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Abstract

Although information and communication technologies (ICT) consume energy them-
selves, they are considered to have the potential to reduce overall energy intensity within
economic sectors. While previous empirical evidence is based on aggregated data, this is
the first large-scale empirical study on the relationship between ICT and energy inten-
sity at the firm level. For this purpose, we employ administrative panel data on 28,600
manufacturing firms from German Statistical Offices collected between 2009 and 2017.
Our results confirm a statistically significant and robust negative link between software
capital as an indicator for the firm-level degree of digitalization and energy intensity,
but the effect size is rather small. Hence, we conclude that energy intensity reductions
related to the use of digital technologies are lower than expected.
Keywords: ICT, Firm-level panel data, Energy intensity improvements.
JEL Codes: D22, D24, L60, O12, O14, O33, Q40.

1. Introduction

To limit global warming, it is essential to cut down carbon emissions (IPCC, 2018).
Those related to energy use, however, are still at alarmingly high levels (IEA, 2021).
Especially many production processes are very energy-intensive. In 2018, the industrial
sector was responsible for 37 percent of global energy use and for 24 percent of total
carbon emissions (IEA, 2020b). One way to improve the environmental impact of indus-
trial processes while remaining competitive is to decouple greenhouse gas emissions from
economic growth, as stated in the European Green Deal (European Commission, 2019),
for example by reducing energy intensity.

In addition to a growing need for environmental improvements, the use of digital
technologies has increased strongly in recent decades. For example, new markets emerged,
such as online platforms, and new channels to communicate developed, such as messaging
services and digital video conferencing systems. Furthermore, ”ICTs [...] heavily affected
the opportunities and efficiency of how firms produce and provide goods and services”
(Cardona et al., 2013, p.13). Accordingly, digital technologies – most likely – also affected
energy use patterns of (manufacturing) firms and will continue to do so in the future.

However, how ICT influence environmental outcomes is ambiguous ex ante. On the
one hand, digital technologies may increase firm-level energy intensity, as they consume
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energy themselves. On the other hand, even though they do, they may reduce overall
firm-level energy intensity due to energy efficiency improvements as well as the demate-
rialization of products (Berkhout and Hertin, 2004). For instance, digital technologies
improve the quantity and quality of information. This allows for an improved prevention
of excess production and a reduction of error rates. To put this in a nutshell, two simul-
taneous trends exist. Parallel to a strong need for energy intensity improvements and
overall energy savings, digital technologies lead to large changes within firms. As this
concurrence may contribute to or conflict with the achievement of climate targets set out
in the Paris Agreement (2015), it is essential to assess how both, energy consumption
and the use of digital technologies, relate to each other.

Especially grey literature assigns high climate protection potentials to digital tech-
nologies.1 Also, previous econometric studies employing aggregated data confirm at the
sectoral level that ICT can be linked to significant environmental improvements in man-
ufacturing sectors (Schulte et al., 2016; Bernstein and Madlener, 2010). However, the
use of aggregated data has several drawbacks. For instance, it does not allow for the
disentanglement of dynamics within industries. Hence, it remains unobserved if actual
improvements within firms exists or whether merely the composition of firms changes.
Accordingly, results of studies based on aggregated data may be misleading for policy
makers.

Despite the need for further research, most manufacturing countries launched pro-
grams promoting smart manufacturing such as the German “Industrie 4.0” as well as the
US initiative "Smart Manufacturing Leadership Coalition" (SMLC) (Thoben et al., 2017)
and emphasize its potentials for a more sustainable production.2 Also the “Masterplan
for a Competitive Transformation of EU Energy-intensive Industries Enabling a Climate-
neutral, Circular Economy by 2050” launched by the European Commission states that
“digital technologies will [...] act as crosscutting enablers for industrial transformation”
(European Union, 2019, p.8). Considering the number of already initiated measures,
it is highly relevant from a policy perspective to correctly understand the relationship
between digital technologies and energy use.

To the best of our knowledge, no large-scale microeconometric study exists yet that
analyzes climate protection potentials of digitalized production processes at the firm-
level, which may provide new and more detailed insights into how the growing use of
digital technologies relates to energy savings. Accordingly, this study sheds light into
this relationship by employing microeconometric methods. The analysis is based on
administrative panel data on 28,600 German manufacturing firms (AFiD)3 collected be-
tween 2009 and 2017 and provided by the Research Data Centres of the Statistical Offices
of the Federation and the Federal States (RDC). AFiD data are of particular high quality,
as reporting to the statistical offices is obligatory and the data is thoroughly checked.

Furthermore, we analyze whether firm-level software capital, as an indicator for ICT
usage, affects energy intensity. The descriptive statistics already show a strong increase
in software capital intensity over time, while energy intensity decreases. To ensure com-
parability to previous findings at the sector level, we apply a translog cost function
approach for the econometric analysis. Results confirm a statistically significant link
between software usage and energy intensity improvements at the firm level. However,
the relationship is considerably smaller than in previous findings at the industry level.

1For instance, see GeSI & Accenture (2015).
2The use of sensors, computing platforms, communication technology, control and simulation meth-

ods, data intensive modelling and predictive engineering within production processes is summarized as
smart manufacturing (Kusiak, 2018).

3Amtliche Firmendaten für Deutschland.
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We find that a 1 percent increase in software capital relates to an average decrease in
energy intensity between 0.007 percent and 0.011 percent, depending on the approach
how to calculate this elasticity. Results are robust to different sample restrictions as well
as software capital stock modifications and the link appears to be more pronounced for
energy-intensive firms and industries. Moreover, we find larger differences between than
within firms. Hence, firms which have a high software capital stock on average appear to
be less energy intensive on average, but when the software capital stock changes within
a firm, effects have much smaller magnitude. To further analyze the robustness of our
results, we conduct a reduced-form estimate with a selection of variables based on a
CES production function. Respective results lead to the same conclusion, which is that
the use of digital technologies is only to a small extent associated with energy intensity
improvements at the firm level. As the relationship is very inelastic, we conclude that
digital technologies relate to energy intensity improvements to some extent, but the effect
size is not large enough to attribute substantial environmental improvements.

The remainder of this paper is structured as follows: Section 2 summarizes related
literature and Section 3 presents our theoretical framework. Section 4 describes the data
and provides descriptive statistics. Section 5 presents econometric specifications. Results
are reported in Section 6 and discussed in Section 7. Section 8 concludes.

2. Related Literature

The European Union has declared energy efficiency improvements as a key dimension
of its climate action policy (European Parliament and the Council of the European Union,
2018). “Energy efficiency is a generic term” and “refers to using less energy to produce the
same amount [of output]” (Patterson, 1996, p.377). For example, a more energy efficient
production process uses less energy with respect to a comparable one. A commonly-used
indicator for energy efficiency is energy intensity, which is the actual amount of energy
used to generate one unit of output, not necessarily considering differences in prevailing
conditions, e.g., the type of product or local weather (cf. IEA, 2020a).

The digital transformation may influence overall energy use and intensity in various
ways. Berkhout and Hertin (2004), Hilty et al. (2006) and Lange et al. (2020) develop
frameworks that structure potential impact mechanisms. Based on these frameworks,
the net effect on the environment consists of three different channels:

(I) Direct (Berkhout and Hertin, 2004; Lange et al., 2020) or first-order effects (Hilty
et al., 2006) relate to the energy and resources consumption during the production, usage
and disposal of ICT. Accordingly, direct effects have a negative environmental impact
and increase energy and resource use.4

(II) Energy efficiency improvements (Lange et al., 2020), indirect (Berkhout and
Hertin, 2004) or second-order effects (Hilty et al., 2006) refer to changes in consumption
due to the application of digital technologies. Through improvements in energy efficiency
as well as a substitution by dematerialized solutions, digital technologies have the po-
tential to decrease energy intensity in different sectors.5 For example, Big Data allows
for an improved prediction of demand and may prevent excess production, it also helps
to reduce error rates. Simulation methods as well as 3D printing may drastically reduce
resource and energy use associated with the design and development of new products

4For examples of findings on the energy consumption of YouTube see Preist et al. (2019), for the
cryptocurrency Bitcoin see Stoll et al. (2019) and Corbet et al. (2021), and for data centers see Masanet
et al. (2020).

5Fur instance, see Zhang et al. (2019), Ghobakhloo and Fathi (2021) or Friedrich et al. (2021) for
studies that qualitatively discuss ICT-enabled energy savings in manufacturing.
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(OECD, 2017; IEA, 2018). Hence, even though digital technologies consume energy,
they can have a positive net effect on the environment.

(III) Structural and behavioral impacts (Berkhout and Hertin, 2004) or third-order
effects (Hilty et al., 2006) describe fundamental changes associated with the use of digital
technologies. For instance, a decrease in overall energy use due to energy efficiency
improvements is only possible when these are not largely dampened by rebound effects
(Lange et al., 2020) and digital systems are a substitute rather for than a complement
to existing solutions (Berkhout and Hertin, 2004). Moreover, structural and behavioral
impacts have no clear direction of impact. Therefore, Lange et al. (2020) focus on
two main mechanisms with less ambiguous directions of impact: Economic growth and
tertiarization. Additional consumption resulting from ICT-induced economic growth may
lead to an increased energy and resource consumption. Sectoral shifts to less energy-
intensive goods and services may contribute to environmental improvements.

These frameworks illustrate the complexity of the relationship between digital tech-
nologies and environmental impacts. Accordingly, determining and measuring the net
impact of ICT on energy usage is not trivial. Not without reason do studies on over-
all trends come to different conclusions. The academic discussion presumably starts
with Walker (1985), who predicts that due to productivity improvements and structural
changes, the importance of electric energy will increase and overall energy efficiency will
enhance. More recently, GeSI & Accenture (2015, p.8) predict based on twelve use cases
that “ICT can enable a 20 percent reduction of global carbon emissions by 2030” and
a large share of this reduction is attributed to the manufacturing sector. In contrast,
Ferreboeuf et al. (2019) state that every year the direct energy footprint of ICT increases
by 9 percent and growth could be limited to 1.5 percent, if measures to reduce the envi-
ronmental impact of ICT were introduced. Also, Belkhir and Elmeligi (2018) claim that
worldwide ICT-related carbon emissions could increase from approximately 3 percent in
2017 to 14 percent by 2040. Van Heddeghem et al. (2014), Andrae and Edler (2015)
and Malmodin and Lundén (2018) are further studies analyzing overall trends.6 Most of
these general studies rely on strong assumptions and not all of them are peer-reviewed.
In this regard, Santarius et al. (2020) highlight the need for further research on overall
trends.

To determine the net environmental impact of digital technologies it is crucial to
accurately measure the size of actual energy intensity improvements. Using aggregated
data to measure energy efficiency improvements within manufacturing and service in-
dustries studies come to mixed results, but tend to support the hypothesis that digital
technologies are associated with a decrease in energy intensity. Using a CES production
function, Collard et al. (2005) investigate the relationship between ICT and energy use
in the French service sector. The authors find that electric energy intensity decreased
with the diffusion of communication devices, while it increased with the use of computers
and software. Applying the same approach, Bernstein and Madlener (2010) analyze the
impact of ICT capital on electricity intensity in five manufacturing industries and eight
EU countries from 1991 to 2005. Even though the effect seems to depend on the sector-
specific production processes, the authors conclude that the diffusion of ICT is generally
linked to electric efficiency improvements.

