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Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn

Guido Neidhöfer∗
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Abstract The rapid spread of COVID-19 forced policy-makers to swiftly find solutions
to reduce infection rates and keep mortality as low as possible. Empirical analyses on the
effectiveness of control measures are hereby of primary importance. School closures were
among the earliest measures enacted by the governments of most countries. However,
while schools are now reopening in many countries, the impact of school closures on the
course of the epidemic is still an open question. Adopting parametric and non-parametric
synthetic control methods we estimate the effectiveness of pro-active school closures, and
other early social distancing interventions, in three countries that reacted relatively early
during the course of the pandemic. Our findings suggest that these interventions were
effective at reducing the mortality rate of COVID-19, especially when enacted early.
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1 Introduction

Recent evidence shows that mitigation strategies and social distancing policies, partic-
ularly the national lockdowns enacted in many countries worldwide, have contributed
substantively to reducing the spread of COVID-19 [1, 2, 3, 4]. Furthermore, the moderate
impact of the disease in places like Singapore and Hong Kong has been attributed to
early government action and social distancing measures [5]. Indeed, past implementation
of non-pharmaceutical interventions, like pro-active school closures, has significantly re-
duced the spread and associated mortality rates of other diseases, especially when these
measures were enacted in the early phase of epidemics [6, 7]. Quantifying the effectiveness
of early, less stringent interventions is of crucial importance. First, in order to understand
whether relaxing these measures may lead to another dramatic rise in COVID-19 infec-
tions and deaths. And, second, to help evaluating which measures should be enacted as
early as possible in case of further increases in infection rates.

We measure the effect of pro-active school closures and other interventions in three
countries with very different characteristics, namely Argentina, Italy and South Korea.
What these countries have in common, however, is a relatively early reaction to the spread
of COVID-19. Furthermore, in the three countries schools were closed before the national
lockdown and, hence, a separate evaluation of their impact is possible. Applying paramet-
ric and nonparametric synthetic control methods, we construct counterfactual scenarios
for the shape of these countries’ respective epidemic curves in the absence of interven-
tions. We build different counterfactual scenarios based on the observed development of
the epidemic in countries where the interventions were enacted later or not at all. Hereby,
we also account for the growth rate of cases and the number of deaths before the inter-
vention, demographic characteristics, differences in health systems, GDP per capita, and
mobility patterns reported by Google.

Our findings show that early interventions, including nationwide school closures, had
a substantial and significant impact in the three countries analysed here; reducing the
total amount of COVID-19 deaths and flattening the epidemic curve. Although it is not
possible to completely abstract the effect of school closures from the effects of other con-
temporaneous measures, as other studies have highlighted, we minimize the bias derived
from the impact of the national lockdown by taking into account the incubation time of
the disease and the timing from infection to death. Our preferred estimates - those that in
the main analysis are obtained with the smallest root mean squared prediction error - indi-
cate that the interventions prevented 84%, 29%, and 91% COVID-19 deaths in Argentina,
Italy, and South Korea, respectively, in comparison to a counterfactual projection. These
results are robust across different specifications and show that the effectiveness increases
the earlier interventions are enacted.

The remainder of the paper is structured as follows: Section 2 discusses the trade-off
concerning school closures. Section 3 and 4 describe the applied synthetic control method
and the data, respectively. Section 5 shows the results and describes the performed
sensitivity analyses. Section 6 discusses the main implications of our findings.

2



2 Background

By April 10, 2020, 188 countries had closed their schools and early childcare educational
facilities over the entire national territory due to the COVID-19 pandemic. This situation
affected more than 1.5 billion learners worldwide. However, the evidence on the direct
effectiveness of school closures to curb the spread of COVID-19 is surprisingly rather scant
[8]. Hence, in times of COVID-19, school closures persist as an object of debate [5]. A
few countries did not close their schools at all during the pandemic, while several others
are currently discussing a gradual reopening.

Arguably, a governmental decision to close schools and universities is less demanding
and politically controversial than other measures to limit interpersonal contact, like a
public transportation shut-down and other mitigation strategies with greater direct so-
cietal and economic implications. On the other hand, as highlighted by several studies
on the economic impact of school closures in the case of other diseases, this measure is
costly on several dimensions [9, 10, 11]. For instance, among other costs, prolonged clo-
sures cause parental absence from work, a learning loss for the children, bear risks for
children’s physical and mental health, and may contribute to less economic growth and
increased social inequality in the long run [12, 13, 14, 15, 16]. Furthermore, they may
also lead to a reduced availability of medical personnel due to child-care obligations [17].
Hence, the governmental decision to institute a nationwide school closure can be seen as
a signal. It shows that the information available to governments at that moment in time
led them to believe that this would be the right moment to intervene, and that, despite
the associated disadvantages, closing schools had become a (first) cost-effective measure
to reduce disease transmission [18]. In this sense, it is worthwhile to empirically assess
whether the timing of this first set of interventions, including school closures, has been
effective at curbing the impact of the disease.

Little is yet known about the progression and transmission of COVID-19 in children
and adolescents. Besides isolated cases of critical neonatal coronavirus pneumonia [19,
20, 21], children have not been prominently featured in COVID-19 case statistics [22, 23].
While children of all age groups have been described as being susceptible in China [24],
evidence from Iceland and Italy rather suggests that they might be less suscetible than
adults [25, 26]. Although estimates of the case fatality rates of COVID-19 for infants,
children, adolescents, and individuals younger than 30 are very low, it is expected that
the number of infected among these groups are considerable [27].1 As was the case in
the SARS-COV and MERS-CoV epidemics, children appeared to display a much milder
and shorter course of infection than adults [30, 31, 32, 33, 34, 35] which might further
account for their underrepresentation in the confirmed case count [36, 37]. Per current
knowledge, infected children seem to carry a similar viral load to infected adults and
are, therefore, likely equally responsible for the transmission of COVID-19 [38, 39]. In
contrast, other studies found that children with COVID-19 rarely caused outbreaks within
their households, and it has been argued that children are unlikely to be the main drivers
of the pandemic [40].

The effects of school closures are twofold, working through the social distancing of
children and their parents who have to stay home to take care of them. Past evidence

1In addition, recent evidence highlights that there could be a relationship between the SARS-COV-
2 virus and a serious hyper-inflammatory shock reaction observed in an increasing number of children
[28, 29].
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shows that school-closures have a substantial decreasing effect on the incidence rates
of other illnesses [41, 42, 43, 44], with a more prominent effect when enforcement is
timely [45, 46] and when children play a central role in initial community transmission
[47, 48, 49]. School closures are, for instance, commonly implemented for mitigating
influenza pandemics; lowering peak attack rates as well as the total number of cases
[50, 51]. For the current pandemic, while most studies agree on the effectiveness of
national lockdowns to reduce the transmission of COVID-19, the effectiveness of school
closures and other early interventions seems to remain an open question. Part of the scant
existing evidence shows that early interventions, including nationwide school closures,
contributed to reducing the spread of COVID-19 in China and Germany [1, 2]. In contrast,
the findings for 11 European countries attribute a large transmission reduction effect to
the national lockdown, with a substantially and significantly smaller effect attributed to
other interventions, like the banning of public events and school closures [3]. The existing
studies agree that it does not seem to be fully possible to disentangle the effect of school
closures from other contemporaneous mitigation measures.

