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August 16, 2021

Abstract

A competition authority has an objective, which specifies what output
profile firms need to produce as a function of production costs. These
costs change over time and are only known by the firms. The objective is
implementable if in equilibrium, the firms cannot collude on their reports to
the competition authority. Assuming that the firms can only report prices
and quantities, we characterize what objectives are one-shot and repeatedly
implementable. We use this characterization to identify conditions when
the competitive output is implementable. We extend the analysis to the
cases when a buyer also knows the private information of firms and when
the firms can supply hard evidence about their costs.
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1 Introduction

It is well understood that the success of antitrust enforcement crucially depends
on the information that a competition authority (CA) can gather about firms and
markets. To study information acquisition by CA, we adopt an implementation
theory approach in this paper. CA has a certain objective about firms’ output.
For example, it wants the firms to produce the competitive equilibrium output.
This objective depends on the firms’ production costs, which are unknown to
CA, but commonly known by the firms. Therefore, CA must rely on the firms’
reports, which need not be truthful. The question that we address, is whether
CA can design a game such that the firms cannot collude on their reports in
equilibrium in order to mislead CA, and CA can implement its objective. We
study this question both in a one-shot and in an infinitely repeated setup with
discounting.

Since we focus on the information acquisition, we assume that CA has perfect
control over the production of each firm, while firms can only influence their
outputs indirectly via their reports. Our model especially applies to regulated
companies such as utilities. Over the past decades, regulators across the world
have been adopting performance benchmarking of the regulated firms in order
to improve their efficiency and service quality.1 That is, firms are rewarded
for being efficient, while their efficiency is measured against that of other firms.
However, such benchmarking can also create incentives for the firms to coordinate
information that they provide to the regulators. Therefore, it is important to
study possible collusion by the regulated firms.

Motivated by the standard oligopoly models, we impose a restriction on the
type of reports that the firms can make: each firm only announces a quantity it
wants to produce and a price at which it wants to sell. Though, unlike oligopoly
models, what firms produce can differ from what they announce. Therefore, we
further require that the game possesses a “truthful” equilibrium, in which the
firms announce and produce exactly those quantities that are specified by the
objective, and all firms announce the price that equates the announced quanti-
ties with the exogenously given demand. We refer to this property of game as
forthrightness.

We identify necessary and sufficient conditions on CA’s objective for one-shot
and repeated implementation. These conditions can be thought as a strengthen-
ing of Maskin monotonicity (Maskin, 1999) due to forthrightness and repeated
interaction. Following the implementation literature, we now refer to CA’s ob-
jective as a social choice function (SCF) and to the (stage) game that tells how
much the firms must produce given their reports, as a mechanism. In the one-shot

1See, for example, the international comparison of benchmarking methods in the electricity
sector by Jamasb and Pollitt (2000) or the assessment of benchmarking in the telecommunica-
tions, water, and energy sectors in the UK by Dassler, Parker, and Saal (2006), among many
others.

2



setup, we start with the quantity mechanisms where each firm only announces the
quantity that it wants to produce and we show that a condition, which we call
q-monotonicity, is necessary and sufficient for implementation (Proposition 1).
q-monotonicity is a rather demanding condition. For example, the SCF that re-
quires the firms to produce the competitive equilibrium output and which we will
call the competitive SCF, does not satisfy q-monotonicity in general (Proposition
2 and Example 1). This motivates us to study what can be implemented by price-
quantity mechanisms where each firm, in addition to quantity, also announces a
price. We find that a slightly modified condition, which we call pq-monotonicity,
is now necessary and sufficient for implementation (Proposition 3). We also
show that the competitive SCF satisfies pq-monotonicity under some fairly mild
assumptions (Proposition 4). Therefore, we also adopt the price-quantity mech-
anisms for the rest of the paper.

In the repeated setup when the firms’ costs change randomly from one pe-
riod to another, we identify two conditions – pq-monotonicity and pq-stationary
monotonicity – as necessary for implementation (Propositions 5 and 6). The first
condition allows us to eliminate a situation when the firms only misreport their
costs for one period and then behave truthfully thereafter, as the equilibrium out-
come. The second condition allows us to eliminate a situation when the firms use
the same misreporting strategy in every period, as the equilibrium outcome. We
show that in the symmetric setup when the firms are identical and the SCF treats
them equally, these two monotonicity conditions are also sufficient for repeated
implementation (Proposition 7).

Repeated implementation of competitive SCF can fail because of high discount
factor (Example 2) and forthrightness (Example 3). However, when the cost
functions exhibit strictly increasing differences, we show that the competitive
SCF is implementable for all values of the discount factor less than one, if the
number of firms exceeds some number. For a given number of firms, we show
that the competitive SCF is implementable if the discount factor is low enough,
and we identify a condition when it is also implementable for the discount factors
close to one (Proposition 8). Interestingly, an SCF can be implementable for low
and high values of the discount factor, but not be implementable for intermediate
values (Example 4).

Finally, we consider two extensions in the repeated setup. In the first exten-
sion, we allow a representative buyer also to be a participant in the game because
antitrust investigations are often started after a complaint by a customer (see,
e.g., Hay and Kelley, 1974). While the competitive SCF is not efficient from the
firms’ perspective (they prefer a collusive outcome), it becomes efficient once the
interests of the buyer are also taken into account. We show that any efficient
SCF is implementable if and only if an augmented SCF satisfies pq-monotonicity
(Proposition 9). In our second extension, we incorporate hard evidence into the
model. CA can request the firms to back any claims about the implied costs with
supporting evidence. Clearly, more SCFs can be implemented with evidence be-
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cause it can help when either of the two necessary monotonicity conditions fails.
We show that (given a simplifying assumption) so-called evidence monotonicity
is necessary and sufficient for repeated implementation in the symmetric setup
(Propositions 10 and 11). If the firms can hide their profits but cannot exaggerate
them, then the competitive SCF satisfies evidence monotonicity and, hence, is
repeatedly implementable (Example 5).

