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1. Introduction 

Artificial Intelligence (AI) is often regarded as the next general-purpose technology, with a 

rapid, penetrating, and far-reaching use over a broad number of industrial sectors (Brynjolfsson 

et al. 2017; Agrawal et al. 2019a; Nolan 2020). A main feature of general-purpose technology 

is to enable new and complementary production methods that may increase productivity over 

time (Bresnahan and Trajtenberg 1995; Bresnahan et al. 2002; Brynjolfsson and Hitt 2003; 

Cardona et al. 2013). As such, it could be expected that the adoption of AI technologies – 

especially its machine learning component – by firms enacts new business opportunities, 

spawns new innovative complementarities, and boosts productivity (Brynjolfsson and McAfee 

2014).  

In that sense, AI can be regarded as an intangible capital asset that firms may invest into and 

use to generate output through a production function. For instance, several AI’s applications 

such as autonomous vehicles, voice-recognition and speech/text generating systems, or trained 

neural networks to optimize business energy consumption, would depict AI’s potential to 

increase firm productivity (Brynjolfsson et al. 2017). Other authors have speculated about how 

AI-based machine and deep learning techniques may have the capacity to enhance firm 

productivity through its impact on R&D, innovation, and the generation of new ideas (Aghion 

et al. 2019; Cockburn et al. 2019). Notwithstanding these optimistic predictions about the 

transformative power of AI, there are other scholars that are more skeptical. Gordon (2014; 

2018) claimed that U.S. productivity growth in the coming decades could be much slower, and 

that IT, and innovative progress in general, will not have any propeller role on the observed 

productivity slowdown. Gordon argues that, for the period 2004 to 2014, no concluding 

evidence on the link between fundamental inventions (e.g., smart phones) and U.S. productivity 

performance has been presented so far. More recently, the hypothesis that human labor could 

be automated by super-intelligent computers, leading to a rapid acceleration of a technology-

driven growth and productivity increase has been rather rejected. Testing that hypothesis within 

the context of economic growth, Nordhaus (2021) suggests that AI would have to encompass 

all human tasks in order to reach such “economic singularity”.  

Besides this clash of predictions on the role of AI adoption, the debate lacks conclusive and 

rigorous empirical evidence mainly due to restricted availability of data on AI adoption in the 
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business sector. Recent studies focused on analyzing the impact of AI using patent applications 

and scientific papers related to AI as a main measure of interest (Cockburn et al. 2019; Van 

Roy et al. 2020; Damioli et al. 2021). However, patent data might provide an incomplete and 

biased picture of AI’s potential effect on productivity since not all AI methods are being 

patented, and many firms may adopt AI technologies invented by third parties. To analyze the 

effect of AI on innovative activities and productivity, other studies used data on specific 

components of AI technologies such as the use of robotics (Graetz and Michaels 2018; 

Acemoglu and Restrepo 2020) or the use of big data and data-driven managerial decisions 

(Brynjolfsson et al. 2011; Niebel et al. 2019; Ghasemaghaei and Calic 2019). While these 

measures represent important elements of AI, they do not account for the entire scope of AI that 

is used in firms. As stressed by Raj and Seamans (2018), more comprehensive data on the use 

of AI – especially at the firm level – would be required in order to truly understand the 

contribution of AI on productivity. 

To the best of our knowledge, this is the first paper that addresses this issue in detail by studying 

the relationship between AI and firm productivity, using data from a representative, large-scale 

survey that contains rich information on firms’ AI adoption. We analyze cross-section as well 

as panel data from the German part of the European Commission's Community Innovation 

Survey (CIS). Differently to the standard CIS, the German innovation survey for the reference 

year 2018 included specific questions on the adoption of AI which covered all types of AI 

methods that can be used in a firm as well as all kinds of business areas where AI may be 

applied (see Rammer et al. 2021 for more details). This data provides an ideal base for 

investigating productivity impacts of the entire diversity of AI applications in firms. 

The main findings of this paper are in line with the notion that AI is a productivity-enhancing 

technology. We find positive and significant effects of the use of AI on firm productivity. This 

finding holds for different measures of AI usage, i.e., an indicator variable of AI adoption, and 

the intensity with which firms use AI methods in their business processes. The general positive 

effect of AI on firm productivity also holds both for sales-based and value-added based 

productivity measures. In addition, our instrumental variables results suggest a potential direct 

relationship between the use of AI and productivity that is significantly higher in magnitude 

than our reduced-form results.  
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The rest of the paper is organized as follows. Section 2 relates this work to previous studies 

linking artificial intelligence and productivity. Section 3 presents our theoretical framework and 

the empirical model. Section 4 describes the data and model variables while Section 5 contains 

the results of our empirical analysis, including several robustness checks. Finally, Section 6 

discusses the findings and identifies further research questions.   

2. Artificial Intelligence and Productivity 

AI as a productivity-enhancing technology or faltering innovation? 

There are several potential channels by which AI can propel firm productivity. For example, 

machine learning advances have encouraged cheaper and better predictive analyses allowing 

the full automation of tasks (e.g., self-driving vehicles), larger access to new relevant 

knowledge and data that can be combined to produce new ideas and know-how, and the 

generation of new innovations (Agrawal et al. 2019a; Agrawal et al. 2019b; Cockburn et al. 

2019). As shown by Aghion et al. (2019) at a conceptual level, AI is an additional input in a 

firm’s production process that can potentially change firm performance due to its effect on the 

generation of new ideas and technologies, and because it would become handy in solving 

difficult problems. According to Brynjolfsson et al. (2017), AI should be treated as an additional 

intangible capital in the production function of firms as the expansion of investment in AI 

technology may increase productivity similarly to other types of factor inputs. The effective use 

of AI technologies would result in additional intangible assets such as datasets, firm-specific 

human skills, and establishing new firm processes. As for other new technology, productivity 

impacts of AI technologies may not be observed right after its implementation but with some 

time lag only (Brynjolfsson et al. 2017) as firms may have to adopt other processes and invest 

in complementary assets in order to fully leverage the productivity enhancing potential of AI 

(Tambe et al. 2020). 

Opposite to this strand of the literature, other economists have flagged the observed slowdown 

of productivity growth (Gordon 2014; 2018) and adopt a rather modest view on the 

transformative role of new (digital) technologies such as AI. Their arguments range from the 

notion that new ideas within firms are increasingly difficult to develop (Bloom et al. 2020) to 

the possible social, physical, and institutional constraints for accessing knowledge and data that 
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are key for effectively exploiting AI techniques in business processes (see Agrawal et al. 2019b 

for a discussion).  

Nonetheless, as claimed by Raj and Seamans (2018), until now there has not been a database 

available at the firm level that allows a rigorous study of the role of AI on productivity 

outcomes. Brynjolfsson et al. (2017) stressed the limitations of the currently available AI data 

and called for more comprehensive firm-level data on AI use. In that context, the literature 

reported above is rather speculative because it fundamentally lacks empirical evidence 

supporting either view. In the absence of measures that would cover the entire variety of AI use 

in firms, empirical research has so far mainly focused on three areas or approaches: (i) industrial 

robots and automation of tasks; (ii) patents or scientific publications related to AI; and (iii) data-

driven managerial decisions or the use of big data.   

AI, Robotics, and productivity 

In a pioneering paper, Graetz and Michaels (2018) analyzed industry-level data on industrial 

robots from the International Federation of Robotics (IRF) for six different countries from 1993 

to 2007. These authors showed that country-industry pairs with a larger expansion in robot 

density were associated to larger benefits in labor productivity. Focusing on the German 

economy, Dauth et al. (2017) found that at the aggregate level the industrial use of robots 

enhances labor productivity. More recently, relying on the same IRF data, Acemoglu and 

Restrepo (2020) showed that the penetration of robots for different time periods had a positive 

effect on industry value added measures. Other studies analyzing the impact of industrial 

robotics at the aggregate level on productivity measures include, e.g., Humlum (2019) who 

estimated a structural model of firm’s robotics adoption and found that firms expand the 

produced output when they embrace industrial robots (see also Stiebale et al. 2020 and 

Acemoglu et al. 2020 for further evidence).  

