 9: Estimate with confidence intervals and the residuals when using the
covariance structure (29, 34, 35) on 17th January. The upper plot shows
the observed option prices with the constrained (solid lines) and the uncon-
strained estimate (dashed lines). The size circles corresponds to the weight of
the observations—the largest circles are the most recent observations. The lower
plot shows the estimated SPD with the confidence intervals.
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Figure 10: The development of the residuals resulting from model with the
covariance structure (29, 34, 35) on 17th January during the day where circles,
squares, and stars denote the residuals from morning, midday, and afternoon
and a histogram of the residuals.

23



0 10 20 30 40 50 60

19
00

19
50

20
00

20
50

21
00

21
50

mean and closing DAX

time

Figure 11: Daily development of the expected value of the SPD from January
till March 1995. The circles denote the corresponding closing value of DAX.

It is straightforward that the estimation technique for the SPD in time
t+τ does not change. The only difference is an increase in the covariances
which now reflects the increase in uncertainty resulting from the random
changes of the SPD between the time points t and t + τ .

6 Dynamics of SPD

In order to study the dynamics of SPD, we calculated basic moment char-
acteristics of the estimated SPDs. The mean, variance, skewness, and
kurtosis in the first Quarter of 1995 are plotted as lines in Figures 11–
14. Note, that the SPDs in this period were always estimated using the
options with shortest time to maturity. This means that the time to ma-
turity is decreasing linearly in all plots, but it jumps up whenever the
option with the shortest time to maturity expires. These jumps occured
at days 16, 36, and 56 in all plots.

In Figure 11, the daily closing values of DAX are plotted as circles. We
observe that the means of the SPD, displayed as the line, follow closely
the value of the DAX index. In two periods, days 17–22 and days 56–63,
the mean of the SPD lies above the DAX. It could be that the option
market might have expected change of trend in these days.

In the second plot in Figure 12, we see that the variance of SPD de-
creases linearly as the option moves closer to its maturity. This observa-
tion suggests that SPD estimates calculated for neighbouring maturities
can be linearly interpolated in order to obtain SPD estimate with arbi-
trary time to maturity. Such an estimate is important for making the
SPD estimates comparable and for studying the development of the mar-
ket expectations.

The skewness and the kurtosis in Figures 13 and 14 are for good reasons
more volatile closely before the expiry of the option, but otherwise do not
display any obvious pattern.
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Figure 12: Daily development of the variance of the SPDs from January till
March 1995.
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Figure 13: Daily development of the skewness of the SPDs from January till
March 1995.
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Figure 14: Development of the kurtosis of the SPDs from January till March
1995.

6.1 Estimate with the fixed time to expiry

The variances displayed in Figure 12 suggest that the variance of the SPD
estimates changes approximately linearly in time when moving closer to
the date of expiry.

Hence, from the estimates fτ1(.) and fτ2(.) of SPDs corresponding to
the times of expiry τ1 and τ2, we construct an estimate fτ (.) for any time
of expiry τ ∈ (τ1, τ2) as

fτ (.) =
(τ2 − τ)1/2fτ1(.) + (τ − τ1)

1/2fτ2(.)

(τ2 − τ1)1/2
. (37)

In this way, the variance, Vτ , of the centered SPD with time to expiry
equal to τ can be expressed as

Vτ =

Z
x2fτ (x)dx

=

Z
x2 (τ2 − τ)1/2fτ1(.) + (τ − τ1)

1/2fτ2(.)

(τ2 − τ1)1/2
dx

=
(τ2 − τ)Vτ1(.) + (τ − τ1)Vτ2(.)

τ2 − τ1
.

We argue that such an estimate is reasonable since we observed in Fig-
ure 12 that the SPD variances change linearly in time. The centering of
the SPDs does not present any additional difficulty since all SPD estimates
calculated at time t should have the same expected value.

The resulting estimates for the time of expiry τ = 45 days for the first
trading days in years 1995, 2001, and 2003 are given in Figure 15. We
observe very large changes in the market expectations during this period.
In 1995, the expectations (45 days ahead) were concentrated just above
2000. Six years later, in 2001, the expectations of the market look very
different. The center of the histogram is now three times larger than in
1995. Also the variance of the SPD is much larger. In 2003, the prices
are only about one half of the prices in 2001, but the variance of the
distribution remains very high.