Analyzing 27 industries of ten OECD countries between 1995 and 2007 and using a
translog cost function approach, Schulte et al. (2016) come to a similar conclusion. They

6For an overview of different (historical) studies at the sectoral or country level see Chimbo et al.
(2020). For instance, applying a logistic smooth transition regression model, Lahouel et al. (2021) confirm
an improved carbon efficiency related to ICT usage in Tunisia from 1970-2018 at the country level.
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find that an increase in ICT capital of 1 percent is linked to a decrease in energy intensity
of 0.235 percent at the sectoral level. Additionally, a sample split into manufacturing
and service industries shows only significant effects for the manufacturing sector.

Unfortunately, sector-level data does not enable the analysis of dynamics within in-
dustries. It remains unknown how many energy inefficient firms drop out of the market
and new, potentially ICT-intensive firms appear. This phenomenon may explain changes
at the sectoral level. Furthermore, effects could only be valid for certain types of firms,
e.g., larger firms that have different energy use patterns may tend to invest more in ICT.
This and other issues can cause noise or misleading results as emphasized in Draca et al.
(2007). Crépon and Heckel (2002) show that different methods to derive sector-level
ICT capital stocks can lead to non-trivial differences in the share of ICT capital in value
added. Furthermore, research that analyzes the relationship between overall capital in-
tensity and energy use comes to different conclusions for sectoral and firm-level data
(Haller and Hyland, 2014).

Comprehensive information at the firm level in manufacturing is scarce. Previous lit-
erature reviews are emphasizing the difficulty of finding objective or non-speculative stud-
ies (Ghobakhloo and Fathi, 2021; Chen et al., 2020). Exceptions are some questionnaire-
based surveys with non-technical self-assessments of firms. For instance, in a survey
conducted in 2020, 1700 German manufacturing and services firms were asked about
measures in the areas of energy efficiency and digitalization (Bertschek et al., 2020).
Energy savings were the least frequently named reason for conducting ICT projects.
Moreover, most manufacturing firms stated that their absolute and relative ICT-related
energy use remained constant during the last three years. A survey among 65 Italian
manufacturers shows that firms seldom see benefits in Industry 4.0 for environmental
sustainability (Brozzi et al., 2020). The largest study in this regard was conducted on
behalf of the European Commission in 2021 (European Union, 2021). For this purpose,
10,006 firms were interviewed. In this survey, firms also stated that improving the envi-
ronmental footprint is not the dominant motivation for implementing digital technologies.
Nonetheless, 70 percent of all firms reported energy savings due to their use.

To the best of our knowledge, there is only one study at the firm-level to date that
focuses on quantifiable environmental impacts. Wen et al. (2021) analyze environmen-
tal pollution measured by chemical oxygen demand (COD) and sulfur dioxide emis-
sions (SO2). The authors find that an increase in ICT investments and services at the
provincial-city level relates to significant reductions thereof at the firm level.

No large-scale firm-level econometric study exists yet that analyzes the impact of ICT
on energy use patterns or carbon emissions. However, this might reveal new insights
as “using micro data rather than industry data allows the well-documented firm level
heterogeneity in productivity and investment patterns to be taken into account [...]”
(Draca et al., 2007, p.113).

3. Theoretical Framework

To analyze the relationship between ICT use and energy intensity at the firm-level,
we apply the same theoretical model as Schulte et al. (2016). This study is the most
comprehensive at the sectoral level with results not only limited to electricity use but to
general energy use and therefore best suited for a direct comparison.

The model is built on a dual translog cost function approach based on the seminal
work of Christensen et al. (1973), Berndt and Wood (1975), Brown and Christensen
(1980) and Berndt and Hesse (1986). We assume that the translog cost function is twice
differentiable, linearly homogeneous and concave in factor prices. Different forms of
capital are considered as quasi-fixed factors and materials as weakly separable. Applying
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Shephard’s lemma, assuming homogeneity of degree one and imposing symmetry allows
estimating the following equation, in which the share of energy costs in variable costs is
a function of the energy price relative to the labor price, time, output as well as ICT and
non-ICT capital.7

SE =βE + βEEln

(
PE

PL

)
+ βEKICT

ln

(
KICT

Y

)
+ βEKN

ln

(
KN

Y

)
+ β∗EY lnY + δET t

(1)

SE captures the share of energy costs in variable costs (V C), which is the sum of labor
and energy costs. E indicates energy, L labor and P respective prices. KICT relates to
ICT capital and KN to tangible (non-ICT) capital. Y measures total output8 and t the
analyzed time period, which also controls for time-dependent disembodied technological
progress.

The effect size of ICT on energy intensity9 is captured by a demand elasticity, which
can be decomposed into two different effects: The first term of Equation (2) captures the
effect of ICT on the share of energy costs in variable costs and the second term captures
the effect of ICT on total variable costs.

εEKICT
= ∂ lnSE

∂ lnKICT
+ ∂ lnV C
∂ lnKICT

= ∂ lnE
∂ lnKICT

(2)

Assuming that ∂V C/∂KICT
10 equals the shadow price of ICT and rearranging Equa-

tion (2) allows measuring the demand elasticity by Equation (3) following Schulte et al.
(2016). SKICT

captures the ratio of ICT capital costs to variable costs.

εjKICT
= βjKICT

Sj
− SKICT

(3)

In contrast, Foster-McGregor et al. (2013) and Hijzen et al. (2005) assume that the
reduction in variable costs is negligible (∂V C/∂KICT = 0). Accordingly, the demand
elasticity for energy intensity following these authors is calculated as:

εjKICT
= βjKICT

Sj
(4)

Both elasticities are reported in the later analysis.

4. Data

Our analysis focuses on firm-level data on the German manufacturing sector (AFiD)
collected between 2009 and 2017 and provided by the Research Data Centres of the
Statistical Offices of the Federation and the Federal States (RDC). Within our data,
firms are assigned to the manufacturing sector if they have the highest value added in
associated industries. In 2019, for instance, the manufacturing sector was responsible

7For a detailed description of the derivation of the model and demand elasticities see Appendix C.
8β∗

EY = βEY + βEKN
+ βEKICT

; Schulte et al. (2016) scale capital by output to be consistent with
literature that measures effects of ICT on labor and output. Consequently, βEY has to be modified to
β∗

EY .
9It is energy intensity and not energy demand as it is controlled for output (Y ).

10∂V C/∂KICT in ∂lnV C/∂lnKICT = (∂V C/∂KICT )(KICT /V C).
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for 28 percent of energy demand in Germany. Approximately two-thirds were used for
process heat. Mechanical energy, e.g., for operating motors or machines, represented
roughly a quarter, while heating of rooms accounted only for a small share of total
energy consumption (German Environment Agency, 2021). Besides, the manufacturing
sector is considered as the backbone of the German economy and it is known for its
efficiency.

4.1. Data Sources
We combine two AFiD datasets merged by internal identifiers from the RDC:

(A) The AFiD-Panel Industrial Units11, which contains two sub-datasets that are rel-
evant for our analysis.

(A.1) The Census on Investment is used – including information about investments
in tangible and intangible assets. It is a full census covering all German firms
in the manufacturing sector with 20 employees or more. From this survey, we
retrieve our indicator for the firm-level degree of digitalization, which is soft-
ware usage. Information on software investments is available since 2009. We
include information on investments in property, plant and equipment from
2003 onward. This allows considering investments in tangible assets before
the observation period and improves calculations of respective capital stocks.
Software investments have a very high depreciation rate. Therefore, not ob-
serving such investments before the observation period is not a substantive
issue, which is confirmed by a robustness check.

(A.2) The second applied sub-dataset is the Cost Structure Survey. It contains
comprehensive annual information at the firm level about produced output as
well as inputs such as energy costs, labor costs and the number of employees.
The Cost Structure Survey is a stratified (partly) rotating panel. Firms with
500 employees or more are fully included in the survey, whereas firms with
fewer employees are generally observed for at least four consecutive years if
they are surveyed. Accordingly, our entire observation period can be divided
into three sequences (2009-2011, 2012-2015, 2016-2017).

(B) The AFiD-Module Use of Energy12 (at the plant level) is the second applied AFiD
dataset. It entails detailed information about the use of different energy sources at
the plant-level. The dataset is also a full census including all German manufacturing
plants with 20 employees or more. For information on firm-level energy use, we
aggregate plant-level information for each firm. One minor drawback is that we do
not observe the units of firms that are assigned to the service sector. Hence, when
we observe software investments, it may be that they were made in a service sector
facility and we cannot observe corresponding changes in energy use in that facility.
However, establishments in the service sector consume a much smaller fraction of
energy compared to plants in the manufacturing sector. We also do not expect to
see large differences in the degree of digitalization between units within firms, as
digitalization projects are most likely implemented company wide.

Additionally, we add information from several data sources. We combine AFiD with
gross value added deflators from Eurostat at the two-digit industry level (NACE Rev.

11DOI: 10.21242/42221.2017.00.01.1.1.0
12DOI: 10.21242/43531.2017.00.03.1.1.0
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2 classification) to calculate real output. Annual software deflators are also taken from
Eurostat. This allows us to consider real software investments and thus quality improve-
ments in software to be taken into account. EU KLEMS data is added (also at the
two-digit industry level) to receive information about capital growth rates, depreciation
rates as well as tangible capital deflators. The yearly producer price index provided by
the German Federal Statistical Office (Destatis) is complemented, as well as information
on prices of different energy carriers. We add yearly information for national (industry)
prices for the following energy sources: Electricity, natural gas, coal, heating oil, district
heat, liquid gas and biomass. For a detailed overview of additionally added data, see
Table A.5 in the Appendix. Sources for prices of different energy carriers are also listed
here.

4.2. Variable Description
Employing the raw data described in Section 4.1, we conduct the following additional

calculations to generate our model variables. The AFiD module Use of Energy entails
information (in kWh) about electricity consumption as well as energetic and non-energetic
use of different energy carriers, which we summarize by the following categories: Biomass,
natural gas, coal, heating oil, district heat, liquid gas, and other energy sources.13 We
define overall firm-level energy use (E) as the sum of energetic use of different energy
carriers plus electricity use. Additionally, we subtract self-generated electricity by means
of the listed energy carriers from electricity use to avoid double counting.
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Figure 1: Mean use in GWh (left) and share of firms that use (right) different energy sources per year.

Mean use of different energy sources per year for our sample is displayed in Figure 1
(left panel). The mean fluctuates above 30 GWh and we find a small decrease in mean
energy use over time. The descriptive statistics in Table 2 show that the median fluctuates
around 2 GWh. Hence, the distribution of energy use is highly skewed, some firms
consume far more energy than the large body of firms. To illustrate numbers, the mean
firm-level energy use is more than 1900 times higher than the mean energy use of private

13See B.6 in the Appendix for a detailed overview of which energy carriers are included in each category.
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households in 2017; the median is approximately 115 times higher.14 Figure 1 (right
panel) additionally shows the share of firms that use different energy sources. All firms
consume electricity. Also, more than three-quarters consume natural gas and this number
is slightly increasing. Both, electricity and natural gas, also make up a large part of the
mean energy use. Consequently, they can be considered as the most dominant energy
sources. It should also be noted here that heating oil, which is declining, is used by more
than a quarter of firms, but it accounts for only a small proportion of mean energy use.
The opposite holds for coal and mineral products. They account for the third largest
fraction of mean energy use, but are used by only a small amount of firms.