Closely related, there is a strand of literature that focuses on the idea that technologies 

associated with AI (e.g., automatic guided vehicles or industrial robots) have the potential to 

automate tasks that are currently done by humans, and thus, possibly affect the labor market 

and productivity outcomes. For instance, Frey and Osborne (2017) used detailed information 

about tasks and occupations and estimated that around 47% of the U.S. jobs were in high risk 

of automation given recent advances in computerization and machine learning methods (e.g., 
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data mining or machine vision). According to the authors, for example, “telemarketers”, “cargo 

and freight agents”, or “watch repairers” would be at a dramatically high risk of automation 

whereas “recreational therapists” or “nutritionists” would be on the opposite extreme (see also 

Arntz et al. 2016). In a similar approach, Felten et al. (2021) classified industries with respect 

to their AI exposure (AIIE) based on expert assessments. They find highest AIIE scorings for 

financial services, legal, accounting and consulting services, and IT services, while the AIIE 

scores are rather low for most manufacturing industries except electronics.  

In accordance with the framework developed by Acemoglu and Restrepo (2019a), AI-related 

or automation technologies could generate a strong displacement effect that may reduce the 

demand for labor, wages, and employment, and hence, contracting the share of human labor in 

national income. Notwithstanding, labor demand could either be expanded in those industrial 

sectors which are being automated or, alternatively, change the task content reinstating labor in 

a different and new way and generate a countervailing effect from automation that may boost 

productivity (see, e.g., Acemoglu and Restrepo 2019b for an empirical decomposition of these 

effects). However, not all robots or automation technologies are directly based on AI, and thus, 

this strand of the literature might not be strictly identifying the direct effect of AI adoption on 

productivity. In fact, as noted by Raj and Seamans (2018), the physical nature of robots, which 

make them a tangible capital asset easy to measure and track, on top of the availability of public 

data (e.g., IRF data on industrial robotics), have retained the attention on this area of most of 

the existing empirical work. 

AI-related innovation and productivity 

There is another body of work attempting to identify the impact of AI technologies through 

patent data. In general, patents are a relevant driver for productivity growth and performance 

of firms. For example, Van Roy et al. (2020) analyzed the economic performance of European 

firms patenting on AI (i.e., “AI inventors”) for the period 2000-2016. Using a keyword-based 

method for identifying AI patents1, the authors found a significant growth of annual sales in AI 

inventors with at least one granted patent – especially SMEs – compared to firms with only 

non-granted AI patent applications. Another recent study investigates the impact of patents 

                                                 

1 See Table 1 in Van Roy et al. (2020) for multiple methods usually used by the literature to identify AI patents. 
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associated to the so-called “Industry 4.0” technologies, which would include AI-methods, on 

the economic performance of firms. Behrens and Trunschke (2020) employed a panel dataset 

of German firms and found that the marginal effect of an additional “4.0 patent” would increase 

firms' sales by 8.3%, which diminishes by firm size. Further studies analyzing the contribution 

of AI adoption on firm performance using patent information are De Prato et al. (2018), 

Cockburn et al. (2019) and Damioli et al. (2021).  

AI, Big Data in the business, and productivity 

A further group of papers study the impact of data-driven decisions or the use of big data on 

firm performance. AI-related methods such as machine learning algorithms and deep neural 

networks are usually used to analyze the ever-increasing amount of data that firms use and 

produce as part of their business activities (Taddy 2019). Given the essential role of data for AI 

technologies, many scholars looked on the impact that the use of big data might have on firms' 

decisions and performance. Brynjolfsson et al. (2011) analyze the impact of managerial 

decision-making based on big data on U.S. firm productivity for the period 2005 to 2009. They 

show that firms adopting data-driven decisions are more productive than competitors that do 

not use big data methods. More recently, Niebel et al. (2019) employed representative data of 

German manufacturing and services firms to analyze the effect of big data use on innovation 

performance such as the sales shares of new products. They show that the use of big data is 

related to a higher propensity and intensity to innovate (see Ghasemaghaei and Calic 2019 and 

Lozada et al. 2019 for related works). Notwithstanding the close relationship between big data 

and AI, not all big data analyses involve the development and adoption of AI, nor do the 

different varieties of AI applications in firms necessarily involve big data analysis.  

In this paper, we aim to extend the empirical evidence about firm-level productivity impacts of 

AI in three ways. First, we cover all types of AI methods and technologies used for any kind of 

production process or output, overcoming the limitations of existing studies which focused on 

specific AI-related technologies such as robotics or big data use. Secondly, we consider all 

types of active use of AI in a firm, regardless of whether the AI technology was developed by 

the AI using firm or by others. By covering also the adoption of AI, we extend existing studies 

that focused on the development of novel AI technologies as indicated by patents. Thirdly, we 

analyze the role of how intensively a firm is using AI, by developing a measure of the breadth 
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of AI use in a firm, i.e., the variety of different AI methods employed in different AI application 

areas.  

3. Empirical Framework  

We follow the standard approach to analyze firm productivity by linking inputs and outputs 

within a production function approach (Berndt 1991).2 The production function (f) of firms 

describes the association between a firm’s output (Y), measured by annual sales, and total factor 

productivity (A) as well as a set of inputs, such as capital (K), labor (L), and intermediate inputs 

such as materials, energy and purchased services (M). We will accommodate this framework 

and add an additional input to the production function that represents AI adoption (AI). This 

approach is similar to previous studies analyzing the role of IT or innovation technologies on 

firm’s productivity. For instance, Brynjolfsson and Hitt (2003) estimated a production function 

with a firm’s computer capital stock as an additional production input.3 Assuming that AI is a 

sort of intangible asset that is accumulative and depreciable, and that firms can employ to 

generate output (Brynjolfsson et al. 2017), the production function for firm i in period t is 

defined as 

𝑌௧ ൌ 𝑓ሺ𝐴௧ ,𝐾௧ , 𝐿௧ ,𝑀௧ ,𝐴𝐼௧ሻ with i = 1, …, N. 

For simplicity, we assume that the functional form of the production function follows a four-

input Cobb-Douglas form as 

𝑌௧ ൌ 𝐴௧𝐾௧
ఈೖ𝐿௧

ఈ𝑀௧
ఈಾ𝐴𝐼௧

ఈೌ, 

or, equivalently, 

𝑙𝑛𝑌௧ ൌ 𝑙𝑛𝐴௧  𝛼𝑙𝑛𝐾௧  𝛼𝑙𝑛𝐿௧  𝛼𝑙𝑛𝑀௧  𝛼𝑙𝑛𝐴𝐼௧, 

                                                 

2  See Bartelsman and Doms (2000) and Syverson (2011) for literature reviews on studies analyzing the 

determinants of firm’s productivity.   
3  Stiroh (2005) and Draca et al. (2006) provide surveys of studies considering IT technologies in firm’s 

production functions. In a recent survey, Abrardi et al. (2021) review studies that consider AI as a new input 

of production.  
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where 𝛼, 𝛼, 𝛼, and 𝛼 are unknown parameters to be estimated. The term A, the total factor 

productivity (TFP), accounts for variations in productivity that are not due to observed inputs 

but that operate through the production function (Syverson 2011).   

In order to get an empirical equation that can be estimated, we introduce stochastic disturbances, 

which represent random, nonsystematic shocks when firms seek to modify the amount of inputs 

employed to reach the necessary requirements for profit maximization (Zellner et al. 1966). 