3 Method

Our aim is to assess the effectiveness of school closures for mitigating the effects of COVID-
19. For this purpose, we quantify the impact of this intervention in three countries
that closed their schools on a nationwide level relatively early during the course of the
pandemic: Argentina, Italy, and South Korea. For each of these countries these measures
were not enacted on the same day as the national lockdown, which took place with some
delay. Since reported case numbers of the disease are heavily influenced by testing and
heterogeneous reporting across countries, we focus on the effect on the number of reported
COVID-19 deaths, which suffer less from these issues, both in absolute terms and relative
to population size. To measure the effect, we compare the shape of the epidemic curves in
these countries after the nationwide school closure with an hypothetical curve that shows
the situation in absence of the intervention.

Consistent with other methodologies for measuring the effectiveness of an intervention,
our setup is also based on the assumption of a counterfactual scenario. Hereby, the
fundamental issue is the definition of a suitable control unit allowing for a consistent
comparison. Comparing the country in which the intervention was enacted (treated unit)
with just one other country (control unit) would result in a very imperfect measure of the
effect, unless the countries are almost perfectly comparable with respect to demographic
characteristics of their population, health system capacity, and course of the epidemic.
In order to provide a more suitable counterfactual, we apply synthetic control methods
[52, 53]. This method enables us to construct control units based on the disposable
information on characteristics of countries as well as on the COVID-19 spread before
the day of the intervention. In this set up, the synthetic control unit is the weighted
average of the epidemic curves of all countries within the so called donor pool that best
mimics counterfactual trends for the treated unit (Argentina, Italy, or South Korea) in
the absence of treatment (nationwide school closures). Synthetic control units estimated
with this methodology provide a more appropriate comparison to the affected unit than
any other unaffected unit taken individually [54].

Once suitable control units are established, the effectiveness of school closures to reduce
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the fatal impact of COVID-19 can be measured. To quantify the number of deaths avoided
due to the intervention, comparing the three countries under analysis with their respective
synthetic control unit, we apply a Difference in Differences set up (DID). DID has a long
tradition in epidemiological and public health studies since the investigation on the 1854
outbreak of cholera by John Snow [55, 56]. In modern econometrics, DID is a widely
used and established policy evaluation technique for causal inference; in particular when
extended by synthetic control methods [57]. Formally, we estimate the following empirical
model

dit = α + ηi + λt + δSit + εit (1)

where d is the average number of daily COVID-19 deaths in country i (the treated
unit or the respective synthetic control unit) at time t. Hereby, the model is estimated
separately for each treated-control unit pair.2 For the treated unit (Argentina, Italy, or
South Korea) t is 1 from the day of school closures on, and 0 before that date. For
the control unit, t equals 1 from the day when the countries reported at least the same
number of aggregate total COVID-19 deaths as the respective treated unit on the day of
nationwide school closure. For instance, measuring the impact for Italy, t is 0 before the
countries reported 80 total deaths, which in Italy is equivalent to the day of nationwide
school closure, and 1 afterwards. The number of aggregate COVID-19 deaths in the two
other treated units is 2 in Argentina, and 22 in South Korea.

Sit is a binary variable that is 1 for the treated unit after school closure and 0 for
the treated unit before school closure, as well as for the control unit. The estimate of
the coefficient δ measures the difference between the number of COVID-19 deaths before
and after school closure in the treated unit, as compared to the increase in deaths in the
control unit. η and λ are country and time fixed effects. α is a constant and ε the error
term assumed to be independent and identically distributed across observations.

The key assumption of the identification strategy is that the increase in the number
of deaths in the treated unit would have followed a parallel trend to the one observed in
the control unit in absence of the implemented school closure. The difference in country
differences between the two time periods is:

DD = (dTreated,t=1 − dTreated,t=0) − (dControl,t=1 − dControl,t=0) (2)

and inserting the first in the second equation yields:

DD = δ + (εTreated,t=1 − εTreated,t=0) − (εControl,t=1 − εControl,t=0) (3)

If the epidemic curve in both units would have followed a common trend in absence
of the school closure, then (εTreated,t=1 − εTreated,t=0) − (εControl,t=1 − εControl,t=0) = 0, and
the coefficient δ gives an unbiased estimate of the effect of school closures in this natural
experiment set up. It is not possible to test the parallel trends assumption directly,
because it is based on a counterfactual scenario. Analyzing the trends before the event
(when t < 0) is a second best alternative to verify it. Based on a set of covariates
(described below), the synthetic control method makes sure that the treated and control
units, as well as their outcome-trends before the event, are as comparable as possible

2Hence, the three countries under analysis may belong to the donor pool if they are not analysed as
the treated unit.
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to each other. Following the standard approach, we let the model define the weights
to construct the synthetic control unit based on parametric procedures. In a sensitivity
analysis, we define the control unit based on a flexible nonparametric construction of the
weights [58].

For the method to create a suitable control unit for each treated unit, we choose
criteria to restrict the donor pool. First, we include only those countries that did not
close their schools on a nationwide level, or that had reported more accumulated deaths
than the treated unit on the day of school closure. Then, the weights to construct the
synthetic control group are estimated based on the following country-level characteristics
(predictor variables): total population, population density, median age, population share
over the age of 65, GDP per capita, hospital beds per 100,000 inhabitants, public health
expenditures, average number of reported COVID-19 deaths before day zero, growth
rate of reported COVID-19 cases with respect to the day before3, and mobility patterns
retrieved from Google Mobility Reports. The inclusion of these predictor variables ensures
that even in case of very low and stable pre-treatment number of deaths in the treated
unit, the predicted control unit is highly comparable and best mimics the development of
the epidemic curve in absence of the intervention. The amount of COVID-19 deaths of the
synthetic control unit is the weighted average of the observed deaths in the control group
countries. We estimate four distinct synthetic control units, successively including the
aforementioned variables, as well as one nonparametric synthetic control unit. Hereby,
one of the scenarios controls for cultural differences by including Asian countries only
in the donor pool for the comparison with South Korea, while for the comparison with
Argentina and Italy only non-Asian countries are included. Table 1 shows the variables
included in each scenario, the countries included to form the synthetic control units and
their respective weights, as well as the root mean square prediction error (RMSPE) of the
pre-trends analysis.

However, the effects of the intervention might not be immediately measurable from
the day of school closure, because of the time that must pass between infection and death.
Studies for China have estimated a median incubation period for COVID-19 of around 5
days [59, 60, 37] and around 16-18 days from symptom onset to death [27, 61]. A report
from the Italian National Institute of Health reported the time between symptoms and
death to be 10-13 days [62]. Hence, a measurable reduction in the number of deaths might
be observable only after 15 days from the intervention. Hence, to obtain a conservative
lower bound of the effect, we show also estimates setting t = 0 for all days before the 15th
day since the day of school closure (or the respective day zero in the control unit).