The survey by Rey (2003) emphasizes the importance of implementation in
the context of competition policy. Specifically, leniency programs where a firm
receives a reduction in fines if it helps to uncover and prosecute a cartel, are
designed to implement competitive behaviour of firms. Starting with Motta
and Polo (2003); Spagnolo (2004); Aubert, Rey, and Kovacic (2006); Harring-
ton (2008), there is large and growing literature that analyses the impact of
leniency programs on collusion. There are some substantial differences between
that literature and our approach. First, we mostly work with non-verifiable in-
formation, while that literature assumes verifiable information; namely, CA can
find evidence of collusion with some probability. Second, in our model, CA is
free to choose any price-quantity mechanism, while in that literature, CA treats
the (often implicit) price-quantity mechanism as given; for example, it could be
a Cournot or Bertrand model. Collusion by regulated firms that are subject
to benchmarking, is studied by Tanger̊as (2002) and Dijkstra, Haan, and Mulder
(2017). In particular, Tanger̊as (2002) considers information revelation in a static
duopoly model when transfers from the regulator and side-payments between the
firms are possible, and finds the implementable SCF that maximizes the welfare.

Our analysis builds on several strands of implementation literature. Repeated
implementation has been studied in a general setup by Lee and Sabourian (2011);
Mezzetti and Renou (2017); Āzacis and Vida (2019). Mezzetti and Renou (2017)
show that a condition, called dynamic monotonicity, is necessary for repeated
implementation. On one hand, pq-stationary monotonicity is a restriction of
dynamic monotonicity to a special type of misreports, but on the other hand, it
is a strengthening of dynamic monotonicity due to forthrightness. Further, Lee
and Sabourian (2011) show that if an SCF is not efficient, then it is not repeatedly
implementable for high enough discount factors. In Remark 2, we comment on
the differences in assumptions that allow us to implement inefficient SCFs even
when the discount factor is high.

Implementation with quantity and price-quantity mechanisms has previously
been studied in static exchange economies. The seminal work in this area is by
Dutta, Sen, and Vohra (1994); Sjöström (1994); Saijo, Tatamitani, and Yamato
(1996). q- and pq-monotonicity resemble the necessary conditions that were iden-
tified in these papers. Bull and Watson (2004); Ben-Porath and Lipman (2012);
Kartik and Tercieux (2012); Banerjee, Chen, and Sun (2021) study one-shot im-
plementation with evidence. In particular, Kartik and Tercieux (2012) introduce
the notion of evidence monotonicity. Compared to the literature, we are the first
to study implementation with price-quantity mechanisms and with evidence in
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the repeated setup.
The rest of the paper is organized as follows. We describe the basic elements of

the model in Section 2. Then, we study one-shot implementation in Section 3 and
repeated implementation in Section 4. We investigate repeated implementation
of the competitive SCF in Section 5. In Section 6, we consider the two extensions
to the model of Section 4. Finally, the appendix contains most of the proofs.

2 The Setup

There are n ≥ 2 firms in a market and they produce a homogenous product. Let
I = {1, . . . , n} denote the set of firms. The inverse demand function is p = p(Q),
where Q =

∑n
i=1 qi is the aggregate output and qi ∈ R+ is the output of firm

i ∈ I. It is assumed that p(Q) is continuous and strictly decreasing for p > 0.
Production costs depend on the state of the world. Let Θ be the set of possible
states of the world, which is assumed to be finite. Each period a new state θ ∈ Θ
is drawn independently and identically according to a distribution function l. It
is assumed that each state θ ∈ Θ is realised with a strictly positive probability,
l(θ) > 0. The cost function of firm i is ci(qi, θ), which is assumed to be continuous
and strictly increasing in qi with ci(0, θ) = 0. Let c′i(qi, θ) denote the marginal
cost function of firm i when ci(qi, θ) is differentiable in qi. The profit of firm i in
any period with state θ is given by

πi(q, θ) = p(Q)qi − ci(qi, θ),

where q = (q1, . . . , qn). Firms want to maximize their present discounted profits.
Let δ be a discount factor, common to all firms.

The objective of competition authority (CA) is captured by a social choice
function (SCF), which specifies the desired output profile for every state of the
world, f : Θ→ Rn

+. It is assumed that f does not change over time and that CA
never observes the state of the world of any period.

Except for Section 3.1 where we consider quantity mechanisms, we maintain
the following assumption in the rest of the paper:

Assumption A1 f is such that p
(∑

i∈I fi(θ)
)
> 0 for all θ.

This assumption together with the assumption that p(Q) is strictly decreasing
for p > 0, ensures that there is a one-to-one relationship between the price and
the aggregate output in the range of f . We could dispense of Assumption A1 if
in the mechanisms that we consider below, CA required the firms to report the
aggregate output instead of price.

We will specifically be interested in an SCF that selects a competitive output
in every state of the world. To define this SCF (and later to study its imple-
mentability), we make the following assumption:

5



Assumption A2 ci(qi, θ) is continuously differentiable and convex in qi for all i
and θ. p(Q) is everywhere differentiable, except possibly at Q s.t. p(Q) = 0. For
each θ, the solution q∗ to the system of equations:

p(Q) ≤ c′i(qi, θ), qi ≥ 0, (p(Q)− c′i(qi, θ))qi = 0 for i = 1, . . . , n, (1)

is unique with q∗i > 0 for all i.

Thus, given Assumption A2, the competitive SCF, which we denote by f c, is such
that for every θ, f c(θ) is a solution to (1).