Energy costs (PEE) can be directly retrieved from the Cost Structure Survey. Fur-
thermore, the analysis requires information on energy prices, which are not directly
available in AFiD. Following Haller and Hyland (2014), we divide energy costs by energy
use (E) to receive information on the energy price for each firm (PE ; in e/kWh). This
approach is prone to issues resulting from misreporting. If a firm reports, for example,
too low energy use, we observe too high prices. To control for outliers, we exclude the
highest and lowest percentile with respect to the energy price from our analysis. The
resulting price distribution is displayed in Figure F.6 in the Appendix. The energy price
of most firms is between 0.02 and 0.20 e/kWh. Values are plausible considering industry
prices for different energy sources. However, prices are endogenous as they depend, for
instance, on the chosen quantity. To solve this issue, we calculate a second price variable
using external energy prices (PE [external]). We use prices of different energy sources (if
available) from official statistics and weight them by the firm-level use of the respective
energy source.15 Figure F.8 in the Appendix compares internal and approximated exter-
nal energy prices and confirms a statistical relationship between both.16 The distribution
of external prices is displayed in Figure F.7 in the Appendix, which is similar to internal
energy prices, but the distribution is less skewed to the right.

Gross wages and salaries, statutory and other social costs are summarized to receive
information on labor costs (PLL). The amount of full-time equivalents (L) is measured
by the total number of employees adjusted for part-time employees. In the analyzed time
frame, firms employ slightly more than 270 full-time equivalents on average. The yearly
wage is derived by dividing labor costs by full-time equivalents. For hourly wages, we
adjust values by the average yearly hours worked in 2016 in German manufacturing.17
The average hourly labor price (PL) is 29 e.18

Variable costs (V C) are calculated based on the sum of energy and labor costs. SE

measures the share of energy costs in variable costs, SL the share of labor costs. The
average share of energy costs in variable costs is around 0.09, which is comparable to the
average sector-level share derived by Schulte et al. (2016).

Output (Y ) is measured by real value added based on information specified in the
Cost Structure Survey. We do not subtract energy costs to calculate value added, as
we consider capital, energy and labor in our production function (KLE), but we assume
materials to be weakly separable and subtract them. Output is deflated using Eurostat
data on a two-digit industry level.

14Mean energy use of private households was 17,376 kWh in 2017, see website link (accessed 12. Nov
2021).

15See Table A.5 in the Appendix.
16Due to a strict anonymization policy, we are not able to publish a scatter plot, as this would show

individual observations.
17See website link (accessed 13. Nov 2021).
18The value is a slightly higher in statistics adjusted for the overall population (website link, accessed

14. Nov 2021).
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Software capital (KSW ) approximates the degree of firm-level digitalization and tan-
gible capital (property, plant and equipment) represents the non-software capital stock
(KN ).19 It has to be noted here that we only account for purchased software capital
and firms may also use software that is free of charge. Software and non-software capital
stocks are based on investments reported in the Census on Investments. We deflate them
based on Eurostat (software) and EU KLEMS data (non-software). Furthermore, the
perpetual inventory method (PIM) is applied to estimate capital stocks (Griliches, 1980;
Berlemann and Wesselhöft, 2014; Lutz, 2016; Dhyne et al., 2018; Löschel et al., 2019).
If calculated correctly, PIM allows measuring the total productivity-relevant capital by
considering next to current investments previous investments and depreciation rates.
The depreciation rate of software capital in our preferred specification is 31.5 percent, as
in EU KLEMS. We also calculate an average depreciation rate for non-software capital
based on EU KLEMS data. Moreover, PIM requires assumptions about initial capital
stocks, which are calculated based on average investments in the first three observation
periods as well as depreciation and capital growth rates. Consequently, we only consider
observations that are observed at least three years in a row. For a detailed description
of PIM see Appendix D. Our calculated capital stocks confirm findings of Kaus et al.
(2020), who analyze tangible and intangible capital within the German manufacturing
sector. Software capital (as a form of intangible capital) is growing faster in comparison
to tangible capital. Furthermore, both distributions of respective investments are heav-
ily skewed and lumpy, but software investments show these characteristics to a greater
extent. For instance, we find approximately 25 percent of firms without any software
investments in the analyzed period. Accordingly, we add 1 e to every software capital
stock, as this allows for taking the logarithm when software capital stocks are zero. We
will discuss this issue further in subsequent sections.

To evaluate the plausibility of estimated software capital stocks and to analyze whether
they are a sufficient proxy for the firm-level degree of digitalization, we conduct the fol-
lowing comparisons. Firstly, we compare our results with the Survey on the Use of
Information and Communication Technologies in Companies (ICT survey, 2012 - 2017),
which is a stratified random sample and entails more detailed information on ICT us-
age.20 We are able to match 16,813 observations from our sample with the ICT survey.
Unfortunately, different questions are asked every year and a large share of missing values
exists, so the number of observations is much lower for each survey item. Figure 2 shows
mean software capital intensity, i.e., the amount of software capital used to generate
one unit of output, for firms in which at least 20 percent of employees use a personal
computer (PC) and for firms in which less 20 percent use a PC. Firms have a much
higher software capital intensity when at least every fifth employee uses a PC. Figure 3
illustrates software capital intensity by the firm-level maximum data transmission rate.
The figure depicts that the higher the Mbit/s range (the faster the internet speed), the
higher also the mean software capital intensity. Consequently, we see a clear relationship
between software capital and the use of other digital technologies.

Secondly, we analyze whether sectoral and regional differences with respect to soft-
ware usage are plausible. Figure 4 shows average software capital intensity for different
industries. Manufactures of wearing apparel (Division 14) and basic pharmaceutical
products (Division 21) show the highest average software capital intensity. The pharma-
ceutical industry (combined with the chemical industry) was the most digital German

19Leasing capital is excluded.
20The ICT survey is additionally provided by the RDC. Doi: 10.21242/52911.2012.00.00.1.1.0 - Doi:

10.21242/52911.2017.00.00.1.1.0
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Figure 2: Software capital intensity by firms’ PC
usage.
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Figure 3: Software capital intensity by maximum
data transmission rate.

manufacturing industry in 2018 according to Weber et al. (2018). The high software
capital intensity of the wearing apparel industry can be explained by the fact that it is
a market with highly interconnected supply chains and fast changing trends. Besides,
digitalization allows for an increased individualization of products, which is especially
important for this industry. Furthermore, it is also intuitive that the computer industry
(Division 26) uses more software than most other industries. Manufacturers of other
transport equipment (Division 30) may have a comparatively high software capital in-
tensity because related industries such as aircraft and spacecraft construction are highly
innovative.
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Figure 4: Average software capital intensity by industry between 2009 and 2017. The tobacco industry
is excluded because of too few observations.

The geographic distribution of software capital intensity is displayed in Figure F.9 in
the Appendix. The darker the blue color of the respective area, the higher the average
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software capital intensity. The white area in between marks regions for which we either
observe no or less than three enterprises.21 We find that areas with a very high soft-
ware capital intensity coincide with major German cities. For example, Berlin, Munich,
Dresden, Stuttgart and Hanover show very high values. As digital enterprises usually
concentrate in larger cities, we consider this as a further indicator that software capital
is suitable for measuring the firm-level degree of digitalization.

Additionally, the following control variables (C) are included in the analysis. We
add federal state dummies as well as industry dummies on a two-digit level, dummies
capturing different size classes, measured by the number of employees,22 and a dummy
indicating whether a firm has multiple establishments. By means of the electric en-
ergy consumption and the ratio of electric energy costs to value added, we approximate
whether firms receive a full or a partial exemption from the EEG levy. Accordingly, we
include two dummies relating either to a full or partial exemption. Moreover, a dummy
that controls whether a firm produces energy is included, as this may affect energy costs,
as well. Last but not least, we include a dummy which is one if a firm has trading
commodities.

Although AFiD data are the corner stone of many official German governmental
statistics and several plausibility checks are conducted by Destatis, we find small shares
of implausibly small or high values. To address this, we trim our sample by the internal
labor and energy price at the 1th and 99th percentile, and winsorize all growth rates
included in Equation (1) at the 0.1th and the 99.9th percentile. We also exclude firms
with zero labor, energy or non-software capital use, as well as firms with a negative
output. Additionally, we exploit the panel structure to identify outliers and exclude
firms for which the standard deviation relative to the median of input-output ratios as
well as labor and energy prices is higher than 100.

4.3. Additional Descriptive Statistics
After the described prepossessing steps our sample includes 123,362 observations,

28,600 firms in total, and on average about 13,700 firms per year (Table 1). Around 13
percent of these firms are multi-unit establishments. We point out that the last panel
sequence includes slightly fewer observations than the first two. Moreover, we apply the
first-difference estimator in the subsequent statistical analysis. This reduces our main
estimation sample to 89,653 observations.

Year
Panel sequence 1 2 3
Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 Total
% multi-unit firms 13.5% 13.8% 11.3% 11.3% 13.5% 13.8% 13.8% 13.9% 13.9% 13.2%
Total 13,886 14,196 13,671 13,672 14,139 13,931 13,581 13,306 12,980 123,362

Table 1: Number of observations per year.

An overview of mean, median, and standard deviation of selected variables can be
found in Table 2. Values are also presented for annual change rates (100×∆ ln).

21As the RDC is not allowed to provide information at this granular level due to German data pro-
tection laws.

22Size classes: 20 to 49 employees, 50 to 99 employees, 100 to 249 employees, 250 to 499 employees,
500 to 999 employees, 1000 and more.
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(1) (2)
sample statistics in levels 100 × ∆ln*

mean median sd mean median sd
E 33 331 227.84 2 021 331.63 405 383 675.97 2.23 1.76 25.28
PEE 1 848 518.09 245 000.00 14 004 206.33 3.81 2.93 29.79
L 273.15 88.50 1 957.65 1.28 0.86 11.88
PLL 16 269 208.85 3 778 850.00 158 115 569.30 3.80 3.75 11.46
PE 0.13 0.11 0.09 1.57 1.32 35.98
PL 28.74 27.99 9.17 2.52 2.46 11.24
KSW 258 458.48 13 389.11 2 703 507.41 18.05 0.00 133.26
KN 20 110 799.14 3 011 534.63 204 487 549.41 2.11 −1.50 18.06
Y 22 929 312.43 5 060 662.00 213 216 121.19 3.82 3.31 27.48
Y/L 65 881.09 57 474.03 42 847.85 2.54 1.94 29.16
E/Y 1.07 0.38 3.86 −1.59 −1.70 36.24
KSW /Y 0.01 0.0024 0.06 14.37 −9.56 136.68
KN /Y 0.93 0.54 4.50 −1.64 −3.33 33.02
V C 18 117 726.95 4 190 796.00 165 630 044.11 3.71 3.62 11.35
SL 0.91 0.94 0.10 0.05 0.02 2.24
SE 0.09 0.06 0.10 −0.05 −0.02 2.14
N 123 362.00 89 653.00
All monetary variables in e; Energy is measured in kWh. *Please note that SE and SL are not logarithmized.

Table 2: Summary statistics of selected variables.