Furthermore, since our aim is to estimate the effect of school closures and early in-
terventions, we have to take into account that other events might have mitigated the
outbreak of COVID-19 besides the closure of schools. While it is not possible to disen-
tangle the effect of mitigation measures that were enacted on the same date, we are able
to abstract from events that happened after the day of school closure. For instance, on
March 9 (5 days after the nationwide closure of schools), the Italian government imposed
a national quarantine with the objective to induce social distancing among the population
in order to reduce the outbreak. Interestingly, the same amount of days lie between school
closures and national lockdown in Argentina as well (March 16 and March 20). These
events could bias the size of the estimate. The magnitude of δ would not just show the

3The growth rate is measured as log((casesday=T − casesday=T−1)/casesday=T−1)
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effect of the nationwide school closure, but an overall effect of both mitigation strategies
taken together. To get a sense of the pure effect of the pre-lockdown interventions, we
restrict the time frame of analysis to avoid bias in our estimates from the effects of the
national quarantine. To this end, we truncate the analysis 14 days after the beginning
of the national quarantine (because on the 15th day, the effects of the quarantine on the
number of deaths should begin to be measurable).4 For Argentina and Italy, this is equiv-
alent to 18 days after the day of nationwide school closures. To warrant comparison we
also chose the same conservative time window for South Korea, although their national
lockdown was enacted much later.

4 Data

Our main source of data is the harmonized statistics retrieved from the project Our World
in Data.5 Here, daily harmonized statistics on COVID-19 cases and deaths are retrieved
from the European Center for Disease Prevention and Control (ECDC). Other country-
level aggregate statistics that we use are included in the data set and are derived from
different sources.6 We complement this data with information on school closures that
we retrieve from the UNESCO.7 For each country we compute and report the days since
country-wide school closure. Finally, we include country-level information on population
mobility patterns retrieved from the Google Mobility Reports.8

5 Results

5.1 Synthetic Control Evidence

Table 2 shows the estimates of η (Treated unit=1), λ (Post=1), and δ (Treated unit=1
× Post=1) obtained by linear regression analysis. The estimates are obtained separately
for Argentina, Italy, and South Korea as the treated unit. As mentioned, the time series
are truncated 14 days after the day of national lockdown to diminish the bias in the
estimates of the effect of school closures and other contemporaneous early measures. All
regressions include a polynomial time trend of the third degree as control variables. Eight
different regressions are estimated and their results displayed in different columns. Each
row displays the estimated coefficients of the regressions.9 The variables and countries

4Recognizing that the effect of the interventions on deaths is delayed, our correction for this relies on
the delay between infection and death being 15 days. Since there might be considerable dispersion in the
time to death in what follows we also show the resulting epidemic curves to allow for a visual inspection
of the differences between treated and control unit over the entire period after school closure to 15 days
after the start of the national quarantine.

5Retrieved on May 10, 2020 from https://ourworldindata.org/coronavirus. We obtain number of
cases and deaths on missing dates by linear interpolation.

6See the project website https://ourworldindata.org/ for more information on the single sources for
each item.

7Retrieved on April 10, 2020 from https://en.unesco.org/covid19/educationresponse.
8Retrieved on April 27, 2020 from https://www.google.com/covid19/mobility/
9The statistical significance of the results is robust when we compute standard errors by the het-

eroskedasticity robust (White-Huber) correction or by bootstrapping with N replications (N is the num-
ber of observations).
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included to estimate the counterfactual synthetic control units in the scenarios I-IV are
indicated in Table 1. The estimates of η show the mean difference in the average daily
number of deaths between the treated unit and the synthetic control unit before day zero,
while the estimate of λ shows the mean change in the average daily deaths in the control
unit from before to after day zero. The first four columns shows the baseline estimates,
namely from the days of school closures. The next four columns show the estimated effect
taking into account incubation period and time from the first symptoms to death; hence,
starting 15 days after the intervention.

The estimates of δ (Treated unit=1×Post=1) show the effects of the nationwide school
closure, and of the other contemporaneous measures, on the daily average number of
reported COVID-19 deaths. We observe that, in all scenarios and for all three countries,
δ is negative and statistically significant. This shows in the three countries considered
here the enacted early measures have been effective in reducing the number of COVID-19
deaths.

For the ease of comparison, and to give a clearer picture of the external validity of
these findings, the effect size of the point estimates relative to the average daily deaths in
the counterfactual scenario is also indicated in the last row of Table 2. We observe that
the estimated effect of the interventions ranges from a 63% to a 90% reduction in daily
average deaths in Argentina, from 21% to 35% in Italy, and from 72% to 96% in South
Korea. The baseline models with the lowest RMSPE yield hereby an effect size of 84%,
29%, and 91% for Argentina, Italy, and South Korea, respectively.

To visualize these effects, Figure 1 shows the epidemic curves of total COVID-19
deaths for Argentina, Italy, and South Korea from 18 days before to 18 days after the
day of nationwide school closure. In the synthetic control units, day 0 is set as the day
in which at least the same amount of aggregate total COVID-19 deaths were reported
as in the respective treated unit. The second vertical line indicates day 13, i.e. 14 days
after the day of the intervention. As is evident, the shape of the epidemic curves is much
steeper in all synthetic control units compared to the treated unit.

5.2 Sensitivity Analysis

5.2.1 Nonparametric Construction of Counterfactual

We perform a sensitivity analysis extending the prediction of the synthetic control unit
by nonparametric estimation of the weights. Although both methods have been proven
to provide a small prediction error, nonparametric estimation may slightly outperform
the parametric one [58]. The method uses a kernel function with pre-fixed bandwidth
to predict the counterfactual. Following a cross validation approach, which is usual for
nonparametric estimation, the bandwidth is chosen that minimizes the root mean squared
prediction error (RMSPE) in the pre-intervention period.

We estimate the model with nonparametric estimation including the combination of
predictor variables that minimizes the RMSPE. For comparison purposes, we estimate the
same model with the classical synthetic control method. Figure 2 shows the comparison
of the pretrends, i.e. trends of the epidemic curves before day 0, and the RMSPE using
both methods. The visual inspection shows rather similar patterns, especially in the pre-
trend period close to the intervention, while the RMSPE indicates that by nonparametric
estimation of the counterfactual we obtain a slightly more consistent control unit. Table
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3 shows that the results obtained adopting this method are qualitatively similar for Ar-
gentina and South Korea, while lower, and in one application not significantly different
from zero, for Italy. The baseline estimates indicate an effect size of 92%, 11%, and 98%
for Argentina, Italy, and South Korea, respectively. Figure 3 shows the resulting epidemic
curve of accumulated deaths.