3 One-shot Implementation

We start by exploring implementation in a static setup. To elicit the state of the
world, CA uses a mechanism (M, g) where M is a message space, which is the
same for all firms, and g : Mn → Rn

+ is an outcome function that specifies an
output profile for each profile of messages. Since below we will fix the message
space M , we denote the mechanism (M, g) with its output function g. Let mi

be a generic message of firm i and let m = (m1, . . . ,mn) be a generic message
profile. m−i is obtained by omitting the message of firm i from m. It is assumed
that the firms send their messages simultaneously. The message profile m is
a Nash equilibrium in state θ if πi(g(m), θ) ≥ πi(g(m′i,m−i), θ) for all i ∈ I
and all m′i ∈ M . Let NE(g, θ) denote the set of Nash equilibrium message
profiles in state θ. The mechanism g implements an SCF f in Nash equilibrium
if for every θ ∈ Θ, we have that NE(g, θ) is nonempty and g(m) = f(θ) for
every m ∈ NE(g, θ). If there exists such a mechanism, then we say that f is
implementable in Nash equilibrium.

In the implementation literature, the mechanisms that are used to implement
SCFs, are often quite unnatural. The canonical mechanism for implementation
in Nash equilibrium would require each firm to report a state, an output profile,
and an integer.2 To address this unattractive feature of the mechanisms, we
impose a restriction on the mechanisms that CA can use. Following Dutta, Sen,
and Vohra (1994); Sjöström (1994); Saijo, Tatamitani, and Yamato (1996), the
messages of the firms are announcements about quantities and possibly also about
prices. We start with quantity mechanisms, and next we consider price-quantity
mechanisms.

3.1 Quantity Mechanisms

In quantity mechanisms, the message space of every firm is M = R+. We in-
terpret the announcement of firm i as the output it should produce. However,

2For the description of the canonical mechanism, see the proof of Theorem 3 in Maskin
(1999).
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without further restrictions on the mechanisms, what firms announce can differ
from what they actually produce. This, in turn, means that their announce-
ments can potentially encode additional information besides their own desired
output. Therefore, following Saijo, Tatamitani, and Yamato (1996), we impose
the forthrightness requirement on the mechanisms, which says that it is an equi-
librium to announce the socially desired output profile in every state and that in
this equilibrium, the firms produce exactly what they have announced.

Definition 1 A quantity mechanism g satisfies forthrightness w.r.t. f if for all
θ ∈ Θ, f(θ) ∈ NE(g, θ) and g(f(θ)) = f(θ).

We can view the Cournot model as a quantity mechanism where the outcome
function is an identity map, g(m) = m for all m. Forthrightness only requires
that g(m) = m for m ∈ {f(θ)|θ ∈ Θ}.

Let Li(q, θ) := {q′|πi(q, θ) ≥ πi(q
′, θ)} denote the lower contour set of firm

i in state θ at output q. Li(q, θ) consists of all those output profiles that give
to firm i weakly lower profits than q in state θ. Given any output profile q,
q−i is obtained by omitting the output of firm i from q. Let f−1(q−i) := {θ ∈
Θ|q−i = f−i(θ)} be the set of states that are consistent with q−i given f , and let
Λf
i (q) := ∩θ∈f−1(q−i)Li(f(θ), θ). (Note, though, that Λf

i (q) is independent of qi.)
We now define a condition, which we call q-monotonicity, and show that it is

necessary and sufficient for implementation with a quantity mechanism that sat-
isfies forthrightness. q-monotonicity is similar to Condition W ∗ in Saijo, Tatami-
tani, and Yamato (1996), which is necessary for implementation with quantity
mechanisms in exchange economies.3

Definition 2 f satisfies q-monotonicity if for all (θ, θ′) ∈ Θ2, Λf
i (f(θ)) ⊆ Li(f(θ), θ′)

for all i ∈ I implies f(θ′) = f(θ).

Proposition 1 f is implementable in Nash equilibrium with a quantity mecha-
nism that satisfies forthrightness w.r.t. f if and only if f satisfies q-monotonicity.

Although the definition of forthrightness allows for the possibility that there
are other Nash equilibria besides m = f(θ) in state θ, it is, in fact, the unique
equilibrium of the mechanism, which is used to prove the sufficiency part of
Proposition 1.

The following condition, which is easier to check, is implied by q-monotonicity.

Definition 3 f is incentive compatible if πi(f(θ), θ) ≥ πi(f(θ′), θ) for all i, θ,
and θ′ ∈ f−1(f−i(θ)).

3Because Condition W ∗ is defined for exchange economies, it is not directly applicable to
the present setup. However, if applied to the present setup, f−1 in Saijo, Tatamitani, and
Yamato (1996) would be defined as f−1(q) := {θ ∈ Θ|q = f(θ)}. Therefore, Condition W ∗

more corresponds to pq-monotonicity, which we define later.
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Proposition 2 If f is implementable in Nash equilibrium with a quantity mech-
anism that satisfies forthrightness w.r.t. f , then f is incentive compatible.

The following example shows that the competitive SCF is, in general, not
implementable with a quantity mechanism that satisfies forthrightness.

Example 1. Let n = 2, Θ = {(θ1, θ2), (θ′1, θ
′
2)} with θ′1/θ

′
2 = θ1/θ2 and θ1 >

θ′1 > 0, p = max{0, a − Q} with a > θ1 + θ1/θ2, c1(q1, (θ1, θ2)) = θ1q1 and
c2(q2, (θ1, θ2)) = 1

2
θ2q

2
2. The cost functions in the other state are the same, except

θ1 and θ2 are replaced with θ′1 and θ′2, respectively. (Assumption A2 is satisfied.)
The competitive SCF is f c(θ1, θ2) = (a−θ1−θ1/θ2, θ1/θ2) and f c(θ′1, θ

′
2) = (a−θ′1−

θ1/θ2, θ1/θ2). This SCF is not incentive compatible since (θ1, θ2) ∈ f c−1

2 (f c2(θ′1, θ
′
2))

and firm 1 strictly prefers outcome f c(θ1, θ2) in both states since θ1 > θ′1.

3.2 Price-Quantity Mechanisms

The failure to implement the competitive SCF with quantity mechanisms moti-
vates us to study price-quantity mechanisms next. The message space of every
firm in such mechanisms is M = R++ × R+. A typical message mi = (pi, qi)
will have the following interpretation: pi is firm i’s announcement of the mar-
ket price and qi is its output. Note that we do not allow the firms to announce
zero price, which we can do because of Assumption A1. If with quantity mecha-
nisms, each firm announces how much it should produce, then with price-quantity
mechanisms, it effectively also announces how much the other firms should jointly
produce.