Thus, for firm i in period t, we have the following estimable equation  

𝑙𝑛𝑌௧ ൌ 𝜆  𝛼𝑙𝑛𝐾௧  𝛼𝑙𝑛𝐿௧  𝛼𝑙𝑛𝑀௧  𝛼𝑙𝑛𝐴𝐼௧  𝑋௧𝛽   𝜀௧, 

where 𝜆  𝑋𝛽  𝜀 ൌ 𝑙𝑛𝐴௧, 𝑋௧ is a matrix of firm’s characteristics that are described below, 

𝜆 is a firm-specific time-invariant productivity term, and 𝜀௧ is a random, unobserved error with 

mean zero. The coefficient of interest is 𝛼, the ceteris paribus impact of AI adoption. Of 

course, we could conceptually also consider that AI is not a factor input but that it rather affects 

to total factor productivity, and would thus be included in the term lnA. We would arrive at the 

same equation to be estimated. 

In the literature on production function estimation it is commonly hypothesized that the firm-

specific term 𝜆 is known to the firm but unobserved to the researcher, and that the firm chooses 

its factor input optimally based on its knowledge of 𝜆 which gives rise to an endogeneity 

concern in econometric estimations. Several approaches have been suggested to overcome that 

problem. Among others, the most prominent examples are the works of Olley and Pakes (1996), 

Levinsohn and Petrin (2003), Ackerberg et al. (2015), and most recently Gandhi et al. (2020).  

Unfortunately, our data do not allow the application of the most commonly used estimator, as 

our main database is a cross-section of surveyed firms. We therefore have to limit the current 

analysis to simpler estimation techniques but offer a number of variations of the specification 

and conduct robustness test to the extent possible with the current database. In particular, we 

estimate the following models: 

1. Our base models are cross-sectional OLS regressions where we use a dummy variable 

indicating whether a firm uses any AI technology in its production along with the factor 

inputs K, L, and M. We have to introduce the restriction that 𝜆 ൌ  𝜆 ∀ 𝑁, but use a 

number of controls, X, to mitigate possible endogeneity concerns arising from omitted 
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variable bias and unobserved heterogeneity, such as industry dummies, firms’ age, and 

variables on general innovation activity. The variables are described in detail in the 

subsequent data section.  

 

2. We run IV regressions (2SLS) where we instrument the AI variable to address the 

concern that the more productive firms are those investing in AI. Unfortunately, our 

database is not rich enough to also instrument the common factor inputs L, K, and M. 

 

3. We implement an entropy balancing procedure as a further approach to address bias due 

to unobserved heterogeneity. This method divides the sample into treated firms (i.e., AI 

adopters) and control firms (i.e., non-AI adopters) and attaches a unit weight to each 

firm based on an entropy balancing on the covariates’ sample moments (see 

Hainmueller 2012). This procedure helps to maintain relevant information in the 

preprocessed firms by allowing the weights to change smoothly across observations. 

 

4. In order to further address the concern of unobserved heterogeneity, we constructed a 

very small panel with T = 2, such that we can estimated the production function in first 

differences, i.e., we regress ∆𝑙𝑛𝑌 on ∆𝑙𝑛𝐿,∆𝑙𝑛𝐾,∆𝑙𝑛𝑀, and the AI dummy variable. 

The firm-fixed effect 𝜆 is thus accounted for by first-differencing. We run both OLS 

and IV regressions, where we instrument the AI dummy in the latter. As the AI dummy 

is just available from one cross-section of the survey, we cannot take the first difference 

though. We have to modify the interpretation slightly: in the first-difference fixed 

effects regression, the AI dummy is assumed to approximate that the firm invested into 

AI in the recent period rather than interpreting the dummy as a stock. The investment 

assumption is plausible as most AI using firms have only recently started to develop or 

adopt this technology. If they thus indicated in the survey that they have been using AI 

in the recent three-year period, it is also likely that they invested.  

 

5. We offer a number of robustness tests of the specifications described above. 

a. Instead of the AI dummy variable, we will also use an AI index that measures 

the intensity of AI use in the firm.  

b. Instead of using sales as output variable, we also use value-added (and then omit 

M from the right-hand side of the production function). 
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c. For a sub-sample, we can control for accumulated, past investments that firms 

have made into their general IT architecture. 

4. Data 

Data source 

We use cross-section as well as a panel data of firms taken from the German contribution to the 

Community Innovation Survey (CIS) of the European Commission. Differently to other 

national innovation surveys, the German survey is designed as a panel survey and conducted 

every year, called ‘Mannheim Innovation Panel’ (MIP, see Peters and Rammer 2013 for more 

details). The information collected is representative for all firms in Germany with at least 5 

employees in manufacturing, mining, utilities, and business-oriented service sectors (wholesale 

trade, transportation, financing and insurance, information and communication, professional, 

scientific, technical, administrative and support services). The MIP follows the methodological 

guidelines of the CIS as laid down by the Statistical Office of the European Commission 

(Eurostat) in terms of sampling, data processing, and quality control. The survey is based on a 

stratified random sample. Data is collected through a standardized questionnaire that can be 

answered both on paper and online. The response rate of the MIP is between 25 and 35%. A 

likely bias among responding firms is analyzed through an extensive non-response survey (see 

Peters and Rammer 2013). 

AI variables 

In the survey for the reference year 2018, the questionnaire included questions on the use of AI 

which were not included in any other national CIS. One question asked in a matrix format 

whether a firm employs AI methods (distinguishing methods related to language understanding, 

image recognition, machine learning, knowledge-based systems) and in which application areas 

the method is used (distinguishing products/services, process automation, customer interaction, 

data analytics, and any other area). AI use includes both in-house developed AI technology and 

AI technology developed by others and adopted by the firm. Any firm that has developed or 

adopted at least one AI method by 2018 is considered as an AI user (AI). In addition, we use 

the matrix information to construct a measure of AI intensity (AIint) that corresponds to the 
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sum of different AI methods and AI application areas used divided by the maximum number of 

20 (as there are 4 methods and 5 application areas). As shown in Table 1, our cross-sectional 

sample contains 5,849 firms out of which 409 can be classified as AI users, i.e., about 7%. 

Among the AI using firms, the average value of our AI intensity variable amounts to 12.9%, 

i.e., the average firm used 2.5 out of the 20 possible combinations of AI technology and areas 

of application.  

Other variables in the production function 

Inputs to the production function are measured by the natural logarithms of employment 

(lnEMP), intermediate inputs such as material, energy and purchased services (lnMAT), and 

tangible assets (lnCAP). Output is measured by annual sales (lnSALES) and alternatively by 

value added, i.e., sales minus intermediate inputs (lnVA). As mentioned, we also estimate a 

first-differentiated fixed-effects production function, denoting the first difference as ΔlnSALES, 

ΔlnVA, ΔlnEMP, ΔlnMAT, and ΔlnCAP.  

In order to separate a likely productivity effect of AI from possible effects of other innovative 

and technological activities of the firm, we allow the TFP term, A, to vary with some further 

firm-specific variables X. First, firms that perform R&D on a permanent basis may obtain higher 

TFP levels than non-R&D-performers, or firms that conduct R&D only occasionally, reflecting 

their higher capacity to absorb and use relevant external knowledge (Cohen and Levinthal 

1989). We thus include a dummy, RDCON, which equals 1 if the firm is performing R&D on 

a continuous basis. Besides inventions that may result from own R&D, firms may also benefit 

from supplier-induced innovation, i.e., they employ new or improved technology embedded in 

newly acquired machinery or equipment in their production process. The variable TECHIMP 

equals 1 if the firm has adopted, during 2016 to 2018, new or improved production technology 

relative to their machinery and equipment that has been used prior to the survey period (i.e., 

before 2016). As further explanatory variable, we use the natural logarithm of a firm’s age 

(lnAGE). It could be expected that more mature firms had more opportunities to optimize their 

production more than younger firms and therefore achieve higher TFP, all else constant. 