Column group (1) displays the sample statistics in levels. In an average manufacturing
firm an employee generates approximately 65,881 e output and for approximately one
euro of output 1.07 kWh is used. However, half of the firms only consume 0.38 kWh
or less per euro of output. Moreover, mean software capital intensity is only 0.01 and
median software capital intensity is only 0.024. In comparison mean tangible capital
intensity is 0.93 and median tangible capital intensity is 0.54.23

Column group (2) shows descriptive statistics for growth rates. Mean growth rates
for energy use, labor use, tangible capital and software capital are positive. Hence, the
absolute use of input factors grows over time at the firm-level. Moreover, the growth
rate for output is also positive. Looking at intensities, we see that output increases more
strongly than most inputs. Consequently, labor, energy and capital intensity decrease
over time. In contrast, software capital intensity strongly increases. It has an average
growth rate of 14 percent. With 18 percent, unscaled software capital is rising even
more sharply. As a clear relationship between software usage and the use other digital
technologies exists, we can assume that overall ICT capital also grew strongly within
the analyzed time frame. Furthermore, the descriptive statistics of growth rates point to
an issue. Median software capital growth is zero and median software capital intensity
growth is actually negative. Also, tangible capital (intensity) shows a negative median
growth rate, which can be explained by the fact that we generally observe a highly skewed
distribution of investments, a similar issue applies to software capital intensity. Moreover,
zero software capital stock growth rates exist because we allow for firms with no software
investments at all. Related software capital stocks remain constant at one obligatory
euro. Thus, they cannot shrink and their growth rate is zero. These observations are
potentially problematic for the econometric analysis. Therefore, a considerable fraction
of robustness checks will address this issue. It should also be noted here that standard
deviations for all logarithmized growth rates are larger than those of aggregated sector-
level data.

Figure F.10 in the Appendix shows time trends of mean software and non-software
capital as well as mean labor and energy capital divided by output relative to 2009. All

23Ratios are comparable to aggregated EU KLEMS data.
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variables decrease until 2011, which can be explained by an increase in output due to
recovery after the economic crisis in 2009. Software capital intensity increases after 2011
and exceeds at the end of the observation period its level from 2009, whereas the other
variables decrease in total. Moreover, the change of mean software capital should not be
mistaken with the mean change of software capital.

5. Econometric Specifications

For the econometric analysis, we take first differences of Equation (1) to remove firm-
specific fixed effects. Accordingly, ∆uit captures the time-specific firm-level deviation
of firm i. To capture disembodied technological change at time t, we add a dummy
variable for every year. Even though there is an unambiguous relationship between
software capital intensity and the use of other digital technologies, we change ICT capital
(KICT ) to software capital (KSW ) to be accurate. Nevertheless, we assume that an
increase in software capital is proportional to an overall increase in the use of digital
technologies. Accordingly, percentage growth between software and other ICT capital
should be comparable.

Except for the basic specification, we also add d ∈ D control dummy variables (C).
In all our specifications, we allow for clustering of observations at the firm-level when
calculating the standard errors of estimates. Accordingly, Equation (1) is transformed
to Equation (5).

∆SEit =βEE∆ln
(
PE

PL

)
it

+ βEKSW
∆ln

(
KSW

Y

)
it

+ βEKN
∆ln

(
KN

Y

)
it

+ β∗EY ∆lnY it +
T∑

t=2010
δEttit +

D∑
c=d

γcCcit + ∆uit

(5)

We do not control for any further characteristics in our first specification (FD basic).
However, in our second specification (FD all), which is our preferred specification, we do
control for industry-specific fixed effects on a two-digit level and for firms with multiple
establishments. We also add federal-state fixed effects to account for differences in wage
growth as well as other differences between German federal states. Size-class dummies
are included, since the cost structure may depend on the size of the firm, which is
approximated by the number of employees. We additionally control for firms that may
receive a full or a partial exemption from the EEG levy and for firms that produce
energy by themselves. We also include a dummy indicating whether a firm has trading
commodities, to control for different trends with respect to firms that outsource parts of
their production due to new digital communication channels. The listed control variables
will be used in all following steps.

Moreover, initial capital stocks may be unstable and investments need to be consid-
ered for a couple of periods to calculate solid capital stocks. To shed light into this issue,
we will run a regression with firms observed in their third period or later in a third step
(t > 3).

Additionally, we may observe a misleading correlation. If firms do not invest, their
capital stock is depreciated. Hence, it decreases automatically. If especially those firms,
which do not invest, increase their relative energy use, we would also measure nega-
tive capital intensity coefficients. However, this result would be deceptive. To ana-
lyze whether this is an issue with respect to software usage, we re-estimate Equation
(5) and only consider observations for which the software capital stock is increasing
(∆lnKSW (↑)).

14



Furthermore, endogeneity issues are a common problem in empirical studies at the
firm level. We address this issue by removing time-invariant firm-specific fixed effects
from the estimation. Therefore, endogeneity issues due to omitted variables are consider-
ably reduced. For endogeneity issues caused by measurement errors of our main variable
of interest, we provide various robustness checks with respect to different modifications
in the calculation of software capital stocks and respective growth rates. For instance, we
analyze how results change if we calculate software capital stocks assuming depreciation
rates of 25, 33 and 50 percent. Also, different period lengths are employed to calculate
initial capital stocks: We estimate initial software capital stocks based on two, four, and
six observation periods if available.

Still, software capital stocks may be imprecisely estimated. One reason could be that
a large share of firms do not report any software investments. As we impute these capital
stocks in every period by an obligatory euro, they can neither rise nor shrink. However, it
is not clear whether this is accurate, since firms could very well have invested in software
before the observation period and their software capital stock would actually decrease
in the observed time frame. Another problem may occur for firms that do not invest in
periods used to calculate initial capital stocks, but start to invest afterwards. We observe
then huge percentage increases in software capital stocks, since change rates from “zero”
to large natural numbers are large by construction.24

We conduct the following robustness checks to analyze issues with respect to “zero”
software capital stocks. Firstly, we exclude all observations that have “zero” software
capital stocks as well as those observations that have a software capital stock that in-
creases from “zero” and re-estimate our model. This allows us measuring to what extent
results differ when potentially problematic observations are excluded. Secondly, we look
closer at observations which have “zero” software capital stocks. Hence, their software
capital growth rate is zero. We do not know whether firms actually have acquired no
software capital or whether they invested before the observation period and their software
capital stock decreases due to depreciation. To analyze whether this makes a difference,
we impute “zero” growth rates. We replace them by the logarithmic change rate that we
would have observed in a firm that has software capital, but does not invest in the current
period. Hence, in a further re-estimation, software capital decreases by the depreciation
rate for all observations that do not invest. Thirdly, we deal with the issue that some
software capital stocks increase from “zero”. This may result in implausibly large growth
rates. Therefore, we censor very large values that increase from “zero”. We consider
increases more than 5-fold as implausible, limit them at this threshold and re-estimate
the model.

Moreover, we conduct a robustness check with respect to the economic crisis and
exclude observations before 2011. We also estimate our model only with single-unit firms
to analyze to what extent results may be biased due to inaccurately matched information
in multi-unit firms. Additionally, we test whether the inclusion of tangible capital may
lead to multicollinearity issues, as software investments are often complementary to them.
Further, we substitute changes in software capital intensity for changes in the previous
period to examine whether there are time lags in effects. In an additional specification,
we include fixed effects at the sector-year level.

Furthermore, we analyze different outcomes with respect to the econometric model.
Accordingly, we estimate the translog model by applying a pooled OLS and a fixed-effects
estimator. Moreover, we additionally employ a hybrid Mundlak model (Mundlak, 1978;
Allison, 2009). This estimator allows for the analysis of differences within and between

24In fact they actually rise from 1 e as zero values are imputed.
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firms. It is a random effects estimator in which variables are decomposed into firm-
level averages (between effect) as well as their distance to the firm-level average (within
effect).25 Including group averages allows to relax assumptions of the random-effects
estimator.

Analyses with respect to different effects regarding the sector assignment, observa-
tional period, size class and energy intensity as well as software intensity levels are dis-
played in Section 6.2. To further tackle endogeneity issues we aimed at conducting IV
estimates, which are described in Section 6.3. In Section 6.4, we estimate a reduced form
of a CES production function in order to investigate to what extent results depend on
the econometric specification.

6. Estimation Results

6.1. Main Results
Table 3 shows results for the first four specifications conducted as described in the

previous section. The energy intensity elasticity is calculated by both, Equation (3)
[Schulte] and Equation (4) [Foster]. In addition, it is displayed for the average elas-
ticity and the elasticity at averages of the energy cost share (SE) and software capital
cost share (SSW ). Details on respective distributions are provided by Table F.7 in the
Appendix.26 The first column shows results for the baseline specification. The second
column entails results for our preferred specification including a wide range of fixed ef-
fects. Both columns show similar results. All coefficients point in the same direction
as in previous estimates using sector-level data. The relative energy price is positively
linked to the energy cost share and the coefficient size is about the same magnitude. The
coefficient for software capital intensity is negative and significant at a high threshold,
but its effect size is much smaller than in previous sector-level estimates. According to
the demand elasticity calculated by Equation (3), the relationship is highly inelastic. An
increase in software capital of 1 percent is only associated with a 0.011 percent decrease
in energy intensity. Employing Equation (4), the elasticity is only 0.007 percent. Con-
sequently, the relationship is much smaller considering microeconometric data. In their
study, Schulte et al. (2016) display Equation (3) at averages. Comparing results illus-
trates how large differences are between different observational levels. Applying AFiD,
a 1 percent increase in software capital intensity relates to a decrease in energy intensity
of 0.007 percent at firm-level averages of SE and SKICT

, while the mentioned authors
measure a decrease of 0.235 percent. One reason why we measure a smaller elasticity is
the fact that we only subtract the ratio of software capital costs to variable costs and not
the ratio of ICT capital cost to variable costs, which is higher by definition. However,
this only explains a deviation of approximately 0.05 percentage points, thus, only a small
fraction of differences. Besides, we also observe that the tangible capital and the output
coefficient point into familiar directions, but have lower magnitudes than in estimates
based on aggregated data. However, differences are much smaller.

The following robustness checks address issues with respect to software capital stocks.
The third column displays results only including firms observed in their third period or
later. Except that the output coefficient becomes insignificant, we cannot identify any
notable difference to our preferred specification. The fourth column shows results only for

25In the case of one independent variable, a hybrid Mundlak model would be yit = β0 + βW (xit −
x̄i) + βB(x̄i) + εit

26The capital compensation or shadow price to approximate SKSW
is derived by the user costs of

capital calculated with EU KLEMS data and it is assumed to be 0.4 e .
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Table 3: First-difference estimation results of Equation (5).

(1) (2) (3) (4)

FD Basic FD ALL t > 3 ∆lnKSW (↑)

∆ SE ∆ SE ∆ SE ∆ SE

4 ln( PE
PL

) 0.0285∗∗∗ 0.0284∗∗∗ 0.0295∗∗∗ 0.0251∗∗∗

(62.02) (169.56) (51.02) (35.08)

4 ln( KSW
Y

) -0.000245∗∗∗ -0.000238∗∗∗ -0.000206∗∗∗ -0.000214∗∗∗

(-5.20) (-5.19) (-4.47) (-4.11)

4 ln( KN
Y

) -0.0013∗∗∗ -0.0015∗∗∗ -0.0013∗∗ -0.0011

(-3.43) (-4.42) (-3.27) (-1.31)

4 ln(Y ) 0.0017∗∗ 0.0013∗∗∗ 0.0010 0.0014

(3.21) (3.32) (1.48) (1.43)

Year x x x x

Economic sector x x x

Multi-unit x x x

Federal state x x x

Size class x x x

EEG exemption x x x

Producer x x x

εEKSW
(Schulte) -0.0111 -0.0110 -0.0102 -0.0137

εEKSW
at SE,KSW

(Schulte) -0.0068 -0.0068 -0.0066 -0.0098

εEKSW
(Foster) -0.0069 -0.0067 -0.0059 -0.0062

εEKSW
at SE,KSW

(Foster) -0.0026 -0.0026 -0.0022 -0.0024

Observations 89653 89653 59405 25715

Adjusted R2 0.267 0.271 0.290 0.250

t statistics in parentheses. First-difference estimation. Clustered standard errors.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. εEKSW

displays the average demand elasticity
for energy intensity for equation (3) and for equation (4). εEKSW

at SE,KSW
displays

the demand elasticity for energy intensity at averages of SE and SKSW
.

increasing software capital stocks. The software capital coefficient is again significant at a
high threshold and the effect size is comparable to our preferred specification. However,
non-software capital and output are insignificant. Both Equation (3) elasticities are
slightly larger. This deviation is due to a higher average ratio of software capital costs to
variable costs for the subsample used in this estimation. Also, note that slight differences
in Columns (3) and (4) might stem from dramatically reduced sample sizes as well as
from a selective consideration of observations.