We now define forthrightness for price-quantity mechanisms. For every θ ∈ Θ,
let m(θ) denote the message profile such that mi(θ) = (p, qi) for all i ∈ I where
(q1, . . . , qn) = f(θ) and p = p

(∑
i∈I qi

)
.

Definition 4 A price-quantity mechanism g satisfies forthrightness w.r.t. f if
for all θ ∈ Θ, m(θ) ∈ NE(g, θ) and g(m(θ)) = f(θ).

With some abuse of notation, let f−1(q) := {θ ∈ Θ|q = f(θ)} and Λf
i (q) :=

∩θ∈f−1(q)Li(q, θ). Note that m(θ) ∈ NE(g, θ′) for all θ′ ∈ f−1(f(θ)) if g satisfies
forthrightness w.r.t. f .

Definition 5 f satisfies pq-monotonicity if for all (θ, θ′) ∈ Θ2, Λf
i (f(θ)) ⊆

Li(f(θ), θ′) for all i ∈ I implies f(θ′) = f(θ).

The definition of pq-monotonicity differs from that of q-monotonicity only in
the definition of Λf

i (q). From the definitions of Λf
i (q) in the case of quantity and

price-quantity mechanisms, it follows that if f does not satisfy pq-monotonicity,
then it will also not satisfy q-monotonicity. Further, there is no difference between
q-monotonicity and pq-monotonicity if in each state, f assigns identical outputs
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to all firms, which we would normally demand from f if the firms themselves are
identical.

We have a similar result to that of Proposition 1 for the case when CA uses
a price-quantity mechanism.

Proposition 3 f is implementable in Nash equilibrium with a price-quantity
mechanism that satisfies forthrightness w.r.t. f if and only if f satisfies pq-
monotonicity.

When a price-quantity mechanism is employed, incentive compatibility of f
is not anymore a necessary condition for implementation. To see it, suppose that
f−i(θ) = f−i(θ

′), but fi(θ) 6= fi(θ
′) for some θ, θ′. With a quantity mechanism,

both announcements of fi(θ) and fi(θ
′) by firm i are consistent with f−i(θ) and the

incentive compatibility ensures that firm i announces the right quantity. With
a price-quantity mechanism, the announcement of firm i can be crosschecked
against p−1(p̂)−

∑
j 6=i fj(θ) where p̂ is the common price announced by the other

firms. Therefore, at most one of two announcements fi(θ) and fi(θ
′) can be

consistent with the messages of the other firms, and we do not need anymore
to require that f satisfies the incentive compatibility. This allows to implement
the competitive SCF (that satisfies Assumption A2) with a price-quantity mech-
anism.

Proposition 4 If Assumption A2 holds, then f c satisfies pq-monotonicity.

Proof: To prove that f c satisfies pq-monotonicity, we will show that f c(θ′) 6=
f c(θ) implies that there exists firm i, for which Λfc

i (f c(θ)) 6⊆ Li(f
c(θ), θ′) holds.

Consider Figure 1, which shows iso-profit lines of firm i as a function of its own
output, qi, and the aggregate output of all the other firms, Q−i :=

∑
j 6=i qj. One

can think that in the competitive equilibrium of state θ, firm i is choosing qi
and Q−i to maximize its profit π̂i(qi, Q−i, θ) := πi(q, θ) subject to the constraint
qi+Q−i =

∑
j f

c
j (θ), meaning that the aggregate output and, hence, price remain

constant. The optimum is at (f ci (θ),
∑

j 6=i f
c
j (θ)). The slope of iso-profit line is

dQ−i
dqi

= −p
′(Q)qi + p(Q)− c′i(qi, θ)

p′(Q)qi
,

which is equal to −1, the slope of the constraint, in the competitive equilibrium
where p(

∑
j f

c
j (θ)) = c′i(f

c
i (θ), θ) holds. The same is true in all other states of the

world, for which f c(θ) remains the competitive equilibrium outcome. It follows
that the points on the constraint qi +Q−i =

∑
j f

c
j (θ) belong to Λf

i (f(θ)).
Now, suppose that f c(θ) is not a competitive equilibrium outcome in state

θ′. Then, there exists a firm, say, firm i, for which p(
∑

j f
c
j (θ)) 6= c′i(f

c
i (θ), θ

′).4

4This follows from Assumption A2 that the solution to (1) is unique.
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Figure 1: pq-monotonicity of f c

It means its iso-profit line through point (f ci (θ),
∑

j 6=i f
c
j (θ)) is crossing the con-

straint in state θ′. Therefore, given the assumption that fj(θ) > 0 for all j, we can
find a point on the constraint that firm i strictly prefers to (f ci (θ),

∑
j 6=i f

c
j (θ)).

5

That is, Λfc

i (f c(θ)) 6⊆ Li(f
c(θ), θ′) holds. We can conclude that f c satisfies pq-

monotonicity.

4 Repeated Implementation

In the rest of the paper, we assume that the firms and CA interact for an infinite
number of periods. The periods are indexed as 0, 1, 2, . . ., with period 0 being
the initial period. A superscript to any variable will indicate the period. Thus,
θt and mt indicate period t state of the world and period t profile of messages,
respectively. In period t > 0, a history of states is ζt = (θ0, . . . , θt), a history of
messages is µt = (m0, . . . ,mt−1), and a history is ht = (µt, ζt−1). Let ζ0 = θ0

and ζ−1 = µ0 = h0 = ∅. For any t, let H t denote the set of all possible period t
histories.

We assume that CA employs a price-quantity mechanism in every period,
but it can differ from one period to another. A pq-regime, r, describes which
price-quantity mechanism is selected after every possible message history: gt =

5In the absence of the assumption that fj(θ) > 0 for all j, it could be that the point
(f ci (θ),

∑
j 6=i f

c
j (θ)) was located on the horizontal axis and any point that firm i strictly prefers

to this point, would be below the horizontal axis and, hence, would not be feasible.
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r(µt). Occasionally, it will be more convenient to condition r on ht, with the
understanding that r(µt, ζt−1) = r(µt, ζ̂t−1) for any ζt−1, ζ̂t−1. We assume that
CA commits to a pq-regime at the start of period 0 and that the firms know
which regime CA employs.