Industry dummies control for unobserved TFP variation across sectors that are not yet captured 

by any of the structural variables described so far. In the panel fixed effects regressions, 

unobserved TFP heterogeneity is captured by firm-specific effects.  
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See Table 8 in the Appendix for further information regarding industry categories considered 

and the corresponding number of AI using firms and non-AI users per industry.   

Endogeneity of AI 

When extending the methodological application from cross-sectional OLS regressions to IV 

regressions in order to address the potential endogeneity of AI, we obviously need instrumental 

variables. There are several ways in which the impact of AI on productivity might be biased 

due to an endogenous (non-random) nature of the decision to employ AI methods. First, firms 

could decide to implement AI technologies as a consequence of higher profits or larger available 

economic resources. In this case, a firm’s productivity level might drive the decision to use AI. 

Secondly, given the data at hand, omitted covariates not included in our estimated specifications 

might be correlated with the use of AI, leading to estimates that could be biased. For example, 

AI investment decisions might be associated to broader digitalization efforts of a firm or to 

general expansion of a firm's technological infrastructure.  

We therefore need a set of instruments that must be correlated with AI usage, but not with 

unobserved productivity shocks. The following instruments were considered in the estimation 

process. First, as the MIP questionnaire also collected information on the year of first use of AI 

by the firms, we construct a measure of investment into AI at the industry level during the time 

period between the years 2011 to 2018 (AI_IND); that is, we consider the number of firms using 

AI methods by sector for the years 2011 to 2018. The frequency of AI use at the sector level 

may induce the focal firm to also employ AI, but the sector-level usage should not depend on a 

single firm’s choice.  

Second, making use of panel data, we compute the firms’ average annual innovation expenses 

per employee for the period 2011 to 2017 (PASTINNO). Innovation expenditure cover internal 

and external R&D as well as other innovation-related expenses (e.g., acquisition of new 

equipment and external knowledge, training, marketing, design, and engineering work for 

innovations). We expect that the more a firm invested into innovation in the past, the more 

likely it is to use AI at some point. We measure the past innovation expenditure per employee 

in the regressions to avoid multicollinearity with firm size. 
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Lastly, as firms may be reluctant to employ AI methods in case they face organizational 

rigidities and reluctance to new technologies among the workforce, we construct a dichotomous 

variable which equals 1 if “internal resistance” was stated as an obstacle for the firm's 

innovation activities (RESIST). This instrument is much in the spirit of some of the instruments 

used by Brynjolfsson et al. (2011). They instrumented the impact of data-driven managerial 

decision on firm productivity by barriers to IT adoption within the firm. 

Descriptive statistics 

After removing observations with missing values, erroneous responses and outliers, we end up 

with a sample size of 5,849 firms. Table 1 provides summary statistics for all model variables.  

We generally observe that firms which use AI are, on average, larger in all dimensions, i.e., 

sales and value added as output and employment, capital and materials as inputs. For instance, 

the average AI user realizes sales of about 114 million EUR and has 245 employees. For non-

users, these numbers are about 24 million EUR sales and 85 employees. We also find that AI 

users’ sales grow faster. The growth rates amount to about 5.4% versus 3.7% (see ΔlnSALES). 

The adopters also engage more in R&D and innovation as can be seen from the share of firms 

engaging in R&D on a permanent basis (the mean of RDCON is 50% versus 19%) and the share 

of firms acquiring improved machinery and equipment (TECHIMP is 78% versus 59%). The 

means of past R&D and innovation expenses per employee are also higher for AI users than for 

other firms.  

In a robustness check where we follow Brynjolfsson and Hitt (2003) we also consider firms’ 

past software expenses to account for the general IT architecture of the firm. We use two 

alternative versions. First a lag of software expenses per employee, and secondly, the average 

of the firm's software expenses between 2011 and 2017. We cannot really calculate a stock 

variable as there are many gaps in the time series. We therefore average the expenses across the 

years that we observe between 2011 and 2017.  

Interestingly, there is no difference in age among AI users and other firms, and AI users face 

higher internal resistance against innovation than other firms; 25% versus 15%. 
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Table 1 Summary statistics of model variables 

  Non-AI users (5,440 obs.) AI users (409 obs.) 

Variable  Acronym Mean Std. dev. Min Max Mean Std. dev. Min Max 

AI use (D) AI 0 0 0 0 1 0 1 1 
AI intensity AIint 0 0 0 0 0.129 0.097 0.050 0.750 
Sales SALES 33.689 115.170 0.097 1950.563 114.470 289.907 0.136 2151.413 
Employment EMP 84.504 219.719 1 2897 244.547 517.564 2 3150 
Materials MAT 15.040 53.116 0.005 791.133 32.651 77.198 0.007 617.418 
Capital CAP 17.180 131.436 0.001 6625.510 28.304 99.763 0.003 1098.981 
First difference log sales* ΔlnSALES 0.037 0.140 -0.579 0.722 0.054 0.147 -0.493 0.559 
First difference log employment* ΔlnEMP 0.019 0.105 -0.470 0.510 0.046 0.116 -0.405 0.510 
First difference log materials* ΔlnMAT 0.049 0.228 -1.276 1.330 0.021 0.260 -1.321 1.098 
First difference log capital* ΔlnCAP 0.053 0.214 -0.571 0.980 0.069 0.210 -0.559 0.911 
Permanent R&D activities (D) RDCON 0.191 0.393 0 1 0.498 0.500 0 1 
New/improved technology (D) TECHIMP 0.585 0.492 0 1 0.777 0.416 0 1 
Log age lnAGE 3.279 0.672 1.098 6.811 3.205 0.700 1.098 6.926 
Industrial investment into AI AI_IND 10.311 12.572 0 58 20.599 18.042 0 58 
Past innovation expenses per empl. PASTINNO  0.003 0.006 0 0.066 0.007 0.010 0 0.055 
Internal resistance against inno. (D) RESIST 0.147 0.354 0 1 0.254 0.435 0 1 
Log value added** lnVA 1.224 1.686 -4.291 7.490 2.088 2.129 -3.241 7.646 
Log past software expenses*** lnPASTSOFT - 2.353 3.105 -8.804 2.639 -1.253 2.242 -8.804 3.526 
Log mean software exp. 2011-2017**** lnAVGSOFT -3.214 3.265 -9.986 1.098 - 1.975 2.448 -9.986 1.098 

Notes: D: dummy variable; N = 5,849 (*N = 5,567; **N = 5,691; ***N = 2,572, ****N = 3,449). Monetary units are in million EUR. Source: German CIS 2018. 
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5. Estimation Results 

Main results: cross-sectional regressions 

Table 2 presents the results for the cross-sectional regressions using the AI dummy as main 

variable of interest. First, we can see that the ceteris paribus effect of AI use on productivity 

based on sales as output measure (lnSALES) is positive and significant in almost all 

specifications. Looking at column (1) for the OLS results of the most parsimonious 

specification of the production function without additional covariates, AI use is associated with 

higher productivity: AI users annually sell, on average, 13.7% more than non-AI users. We 

also find a positive and significant relationship between AI use and productivity also after 

controlling for age (lnAGE), innovation engagement (RDCON and TECHIMP), and sectoral 

heterogeneity by industry dummies (column (2)). The marginal effect then implies about 5.9% 

higher sales.  

In terms of the control variables, we find expected results. The coefficients of labor, capital, 

and intermediate inputs do roughly add up to 1. An F-test does not reject constant returns to 

scale. We also find that productivity is positively associated with firm age, permanent R&D 

and to a weaker extent to the investment in innovative machinery and equipment. 