5.2.2 Estimates per 100,000 inhabitants

Especially at the beginning of the epidemic, the absolute number of deaths, rather than
relative to the population size, seemed more informative for influencing governmental
interventions and measuring the effectiveness of these measures. Nevertheless, to esti-
mate the effect of the interventions relative to the population size of the countries is
an interesting further sensitivity analysis. Table 4 and 5 show the estimated effects of
the intervention on average daily deaths relative to the population size of the country
(per 100,000 inhabitants). All results basically confirm the existence of a substantial and
significant reduction in the number of deaths as a consequence of the interventions.10

5.2.3 Placebo

To test the validity of our analysis and of the parallel trends assumptions we perform
Placebo-tests for each scenario. We test for differences in the number of daily COVID-19
deaths in the treated and control unit before the closure of schools. Table 6 shows the
results of this exercise. All analyses show no statistically significant differences before the
intervention (i.e. the estimate of δ is not significantly different from zero).

5.2.4 Exponential growth

It could be argued that the applied linear models are not suitable for measuring the effect
on non-linear epidemic curves. Hence, we also run the synthetic control method on a
log-linear model. Hereby, we estimate the effects of the intervention on the log aggregate
number of deaths, rather than the daily change in deaths as done so far, because of days
in which no new COVID-19 deaths were reported. For the same reason, we cannot rely on
such a long pre-trend period as before and must restrict the analysis to three days before
the intervention in Italy and South Korea. For Argentina, we are not able to measure
logarithmic deaths consistently, because the country closed its schools almost immediately
after reporting the first COVID-19 death. Furthermore, since measuring the effect size
on the aggregate number of deaths would not be meaningful in this application, we rely
only on the visual inspection of the shape of the logarithmic epidemic curves, shown in
Figure 4. The application for all parametric and non-parametric synthetic control units
shows that the epidemic curves in Italy and South Korea have a less steep shape than the
counterfactual without the intervention.

10The only exception are the estimates obtained in scenario III for South Korea. As mentioned,
this scenario includes only Asian countries in the donor pool, namely China and Indonesia. These two
countries have a much higher population size than South Korea. Hence, the counterfactual predicted
from this application is a poor match and yields inconsistent estimates. For uniformity with respect to
the main analysis, we still opt to report these results.
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5.2.5 Excess mortality

As mentioned previously, the accuracy of reported COVID-19 cases in official statistics
has been questioned, as it should depend, among other factors, on the quantity of tests
performed. To further prove the robustness of our estimates we run the same empirical
models described above on an alternative data source.

Instead of reported COVID-19 deaths, we retrieve weekly data on excess mortality - i.e.
the difference between overall deaths, reported by national official sources in a particular
time interval, and the median value of deaths in the equivalent period from 2015 to
2019 - collected by the Financial Times.11 While not all of these deaths are necessarily
attributable to COVID-19, many of them caused by other diseases might depend on the
overuse of the health care system due to the pandemic. Hence, the dataset offers a valid
alternative to verify the results obtained so far.12 Unfortunately, among the countries
under analysis only Italy is included in this data.

Figure 5 shows the trends in excess mortality for Italy and the synthetic counterfactual
units.13 The timing of the intervention is measured in analogous way as in the preceding
analyses: 0 is the week of nationwide school closure in Italy, and in the other countries the
week in which at least 80 aggregate COVID-19 deaths were reported. Again, to avoid the
effects of the national lockdown biasing our estimates, we restrict the observation period
to the third week after school closure, and choose a symmetric time window to measure
the trends in the period before the intervention. The predictor variables of the estimated
scenarios are the same as before.

Since the excess mortality is measured at the end of the week, we already observe an
effect in the week of nationwide school closure. Table 7 shows the estimated effect sizes.
They measure the effect of school closures and other early interventions in Italy between
27% and 43% of the number of excess deaths in the synthetic control unit. Due to the
low number of observations, the coefficients are not statistically significant. Nevertheless,
they support the results obtained in the main analysis.

5.3 Contemporaneous social isolation measures

As higlighted by previous studies, to assess which part of the estimated effects can be
attributed to proactive school closures, rather than to the other contemporaneous inter-
ventions, is not directly feasible when observing single countries. In this sense, our analysis
has the advantage of measuring the effect in multiple countries which experienced very
different development paths of the epidemic. Hence, it is informative to observe which
other social isolation measures were already in place in Argentina, Italy, and South Korea,
on the day of school closures, and which one were enacted on the same day or shortly
after.

We retrieve this information from the Oxford COVID-19 Government Response Tracker
[63]. The data set collects government responses to the pandemic, codes these into indi-

11Retrieved on June 12, 2020 from https://github.com/Financial-Times/coronavirus-excess-mortality-
data . Sources of the mortality data for single countries can be consulted there.

12Although the correlation across countries between reported COVID-19 deaths and excess mortality
is very high (.95), the reported excess mortality is usually higher, even by several thousand deaths; up
to almost three times the number of weekly COVID-19 deaths in Italy.

13In this application, the countries in the donor pool for which data on excess deaths is available, are
Spain, France, the UK, Sweden, and the US.
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cators, and creates a composite measure, the Stringency Index, by summing the scores
of these indicators. Figure 6 shows the variation in the responses of the governments in
Argentina, Italy, and South Korea, measured by the Stringency Index, which varies on a
scale from 0 to 100.

We observe that on the day of school closures the three countries show rather different
values of the Stringency Index: in Argentina 41.67, in Italy 74.54, and in South Korea
55.56. The measures shared by the three countries on the day of nationwide school clo-
sure are, besides the school closure itself, the banning of public events, the restriction
of international flights, contact tracing, and public information campaigns; in contrast,
public transport was not shut down in neither of them. No other common pattern of gov-
ernment intervention is observable; neither on advice, requirements for workplace closure
and stay-home measures, nor on internal movement controls. As mentioned before, and
taken into account when we restrict the time window of our empirical evaluation, few
days after the school closure all three countries adopted more stringent measures (evident
by a drastic increase in the index score in Figure 6).

5.4 Later school closures

Our results show that school closures and other early interventions had a substantial effect.
Now, we would like to establish whether these measures might not have the expected effect
if enacted later during the course of the epidemic. For this purpose, we apply the model
estimated before (including the predictor variables used in scenario II) on several other
countries. Hereby, we order the countries by the number of reported COVID-19 deaths
on the day of school closures.

Table 8 shows the results of this application, which mainly confirm the findings ob-
tained so far. The later schools were closed nationwide during the course of the pandemic,
the lower the effectiveness of this measure. Indeed, in Brazil, France, the UK, and Spain,
we do not detect any reducing effect of the early interventions on the number of deaths.
Surprisingly, in Germany we also find only a very small and not statistically significant
effect, although the country closed its schools nationwide relatively early during the epi-
demic course, measured by the number of reported deaths.14 Of course, the uncovered
effects in these countries might be upward biased by other parallel social distancing mea-
sures, or downward biased by particular incidents, like superspreading events. Hence, the
evidence presented here for these additional countries should be interpreted cautiously.