Estimates employing different depreciation rates for the software capital stock can
be found in Table G.8 in the Appendix. Results show that changes in the depreciation
rate of the software capital stock only lead to marginal differences between coefficients.
Hence, results appear to be robust in this regard. Results for different maximum lengths
of observation periods considered for the initial capital stock calculation are displayed in
Table G.9 in the Appendix. We find slight differences for initial software capital stocks
that include two as well as up to six periods. For initial stocks based on two periods,
we find effects that are marginally smaller. For initial stocks based on up to six periods,
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the effect size is slightly larger and the software capital coefficient becomes −0.0003.
However, we do not consider this deviation to be large enough to have an effect on the
economic interpretation of results, which would be that a 1 percent increase in software
capital intensity relates only to marginal energy intensity improvements within firms.

Result with respect to issues related to “zero” software capital stocks can be found in
Table G.10 in the Appendix. In the first column, we exclude observations that have “zero”
software capital stocks as well as observations that have a software capital stock that
increases from “zero”. The effect size of the software capital coefficient is comparable to
our preferred specification, however, it is only significant at the 10%-level. Consequently,
even though the exclusion of potentially problematic observations does only marginally
alter the coefficient size, we have to acknowledge that the relationship is now significant
at a lower threshold. The second column displays results for imputed depreciation rates
for “zero” software capital stocks that would occur if a firm had invested in previous
periods. We find that this modification does not notably affect results and the coefficient
of interest is comparable to baseline results. Hence, is does not make a difference whether
we depreciate “zero” software capital stocks or not. The last two columns relate to
estimates in which increases from “zero” software capital stocks are limited to a threshold.
In Column (3), “zero” software capital stocks are included and in Column (4) excluded.
Results of both columns are comparable and the coefficient slightly increases, but not
substantially. To sum up, different treatments of growth rates related to “zero” software
capital stocks only marginally affect results, i.e. they can hardly be the reason why we
find smaller effects in comparison to aggregated estimates.

Table G.11 in the Appendix shows effects for single-unit firms (Column 1) and esti-
mation results, in which only observations after 2011 are considered (Column 2). The
restricted estimates are consistent with our baseline results. Both software coefficients
point into a negative direction and are significant, but software coefficients are slightly
smaller for both restricted samples. Moreover, our results are also robust with respect to
the exclusion of tangible capital (Column 3). We additionally estimate the influence of
lagged software capital and do not find any effect of an increase in the software capital
stock in the previous period on current changes in the share of energy costs in variables
costs (Column 4). Including sector-year level fixed effects does not affect baseline results
notably (Column 5).27

Table G.12 shows results with respect to different econometric models. Column (1)
displays results for the pooled OLS estimator. The software capital coefficient becomes
nearly seven times larger, but also other coefficients change. Column (2) provides results
for the fixed-effects estimator. The coefficients of the fixed effects model are comparable
to coefficients in Table 3. The coefficients point in the same direction and have more
or less the same magnitude – except tangible capital, which is insignificant. The con-
sistency of both models supports the validity of both approaches. Differences between
the pooled OLS estimator and the first-difference or the fixed-effects estimator indicate a
large omitted variable bias if individual-specific effects remain unconsidered. Column (3)
shows results for the hybrid Mundlak model, in which the overall effect is decomposed
into a between and within effect. The significance of the coefficient for average software
capital confirms that individual-specific effects are correlated with the dependent variable
in this regard. Results also illustrate that between effects – differences between firms –
are much larger than within effects – changes within a firm. In other words, firms which

27Besides, we also performed an estimation in which we replaced software capital intensity with soft-
ware investment and measured a comparable relationship. The results are available from the authors
upon request.
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have on average a higher software capital intensity tend to have lower relative energy
costs on average. However, a 1 percent increase in software capital intensity within a
firm only relates to a marginal reduction of relative energy costs or energy intensity.

To summarize results, an increase in software capital intensity is associated with a
decrease in relative energy demand, but the relationship has a much smaller magnitude
than previous industry-level estimates suggests. Effect sizes at the firm-level are robust
with respect to various econometric specifications.

6.2. Robustness with Respect to Firm-level Characteristics
In this section, we shed light into the robustness of estimates with respect to different

manufacturing industries, energy and software-capital-intensity levels, CSS waves as well
as size classes.

6.2.1. Industries
To analyze to what extent results differ for certain types of firms, we first split our

sample based on sector affiliations. Accordingly, we individually fit Equation (5) for
different industries at the two-digit level (NACE classification). Estimation coefficients
for software capital intensity by industry are displayed in Figure 5. The colored dots
mark respective estimation coefficients and the corresponding lines represent confidence
intervals at the 95%-level. If estimated independently, the software coefficient is negative
but insignificant for most industries. However, it has significant negative effects for man-
ufacturers of paper and paper products (Division 17), chemicals and chemical products
(Division 20), other non-metallic products – including the cement industry – (Division
23), basic metals – including iron and steel industry – (Division 24), electrical equipment
(Division 27) as well as for the repair and installation industry (Division 33). Most of
these sectors show a very high energy intensity.28 Consequently, a reduction in the share
of energy costs in variable costs may be driven by sectors that are highly energy inten-
sive, such as the non-metallic products and the basic metals industry. Hence, although
their magnitude is small, effects at least appear to be more pronounced in industries with
potentials to save larger amounts of energy.

6.2.2. Energy and Software Capital Intensity
To shed more light into the extent to which results diverge for different energy and

software capital intensity levels, we split our sample into quartiles with respect to firm-
level averages of both variables respectively. Moreover, we estimate the translog model by
employing a fixed-effects estimator. We do this because the fixed-effects estimator con-
siders divergences from means. This allows for the analysis of effect differences regarding
the distance to different average intensity levels.29 Results are displayed in Figure H.11.
The blue bars correspond to quartiles of firms with the lowest average energy or software
capital intensity.

The left panel relates to different levels of average energy intensity. For the two quar-
tiles with the lowest average energy intensity levels, the point estimates of the software
capital coefficient (βEKSW

) do barely differ from zero. For the two quartiles with the
highest energy intensity, however, the magnitude of the coefficient increases and the re-
lationship is significantly negative. Hence, the higher the average energy intensity level,
the more pronounced reductions in the share of energy costs in variable costs.

28See website link (accessed 13. Oct 2021).
29Please note here that this is particularly relevant for different levels of average software capital

intensity.
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Figure 5: Heterogeneous effects - Sector level estimations (two-digit NACE level). Tobacco industry excluded because of too few observations.
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The right panel relates to different levels of average software capital intensity. The
quartile with the lowest average software capital intensity has a very large confidence
interval. This can be explained by the fact that we observe a large share of “zero”
software capital stocks, which are included here. Moreover, we do not observe a clear
trend with respect to higher levels of software capital intensity. Effects of the third and
the fourth quarter appear to be more pronounced, but differences are not substantial.

6.2.3. Time
Moreover, the relationship between software usage and energy intensity improvements

may generally change over time. For instance, new energy-efficient technologies may ap-
pear or energy-saving potentials of already existing technologies may become exhausted.
Also, effects may differ by CSS samples, as it is a rotating panel, in which a consider-
able share of firms is only observed for four consecutive years. Hence, the composition
of firms partly changes every four years. We investigate differences with respect to the
observed time frame by always estimating our model for a time frame of four years, but
rotating forward by one year for each estimation. Results are displayed in Figure H.12.
Software capital coefficients are always negative and significantly different from zero.
Moreover, the magnitude slightly declines between the first two samples including the
earliest observations and then continuously rises. However, the increase is very small. As
a consequence, the difference between early and later observed samples is only marginal
and we cannot find any substantial differences with respect to time.

6.2.4. Size Classes
We also estimate the translog model individually for different size classes with respect

to the number of employees.30 Results are presented in Figure H.13. We cannot find a
linear pattern for different size classes. The software capital coefficient is relatively small
and insignificant for small firms between 20 and 49 employees as well as for larger mid-
sized firms between 100 and 249 employees. Effects are more pronounced and significant
for smaller mid-sized firms between 50 and 99 employees as well as for large firms with
250 employees or more.

6.3. IV estimates
Even though we account for a large share of endogeneity issues by removing time-

invariant firm-specific effects from the estimation, we still may observe biased coefficients.
For instance, software capital intensity could be endogenous due to a simultaneous re-
lationship or a still not detected measurement error. To analyze this issue, we include
information on household broadband availability (HBA) at the municipality level and use
different levels of maximum available data transmission rates as instruments for software
usage. A similar approach has been conducted for example by Bertschek et al. (2013).
Unfortunately, HBA instruments are weak and yield unreliable estimates. Therefore, we
abstained from including results in the analysis.31

Moreover, endogenous control variables do not lead to biased coefficients when uncor-
related with the variable of interest, but they do if they relate to each other (Frisch and
Waugh, 1933). In particular, the relationship between output and software capital could
potentially bias results, because both variables may highly depend on each other. A

30We use four size classes instead of six to ensure that the number of observations in every subsample
is comparable.

31Results are available from the authors upon request.
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similar problem may exist with respect to the energy-labor-price ratio, as the use of soft-
ware usually requires skills that are in high demand. To test whether these issues affect
results, we conduct the following IV estimates as further robustness checks. Respective
results are displayed in Table G.13.

For the analysis of endogeneity problems related to our output indicator, a problem
arises because the variable is included in the model and also both capital stocks are scaled
by output. However, from an econometric perspective it is not necessary to scale capital
stocks by output since we already control for it.32 Accordingly, we rearrange Equation
(1) and do not scale both capital stocks by output anymore. Hence, we now estimate
βEY instead of β∗EY (see Section 3 or Appendix C). The translog model is re-estimated
and displayed in Column (1). It is straightforward to see that this modification barely
affects software and tangible capital coefficients. In a second step, we instrument output
by a firm’s market share in terms of sales. Market shares are calculated using four-digit
and two-digit industry levels and employing the Census on Investments, accordingly two
different instruments are used. Additionally, we calculate market shares only if at least
three observations per industry are available. Hence, we exclude a small share of obser-
vations from the estimation. Results are displayed in Column (2). The output coefficient
gently increases, but the software capital coefficient is barely affected. In a last step, we
instrument the energy-labor-price ratio by an exogenous energy price variable. To cal-
culate the exogenous energy price, we use prices of different energy sources (if available)
from official statistics and weight them by the individual use of the respective energy
source.33 Results are displayed in Column (3), in Column (4) output is instrumented
as well. The effect size of the price coefficient decreases and it is now significant at
lower threshold, but the software capital coefficient is not affected and comparable to the
baseline specification. Besides, test statistics of tests for underidentification and weak
identification as well as the Sargan–Hansen test indicate that the exogenous energy price
and market shares are appropriate instruments.