The positive result also holds, when we address the potential endogeneity of AI by 

instrumenting the variable with sectoral adoption level, past innovation expenses and the 

internal resistance against innovation. A first-stage F-test of the excluded instruments clearly 

rejects the null hypothesis, and the absolute F-value is also higher than 10 which does not lead 

to a concern about weak instruments (Staiger and Stock 1997). The Hansen J-test on 

instrument’s validity does not reject the null in column (4).4  

                                                 

4 The first-stage results of the IV regressions using AI are presented in Table 9 and Table 10 in the Appendix. 



16 

Table 2  Productivity effects of AI use (based on sales as output measure): results of 

OLS and 2SLS regressions (N = 5,849) 

Dependent variable: OLS IV (2SLS) 
IV (2SLS) with 

entropy balancing 
lnSALES (1) (2)  

incl. 
additional 
covariates 

(3) (4) 
incl. 

additional 
covariates 

(5) 
incl. additional 

covariates 

AI 0.137*** 0.059** 1.361*** 1.358*** 0.396** 
   (0.028) (0.029) (0.171) (0.310) (0.163) 
lnEMP 0.605*** 0.595*** 0.549*** 0.563*** 0.702*** 
   (0.011) (0.012) (0.014) (0.015) (0.025) 
lnCAP 0.056*** 0.063*** 0.069*** 0.063*** 0.056*** 
   (0.005) (0.006) (0.006) (0.007) (0.014) 

lnMAT 0.366*** 0.369*** 0.378*** 0.374*** 0.294*** 
   (0.007) (0.008) (0.008) (0.009) (0.017) 
lnAGE  0.035***  0.050*** 0.016 
    (0.011)  (0.013) (0.025) 
RDCON  0.051**  -0.063* -0.004 
    (0.019)  (0.036) (0.034) 
TECHIMP  0.030*  -0.007 -0.009 
    (0.015)  (0.020) (0.040) 
R-squared 0.903 0.909 0.874 0.878 0.936 
F-stat. on joint sig. of 
IVs in 1st stage - - 51.474*** 16.424*** 16.585*** 

Hansen’s J, p-value - - 0.023 0.689  
Industry dummies No Yes No Yes Yes 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All regressions include an intercept. In 
the IV regressions, we use the following instruments: investment into AI per sector (AI_IND), past innovation 
expenses per employee (PASTINNO), and a dummy indicating internal resistance to innovative activities 
(RESIST). The following statistics were computed to test the joint significance of the instruments: F(3,5842) in 
column (3); F(3,5823) in column (4); F(3,5823) in column (5).  

As a further robustness test, we combine the regressions with entropy balancing, i.e., we 

perform weighted regressions such that the non-AI users that are similar in their production 

inputs to the AI users receive more weight in the regressions than other, less similar non-users. 

For the balancing of the sample with respect to AI, we use all covariates from the respective 

regression. The results also hold with propensity score matching methods but we prefer the 

entropy balancing as a more efficient method (see Hainmueller 2012). The results of the 

entropy-balanced IV regression in column (5) (the other weighted regressions are omitted for 

reasons of brevity) largely confirm the earlier results of a positive and significant coefficient 

of AI use. However, the marginal effect amounts to about 40%. This corresponds, on average, 
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to roughly 16 million EUR higher sales (the unconditional average of sales is about 40 million 

EUR).  

Cross-sectional regressions using AI intensity 

Table 3 reports the regression results considering AI intensity as a variable of interest (AIint), 

i.e., the breadth with which a firm applies AI methods across application areas. Similarly to 

our baseline estimates, increasing the fraction of AI methods or areas would have, on average, 

a significant and positive ceteris paribus impact on productivity.  

Table 3 Productivity effects of AI intensity (based on sales as output measure): results 

of OLS and 2SLS regressions (N = 5,849) 

Dependent variable: OLS IV (2SLS) 
lnSALES (1) (2) (3) (4) 
AIint 0.763*** 0.293* 9.673*** 9.474*** 
   (0.163) (0.160) (1.311) (2.314) 
lnEMP 0.606*** 0.595*** 0.547*** 0.564*** 
   (0.011) (0.012) (0.014) (0.016) 
lnCAP 0.056*** 0.063*** 0.070*** 0.063*** 
   (0.005) (0.006) (0.007) (0.007) 

lnMAT 0.366*** 0.369*** 0.377*** 0.371*** 
   (0.007) (0.008) (0.008) (0.009) 
lnAGE  0.034***  0.051*** 
    (0.011)  (0.013) 
RDCON  0.053**  -0.043 
    (0.019)  (0.035) 
TECHIMP  0.031*  -0.010 
    (0.015)  (0.021) 
R-squared 0.903 0.909 0.861 0.867 
F-stat. on joint sig. of  
IVs in 1st stage - - 37.223*** 12.106*** 

Hansen’s J, p-value - - 0.170 0.804 
Industry dummies No Yes No Yes 

Robust standard errors are in parentheses. All regressions include an intercept. In the IV regressions, we use the 
following instruments: industrial investment on AI (AI_IND), past innovation expenses per employee 
(PASTINNO), and the dummy indicating internal resistance to innovative activities (RESIST). The following 
statistics were computed to test the joint significance of the instruments: F(3,5842) in column (3); F(3,5823) in 
column (4). *** p<0.01, ** p<0.05, * p<0.1 

In terms of the magnitude of the marginal effect, we find similar results to the specification 

using the dummy variable. When looking at the IV results in column (4), the estimated 

coefficient is 9.474. A firm that uses one AI technology in one application area would have a 
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value of AIint = 0.05 (1 out of 20 combinations of AI technology and area). It would thus realize 

about 47% higher sales than non-users (0.05 x 9.474).  

Fixed effects panel regressions 

When inspecting our IV regressions carefully, one might be concerned that the estimated 

marginal effects are much higher than in the OLS regressions. This is a phenomenon that often 

arises in IV regressions and in our case, the benefits of AI seem possibly unintuitively high. 

Even though the regression diagnostics do not suggest a weak instrument bias or endogeneity 

of instruments, remaining unobserved heterogeneity among firms might still result in biased 

estimates. Therefore, we constructed a panel database to check the robustness of the results 

once we account for unobserved heterogeneity by including firm-fixed effects. Unfortunately, 

the AI data is so recent in the survey that we can only build a panel with two time periods, 2017 

and 2018. We implement the fixed effect regressions as first-differences approach (1D-FE) 

where we regress the first difference of lnSALES on the first differences of the factor inputs 

and the AI dummy, i.e., we consider the growth rates of sales and factor inputs between 2017 

and 2018. Compared to the cross-sectional regressions, the interpretation of the estimated AI 

effect has to be adapted accordingly: an AI dummy of 1 is now assumed to indicate that the 

firm invested into AI in the survey period (flow interpretation) rather than employing AI 

technology (stock interpretation). Consequently, the estimated coefficient now refers to the 

productivity growth associated with recent AI investments.  

In order to account for any potential correlation between the error term and our covariates, i.e., 

a violation of the strict exogeneity assumption, we also estimate IV FE regressions.  

Table 4 and When considering AI intensity, we also find a positive coefficient. On average, the 

AI firms realize about 5% higher sales based on the IV regression results (0.433 x 0.12, where 

the latter is the mean of AIint among AI users). 