The firms learn period t state of the world before sending period t messages.
At the end of period t, they also learn the period t messages of other firms. A
(pure) strategy si of firm i specifies a message mt

i = si(h
t, θt) for every t, ht,

and θt. We will condition strategies interchangeably on (ht, θt) and (µt, ζt). Let
s = (s1, . . . , sn) denote a strategy profile. Given t, ht, and s, let ρ(ht|ht, s) = 1
and for any τ > t, let

ρ(hτ |ht, s) =

{
ρ(hτ−1|ht, s)l (θ) if µτ = (µτ−1, s (hτ−1, θ)) and ζτ−1 = (ζτ−2, θ) ,
0 otherwise.

For any t and ht, the continuation value of firm i before it knows period t state
and given that the firms follow strategies s, is

vi(s|ht) = (1− δ)
∞∑
τ=t

∑
hτ∈Hτ

δτ−tρ(hτ |ht, s)l(θτ )πi(gτ (s(hτ , θτ )), θτ ),

where gτ = r(hτ ).6

A strategy profile s is a subgame perfect equilibrium (SPE) of r if for all i, t,
ht, and s′i, it is true that vi(s|ht) ≥ vi((s

′
i, s−i)|ht). (Note that this formulation

also implies that firm i will not want to deviate from si once it learns θt.) A
pq-regime r repeatedly implements f in SPE if the set of SPE is non-empty and
for every SPE s, we have that r(ht)(s(ht, θt)) = f(θt) for all t, θt, and ht such that
ρ(ht|h0, s) > 0. f is repeatedly implementable in SPE if there exists a pq-regime
that repeatedly implements it in SPE.

We now define forthrightness in the repeated setup. It requires that there
exists an SPE such that on the equilibrium path, in every period, the firms an-
nounce and produce exactly those quantities that CA wants the firms to produce
in that period according to f , and they all announce the price that equates de-
mand with the announced quantities. Recall that for every θ ∈ Θ, m(θ) is such
that mi(θ) = (p, qi) for all i ∈ I where (q1, . . . , qn) = f(θ) and p = p

(∑
i∈I qi

)
.

Definition 6 A pq-regime r satisfies forthrightness w.r.t. f if there exists a
subgame perfect equilibrium s s.t. s(ht, θt) = m(θt) and r(ht)(m(θt)) = f(θt) for
all t, θt, and ht s.t. ρ(ht|h0, s) > 0.

Let α : Θ→ Θ be a static deception where α(θ) = θ′ says that the firms act as
if the state was θ′, although the true state is θ. Let vi(f◦α) :=

∑
θ∈Θ l(θ)πi(f(α(θ)), θ)

denote the expected profit of firm i when the firms use the deception α. Let
vi(f) := vi(f ◦ α) when α is the identity map.

6v’s also depend on r, but we do not make this dependence explicit.
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Let vi be a generic continuation value of firm i and let v = (v1, . . . , vn) be a
generic profile of continuation values. For vi to be feasible, it must be that vi ≤
vi where vi := maxφ:Θ→Rn+

∑
θ∈Θ l(θ)πi(φ(θ), θ) denotes the highest continuation

value that firm i can attain. Clearly, to attain vi, firm i must be a monopolist,
that is, φ−i(θ) = 0−i for all θ must hold for φ that maximizes the ex ante profit
of firm i. If in some period with state θ, the firms produce an output profile
q and expect v in continuation, then the present discounted profit of firm i is
given by (1 − δ)πi(q, θ) + δvi. Let Li(q, v, θ) := {(q′, v′)|(1 − δ)πi(q, θ) + δvi ≥
(1− δ)πi(q′, θ)+ δv′i} denote the lower contour set of firm i in state θ at quantity-
value pair (q, v), and let Λf

i (q) := ∩θ∈f−1(q)Li(q, v(f), θ).
Mezzetti and Renou (2017, Theorem 1) have proven that for an arbitrary

message space M , an SCF must satisfy the so-called dynamic monotonicity in
order to be repeatedly implementable. Dynamic monotonicity says that for ev-
ery dynamic deception that results in an undesirable output profile after some
history of states, there exists a firm that has incentives to deviate from this de-
ception after some (possibly different) history of states.7 One can also define a
version of dynamic monotonicity when M = R++ × R+ and the regime satisfies
forthrightness, and show that this dynamic monotonicity is necessary for repeated
implementation.

Checking whether an SCF satisfies dynamic monotonicity, however, can be a
daunting task because there is an infinity of possible dynamic deceptions.8 For
this reason, we will assume below that all the firms are identical and that an
SCF assigns them identical outputs. With this assumption, we will show that
we only need to consider two types of dynamic deceptions. The first type are
stationary deceptions according to which the same static deception is used in
every period. The second type of dynamic deception is the one where the firms
deceive only for one period but otherwise they behave truthfully. For each of
these two types of dynamic deceptions, we will define a corresponding notion
of monotonicity and show that both notions of monotonicity are necessary and
together they are sufficient for an SCF to be repeatedly implementable. Finally,
note that any dynamic deception that belongs to the aforementioned two types,
can be described with a single static deception. Therefore, the two notions of
monotonicity are stated using only static deceptions.

Definition 7 f satisfies pq-stationary monotonicity if for any α : Θ → Θ, (a)
implies (b):

a. Λf
i (f(α(θ))) ⊆ Li(f(α(θ)), v(f ◦ α), θ) for all i ∈ I and θ ∈ Θ,

7A dynamic deception specifies which static deception to use after each possible history of
states. It is formally defined in Appendix B right before the proof of Proposition 7.