6.4. Estimate of a reduced CES production function
To test the robustness of results derived by the translog model, we estimate a second

model in which we use energy intensity directly as a dependent variable. For this pur-
pose, we apply a nested CES production function approach with 3-inputs (K,L; E). This
approach has also been used previously in studies at the sectoral level (Bernstein and
Madlener, 2010; Collard et al., 2005). Here, energy intensity is modelled as a function
of the energy-related level of technology (A), the energy price relative to a general input
price level (PE/PP P I), an elasticity (σ) as well as a constant (ω) (Collard et al., 2005;
Van der Werf, 2008; Lagomarsino, 2020; Bernstein and Madlener, 2010).

ln

(
E

Y

)
it

= σln(ω)− σln
(

PE

PP P I

)
it

+ (1− σ)lnAit (6)

Following Collard et al. (2005), we assume that the energy-related level of technology
evolves as:

lnAit = θ0 + θICT ln

(
KICT

KN

)
it

+ θttit (7)

32We scale software capital by output in our preferred specification to be consistent with Schulte et al.
(2016).

33See Table A.5 in the Appendix for more details on data sources. The distribution of the exogenous
price variable and its relationship to the potentially endogenous energy price variable is displayed in
Appendix Appendix F.1.
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To analyze whether effects differ between production function approaches, we plug
Equation (7) in Equation (6), take first differences and estimate a reduced form as illus-
trated in Equation (8). The general input price level is measured by the producer price
index34, which is retrieved at a two-digit industry level from Destatis. Technological
progress t is measured by time dummies.

∆ln
(
E

Y

)
it

=∆β PE
PP P I

ln

(
PE

PP P I

)
it

+ ∆βKICT
KN

ln

(
KICT

KN

)
it

+
T∑

t=2010
δEttit +

D∑
c=d

γcCit + ∆uit

(8)

Results are presented in Table 4. Three specifications are estimated. In the first
column, the specification is equivalent to our preferred specification in Table 3.

Table 4: First-difference results of Equation (8).

(1) (2) (3)
FD ALL Excluding

problematic
observations

KSW (↑)

∆ ln E/Y ∆ ln E/Y ∆ ln E/Y

4 ln( PE
PP P I

) -0.446∗∗∗ -0.462∗∗∗ -0.481∗∗∗

(-58.43) (-50.21) (-34.27)
4 ln( KSW

KN
) -0.00289∗∗∗ -0.00456∗ -0.00239∗∗

(-3.71) (-2.31) (-2.68)

Year x x x
Economic sector x x x
Multi-unit x x x
Federal state x x x
Size class x x x
EEG exemption x x x
Producer x x x

Observations 89267 64991 25609
Adjusted R2 0.228 0.231 0.252

t statistics in parentheses; First-difference estimation; Clustered standard errors; ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

The adjusted R2 value is now 0.23, which is slightly smaller than that of the translog
model. The price ratio is negative and significant at a high threshold. As expected, an
increase in the relative energy price relates to a decrease in energy intensity.35 The soft-
ware coefficient also shows a highly significant negative relationship. If the ratio between
software and non-software capital increases by 1 percent, energy intensity decreases by
0.003 percent. Consequently, this effect size is slightly smaller but comparable to average
elasticities derived with the translog model and is very similar to the Equation (4) elas-
ticity at averages of SE and SSW . It should be emphasized here that the coefficient could
be slightly biased since we assume a linear relationship. Moreover, we now measure the

34We lose a small fraction of observations here as the producer price index is not available for the
repair and installation industry (Division 33) for 2009.

35Please note here that this relationship is not strictly exogenous.
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effect of software capital relative to tangible capital and no longer the effect of software
capital relative to output. In a second specification, we re-estimate the model but exclude
potentially problematic observations with respect to “zero” software capital stocks. The
software capital coefficient is now only significant at a 95%-level. We observe a similar
phenomenon for the translog model. Furthermore, the magnitude of the effect increases,
but this increase is not substantial. Therefore, we still consider the effect size as inelastic.
In the third column, we only consider increasing software capital stocks. The coefficient
of software capital relative to tangible capital is comparable to the first specification,
however, it is only significant at a 99%-threshold. Moreover, the adjusted R2 slightly
increases. To sum up, results based on a reduced form of a CES-production function are
robust to different econometric specifications and comparable to those derived with the
translog model.

7. Discussion

Previous studies on manufacturing industries point out that the ongoing digital trans-
formation may have synergies with climate targets. A higher amount of data and an im-
proved exploitation of information increases efficiency within production processes and
may decrease relative energy use, despite the fact that ICT consume energy themselves.

To the best of our knowledge, this is the first empirical study that uses firm-level data
to analyze the validity of this claim. Using software capital intensity as a proxy for the
firm-level degree of digitalization, we find that an increase thereof relates to a decrease
in relative energy use, however, to a much smaller magnitude than previous sector-level
estimates state. Consequently, the relationship is highly inelastic. Nevertheless, we
would like to emphasize that we cannot fully rule out that estimated coefficients are
small because they are downward biased due to a measurement error in software capital.
However, the estimated software capital coefficient is robust to several sample restrictions
and different modifications of software capital stocks. This consistency may provide some
confidence.

It is not unusual that effects are smaller when microeconometric data is employed. In
a meta analysis on the relationship between IT and productivity, Stiroh (2005) observes
a similar phenomenon. The respective elasticity tends to be larger at the industry level
and including firm-level fixed effects decreases the magnitude of the relationship. Also,
Kaus et al. (2020) find lower effects of intangibles on output at the firm level than Niebel
et al. (2017) at the aggregated level.

Furthermore, we analyze the robustness of results with respect to different firm-
level characteristics. For instance, for most industries we find that the effect size is not
significant, but software-related reductions in energy costs are significant and tend to be
more pronounced for exactly those firms and industries that are comparatively energy
intensive. Thus, there is some ray of hope.

Moreover, although the relationship is small, it does not necessarily mean that it is
not relevant as software capital grew strongly in our sample in the observed time frame.
Hence, software capital may still relate to considerable energy intensity improvements
due to its large growth rate. To analyze this, we perform the following back-of-the-
envelope calculation. We multiply the demand elasticity by the average annual growth
rate of software capital intensity, which is 18.05 percent. Using the translog model, this
translates into an annual decrease in energy intensity between 0.12 and 0.20 percent,
depending on the approach used to calculate the elasticity. Over ten years this would
result in energy intensity improvements of roughly 1.5 percent, assuming that software
capital would continue to grow at such a high rate. This shows that software investments
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do relate to energy intensity improvements to some extent, but are not a key driver for
achieving climate targets.

A further question is whether it would be economically rational to invest in software
to save energy. To shed light into economic considerations, we approximate average
savings in energy costs per euro invested in software. We use the average energy intensity
elasticity derived by Equation (3) in Column (1) of Table 3 to calculate energy cost
savings per euro invested in software. In Appendix E, our approach is described in
detail. We measure that 1 e invested in software saved on average approximately 0.03 e
of energy costs in the analyzed time frame. This calculation illustrates that conducting
software investments to save energy (costs) does generally not appear to be economical
from a firm perspective. This confirms a rational already observed in questionnaire-
based surveys, in which firms were asked for non-technical self-assessments: Savings in
energy consumption due to the use of digital technologies are rather a welcome side effect
and do not appear to be substantial enough to be the main motivation for conducting
digitalization projects.

What does our result imply for the net impact of ICT on total energy consumption?
As the level of output is considered in both econometric models, the measured relationship
indicates not necessarily a decrease in absolute energy consumption. By means of the
translog model, we analyze the relationship between software capital intensity and the
ratio between energy and labor costs. By estimating a reduced form of a CES production
function approach, we consider the relationship between software usage and the ratio
between energy use and output. Many economic studies show a clear link between labor
and ICT (e.g., Van Reenen 2011, Michaels et al. 2014 and Atasoy et al. 2016) as well as
productivity and ICT (Stiroh, 2005; Cardona et al., 2013). In other words, the observed
relationship may be exclusively driven by positive effects of software capital on labor and
output. Accordingly, there is not necessarily a decrease in absolute energy use within
firms. It may be just less affected by software usage. Therefore, we abstain to make
conclusions on absolute energy consumption. Besides, we want to emphasize that even if
output or labor increases due to software usage and energy consumption remains constant
or grows to a lower extent, energy intensity improvements still occur, as energy is used
relatively less. Moreover, to be precise, we solely measure energy intensity improvements
inside firms. For instance, we cannot make conclusions about additional energy that is
consumed in external data centers due to an increase in the use of Could Computing.
However, Cloud Computing has been not used very frequently in the observed time frame
and its use has only picked up in more recent years.36 An analysis with more recent data
would probably run into greater difficulties here.

One issue of this study may be that energy efficiency improvements may be accom-
panied by rebound effects (Amjadi et al., 2018). For example, potential energy savings
may not be fully realized because improvements in energy efficiency increase the attrac-
tiveness of using energy as an input factor. How the use of ICT relates to this issue could
be worth looking into in further research.

Furthermore, effects may be small because software capital is insufficient to approxi-
mate the degree of digitalization. Unlike other digitalization indicators, e.g., the amount
of employees working with a computer, software capital has the advantage that it is
measured in monetary values. In addition, almost all hardware requires software. Es-
pecially technologies that optimize production by analyzing large amounts of data and
thus potentially improve energy efficiency, heavily rely on software. We show a clear
relationship between software usage and the use of other digital technologies in Section

36See website link (accessed 12. Dec 2021).
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4.2. Consequently, another advantage in using software capital is that it is very general in
comparison to other technologies such as Cloud Computing or 3D printing. Considering
all possible indicators, we believe that for the purpose of this study, software capital is
the most suitable indicator. Nonetheless, further analyses using different types of digital
technologies may be useful, as heterogeneous effects with respect to different types of
digital technologies could exist. Moreover, we have to acknowledge the issue that we
do not consider the use of software that is free of charge. However, as we only look at
relative percentage changes and it is likely that for most firms both, the use of free of
charge and paid software, are proportional to each other, we assume that this does not
have a large effect on our results.

Besides, we want to mention that AFiD data provide information on the use of differ-
ent energy sources. Hence, it is also possible to analyze the influence of software capital
on the energy mix, which may be affected by digital technologies, as well. However, a
respective analysis would also require information on energy costs and prices for differ-
ent sources. Unfortunately, the matched price data is often not sufficiently accurate, and
different specifications of cost shares for each energy source yielded unreliable estimates.
Therefore, we abstained from the analysis. This does not affect our main findings, as
information on overall energy costs are surveyed by Destatis.

8. Conclusion and Outlook

Climate change and the emergence of digital technologies are considered as current
megatrends. Consequently, to analyze how both relate to each other is of great impor-
tance. In particular, it is assumed that digital technologies may relate to a decrease
in carbon emissions through energy intensity improvements especially in manufacturing
industries, as they are considered to have very high potentials in this regard.

This is the first large-scale empirical study that analyzes the relationship between
the usage of digital technologies and energy intensity improvements at the firm level.
For this purpose, we employ administrative panel data on 28,600 firms in the German
manufacturing sector collected between 2009 and 2017. Furthermore, we use software
capital intensity as an indicator for the firm-level degree of digitalization and apply a
translog cost function approach. Results show a statistically significant link between
software capital and energy intensity improvements, but the effect size is much smaller
than expected. Our findings are robust to several sample restrictions as well as to modifi-
cations of the software capital stock. Thus, we conclude that an increase in the firm-level
software capital stock cannot be associated with substantial energy intensity improve-
ments within firms. However, there is some ray of hope, as we find that effects are more
pronounced in firms and industries that are very energy intensive.