Table 5 report the results of FE regressions using AI use (AI) and AI intensity (AIint), 

respectively. The estimates of interest show the percentage change or growth over time in firm 

productivity when employing AI methods. The 1D-FE regression for AI use shows a significant 

impact of AI use on productivity. The marginal effect amounts to about 6% in the IV regression 

and to 4% when entropy balancing is used additionally.  
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Table 4 Productivity effects of AI use (based on sales as output measure): results of 

fixed effect panel regressions (N = 5,567) 

Dependent variable: OLS IV (2SLS) IV (2SLS) with 
entropy balancing 

ΔlnSALES (1) (2) (3) 
AI 0.012* 0.061** 0.044** 
   (0.006) (0.030) (0.020) 
ΔlnEMP 0.363*** 0.359*** 0.398*** 
   (0.021) (0.022) (0.042) 
ΔlnCAP 0.013 0.012 0.056*** 
   (0.008) (0.008) (0.018) 
ΔlnMAT 0.198*** 0.200*** 0.150*** 
   (0.012) (0.012) (0.020) 
R-squared 0.214 0.207 0.191 
F-stat. on joint sig. of IVs in 1st 
stage 

- 51.739*** 127.625*** 

Hansen’s J, p-value - 0.554  

Robust std. err. in parentheses. All regressions include an intercept. In the IV regressions, we use as instruments: 
industrial investment on AI (AI_IND), past innovation per employee (PASTINNO), and the dummy indicating 
internal resistance to innovative activities (RESIST). The following statistics were computed to test the joint 
significance of the instruments: F(3,5560) in column (2); F(3,5560) in column (3). *** p<0.01, ** p<0.05, * p<0.1 

When considering AI intensity, we also find a positive coefficient. On average, the AI firms 

realize about 5% higher sales based on the IV regression results (0.433 x 0.12, where the latter 

is the mean of AIint among AI users). 

Table 5 Productivity effects of AI intensity (based on sales as output measure): results 

of first difference fixed effect panel regressions, 2017-2018 (N = 5,567) 

Dependent variable: OLS IV (2SLS) 
ΔlnSALES (1) (2) 
AIint 0.040 0.433** 
   (0.041) (0.211) 

ΔlnEMP 0.364*** 0.358*** 
   (0.021) (0.022) 
ΔlnCAP 0.013 0.012 
   (0.008) (0.008) 
ΔlnMAT 0.198*** 0.200*** 
   (0.012) (0.012) 
R squared 0.214 0.201 
F-stat. on joint sig. of IVs in 1st stage - 36.706*** 
Hansen’s p-value - 0.687 

Robust std. err. in parentheses. All regressions include an intercept. In the IV regressions, we use as instruments: 
number of firms using AI per sector (AI_IND), past innovation expenses per employee (PASTINNO), and the 
dummy indicating internal resistance to innovative activities (RESIST). The following statistics were computed to 
test the joint significance of the instruments: F(3,5560) in column (2). *** p<0.01, ** p<0.05, * p<0.1 
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Further robustness checks  

We conduct two further robustness checks. First, instead of annual sales as output measure, we 

use value-added defined as the logarithm of annual sales net of intermediate inputs (lnVA). 

Secondly, instead of controlling only for TECHIMP and R&DCON as proxies of the firm’s 

innovation affinity, we also considered the firm's general efforts towards digitalization by using 

expenses for software and databases, measured as the logarithm of lagged software expenses 

(lnPASTSOFT) and, alternatively, as the logarithm of the average annual software expenses in 

the period 2011 to 2017 (lnAVGSOFT). These variables are in the spirit of Brynjolfsson and 

Hitt (2003) and intended to account for the general IT architecture of the firm. Not all firms in 

the sample had information on software expenses: 44% of the firms had data in the case of 

lnPASTSOFT, whereas 59% of the firms had information on lnAVGSOFT. See Table 1 for 

descriptive statistics on these variables. In the following, we report the results for the AI 

indicator (AI). Table 11 and Table 12 in the Appendix show the results for AI intensity (AIint). 

As shown in Table 6, using value-added as output indicator produces results that are consistent 

with the ones presented above based on sales. Note that our sample is slightly smaller because 

of some missing values in the value-added measure. The ceteris paribus effect of AI use is 

significant and positive in almost all specifications. The estimation results in column (1) 

suggest that AI users achieve 14.5% higher value-added. In the IV regressions, the magnitude 

of the estimated coefficients increases again as in the case where sales were used as dependent 

variable. This increase is reduced, however, if the IV regression is run with weights obtained 

from entropy balancing.  
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Table 6 Productivity effects of AI use (based on value added as output measure) results 

of OLS and 2SLS regressions (N = 5,691) 

Dependent variable: 
OLS IV (2SLS) 

IV with 
entropy 

balancing 
lnVA (1) (2) (3) (4) (5) 
AI 0.145*** 0.053 1.772*** 1.621*** 0.528** 
   (0.036) (0.037) (0.216) (0.382) (0.216) 
lnLEMP 0.905*** 0.903*** 0.842*** 0.868*** 0.995*** 
   (0.012) (0.012) (0.015) (0.016) (0.026) 
lnCAP 0.142*** 0.136*** 0.164*** 0.138*** 0.096*** 
   (0.007) (0.008) (0.008) (0.009) (0.017) 
lnAGE  0.039**  0.061*** 0.012 

    (0.015)  (0.018) (0.037) 
RDCON  0.100***  -0.042 0.001 
    (0.026)  (0.046) (0.046) 
TECHIMP  0.025  -0.020 -0.005 
    (0.020)  (0.025) (0.051) 
R-squared 0.827 0.836 0.770 0.787 0.884 
F-stat. on joint sig. of 
IVs in 1st stage 

- - 52.282*** 16.651*** 17.218*** 

Hansen’s J, p-value - - 0.904 0.809  
Industry dummy No Yes No Yes Yes 

Robust standard errors are in parentheses. All regressions include an intercept. In the IV regressions, we use the 
following instruments: number of firms using AI per sector (AI_IND), past innovation expenses per employee 
(PASTINNO), and the dummy indicating internal resistance to innovative activities (RESIST). The following 
statistics were computed to test the joint significance of the instruments: F(3,5685) in column (3); F(3,5666) in 
column (4); F(3,5666) in column (5). *** p<0.01, ** p<0.05, * p<0.1 

Table 7 shows the estimations results when including lagged software expenses or the average 

of software expenses for the period 2011 to 2017. This exercise may isolate the productivity 

impact of AI use more convincingly from the impact of other digitalization efforts on the firm’s 

productivity. As we have the lagged software expenses only for 44% of our observations, we 

generate a dummy variable indicating when the information is a missing value, D(MISSING), 

and we impute zeros in the software variable in order to not lose more than half of the sample 

for the regression. The dummy captures the effect of imputing zeros and the estimated slope 

coefficient of lnPASTSOFT is obtained from the non-missing values. As an alternative 

approach we have used the average software expenses as we can then use information from 

more than one previous survey. When scanning the last six surveys, we have information on 

software expenses for 59% of the current sample. As the data may now stem from different 

years, and the available frequencies per firm vary, we average the software expenses across the 
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different years and create the variable lnAVGSOFT. We again combine this with a missing 

value indicator to keep the observations where no software information is available. 

Table 7 Productivity effects of AI use (based on sales as output measure) including 

past software expenses variables: results of OLS and 2SLS regressions (N = 

5,849) 

Dependent variable: OLS IV (2SLS) 
lnSALES (1) (2) (3) (4) 
AI 0.056* 0.054* 1.230*** 1.183***    
   (0.029) (0.029) (0.295) (0.293) 
lnEMP 0.589*** 0.586*** 0.561*** 0.560***  
   (0.012) (0.012) (0.014) (0.014) 
lnCAP 0.061*** 0.060*** 0.062*** 0.061***    
   (0.006) (0.006) (0.007) (0.007) 

lnMAT 0.367*** 0.366*** 0.372*** 0.371***    
   (0.008) (0.008) (0.009) (0.009) 
lnAGE 0.033*** 0.030** 0.047*** 0.044***   
   (0.011) (0.011) (0.013) (0.013) 
RDCON 0.046** 0.045** -0.055 -0.052    
   (0.019) (0.019) (0.034) (0.034) 
TECHIMP 0.024 0.022 -0.008 -0.008    
   (0.015) (0.015) (0.019) (0.019) 
lnPASTSOFT 0.027***  0.022***  
 (0.004)  (0.005)  
lnAVGSOFT  0.030***  0.025*** 
  (0.004)  (0.005) 
D(MISSING) -0.163*** -0.185*** -0.158*** -0.174*** 
 (0.027) (0.026) (0.032) (0.030) 
R-squared 0.910 0.910 0.885 0.887 
F-stat. on joint sig. of IVs 
in 1st stage 