8Though, in Āzacis and Vida (2019, Theorem 1), we provide an alternative characterization
of dynamic monotonicity, which allows to test dynamic monotonicity of SCF using numerical
methods.
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b. f(α(θ)) = f(θ) for all θ ∈ Θ.

Proposition 5 If f is repeatedly implementable in subgame perfect equilibrium
with a pq-regime that satisfies forthrightness w.r.t. f , then f satisfies pq-stationary
monotonicity.

We can think of (f, v(f)) as an SCF that besides an output profile, also
specifies the continuation values of firms (which are independent of the state).
The following definition is identical to Definition 5, except that the SCF is given
by (f, v(f)) instead of f and the profit of firm i in state θ is given by (1 −
δ)πi(q, θ) + δvi instead of πi(q, θ).

Definition 8 (f, v(f)) satisfies pq-monotonicity if for any α : Θ → Θ, (a) im-
plies (b):

a. Λf
i (f(α(θ))) ⊆ Li(f(α(θ)), v(f), θ) for all i ∈ I and θ ∈ Θ,

b. f(α(θ)) = f(θ) for all θ ∈ Θ.

Remark 1 pq-monotonicity of f implies pq-monotonicity of (f, v(f)), but the
converse is not true. From Proposition 4, it follows that (f c, v(f c)) satisfies pq-
monotonicity if Assumption A2 holds.

Proposition 6 If f is repeatedly implementable in subgame perfect equilibrium
with a pq-regime that satisfies forthrightness w.r.t. f , then (f, v(f)) satisfies
pq-monotonicity.

From now on we assume that all firms are identical and that they are treated
identically:

Assumption A3 For every θ, ci(·, θ) = cj(·, θ) and fi(θ) = fj(θ) for all i, j ∈ I.

Even though the firms are identical, their interests are not fully aligned because
each firm prefers to be the only firm in the market.

Proposition 7 Suppose Assumption A3 holds. If f satisfies pq-stationary mono-
tonicity and (f, v(f)) satisfies pq-monotonicity, then f is repeatedly implementable
in subgame perfect equilibrium with a pq-regime that satisfies forthrightness w.r.t.
f .

We apply the result of Proposition 7 to study repeated implementation of the
competitive SCF in the next section. Because of Remark 1, we only need to verify
whether f c satisfies pq-stationary monotonicity to conclude that it is repeatedly
implementable.
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5 Repeated Implementation of the Competitive

SCF

We start with two examples to show why f c might fail to be pq-stationary mono-
tonic. Both examples satisfy Assumptions A2 and A3. The message of the first
example is that it is harder to satisfy pq-stationary monotonicity when δ is large
because firms put more weight on the continuation value in their discounted
profits.

Example 2. Let n = 2, Θ = {θ1, θ2}, l(θ1) = 0.5, p = max{0, 2700 − 60Q},
ci(qi, θ1) = 90q2

i and ci(qi, θ2) = 60q2
i + q3

i for i = 1, 2. The competitive SCF
is f ci (θ1) = 9 and f ci (θ1) = 10 for i = 1, 2. The firms are better off if they
adopt the following deception in every period: α(θ1) = α(θ2) = θ1 because
πi(f

c(θ1), θ2) = 8, 991 > πi(f
c(θ2), θ2) = 8, 000.

We show that f c does not satisfy pq-stationary monotonicity for large enough
δ. To incentivize firm i to deviate when the firms follow deception α, but not to
deviate when they behave truthfully, we need to find (q, vi) s.t.

(1− δ)πi(f c(θ1), θ1) + δvi(f
c) ≥ (1− δ)πi(q, θ1) + δvi, (2)

(1− δ)πi(f c(θ1), θ2) + δvi(f
c ◦ α) < (1− δ)πi(q, θ2) + δvi. (3)

After combining both inequalities and simplifying, one arrives at the following
necessary condition:

(1− δ)(ci(qi, θ1)− ci(qi, θ2)) > (1− δ)(ci(f ci (θ1), θ1)− ci(f ci (θ1), θ2))

+δl(θ2)(πi(f
c(θ1), θ2)− πi(f c(θ2), θ2)). (4)

ci(qi, θ1)−ci(qi, θ2) is maximized for qi = 20. Thus, setting qi = 20 and evaluating
costs and profits at the specified values, we find that the above inequality will
not be satisfied for δ ≥ 4598

5589
≈ 0.8227.

Let us write the r.h.s. of (2) and (3) as wi − (1 − δ)ci(qi, θ) for θ ∈ Θ where
wi := (1− δ)p(Q)qi + δvi. Also, let us denote the l.h.s. of (2) and (3) as vi(θ1, θ1)
and vi(θ2, θ1), respectively. Then, we can conveniently illustrate (2) and (3) when
they hold with equalities, in the (qi, wi) space, which is done in Figure 2 for two
values of δ. When δ = 0, the iso-profit lines intersect and we can find (qi, wi) that
gives the right incentives to firm i. (We can pick any point above the solid red
line, but below the dotted blue line.) But when δ = 0.9, the lines do not cross
and we cannot satisfy (3) without violating (2).

The next example shows that pq-stationary monotonicity of f c might fail
because of the requirement that a pq-regime satisfies forthrightness.

Example 3. Let n = 5, Θ = {θ1, θ2, θ3}, l(θ1) = l(θ2) = 1
3
, p = max{0, 22−Q},

and for all i ∈ I, the cost functions are as follows:

ci (qi, θ1) =

{
2qi if qi ≤ 6,

2q3i+4·63
3·62 if qi > 6,
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Figure 2: Illustration of Example 2

ci (qi, θ2) =

{
4qi if qi ≤ 5,

2q2i+2·52
5

if qi > 5,

ci (qi, θ3) =

{
4qi if qi ≤ 11,

q4i+3·114

113
if qi > 11.

All these cost functions are continuously differentiable (to be consistent with
Assumption A2). The competitive SCF is f ci (θ1) = 4 and f ci (θ2) = f ci (θ3) = 3.6
for all i ∈ I. The firms are better off if they adopt the following deception:
α(θ1) = α(θ2) = α(θ3) = θ2 because πi(f

c(θ2), θ1) = 7.2 > πi(f
c(θ1), θ1) = 0.