Exactly measuring the effect in each of them is beyond the scope of this work, but
remains a subject of great interest for future research. For instance, the differential
impact of early school closures in different countries might depend on the characteristics
and universality of the health care system. Furthermore, it might be influenced by other
social distancing policies enacted earlier or at the same time. To get a first, stylized picture
of these mechanisms, we observe the Stringency Index on the day of school closures also
for the countries included in Table 8 and do not find support for the latter hypothesis. As
shown in the left graph in Figure 7, excluding the extreme values of the UK, no systematic

14This result is not contradicting the evidence showing a decreasing spreading rate for Germany
associated to several interventions [1]. Rather, they confirm that the German context is very specific.
On the one hand, the policies enacted before, e.g. the cancellation of large public events and information
campaigns, might have been effective to curb the spread. On the other, the characteristics of the health
system might have contributed to reduce the associated mortality.

11



pattern in the relationship between the size of the effect and the stringency of measures
can be observed. In contrast, the right graph in Figure 7 shows a suggestive correlation
between the effect size of early interventions and public health expenditures.

This preliminary evidence suggests a possible interaction between the timing of inter-
vention and the health care system. Hence, in countries with less extensive public health
care an early response to an epidemic seems fundamental to limit the disease. A deeper
analysis would exceed the framework of this evaluation, but these, and other possible
mechanisms should be analysed in detail in future research.

6 Discussion

The COVID-19 pandemic hit the world unexpectedly forcing policy makers to take actions
quickly. Most countries implemented large-scale control strategies to limit the spread of
COVID-19, such as travel restrictions, school closures, or national quarantine. When
these decisions were made most facts about the characteristics of the virus, the course
of the disease, its basic reproduction number, and many other relevant factors were un-
known. This information is necessary, however, for governments to justify their actions,
for instance on the choice of containment measures. All of these measures bear substan-
tive economic and social costs that urge governments to constantly revisit their strategies,
evaluating costs and benefits of the enacted measures. Hence, empirical evidence on the
effectiveness of the implemented measures is fundamental.

Applying synthetic control methods, an alternative methodology to epidemiological
modelling based on observational data, we provided a novel quantitative assessment about
the effectiveness of early non-pharmaceutical interventions to reduce the fatal impact
of COVID-19. In our application, we evaluated the mortality of COVID-19 before and
after these interventions in Argentina, Italy, and South Korea constructing counterfactual
scenarios that mimic the country specific trend in reported deaths while accounting for
demographic characteristics, population densitiy, GDP per capita, health care systems,
and mobility patterns. The early measures that the three countries analysed here have
in common are proactive school closures, banning of public events, the restriction of
international flights, contact tracing, and public information campaigns. Although, as
previous studies on this subject highlighted, it is not entirely possible to disentangle the
single effect of each of these early measures, we do our best to minimize the potential bias
deriving from later measures. Our findings confirm that the early, pre-lockdown measures
were effective, and suggest increased effectiveness the earlier these measures were enacted
during the course of the epidemic. We find a sizeable and robust impact on reducing the
number of reported COVID-19 deaths - not only in absolute terms, but also per 100,000
inhabitants, and on a logarithmic scale - as well as on reducing excess mortality reported
by statistical offices.

Among the studied interventions, the most stringent one is, arguably, the proactive
closure of schools. Its effects work through different channels, namely the social distancing
of children and their parents, as well as a signaling value to increase attentiveness among
the population. It should be the pre-lockdown intervention affecting the largest share
of the population and, hence, with the strongest effect on reducing disease transmission.
Indeed, it has been shown that other interventions, for instance even very restrictive travel
limitations, may only have a modest effect on reducing the transmission of COVID-19 if
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not accompanied by other measures [64].
We hope our analysis will help to inform policy-makers about the effectiveness of the

implemented early measures, and to motivate further research in this direction. Research
on this topic is of great importance, especially in light of the fact many countries are
gradually re-opening their schools. Policy makers should hereby take several aspects into
account when making future decisions, evaluating the trade-off between mortality risk
and social cost. On the one hand, it is clear that the detrimental side effects of prolonged
school closures on learning losses, educational and gender inequality, children’s health,
and family well-being will constitute a major challenge for our society. On the other,
a scientific evaluation of the effectiveness associated with school closures is necessary to
understand the costs of reopening schools during the course of the pandemic. As our
analysis suggests, with early interventions, including the proactive closures of schools,
governments have been able to reduce the fatal impact of COVID-19. If relaxing these
measures would again induce a dramatic rise in infections and deaths, governments might
again see themselves forced to adopt more stringent measures, like curfews and economic
shutdowns. In comparison, keeping schools closed until more information is available on
how to reduce the risk of infection might be more cost-effective, at least in the short run.

Surely, even when prolonging school closures might be useful to save lives, it should
only be a viable option if accompanied by a proper and well-developed plan for home-
schooling and online learning that reaches all children and adolescents, especially the most
vulnerable. And, clearly, further evidence is needed for a more comprehensive picture of
the effectiveness of school closures for reducing the impact of COVID-19, as well as the
short and long term costs attached to this mitigation policy.
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Tables

Table 1: Synthetic control method: countries in donor pool and respective weights

Countries in donor 
pool (ISO-3166) I II III IV NP

AUS 0 0 0 0 1.16E-13
CHN 0 0 5.8E-17
ESP 1 0.865 0.893 0.906 0.5392492
FRA 0 0.098 0.107 0.012 0.339322
GBR 0 0 0 0 7.1E-12
RUS 0 0 0 1.8E-19
SWE 0 0.037 0 0.082 0.1214288
USA 0 0 0 0 6.37E-18
RMSPE 4.18 3.8 3.91 3.86 3.48E-13

AUS 0 0.003 0.122 0.334 0.0383925
BEL 0 0 0 0 0.0385485
BGR 0 0.01 0.165 0 0.0379238
BLR 0 0 0.025 0 0.0384391
BRA 0 0 0.285 0.394 0.0386677
CAN 0 0 0 0 0.0383032
CHE 0 0 0 0 0.0375996
DEU 0 0 0 0 0.0382418
ESP 0 0 0 0 0.0381977
FRA 0.068 0 0 0 0.0385051
GBR 0 0 0 0 0.0382724
IDN 0.454 0.511 0.104 0.0386165
IND 0 0 0 0.0247732
IRN 0 0 0.0386026
ISL 0 0 0 0.0382065
ITA 0 0 0 0 0.0368725
JPN 0 0.239 0 0.0360395
KOR 0 0 0 0.0370825
NIC 0 0 0.403 0 0.0385347
NLD 0 0 0 0 0.0382664
PHL 0.181 0.237 0.168 0.0385967
POL 0 0 0 0 0.0386615
RUS 0 0 0 0.0386366
SGP 0 0 0 0.0234642
SVN 0 0 0 0 0.0384797
SWE 0.297 0 0 0 0.0378611
USA 0 0 0 0 0.0362145
RMSPE 0.27 0.27 0.25 0.28 0