- - 16.691*** 16.462*** 

Hansen’s p-value - - 0.530 0.492 
Industry dummy Yes Yes Yes Yes 

Robust standard errors are in parentheses. All regressions include an intercept. In the IV regressions, we use the 
following instruments: number of firms using AI per sector (AI_IND), past innovation expenses per employee 
(PASTINNO), and the dummy indicating internal resistance to innovative activities (RESIST). D(MISSING) 
corresponds to a dummy that is equal to 1 if a missing value was imputed by a 0 in the corresponding software 
expenses variable. The following statistics were computed to test the joint significance of the instruments: 
F(3,5821) in column (3); F(3,5821) in column (4). *** p<0.01, ** p<0.05, * p<0.1 

Similarly as in our reference model (see Table 2), the OLS estimates for AI use are positive 

and significant. Once we instrument the dummy for AI use (columns (3) and (4)), we observe 

larger coefficients for AI use than in OLS regressions. Interestingly, the coefficient of lagged 

software expenses remains significant even after addressing the endogeneity issues of AI 
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(column (3)). This is virtually the same when we include the annual average of software 

expenses for the period 2011 to 2017 (column (4)). The coefficients for AI use become smaller 

in the IV regressions compared to the estimations excluding past software expenses (see Table 

7). This may partly reflect that some software expenses are related to implementing AI 

technology, implying that a part of the AI productivity effect is captured by software expenses. 

The still highly significant positive coefficient for AI use supports our confidence in the 

presence of a genuine contribution of AI to firm-level productivity.  

6. Conclusion  

This paper studied the extent to which the use of Artificial Intelligence (AI) technologies by 

firms contributes to the firms' productivity. We used firm-level panel data from the German 

innovation survey which provides rich information on firms’ performance and technological 

activities. Most importantly, the data contain information on the use of different AI methods 

and the business areas in which AI methods have been applied. This data base allows to derive 

measures of AI use that overcome shortcomings in the existing literature. So far, most studies 

on AI and productivity either relied on specific technologies related to AI (e.g., robotics, big 

data analysis, see Graetz and Michaels 2018; Acemoglu and Restrepo 2020; Brynjolfsson et al. 

2011; Niebel et al. 2019; Ghasemaghaei and Calic 2019) or employed patent data. Though 

these studies obtained important insights into how AI may drive productivity, they failed to 

capture the entire variety of how AI is used by firms, including firms that are mere adopters of 

AI technology, and the intensity of AI use. Our study tried to close this gap. 

Using both a dichotomous and a continuous measure of AI usage, we examined the impact of 

AI on productivity using sales and valued-added as alternative output variables. To overcome 

potential endogeneity issues of AI use, we employed instrumental variable regressions using 

AI diffusion at industry level, the firm’s past investment in R&D and innovation, and 

organizational rigidities as instruments. We found that employing AI technologies has a 

positive and significant impact on firm productivity. In particular, we showed that both the use 

of AI and the intensity with which firms exploit the potentials of AI significantly increases both 

sales and valued-added. This effect remains robust after controlling for several technological 

features of the firm. The evidence presented in this paper therefore confirms what has 
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previously been hypothesized in the literature, i.e., AI use contributes positively to firms’ 

productivity (Abrardi et al. 2021).  

Our results provide evidence that AI is a productivity-enhancing technology; at least in the 

short-run. This finding has important implications for policy. Fostering the adoption of AI in 

firms could lead to substantial productivity gains. However, a common preoccupation about 

the diffusion of AI-related technologies is their likely impact on jobs and inequality, as AI may 

displace workers and affect low-skilled jobs more than high-skilled ones (see Lane and Saint-

Martin 2021; Arntz et al. 2019). As pointed out by Agrawal et al. (2019b), policy measures in 

education or taxation may be required to counter-balance such developments. At the same time, 

policy measures should encourage firms to use AI on a broader scale, by tackling barriers 

related to AI use such as a lack of specialized skills, insufficient IT infrastructure (e.g., scarcity 

of access to secure cloud computing or low digit rates), and privacy regulation on data usage 

(see Agrawal et al. 2019b; Reim et al. 2020; Nolan 2020). Our results also suggest that 

managers need to be better aware of the huge potential of AI for increasing productivity, as 

only a small fraction of firms are currently using AI (see Montagnier et al. 2020). 

Our empirical findings are subject to several limitations. First, we rely on data from one country 

and we can currently construct only a very short panel database. While currently unique, our 

data has several shortcomings. For instance, we cannot employ state-of-the-art techniques to 

estimate production functions where one can appropriately account for the endogeneity of (all) 

factor inputs. We can only offer to estimate IV regressions in which we account for the possible 

endogeneity of AI use. Even though our IV regressions pass the common specification tests, 

the estimated coefficients of AI use seem somewhat high in cross-sectional regressions. We try 

to address this issue by supplementing the analysis with entropy balancing methods and fixed 

effect panel regressions to account for unobserved heterogeneity. In addition, we control for 

additional covariates, past software expenses, to mitigate further risk of omitted variable bias. 

However, in the future it would be desirable to compile a database that allows the application 

of the latest production function estimation methodologies. 

A broader country coverage and time-series data on AI use would be highly useful to better 

identify causal contributions of AI to productivity under a quasi-experimental setting. For 

example, one could capitalize on policy changes in the regulation of AI or utilize data on 

technological shocks (e.g., the emergence of new features in AI methods). In order to pin down 
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the channels by which the adoption of AI is boosting firm productivity, we would have to 

complement our data with more detailed information, particularly on a firm’s labor force as 

well as on its innovative capacity and strategy. For policy, it would be highly important to 

disentangle the productivity impact of AI into a labor saving (e.g., from automation) and a 

business expansion one. For example, AI could increase labor productivity by complementing 

human labor and automating specific tasks (Acemoglu and Restrepo 2019a). AI could also be 

contributing to the creation of new types of innovation or business models that will lead to new 

sales and increase productivity through output growth (Rammer et al. 2021). 
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7. Appendix 

Table 8 Industries and number of AI using firms per industry 

Industry group Non-AI 
users 

AI users All firms 

Crop and animal production; hunting; fishing; and manufacture of food products, beverages, tobacco products. 234 
(4.30%) 

5  
(1.22%) 

239 
(4.09%) 

Manufacture of textiles, wearing apparel, leather and related products, wood and products of wood and cork except 
furniture, and articles of straw and plaiting materials. 

216 
(3.97%) 

3  
(0.73%) 

219 
(3.74%) 

Manufacture of chemicals and chemical products, and of basic pharmaceutical products and pharmaceutical 
preparations. 

148 
(2.72%) 

15  
(3.67%) 

163 
(2.79%) 

Manufacture of rubber and plastic products, other non-metallic mineral products, basic metals, and fabricated metal 
products, except machinery and equipment. 

727 
(13.36%) 

35 
(8.56%) 

762 
(13.03%) 

Manufacture of computer, electronic and optical products, and electrical equipment. 315 
(5.79%) 

40 
(9.78%) 

355 
(6.07%) 

Manufacture of machinery and equipment n.e.c., motor vehicles, trailers and semi-trailers, other transport equipment; 
and repair and installation of machinery and equipment. 

486 
(8.93%) 

43 
(10.51%) 

529 
(9.04%) 

Manufacture of furniture, other manufacturing, paper and paper products; printing and reproduction of recorded 
media; and repair of computers and personal and household goods. 

285 
(5.24%) 

13 
(3.18%) 

298 
(5.09%) 

Manufacture of coke and refined petroleum products; mining of coal and lignite; extraction of crude petroleum and 
natural gas; mining of metal ores; other mining and quarrying; mining support service activities; electricity, gas, steam 
and air conditioning supply; construction of buildings; civil engineering; and specialized construction activities. 