Also, vi(f
c) = 0 and vi(f

c ◦ α) = 2.4.
To eliminate deception α, we need to find (q, v) s.t. for some i, (q, v) ∈

Λfc

i (f c(α(θ1))) but (q, v) 6∈ Li(f c(α(θ1)), v(f c ◦ α), θ1) or

0 ≥ (1− δ)πi(q, θ2) + δvi,

0 ≥ (1− δ)πi(q, θ3) + δvi,

7.2(1− δ) + 2.4δ < (1− δ)πi(q, θ1) + δvi.

Figure 3 plots the above expressions for δ = 0.85 when they hold with equalities,
in the (qi, wi) space where wi = (1 − δ)p(Q)qi + δvi. The figure shows that it
is impossible to find such a pair (q, v) that would satisfy all three inequalities:
(q, v) must lie below both the solid blue line and the dashed red line, but above
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Figure 3: Failure of pq-stationary monotonicity in Example 3 when δ = 0.85

the dotted green line. At the same time, if we did not impose forthrightness
and allowed the firms to send different messages (on the equilibrium path) in
states θ2 and θ3, then we can eliminate both deception α(θ1) = θ2 and α(θ) = θ
for θ = θ2, θ3 (because the solid blue line intersects the dotted green line) and
deception α′(θ1) = θ3 and α′(θ) = θ for θ = θ2, θ3 (because the dashed red line
intersects the dotted green line).9

We now introduce an assumption that rules out situations like in Examples 2
and 3 when the isoprofit lines never intersect.

Assumption A4 Θ ⊂ R++, ci(qi, θ) = θc(qi) for all θ ∈ Θ and i ∈ I, c(0) = 0,
p(0) > maxθ∈Θ θc

′(0), c′(qi) > 0, and c′′(qi) ≥ 0 for all qi ≥ 0. p(Q) is twice
differentiable and p′′Q+ 2p′ ≤ 0 for all Q, except possibly at Q s.t. p(Q) = 0.

Assumption A4 implies that the cost function, which is the same for all firms,
exhibits strictly increasing differences. The assumption is a special case of As-
sumption A2, except that it only guarantees that there is a unique symmetric
solution to (1).10 Therefore, whenever Assumption A4 is invoked, we require
that f c is such that for every θ, f c(θ) is a symmetric solution to (1), that is,
p(nf ci (θ)) = θc′(f ci (θ)) for all i and θ.

Let fm denote an SCF that assigns the symmetric cartel output to the firms
in every state. That is, given Assumption A4, fmi (θ) is a solution to p(nfmi (θ)) +

9vi must also be feasible, that is, vi ≤ vi must hold where vi = 83.8775. According to
Figure 3, it is enough to consider wi < 70 or vi < 70/δ ≈ 82.3529. Thus, the feasibility of vi is
satisfied. In fact, this is the reason why we set n = 5.

10That is, Assumption A4 does not rule out the existence of additional asymmetric solutions
to (1). For example, there is a continuum of solutions to (1) in Example 4.
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p′(nfmi (θ))nfmi (θ) = θc′(fmi (θ)) for all i and θ. (c′′ ≥ 0 and p′′Q+ 2p′ ≤ 0 ensure
that the second order condition is satisfied.)

Proposition 8 Suppose Assumption A4 holds.

1. There exists δ > 0 s.t. f c satisfies pq-stationary monotonicity for all δ ∈
[0, δ).

2. Suppose v1 > v1(f c) + maxθ θ(v1(fm)−v1(fc))
minθ,θ′|θ>θ′ θ−θ′

holds. Then, there exists δ < 1

s.t. f c satisfies pq-stationary monotonicity for all δ ∈ (δ, 1).

3. There exists n s.t. f c satisfies pq-stationary monotonicity for all δ ∈ [0, 1)
if n > n.

Remark 2 Lee and Sabourian (2011) have shown in their Theorem 1 that an
SCF f is not repeatedly implementable for large enough discount factors if f is
not efficient in the range, meaning, there exists a deception α such that v(f ◦
α) > v(f).11 In general, f c is not efficient from the firms’ perspective because
v(fm) > v(f c). The result of Proposition 8 that f c can even be implemented
when δ is arbitrary close to 1, however, does not contradict Theorem 1 of Lee and
Sabourian (2011) because they assume bounded payoffs: there exists some finite
K s.t. maxi∈I,θ∈Θ,q∈Rn+ |πi(q, θ)| < K. If the firms faced capacity constraints, then
Theorem 1 of Lee and Sabourian (2011) would apply and the implementation of
f c would fail for large δ’s.

In the final example of the section, we show that there can be 0 < δ < δ < 1
such that f c is not pq-stationary monotonic when δ ∈ [δ, δ], but it is pq-stationary
monotonic when δ ∈ [0, δ)∪ (δ, 1). Thus, in general, it is not true that if an SCF
is pq-stationary monotonic for some δ, then it is also pq-stationary monotonic for
any smaller δ. The example also shows that even if δ is close to 1, the number
of firms that is needed for f c to satisfy pq-stationary monotonicity does not need
to be large.

Example 4. Let Θ = {θ1, θ2} with a > θ1 > θ2 > 0, p = max{0, a − Q},
ci(qi, θ) = θqi for all i ∈ I and θ ∈ Θ. Thus, Assumption A4 is satisfied.
The competitive SCF is f ci (θ) = a−θ

n
for all i ∈ I and θ ∈ Θ. The firms are

better off if they adopt the following deception: α(θ1) = α(θ2) = θ1 because
πi(f

c(θ1), θ2) = (θ1 − θ2)a−θ1
n

> πi(f
c(θ2), θ2) = 0. Note that vi(f

c) = 0, vi(f
c ◦

α) = l(θ2)(θ1 − θ2)a−θ1
n

, and vi = l(θ1)
(
a−θ1

2

)2
+ l(θ2)

(
a−θ2

2

)2
.