AUS 0 0 0.417 0.1010938
BLR 0.148 0.274 0.169 0.0513091
BRA 0 0 0.17 0.0252816
CAN 0.194 0.009 0 0.0677789
CHN 0.023 0 0.496 0.0026573
ESP 0 0.114 0 0.0580915
FRA 0 0 0 0.195337
GBR 0.431 0 0.244 0.2407968
IDN 0 0 0.504 0 0.0319645
ITA 0.204 0.151 0 0.0290885
RUS 0 0.452 0.0879431
SWE 0 0 0 0.0484472
USA 0 0 0 0.0602109
RMSPE 0.89 1.21 1.77 0.79 0.001

treated unit = ITA

treated unit = ARG

treated unit = KOR

Synthethic Control Method, Scenario

Predictor variables included in specifications to predict the synthetic control unit
Specification I: Population size, Population density, Median age, Share of population aged 65 or older,
GDP per capita, average daily COVID-19 deaths before intervention, growth rate of COVID-19 cases
before intervention.
Specification II: Additionally to variables included in specification I, hospital beds per 100,000 inhab-
itants, public health expenditures (share of GDP).
Specification III: Same variables as in specification II. Model estimated excluding Asian countries (for
Italy and Argentina) and only for Asian countries (for South Korea).
Specification IV: Additionally to variables included in specification II, Google COVID-19 Community
Mobility Report Data on movement trends at certain places (residential location, workplace, retail and
recreation).
Non-parametric synthetic control unit: Population size, Population density, Share of population
aged 65 or older, GDP per capita, hospital beds per 100,000 inhabitants.
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Table 2: Effect of school closures and early interventions on COVID-19 deaths (daily
average): Difference in differences estimates - Synthetic Control Method

baseline 15 days later

I II III IV I II III IV

Argentina=1 0.0101 0.0132 0.0238 0.00933 -1.657∗∗∗ -0.894∗∗ -1.528∗∗∗ -2.519∗∗∗

(0.113) (0.115) (0.0966) (0.128) (0.385) (0.388) (0.323) (0.485)
Post=1 3.445∗∗ 1.056 3.051∗∗ 4.946∗∗ 9.736∗∗∗ 5.894∗∗∗ 8.272∗∗∗ 13.22∗∗∗

(1.755) (0.853) (1.328) (2.097) (3.483) (2.006) (2.831) (4.147)
Argentina=1 × Post=1 -7.201∗∗∗ -3.225∗∗∗ -6.357∗∗∗ -10.24∗∗∗ -15.03∗∗∗ -5.542∗∗∗ -12.67∗∗∗ -20.21∗∗∗

(1.292) (0.690) (1.086) (1.663) (2.706) (1.706) (2.120) (3.099)

Observations 74 74 74 74 74 74 74 74
R2 0.737 0.653 0.776 0.768 0.865 0.716 0.887 0.890
Effect size in percentage -85.71 -72.93 -84.27 -89.50 -78.74 -62.72 -76.34 -80.43

baseline 15 days later

I II III IV I II III IV

Italy=1 0.278 0.0699 0.0935 0.171 -39.87∗∗∗ -32.41∗∗∗ -35.06∗∗∗ -32.57∗∗∗

(3.461) (3.039) (3.139) (3.137) (12.96) (11.21) (11.72) (11.44)
Post=1 37.49 26.27 30.65 25.75 39.62 8.908 19.93 9.303

(36.66) (30.85) (32.86) (31.02) (118.6) (104.9) (108.0) (108.4)
Italy=1 × Post=1 -132.8∗∗∗ -103.0∗∗∗ -113.8∗∗∗ -103.3∗∗∗ -207.5∗∗∗ -151.2∗∗∗ -172.3∗∗∗ -150.2∗∗∗

(25.29) (21.59) (22.77) (21.84) (60.49) (56.73) (57.29) (58.21)

Observations 74 74 74 74 74 74 74 74
R2 0.949 0.958 0.956 0.956 0.953 0.959 0.958 0.957
Effect size in percentage -34.60 -29.09 -31.18 -29.14 -26.56 -21.08 -23.25 -20.96

baseline 15 days later

I II III IV I II III IV

South Korea=1 0.0735 0.0105 -0.0560 0.0435 -23.77∗∗∗ -12.79∗∗∗ -9.076∗∗∗ -9.918∗∗∗

(2.515) (1.070) (0.488) (1.337) (5.478) (3.039) (1.653) (2.431)
Post=1 58.05∗ 29.84∗∗ 16.22∗∗∗ 28.71∗∗ 87.58∗ 62.94∗∗∗ 13.67 37.92

(29.68) (15.04) (5.484) (13.51) (48.74) (22.81) (8.327) (24.61)
South Korea=1 × Post=1 -104.8∗∗∗ -57.64∗∗∗ -27.04∗∗∗ -45.23∗∗∗ -221.6∗∗∗ -124.3∗∗∗ -36.00∗∗∗ -98.14∗∗∗

(19.82) (10.49) (2.703) (9.176) (37.93) (12.58) (2.520) (19.92)

Observations 74 74 74 74 74 74 74 74
R2 0.706 0.728 0.860 0.694 0.858 0.892 0.827 0.846
Effect size in percentage -96.06 -92.97 -85.94 -91.27 -88.51 -87.49 -71.89 -86.81

Notes: Table shows the estimates of η (Treated country=1), λ (Post=1), and δ (Treated

country=1×Post=1) in equation (1) obtained by linear regression analysis. Polynomial time
trend of the third degree included as further control variables. Columns show the results of separate
regressions for Argentina, Italy, and South Korea. Baseline measures the effect from day zero of the
intervention, alternative specification measures the effect 15 days later. Series truncated 18 days after the
intervention. Synthetic control group is a weighted combination of control units chosen to approximate
the unit affected by the intervention. Variables, countries, and weights used in the empirical models
to predict the control unit in scenarios I-IV are shown in Table 1. Bootstrapped standard errors in
parentheses (number of replications equivalent to number of observations). Statistical significance level
* p < 0.10, ** p < 0.05, *** p < 0.01. The last row indicates the effect size in percentage of average
daily deaths in the control unit.

20



Table 3: Effect of school closures and early interventions on COVID-19 deaths (daily
average): Difference in differences estimates - Non-parametric Synthetic Control Method

Argentina Italy South Korea

baseline 15 days later baseline 15 days later baseline 15 days later

Treated=1 0.0183 -2.303∗∗∗ -0.435 -14.58∗∗ 0.330 -31.91∗∗∗

(0.390) (0.475) (2.222) (7.387) (4.216) (7.703)
Post=1 7.685∗∗ 17.24∗∗ -0.451 -64.42 88.38∗∗ 136.5∗

(3.780) (7.587) (19.66) (75.05) (44.63) (80.73)
Treated=1 × Post=1 -12.98∗∗∗ -32.16∗∗∗ -32.01∗∗ -16.95 -150.6∗∗∗ -333.5∗∗∗

(2.718) (5.787) (15.65) (50.36) (30.75) (66.85)

Observations 74 74 74 74 74 74
R2 0.697 0.894 0.970 0.971 0.680 0.847
Effect size in percentage -91.59 -87.24 -11.28 -2.998 -97.39 -90.04