Our results may be relevant for policy makers, consultants and firms that aim to
improve energy intensity within establishments and may overestimate synergies between
digital technologies and energy savings.

Moreover, effects are small for software usage, but they may be different for specific
digital technologies. Future research that analyzes how different digital technologies re-
late to effect heterogeneity would be a further important contribution, for which the
application of firm-level data has great potential. External factors such as carbon prices
or market concentration may also incentivize the use of digital technologies to improve
energy intensity and thus potentially influence effect heterogeneity. An analysis in this
regard may be very useful for designing appropriate policies dealing with climate pro-
tection potentials of digital technologies. Last but not least, the analysis of ICT-related
rebound effects as well as the inclusion of an appropriate instrumental variable that
allows measuring whether the relationship is truly causal would be of great value.
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Appendix A. Additional Data

For our analysis, we add, inter alia, information on prices of different energy sources,
gross value added deflators to calculate real value added and growth and depreciation
rates as well as investment deflators to calculate capital stocks. All data sources are
listed in Table A.5. The identifier denotes the variable that is used to merge the dataset
with AFiD.

Table A.5: Description of additional data sources.

Information Data source Comments Identifier
Price for energy
source
(electricity,
natural gas,
heating oil,
coal)

Gesamtausgabe der En-
ergiedaten, Federal Ministry
for Economic Affairs and Energy
(BMWi), status: 31.03.2020,
link to website (Retrieved on:
01.04.2020)

Prices for hard coal (import
prices), heavy heating oil (in-
dustry prices, VAT excluded),
light heating oil (light, industry
prices, VAT excluded), electric-
ity and natural gas prices inde-
pendent from the consumption
level. are retrieved. The respec-
tive units have all been converted
to €/kWh.

Year

Price for energy
source (district
heat)

Fernwärme – Preisübersicht,
AGFW | Der Energieeffizien-
zverband für Wärme, Kälte und
KWK e. V., status: 01.10.2017,
link to website (Retrieved on:
14.08.2019)

Absolute price development from
2009-2017 for the connected loads
of 160 kW (p.8) are used. Val-
ues are converted from €/MWh
to €/kWh. Prices are retrieved
without VAT.

Year

Price for energy
source
(biomass)

Brennstoffkostenentwicklung von
Gas, Öl und Pellets, Deutsches
Pelletinstitut GmbH (DEPI),
status: 2019, link to website
(Retrieved on: 13.09.2019)

Pellet price for 2015 is taken,
value converted from cent/kWh
to €/kWh (VAT excluded).

Year

Price for energy
source
(biomass)

Index der Erzeugerpreise
gewerblicher Produkte (5.10
Holzprodukte - GP09-1629 14
908 Pellets, Briketts, Scheiten
o.ä. Formen aus Sägespänen
u.a. Sägenebenprodukt), from:
Daten zur Energiepreisentwick-
lung - Lange Reihen von Januar
2005 bis Mai 2020, Statistis-
ches Bundesamt (Destatis),
status: 26.06.2020, link to data
(Retrieved on: 16.07.2020)

The base year of the Destatis
index is 2015. Therefore, the
DEPI-price is taken from the year
2015 and multiplied by the index
for each year to receive informa-
tion about the change in the price
for biomass.

Year

Price for energy
source (liquid
gas)

IEA Energy Prices and Taxes
Statistics, International Energy
Agency, status: 1.Quarter 2019,
link to website (Retrieved on:
04.09.2019)

Prices (VAT excluded) from
2009-2017 for liquid gas are
retrieved. Values are converted
from €/l to €/kWh.

Year

Producer price
index (PPI)

Index der Erzeugerpreise
gewerblicher Produkte (In-
landsabsatz) nach dem Güter-
verzeichnis für Produktion-
sstatistiken Ausgabe 2009 (GP
2009) - Lange Reihen der Fach-
serie 17, Reihe 2 von Januar
2005 bis September 2020, Statis-
tisches Bundesamt (Destatis),
status: 20.10.2020, link to data
(Retrieved on: 12.11.2020)

Index on the yearly average
change is retrieved.

Year,
economic
sectors
(two-digit
NACE
code)

Gross value
added deflators

National accounts aggregates
by industry, Eurostat, status:
24.03.2020, Eurostat bookmark
(Retrieved on: 01.04.2020)

Price index (implicit deflator),
base year 2010, national cur-
rency.

Year

Capital stock Cross-classification of gross fixed
capital formation by industry and
by asset (flows) - Computer soft-
ware and databases (gross), Eu-
rostat, status: 30.03.2020, Eu-
rostat bookmark (Retrieved on:
01.04.2020)

Table PD10_NAC, price index
(implicit deflator), base year
2010, national currency. Soft-
ware deflators are retrieved. See
Appendix D for detailed informa-
tion on how we calculate soft-
ware as well as non-software cap-
ital stocks.

Year
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Information Data source Comments Identifier
Capital stock EU KLEMS database - 2019

release, Germany capital input
data, see Stehrer, R., A. Bykova,
K. Jäger, O. Reiter and M.
Schwarzhappel (2019): Indus-
try level growth and productivity
data with special focus on intan-
gible assets, wiiw Statistical Re-
port No. 8. link to data (Re-
trieved on: 18.04.2020)

Real gross fixed capital forma-
tion (in prices from 2010) to cal-
culate growth rates, depreciation
rates as well as investment de-
flators (except software deflators)
are taken from the EU KLEMS
database for the years 2003-2017.
See Appendix D for detailed in-
formation on how we calculate
software as well as non-software
capital stocks

Year,
economic
sectors
(two-digit
NACE
code)

Household
broadband
availability

Breitbandatlas des Bundes
(German Broadband Atlas) -
Release 2/2021 (Retrieved on:
9.04.2021). Data is restricted in
usage. Access can be requested
at atene KOM GmbH (link to
website)

Not integrated in the analysis municipality
level
(AGS)
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Appendix B. Categorization of Different Energy Carriers

Category Summarized energy carriers
Biomass Solid biogenic substances, liquid biogenic substances, biogas,

sewage gas, landfill gas, sewage sludge
Natural gas Natural gas, petroleum gas
Coal Hard coals, hard coal coke, raw lignites, lignite briquettes, hard

coal briquettes, other hard coals, lignite cokes, fluidized bed coals,
pulverized and dry coals, other lignite

Heating oil Light and heavy heating oil
District heat District heat
Liquid gas Liquid gas
Other energy sources Mine gas, coke oven gas, blast furnace gas, converter gas, other

gases, waste (household waste, industrial waste), other energy car-
riers (waste heat, etc.)

Table B.6: Categorization of different energy carriers.
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Appendix C. Derivation of Schulte et al.’s (2016) Dual Cost Function Model

Variable costs are defined by energy (E) and labor (L) use and the corresponding
energy (PE) and labor prices (PL).

V C = PEE + PLL (C.1)

Moreover, the restricted variable cost function depends on the following parameters,
which are defined in Section 3.

V C = f(PE , PL,KICT ,KN , Y, t) (C.2)

This relationship is approximated by a translog cost function:

lnV C =β0 + βElnPE + βLlnPL + βKICT
lnKICT + βKN

lnKN + βY lnY + βT t

+ 1
2βEEln(PE)2 + 1

2βLLln(PL)2 + 1
2βKICT KICT

ln(KICT )2

+ 1
2βKN KN

ln(KN )2 + 1
2βY Y ln(Y )2 + 1

2βT T (t)2

+ 1
2βELlnPElnPL + βEKICT

lnPElnKICT + βEKN
lnPElnKN

+ βEY lnPElnY + δET lnPEt

+ 1
2βLElnPLlnPE + βLKICT

lnPLlnKICT + βLKN
lnPLlnKN

+ βLY lnPLlnY + +δLT lnPLt

+ 1
2βKICT KN

lnKICT lnKN + βKICT Y
lnKICT lnY + δKICT T lnKICT t

+ 1
2βKN KICT

lnKN lnKICT + βKNY
lnKN lnY + δKN T lnKN t

+ δY T lnY t

(C.3)

Applying logarithmic differentiation with respect to the energy price and Shephard’s
lemma, leads to Equation (C.4).

∂lnV C

∂lnPE
= PEE

V C
= SE =βE + 1

2βELlnPL + 1
2βLElnPL + βEElnPE

+ βEKN
lnKN + βEKICT

lnKICT + βEY lnY + δET t

(C.4)

Assuming symmetry (βEL = βLE) and homogeneity of degree one (βEL = −βEE)
(see Christensen et al. 1973 and Berndt and Wood 1975) enables the transformation
to the estimation equation SE = βE + βEElnPE/PL + βEKN

lnKN + βEKICT
lnKICT +

β∗EY lnY + δET t.37
The demand elasticity is derived following Kratena (2007). The demand elasticity of a

good j can be defined as the change in lnj ∈ {E,L} with respect to lnKICT . Expressing
j as SjV C/Pj allows decomposing the demand elasticity into three different effects. The
effect of ICT on the share of energy costs in variable, the effect of ICT on total variable
costs and the effect of ICT on prices.

37With β∗
EY = βEY + βEKN

+ βEKICT
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εjKICT
= ∂ ln j
∂ lnKICT

=
∂ ln SjV C

Pj

∂ lnKICT
= ∂ lnSj

∂ lnKICT
+ ∂ lnV C
∂ lnKICT

− ∂ lnPj

∂ lnKICT
(C.5)

Assuming exogenous prices implies ∂ lnPj/∂ lnKICT = 0, which leads to Equation
(C.6).

εjKICT
= ∂ lnSj

∂ lnKICT
+ ∂ lnV C
∂ lnKICT

(C.6)

Which can be also expressed as:

εjKICT
= βjKICT

Sj
+ ∂V C

∂KICT

KICT

V C
(C.7)

Assuming that ∂V C/∂KICT is a shadow price for capital allows writing Equation
(C.8).

εjKICT
= βjKICT

Sj
− RKICT

KICT

V C
(C.8)

Furthermore, according to Schulte et al. (2016) (RKICT
KICT )/V C can be approxi-

mated by the share of ICT capital cost to variable costs (SKICT
). We assume a shadow

price of software capital of 0.4 e.

εjKICT
= βjKICT

Sj
− SKICT

(C.9)
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Appendix D. Perpetual Inventory Method (PIM)

In the spirit of Griliches (1980), Berlemann and Wesselhöft (2014), Lutz (2016),
Dhyne et al. (2018) and Löschel et al. (2019) capital stocks are calculated for software
capital and non-software capital by means of the perpetual inventory method (PIM).

Given geometric constant depreciation, the capital stockKt at period t can be written
as a function of previous period’s capital stock Kt−1, gross investments It, and the
consumption of fixed capital at rate δ. Hence, capital stocks except initial ones can be
calculated by the following equation.

Kt = (1− δ)Kt−1 + It (D.1)

To calculate initial capital stocks, one can express annual percentage increase in
capital as the amount of investments minus the capital depreciated in the previous period.

Kt −Kt−1
Kt−1

= It

Kt−1
− δ (D.2)

Assuming that capital grows at a constant rate (gK = (Kt −Kt−1)/Kt−1), one can
obtain the following expression.

Kt−1 = It

gK + δ
(D.3)

Setting t = 1 allows to calculate the initial capital stock.