26



0 2000 4000 6000 8000 10000 12000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SPD histogram, year 1995 day 1

 

 

0 2000 4000 6000 8000 10000 12000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SPD histogram, year 2001 day 1

 

 

0 2000 4000 6000 8000 10000 12000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SPD histogram, year 2003 day 1

 

 

Figure 15: Histograms of the SPD estimates on the first trading day in years
1995, 2001, and 2003.
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6.2 Verification of the market’s expectations

The SPD can be interpreted as the market’s expectation of the behaviour
of the value of the DAX in 45 days. Hence, it is interesting to use our data
set to verify how these expectations compare with reality. In Figures 16–
18, we plot two types of prediction intervals based on the SPD together
with the true future value of the DAX. The red dashed line is calculated
as the mean of the SPD plus and minus two times its standard deviation.
The green dotted line displays the 2.5% and 97.5% quantiles of the SPD.
Both intervals should cover the future value of the DAX, displayed as a
full black line, with probability 0.95.

Figures 16–18 suggest that the method works well and that the DAX
mostly stays well within our expectations. The DAX was sometimes rising
faster than the market expected from 1995 till mid 1998. After a fast
decrease in the second half of 1998, the market increases again till the
beginning of year 2000. Since then, the market decreases. However, the
changes stay mostly within or very close to the bounds predicted by our
SPD estimates. The only exception is a large shock observed in September
2001 caused by the terrorist attack on the World Trade Center.

The plots in Figures 16–18 have different scales which makes the com-
parison of different years more difficult. Therefore, we display the pre-
dictions for all years in Figure 19. Here, we can see the huge changes in
the market between 1995 and 2003. The value of DAX was in 2003 only
slightly higher than in 1995, but the volatility was much larger.

6.3 Evaluation of the quality of the forecasts

The quality of the forecasts can be evaluated by comparing the true fu-
ture observation with its predicted distribution (the SPD). Craig, Glatzer,
Keller and Scheicher (2003) evaluate the forecasting performance of Ger-
man stock option densities using the probability integral transformed ob-
servations zh,t, where t denotes the time and h the forecasting horizon.
More precisely, we define

zh,t =

Z Xt+h

−∞

bfh,t(u)du,

where bfh,t(.) denotes our estimate of the SPD h days ahead at time t
and Xt+h is the future observation. In other words, zh,t is the probability

value of Xt+h with respect to bfh,t(.). Clearly, the zh,t should be uniformly

U(0, 1) distributed if the estimated SPD bfh,t(.) is equal to the true den-
sity of Xt+h. In Figure 20, we display the histograms of zh,t’s for each
year. Clearly, in the ideal case, the histograms should not be too far from
Uniform U(0, 1) distribution. In our data, we observe that the histograms
look quite different than we would expect. Especially in years 1995–1999,
the DAX was moving mainly in the upper quantiles of the predicted SPD.

In order to account for the overlapping forecasting periods, we calcu-
late the confidence limits for the empirical distribution function

bF (u) =
1

T

TX
t=1

I(zh,t ≤ u)

of zh,t’s that take into account the autocorrelation structure.

dVar( bF (u)) =
1

T

(bγu(0) + 2

hX
j=1

„
1− j

T

« bγu(j)

)
, (38)
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Figure 16: SPD based predictions in years 1995 up to 1997.
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Figure 17: SPD based predictions in years 1998 up to 2000.
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Figure 18: SPD based predictions in years 2001 up to 2003.
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Figure 19: SPD based predictions from January 1995 till March 2003.

where γu(j) is the sample autocovariance of order j:

γu(j) =
1

T

TX
t=j+1

n
I(zh,t ≤ u)− bF (u)

o n
I(zh,t−j ≤ u)− bF (u)

o
.

The empirical distribution functions bF (.) are plotted separately for
years 1995–2002 in Figure 21. The distribution function of U(0, 1) and
the limits following from (38) are displayed as dotted lines. The year 2003
was not included since our dataset contains only two months of the year
2003 which did not leave enough observations to confirm the forecasts.

In years 1995–1997, the market was growing much faster than the
SPDs were predicting. In year 1996, it never happened that the DAX
fell bellow the 40% quantile of the forecast distribution and there were
only few days when this value was bellow 60%. The situation in years
1998 and 1999 was less extreme even though the fast growth of DAX
continued. The forecast distribution given by the SPD estimate bft,h(.)
does not differ significantly from the true distribution of Xt+h in years
2000–2002. Thus, the DAX was growing much faster than the option
market expected in years 1995–1999 and it was falling according to the
SPD forecasts in years 2000–2002.

7 Conclusion

We have proposed a simple linear model for the arbitrage free estima-
tion of the SPD. Our procedure takes care of the daily changing covaari-
ance structure and involves—using the Put-Call parity—both types of
European options. We analyze the moment dynamics of the SPD from
1995–2003 and find by Maximum Likelihood theory confidence intervals
for the (future) SPD. An application to DAX EUREX data for the years
1995–2003 produces a forecast prediction corridor that is almost perfectly
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Figure 20: Histograms.
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Figure 21: Integral transformation.
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covering the future DAX index value. The only exception occured in
Septenber 2001. The proposed technique enables us not only to price
exotic options byt also to measure the risk and volatility ahead of us.
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