Notes: Table shows the estimates of η (Treated country=1), λ (Post=1), and δ (Treated

country=1×Post=1) in equation (1) obtained by linear regression analysis. Polynomial time
trend of the third degree included as further control variables. Columns show the results of separate
regressions for Italy, Argentina, and South Korea. Baseline measures the effect from day zero of
the intervention, alternative specification measures the effect 15 days later. Series truncated 18 days
after the intervention. Synthetic control group obtained by non-parametric imputation using a kernel
function. Bootstrapped standard errors in parentheses (number of replications equivalent to number of
observations). Statistical significance level * p < 0.10, ** p < 0.05, *** p < 0.01. The last row indicates
the effect size in percentage of average daily deaths in the control unit.
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Table 4: Effect of school closures and early interventions on COVID-19 deaths per 100,000
inhabitants (daily average): Difference in differences estimates - Synthetic Control Method

baseline 15 days later

I II III IV I II III IV

Argentina=1 -0.000000171 0.000000257 -0.00000317 0.0000577 -0.00591∗∗∗ -0.00602∗∗∗ -0.00378∗∗∗ -0.00133∗∗∗

(0.000707) (0.000793) (0.000524) (0.000168) (0.00162) (0.00120) (0.000932) (0.000367)
Post=1 0.0164∗∗ 0.0167∗∗ 0.0106∗∗ 0.00230 0.0262 0.00522 0.000775 0.00870∗∗

(0.00678) (0.00728) (0.00485) (0.00147) (0.0222) (0.0188) (0.0117) (0.00347)
Argentina=1 × Post=1 -0.0267∗∗∗ -0.0210∗∗∗ -0.0123∗∗∗ -0.00585∗∗∗ -0.0576∗∗∗ -0.0354∗∗ -0.0190∗ -0.0120∗∗∗

(0.00617) (0.00470) (0.00319) (0.00123) (0.0147) (0.0173) (0.0115) (0.00330)

Observations 74 74 74 74 74 74 74 74
R2 0.666 0.647 0.623 0.775 0.798 0.694 0.644 0.856
Effect size in percentage -90.88 -88.71 -82.16 -69.06 -83.70 -75.73 -67.63 -64.29

baseline 15 days later

I II III IV I II III IV

Italy=1 -0.000807 -0.000896 -0.000807 -0.000807 -0.118∗∗∗ -0.107∗∗∗ -0.118∗∗∗ -0.118∗∗∗

(0.00809) (0.00739) (0.00809) (0.00809) (0.0316) (0.0289) (0.0316) (0.0316)
Post=1 0.136 0.120 0.136 0.136 0.215 0.175 0.215 0.215

(0.0980) (0.0888) (0.0980) (0.0980) (0.259) (0.239) (0.259) (0.259)
Italy=1 × Post=1 -0.405∗∗∗ -0.362∗∗∗ -0.405∗∗∗ -0.405∗∗∗ -0.670∗∗∗ -0.592∗∗∗ -0.670∗∗∗ -0.670∗∗∗

(0.0644) (0.0584) (0.0644) (0.0644) (0.110) (0.104) (0.110) (0.110)

Observations 74 74 74 74 74 74 74 74
R2 0.925 0.932 0.925 0.925 0.937 0.942 0.937 0.937
Effect size in percentage -49.27 -46.48 -49.27 -49.27 -40.10 -37.45 -40.10 -40.10

baseline 15 days later

I II III IV I II III IV

South Korea=1 0.0000376 -0.000540 0.00171∗∗∗ -0.00134 -0.0560∗∗∗ -0.00974∗∗∗ 0.00321∗∗∗ -0.0109∗∗∗

(0.00508) (0.000955) (0.000403) (0.000981) (0.0135) (0.00228) (0.000607) (0.00225)
Post=1 0.138∗∗ 0.0228∗∗ 0.00231 0.0247∗∗ 0.317∗∗∗ 0.0360∗∗ -0.00177 0.0312∗

(0.0685) (0.0109) (0.00157) (0.00968) (0.108) (0.0173) (0.00330) (0.0178)
South Korea=1 × Post=1 -0.266∗∗∗ -0.0390∗∗∗ 0.00310∗∗∗ -0.0377∗∗∗ -0.597∗∗∗ -0.0801∗∗∗ 0.000751 -0.0724∗∗∗

(0.0502) (0.00703) (0.00114) (0.00655) (0.0645) (0.00958) (0.00299) (0.0101)

Observations 74 74 74 74 74 74 74 74
R2 0.711 0.747 0.665 0.766 0.898 0.872 0.602 0.863
Effect size in percentage -96.91 -81.14 83.88 -79.25 -90.08 -80.42 12.96 -77.81

Notes: Table shows the estimates of η (Treated country=1), λ (Post=1), and δ (Treated

country=1×Post=1) in equation (1) obtained by linear regression analysis. Polynomial time
trend of the third degree included as further control variables. Columns show the results of separate
regressions for Italy, Argentina, and South Korea. Baseline measures the effect from day zero of
the intervention, alternative specification measures the effect 15 days later. Series truncated 18 days
after the intervention. Synthetic control group is a weighted combination of control units chosen to
approximate the unit affected by the intervention. Bootstrapped standard errors in parentheses (number
of replications equivalent to number of observations). Statistical significance level * p < 0.10, **
p < 0.05, *** p < 0.01. The last row indicates the effect size in percentage of average daily deaths in the
control unit.
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Table 5: Effect of school closures and early interventions on COVID-19 deaths per 100,000
inhabitants (daily average): Difference in differences estimates - Non-parametric Synthetic
Control Method

Argentina Italy South Korea

baseline 15 days later baseline 15 days later baseline 15 days later

Treated=1 -0.000728 -0.0103∗∗∗ -0.00489 -0.0744∗∗∗ 0.000928 -0.0461∗∗∗

(0.00145) (0.00212) (0.00541) (0.0199) (0.00624) (0.0114)
Post=1 0.0281∗∗ 0.0584∗∗∗ 0.0546 -0.0649 0.131∗∗ 0.201∗

(0.0131) (0.0226) (0.0523) (0.162) (0.0660) (0.119)
Treated=1 × Post=1 -0.0465∗∗∗ -0.106∗∗∗ -0.192∗∗∗ -0.213∗∗∗ -0.221∗∗∗ -0.492∗∗∗

(0.00873) (0.0183) (0.0339) (0.0767) (0.0454) (0.0982)

Observations 74 74 74 74 74 74
R2 0.703 0.879 0.961 0.958 0.680 0.848
Effect size in percentage -93.18 -87.17 -31.29 -18.22 -96.68 -89.81

Notes: Table shows the estimates of η (Treated country=1), λ (Post=1), and δ (Treated

country=1×Post=1) in equation (1) obtained by linear regression analysis. Polynomial time
trend of the third degree included as further control variables. Columns show the results of separate
regressions for Italy, Argentina, and South Korea. Baseline measures the effect from day zero of
the intervention, alternative specification measures the effect 15 days later. Series truncated 18 days
after the intervention. Synthetic control group obtained by non-parametric imputation using a kernel
function. Bootstrapped standard errors in parentheses (number of replications equivalent to number of
observations). Statistical significance level * p < 0.10, ** p < 0.05, *** p < 0.01. The last row indicates
the effect size in percentage of average daily deaths in the control unit.
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Table 6: Placebo tests: Difference in differences estimates - Synthetic Control Method