K0 = I1
gK + δ

(D.4)

For the calculation of firm-level initial capital stocks, it is recommended to use average
investments of the first three years within the observation period because investments
highly fluctuate over time.38

Î1 =
∑3

t=1 It

n
(D.5)

Accordingly, in this study we calculate initial capital stocks by applying Equation
(D.4) and (D.5), subsequent capital stocks are calculated by Equation (D.1).

PIM requires information on capital growth rates. These are estimated by calculating
the compound annual growth rate at industry level using real gross fixed capital formation
at prices from 2010. Information on gross fixed capital formation volume of software and
total capital is retrieved from the EU KLEMS database. Depreciation rates and deflators
for non-software capital are also taken from the EU KLEMS database. Software capital
deflators are retrieved from Eurostat (see Table A.5).

38Please note here that we do robustness checks with respect to different period lengths to calculate
initial capital stocks.
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Appendix E. Calculation of Energy Cost Savings per Software Investment

By Equation (E.1), we initially calculate relative improvements in energy intensity
per year related to software usage (relative savings). To do this, we multiply the energy
intensity elasticity (εEKSW

) by the relative change in software capital (∆lnKICT ) for
each firm i in year t.

relative savingsit = εEKSWit
×∆lnKSWit

(E.1)

To calculate savings in energy consumption, we assume that output is constant and
calculate how much energy consumed in the previous period has been saved in the current
period with respect to changes in the software capital stock (Equation E.2). Savings in
energy costs are then approximated by multiplying savings in energy consumption by
the firm-specific energy price.

cost savingsit = relative savingsit × Ei,t−1 × PE (E.2)

In order to estimate the average savings in energy costs per euro invested in software,
we sum up firm-level energy cost savings over all periods for which we have information
and divide them by the sum of all software investments that have taken place in the same
time period (Equation E.3).

savings per investment =
∑2017

t=2010 absolute savingsit∑2017
t=2010 software investmentsit

(E.3)
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Appendix F. Additional Descriptive Statistics

Appendix F.1. Distribution of Energy Prices
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Figure F.6: Distribution of PE .
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Figure F.7: Distribution of PE [external].
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Figure F.8: Relationship between both energy prices.
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Appendix F.2. Average Software Capital Intensity by Region

Figure F.9: Average software capital intensity by region between 2009–2017. The dark blue regions rep-
resent those with the highest average software capital intensity. Regions with less than three observations
per year or with no observations are not displayed.
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Appendix F.3. Percentage change of mean (non-) software capital, labor and energy use
divided by output (base year 2009)
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Figure F.10: Change of mean (non-) software capital, labor and energy use divided by output (base year
2009).

Appendix F.4. Details on the Distribution of SSW and SE

mean sd p5 p50 p95
SKSW

0.004 0.010 0.000 0.001 0.017
SE 0.090 0.102 0.012 0.055 0.292
Observations 123362

Table F.7: Detailed descriptive statistics on the distribution of SSW and SE .
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Appendix G. Further Estimation Results

(1) (2) (3)
depreciation rates

25 percent 33 percent 50 percent

∆SE ∆ SE ∆ SE

4 ln( PE
PL

) 0.0284∗∗∗ 0.0284∗∗∗ 0.0284∗∗∗

(61.74) (61.74) (61.74)
4 ln( KSW

Y ) -0.000219∗∗∗ -0.000237∗∗∗ -0.000242∗∗∗

(-5.13) (-5.18) (-5.16)
4 ln( KN

Y ) -0.0015∗∗∗ -0.0015∗∗∗ -0.0015∗∗∗

(-3.76) (-3.77) (-3.78)
4 ln(Y ) 0.0014∗ 0.0013∗ 0.0013∗

(2.56) (2.51) (2.49)

Year x x x
Economic sector x x x
Multi-unit x x x
Federal state x x x
Size class x x x
EEG exemption x x x
Producer x x x

Observations 89653 89653 89653
Adjusted R2 0.271 0.271 0.271

t statistics in parentheses. First-difference estimation. Clustered standard errors. + p < 0.10, ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G.8: Equation (5) with software capital stocks modified by different depreciation rates.
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(1) (2) (3)
number of periods maximal included for initial software capital

calculation
2 4 6

∆SE ∆ SE ∆ SE

4 ln( PE
PL

) 0.0284∗∗∗ 0.0284∗∗∗ 0.0284∗∗∗

(61.74) (61.74) (61.74)
4 ln( KSW

Y ) -0.000167∗∗∗ -0.000212∗∗∗ -0.000325∗∗∗

(-4.68) (-4.25) (-4.69)
4 ln( KN

Y ) -0.0015∗∗∗ -0.0015∗∗∗ -0.0015∗∗∗

(-3.83) (-3.82) (-3.82)
4 ln(Y ) 0.0014∗∗ 0.0013∗ 0.0012∗

(2.61) (2.52) (2.29)

Year x x x
Economic sector x x x
Multi-unit x x x
Federal state x x x
Size class x x x
EEG exemption x x x
Producer x x x

Observations 89653 89653 89653
Adjusted R2 0.271 0.271 0.271

t statistics in parentheses. First-difference estimation. Clustered standard errors. +

p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G.9: Equation (5) with software capital stocks modified by different lengths of periods considered
for the initial capital stock calculation.
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(1) (2) (3) (4)

excluding
potentially
problematic
observations

“zero” growth
rates imputed

growth rates
starting from
“zero” imputed

(I)

growth rates
starting from
“zero” imputed

(II)

∆SE ∆ SE ∆ SE ∆ SE

4 ln( PE
PL

) 0.0270∗∗∗ 0.0284∗∗∗ 0.0270∗∗∗ 0.0284∗∗∗

(50.15) (61.74) (51.13) (61.74)

4 ln( KSW
Y

) -0.000225+ -0.000238∗∗∗ -0.000356∗∗∗ -0.000350∗∗∗

(-1.87) (-5.14) (-4.86) (-4.77)

4 ln( KN
Y

) -0.0017∗∗∗ -0.0015∗∗∗ -0.0015∗∗ -0.0015∗∗∗

(-3.42) (-3.78) (-3.17) (-3.76)

4 ln(Y ) 0.0011+ 0.0013∗ 0.0011+ 0.0012∗

(1.70) (2.52) (1.69) (2.32)

Year x x x x

Economic sector x x x x

Multi-unit x x x x

Federal state x x x x

Size class x x x x

EEG exemption x x x x

Producer x x x x

N 65226 89653 66841 89653

adj. R2 0.258 0.271 0.260 0.271

t statistics in parentheses. First-difference estimation. Clustered standard errors. + p < 0.10, ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G.10: Robustness checks with respect to “zero” software capital stocks.
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(1) (2) (3) (4) (5)
after 2011 single-unit

firms
no tangible
capital

lagged
KSW

sector-year
fixed effects

∆SE ∆ SE ∆SE ∆ SE ∆ SE

4 ln( PE
PL

) 0.0292∗∗∗ 0.0290∗∗∗ 0.0284∗∗∗ 0.0277∗∗∗ 0.0284∗∗∗

(52.32) (59.68) (61.74) (45.84) (61.80)
4 ln( KSW

Y ) -0.000209∗∗∗ -0.000177∗∗∗ -0.000249∗∗∗ -0.000228∗∗∗

(-4.52) (-3.78) (-5.37) (-4.95)
4 ln( KN

Y ) -0.0013∗∗∗ -0.0015∗∗∗ -0.0015∗∗ -0.0014∗∗∗

(-3.30) (-3.81) (-3.13) (-3.60)
4 ln(Y ) 0.00087 0.0015∗∗ 0.0028∗∗∗ 0.0000 0.0018∗∗∗

(1.39) (2.71) (7.43) (0.14) (3.37)
4 ln( KSW

Y )t−1 0.0000562
(0.94)

Year x x x x x
Economic sector x x x x x
Multi-unit x x x x x
Federal state x x x x x
Size class x x x x x
EEG exemption x x x x x
Producer x x x x x
Economic sector × Year x

Observations 62821 77029 89653 59650 89653
adj. R2 0.285 0.284 0.271 0.255 0.281

t statistics in parentheses. First-difference estimation. Clustered standard errors. ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G.11: Further robustness checks (Equation (5)).
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(1) (2) (3)
OLS FE Mundlack
SE SE SE

ln( PE
PL

) -0.0038∗∗∗ 0.0316∗∗∗

(-8.73) (57.23)
4ln( PE

PL
) 0.0316∗∗∗

(160.60)
µ(ln( PE

PL
)) -0.0054∗∗∗

(-8.06)
ln( KSW

Y
) -0.00165∗∗∗ -0.000213∗∗∗

(-32.95) (-3.48)
4ln( KSW

Y
) -0.000212∗∗∗

(-5.77)
µ(ln( KSW

Y
)) -0.00151∗∗∗

(-17.63)
ln( KN

Y
) 0.0061∗∗∗ -0.0001

(30.85) (-0.26)
4ln( KN

Y
) -0.0001

(-0.37)
µ(ln( KN

Y
)) 0.0040∗∗∗

(16.42)
ln(Y ) 0.0397∗∗∗ 0.0040∗∗∗

(69.70) (6.18)
4ln(Y ) 0.0040∗∗∗

(11.96)
µ(ln(Y )) 0.0359∗∗∗

(48.22)
Year x x x
Economic sector x x x
Multi-unit x x x
Federal state x x x
Size class x x x
EEG exemption x x x
Producer x x x
Observations 123362 123362 123362
R2 0.577 0.268 0.266
t statistics in parentheses. First difference estimation. Clustered standard errors except for
Mundlak specification. p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G.12: Pooled OLS, fixed effects as well as Mundlak
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(1) (2) (3) (4)

capital
not

scaled by
output

Y instru-
mented

PE
PL

instru-
mented

Y, PE
PL

instru-
mented

∆ SE ∆ SE ∆ SE ∆ SE

4 ln( PE
PL

) 0.0284∗∗∗ 0.0283∗∗∗ 0.0023∗ 0.0018+

(0.000) (0.000) (0.019) (0.068)

4 ln(KSW ) -0.000242∗∗∗ -0.000260∗∗∗ -0.000245∗∗∗ -0.000265∗∗∗

(0.000) (0.000) (0.000) (0.000)

4 ln(KN ) -0.0016∗∗∗ -0.0019∗∗∗ -0.0012∗∗ -0.0015∗∗

(0.000) (0.000) (0.006) (0.002)

4 ln(Y ) 0.0031∗∗∗ 0.011∗∗∗ 0.0036∗∗∗ 0.0108∗∗

(0.000) (0.001) (0.000) (0.001)

Year x x x x

Economic sector x x x x

Multi-unit x x x x

Federal state x x x x

Size class x x x x

EEG exemption x x x x

Producer x x x x

Observations 89653 89017 89653 89017

Underidentification 64.16 816.0 63.83

Weak identification 42.61 1139.2 27.93

P-value Hansen J statistic 0.864 0.909

p-values in parentheses. First-difference estimation. Clustered standard errors.+
p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Underidentification test displays the
Kleibergen-Paap LM statistic and the weak identification test displays the Kleibergen-
Paap Wald F-statistic.

Table G.13: IV estimates
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Appendix H. Results – Firm-level Characteristics
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Figure H.11: Heterogeneous effects - Energy and software capital intensity (1st Quartile: Lowest level
of average energy or software capital intensity)
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Figure H.12: Heterogeneous effects - Time differences
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Figure H.13: Heterogeneous effects - Size class differences by number of employees
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