314 
(5.77%) 

7 
(1.71%) 

321 
(5.49%) 

Water collection, treatment, supply, and material recovery; sewerage; and remediation activities and other waste 
management services. 

260 
(4.78%) 

6 
(1.47%) 

266 
(4.55%) 

Wholesale and retail trade and repair of motor vehicles and motorcycles; wholesale trade, except of motor vehicles 
and motorcycles; and retail trade, except of motor vehicles and motorcycles. 

302 
(5.55%) 

10 
(2.44%) 

312 
(5.33%) 

Land transport and transport via pipelines; water transport; air transport; warehousing and support activities for 
transportation; and postal and courier activities. 

353 
(6.49%) 

13 
(3.18%) 

366 
(6.26%) 

Publishing activities; motion picture, video and television program production, sound recording and music publishing 
activities; programming and broadcasting activities; and printing and reproduction of recorded media.  

212 
(3.90%) 

15 
(3.67%) 

227 
(3.88%) 
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Table 8  Cont. 

Industry group Non-AI 
users 

AI users All firms 

Telecommunications; computer programming, consultancy and related activities; and information service activities. 239 
(4.39%) 

68 
(16.63%) 

307 
(5.25%) 

Financial service activities, except insurance and pension funding; insurance, reinsurance and pension funding, except 
compulsory social security; activities auxiliary to financial services and insurance activities. 

126 
(2.32%) 

20 
(4.89%) 

146 
(2.50%) 

Architectural and engineering activities; technical testing and analysis; scientific research and development; 
education; human health activities; residential care activities; creative, arts and entertainment activities; libraries, 
archives, museums, other cultural activities. 

456 
(8.38%) 

44 
(10.76%) 

500 
(8.55%) 

Legal and accounting activities; activities of head offices; management consultancy activities; advertising and market 
research; and public administration and defense; compulsory social security.  

309 
(5.68%) 

52 
(12.71%) 

361 
(6.17%) 

Accommodation; food and beverage service activities; real estate activities; other professional, scientific and 
technical activities; administrative and support service activities; other services. 

458 
(8.42%) 

20 
(4.89%) 

478 
(8.17%) 

Source: NACE Rev. 2, Statistical classification of economic activities in the European Community.  
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Table 9  First stage regressions on AI use. See Table 2 for Second Stage results.  

(N = 5,849) 

Dependent variable:  
AI (1) (2) 
lnEMP 0.035*** 0.025*** 
   (0.004) (0.004) 
lnCAP -0.003 -0.001 
   (0.002) (0.002) 

lnMAT -0.008** -0.003 
   (0.002) (0.002) 
lnAGE  -0.012*** 
    (0.005) 
RDCON  0.064*** 
    (0.011) 
TECHIMP  0.028*** 
    (0.006) 
PASTINNO 4.006*** 3.132*** 
 (0.687) (0.715) 
AI_IND 0.041*** 0.036*** 
 (0.010) (0.010) 
RESIST 0.003*** 0.002*** 
 (0.0003) (0.0006) 
Industry dummy No Yes 

Robust standard errors are in parentheses. All regressions include an intercept.  *** p<0.01, ** p<0.05, * p<0.1 

 

Table 10 First stage fixed effect panel regressions on AI use. See Table 4 for Second 

Stage results. (N = 5,567) 

Dependent variable:  
AI (1) 
ΔlnEMP 0.116*** 
   (0.034) 
ΔlnCAP 0.014 
   (0.014) 
ΔlnMAT -0.048*** 
   (0.016) 
PASTINNO 7.541*** 
 (1.360) 
AI_IND  0.003*** 
 (0.0003) 
RESIST 0.049*** 
 (0.011) 

Robust standard errors are in parentheses. Regression includes an intercept. *** p<0.01, ** p<0.05, * p<0.1 
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Table 11 Productivity effects of AI intensity (based on value added as output measure): 

results of OLS and 2SLS regressions. (N = 5,691) 

Dependent variable: OLS IV (2SLS) 
lnVA (1) (2) (4) (5) 
AIint 0.956*** 0.453** 12.341*** 11.311*** 
   (0.209) (0.207) (1.633) (2.834) 
lnEMP 0.906*** 0.903*** 0.837*** 0.866*** 
   (0.011) (0.012) (0.016) (0.017) 
lnCAP 0.142*** 0.136*** 0.166*** 0.137*** 
   (0.007) (0.008) (0.008) (0.009) 
lnAGE  0.039**  0.060*** 

    (0.015)  (0.017) 
RDCON  0.099***  -0.019 
    (0.025)  (0.045) 
TECHIMP  0.025  -0.022 
    (0.020)  (0.026) 
R-squared 0.827 0.836 0.752 0.771 
F-stat. on joint sig. of IVs in 1st stage - - 37.704*** 12.155*** 
Hansen’s J, p-value - - 0.936 0.782 
Industry dummy No Yes No Yes 

Robust standard errors are in parentheses. All regressions include an intercept. In the IV regressions, we use the 
following instruments: number of firms using AI per sector (AI_IND), past innovation expenses per employee 
(PASTINNO), and the dummy indicating internal resistance to innovative activities (RESIST). The following 
statistics were computed to test the joint significance of the instruments: F(3,5685) in column (3); F(3,5666) in 
column (4). Note that our sample is slightly smaller than for the regressions using annual sales because to missing 
values in the value-added indicator. *** p<0.01, ** p<0.05, * p<0.1 
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Table 12 Productivity effects of AI intensity (based on sales as output measure) 

including past software expenses variables: results of OLS and 2SLS 

regressions. (N = 5,849) 

Dependent variable: OLS IV (2SLS) 
lnSALES (1) (2) (3) (4) 
AIint 0.267* 0.270* 8.732*** 8.334***    
   (0.159) (0.163) (2.211) (2.177) 
lnEMP 0.589*** 0.587*** 0.562*** 0.560***  
   (0.012) (0.012) (0.015) (0.015) 
lnCAP 0.061*** 0.060*** 0.061*** 0.060***    
   (0.006) (0.006) (0.007) (0.007) 

lnMAT 0.367*** 0.365*** 0.370*** 0.368***    
   (0.008) (0.008) (0.009) (0.009) 
lnAGE 0.033*** 0.029** 0.047*** 0.043***   
   (0.011) (0.011) (0.013) (0.013) 
RDCON 0.048** 0.047** -0.039 -0.036 
   (0.019) (0.019) (0.034) (0.033) 
TECHIMP 0.025 0.023 -0.010 -0.011    
   (0.015) (0.015) (0.020) (0.020) 
lnPASTSOFT 0.027***  0.020***  
 (0.004)  (0.006)  
lnAVGSOFT  0.030***  0.025*** 
  (0.004)  (0.005) 
IMPUTEDSOFT -0.163*** -0.185*** -0.140*** -0.172*** 
 (0.027) (0.026) (0.037) (0.033) 
R-squared 0.910 0.910 0.874 0.877 
F-stat. on joint sig. of IVs 
in 1st stage 

- - 12.504***   12.284*** 

Hansen’s p-value - - 0.689 0.641 
Industry dummy Yes Yes Yes Yes 

Robust standard errors are in parentheses. All regressions include an intercept. In the IV regressions, we use the 
following instruments: number of firms using AI per sector (AI_IND), past innovation expenses per employee 
(PASTINNO), and the dummy indicating internal resistance to innovative activities (RESIST). IMPUTEDSOFT 
corresponds to a dummy that is equal to 1 if a missing value was imputed by a 0 in the corresponding software 
expenses variable. The following statistics were computed to test the joint significance of the instruments: 
F(3,5821) in column (3); F(3,5821) in column (4). *** p<0.01, ** p<0.05, * p<0.1 
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