Placebo tests

I II III IV

Argentina=1 -0.151 -0.170 -0.0950 -0.166
(0.152) (0.168) (0.106) (0.166)

Post=1 0.191 0.0861 0.179 0.207
(0.283) (0.275) (0.240) (0.304)

Argentina=1 × Post=1 0.194 0.220 0.143 0.210
(0.189) (0.193) (0.149) (0.200)

Observations 36 36 36 36
R2 0.172 0.118 0.150 0.195

Placebo tests

I II III IV

Italy=1 -3.667 -3.785 -3.809 -3.655
(5.693) (5.129) (5.257) (5.280)

Post=1 -12.45 -11.24 -11.59 -11.44
(8.130) (7.362) (7.503) (7.627)

Italy=1 × Post=1 4.733 4.626 4.683 4.591
(5.878) (5.330) (5.464) (5.458)

Observations 36 36 36 36
R2 0.744 0.772 0.768 0.760

Placebo tests

I II III IV

South Korea=1 -0.494 -1.299 -3.000 -0.404
(1.059) (1.462) (2.273) (0.985)

Post=1 0.550 -0.102 -2.194 -0.0566
(1.610) (1.747) (3.070) (1.064)

South Korea=1 × Post=1 0.681 1.571 3.533 0.537
(1.129) (1.492) (2.321) (1.025)

Observations 36 36 36 36
R2 0.639 0.675 0.680 0.630

Notes: Table shows the estimates of η (Treated country=1), λ (Post=1), and δ (Treated
country=1×Post=1) in equation (1) obtained by linear regression analysis. Polynomial time trend of
the third degree included as further control variables. Columns show the results of separate regressions
for Argentina, Italy, and South Korea. Series truncated one day before the intervention. Synthetic con-
trol group is a weighted combination of control units chosen to approximate the unit affected by the
intervention. Variables, countries, and weights used in the empirical models to predict the control unit in
scenarios I-IV are shown in Table 1. Bootstrapped standard errors in parentheses (number of replications
equivalent to number of observations). Statistical significance level * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 7: Effect of school closures and early interventions on excess deaths in Italy

I II III IV NP

Italy=1 0.248 -71.72 -71.72 -71.60 20.15
(2357.8) (2203.3) (2203.3) (2682.3) (1473.3)

Post=1 294.1 215.0 215.0 390.1 -67.74
(1632.9) (1515.3) (1515.3) (1894.0) (924.1)

Italy=1 × Post=1 -2270.5 -2124.3 -2124.3 -2534.5 -1229.8
(2753.6) (2595.8) (2595.8) (3101.9) (1555.6)

Observations 12 12 12 12 12
R2 0.989 0.991 0.991 0.987 0.996
Effect size in percentage -40.67 -38.57 -38.57 -42.82 -27.20

Notes: Table shows the estimates of η (Treated country=1), λ (Post=1), and δ (Treated

country=1×Post=1) in equation (1) obtained by linear regression analysis. Polynomial time
trend of the third degree included as further control variables. Series truncated 3 weeks after the
intervention. Predictor variables used in scenarios I-IV and NP shown in Table 1. Bootstrapped
standard errors in parentheses (number of replications equivalent to number of observations). Statistical
significance level * p < 0.10, ** p < 0.05, *** p < 0.01. The last row indicates the effect size in
percentage of excess deaths in the control unit. Data source is the data on excess mortality collected by
the Financial Times.

Table 8: Effect in other countries ordered by the number of deaths on the day of school
closure

Switzerland
13

Germany
13

Netherlands
20

Indonesia
55

Canada
61

Brazil
77

France
127

UK
158

Spain
288

Treated=1 -9.645∗∗∗ -2.499 -11.97∗∗∗ -14.31∗∗∗ -39.28∗∗∗ -0.211 13.66∗∗ 7.824 44.39∗∗∗

(2.280) (2.060) (3.910) (3.489) (9.213) (2.612) (6.284) (11.50) (13.54)
Post=1 69.48∗∗∗ 16.85 61.41 57.83∗∗ 182.6∗ 8.696 -6.925 -93.23 -149.8

(23.83) (22.71) (57.81) (26.44) (109.4) (35.78) (58.40) (93.06) (91.62)
Treated=1 × Post=1 -140.1∗∗∗ -9.245 -177.6∗∗∗ -73.29∗∗∗ -440.7∗∗∗ -7.193 -7.107 247.1∗∗∗ 9.562

(19.93) (20.16) (48.27) (15.80) (67.01) (48.10) (39.59) (73.41) (71.70)

Effect size in percentage -74.08 -6.068 -53.89 -65.91 -74.95 -6.365 -1.648 59.89 1.182

Notes: Table shows the estimates of η (Treated country=1), λ (Post=1), and δ (Treated

country=1×Post=1) in equation (1) obtained by linear regression analysis. Polynomial time
trend of the third degree included as further control variables. Series truncated 18 days after the
intervention. Predictor variables are the same as used in scenarios II shown in Table 1. Bootstrapped
standard errors in parentheses (number of replications equivalent to number of observations). Statistical
significance level * p < 0.10, ** p < 0.05, *** p < 0.01. The last row indicates the effect size in
percentage of reported average daily COVID-19 deaths in the control unit. Number under the name of
the country indicates the number of reported COVID-19 deaths on the day of nationwide school closure.
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Figures

Figure 1: Epidemic curves of COVID-19 deaths in treated unit and synthetic control unit

Notes: Variables, countries, and weights used to predict synthetic control units using synthetic control
methods indicated in Table 1. Source: Own elaboration using ECDC data on reported COVID-19

deaths.

26



Figure 2: Comparison of Pre-Trends (right figure shows non-parametric approach to ob-
tain counterfactual)

Source: Own elaboration using ECDC data on reported COVID-19 deaths.
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Figure 3: Epidemic curves of COVID-19 deaths in Italy and in synthetic control group
(non parametric estimation of counterfactual)

Notes: Variables, countries, and weights used to predict synthetic control units using synthetic control
methods indicated in Table 1. Source: Own elaboration using ECDC data on reported COVID-19

deaths.

Figure 4: Epidemic curves of COVID-19 deaths in treated unit and synthetic control unit
- logarithmic scale

Source: Own elaboration using ECDC data on reported COVID-19 deaths.
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Figure 5: Excess deaths before and after school closures - Italy vs Synthetic Control Unit

Source: Own elaboration using data on excess mortality collected by the Financial Times.
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Figure 6: Stringency of government responses to the pandemic in Argentina, Italy, and
South Korea

Source: Own elaboration using data from the Oxford COVID-19 Government Response Tracker.

Figure 7: Correlation between the effect of early interventions, stringency of mitigation
measures, and public health expenditures

Source: Own elaboration using the estimated effect sizes, data from the Oxford COVID-19 Government
Response Tracker, and from the Our World in Data project.
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