From the proof of Proposition 8, f c is pq-stationary monotonic if v∗1 < v1

where v∗1 is given by (10). In the example, v∗1 < v1 takes the following form:

l(θ1)

(
a− θ1

2

)2

+ l(θ2)

(
a− θ2

2

)2

− l(θ2)(a− θ1)
(θ1 −max{0, a− q∗1})q∗1

nq∗1 − a+ θ
> 0.

11We study the implementation of SCFs, which are efficient in the range, in Section 6.1.

17



0 10 20 30 40 50 60 70 80 90 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 4: Feasibility constraint in Example 4

We plot the l.h.s. of the above inequality in Figure 4 for a = 10, θ1 = 8, θ2 = 5.8,
l(θ1) = 0.5, and several values of n. Also, given q∗1, we can find the corresponding
δ from (9) in the proof of Proposition 8 when it holds with equality:

δ =
nq∗1 − a+ θ1

nq∗1 − (1− l(θ2))(a− θ1)
.

Thus, when n = 2, f c is pq-stationary monotonic for all q∗1 < q
1
≈ 6.5889 or,

equivalently, for all δ < δ ≈ 0.9179. When n = 3, f c is pq-stationary monotonic
for all q∗1 < q

1
≈ 9.5484 and all q∗1 > q1 ≈ 47.0435 or, equivalently, for all

δ < δ ≈ 0.9638 and all δ s.t. 1 > δ > δ ≈ 0.9929. When n ≥ 4, f c is pq-
stationary monotonic for all δ < 1.

Finally, from the proof of Proposition 8, it follows that under Assumption
A4, f c can only fail to be pq-stationary monotonic because of the constraint on
feasible continuation values. However, if we allow for the monetary transfers
from CA to firms, this constraint will not apply. Hence, we have the following
corollary.

Corollary 1 Suppose Assumption A4 holds. If monetary transfers from the CA
to firms are feasible, then f c satisfies pq-stationary monotonicity for all δ ∈ [0, 1).

6 Extensions

6.1 Buyer as Another Participant

In a well-known survey of price fixing conspiracies in the US, Hay and Kelley
(1974, Table 1) report that in 14% of cases (7 out of 49 cases), the conspiracy
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was uncovered after a complaint by a customer. Carree, Günster, and Schinkel
(2010) have surveyed all formal decisions by the European Commission on an-
titrust cases during 1957-2004 and have found that almost 100 of these cases
started after a complaint as opposed to 29 cases that started with a leniency
application (see their Table 1). Thus, complaints play an important role in de-
tecting anticompetitive behaviour. While a detailed breakdown of complaints is
not available, some of these complaints are filed by the customers who are the
victims of the anticompetitive practices. This motivates us to study an exten-
sion to the model where a representative buyer also participates in the regime by
sending messages to CA.

We denote the buyer as participant 0 in the regime and, hence, use sub-
script 0 to denote the variables corresponding to the buyer. The total number
of participants in the regime now is n + 1 ≥ 3. Let I0 := I ∪ {0}. When
the buyer with quasilinear utility is a price taker, the inverse demand function
stands for the marginal utility of the buyer from consuming the good. Therefore,
the gross utility of the buyer from consuming Q units is given by

∫ Q
0
p(x)dx.

And since the firms jointly receive p(Q)Q in revenue, we can think that the
buyer faces a nonlinear payment tariff given by p(Q)Q and his net utility is

π0(q, θ) =
∫ Q

0
p(x)dx− p(Q)Q = −

∫ Q
0
p′(x)xdx.

We assume that CA still employs a pq-regime. For every θ ∈ Θ, let now
m(θ) denote the message profile such that mi(θ) = (p, qi) for all i ∈ I0 where
(q1, . . . , qn) = f(θ), q0 =

∑n
i=1 qi, and p = p(q0). Since the implemented outcome

must always satisfy q0 =
∑n

i=1 qi, we will write q or (qi, q−i) for some i ∈ I to
denote a vector of outputs (q1, . . . , qn), that is, this vector does not contain q0.
Definition 6 of forthright pq-regime stays the same. Definition 7 of pq-stationary
monotonicity of f and Definition 8 of pq-monotonicity of (f, v(f)) also remain
the same, except we replace I with I0 and any vector of continuation values v
also includes the continuation value of the buyer. Note though that L0(q, v, θ) =
L0(q, v, θ′) for all q, v, θ, θ′ because the buyer’s utility is independent of the realized
state. Consequently, Λf

0(q) = L0(q, v(f), θ) for all q and θ. Propositions 5 and
6 about the necessity of pq-stationary monotonicity of f and pq-monotonicity of
(f, v(f)) also remain valid since nothing in the proofs depends on the exact form
of π0. However, we cannot directly invoke Proposition 7 because the regime in the
proof only allows messages from the firms. Rather than reproving Proposition 7
with the buyer added, we now prove that any f , which is efficient in the range,
is repeatedly implementable provided that (f, v(f)) satisfies pq-monotonicity.12

Definition 9 f is efficient in the range if there does not exist α : Θ → Θ such
that vi(f ◦ α) ≥ vi(f) for all i ∈ I0 and vi(f ◦ α) > vi(f) for some i ∈ I0.

12A similar result is proven in Proposition 1 of Āzacis and Vida (2019), but there M is
allowed to be arbitrary and, consequently, r is not required to satisfy forthrightness.

19



Proposition 9 If f is efficient in the range and (f, v(f)) satisfies pq-monotoni-
city, then f is repeatedly implementable in subgame perfect equilibrium with a
pq-regime that satisfies forthrightness w.r.t. f .

Note that we do not invoke Assumption A3 in Proposition 9.
If (f, v(f)) satisfies pq-monotonicity when the set of agents is I, then it still

satisfies pq-monotonicity when the set of agents is I0. Hence, we know from
Remark 1 that (f c, v(f c)) satisfies pq-monotonicity if Assumption A2 holds. f c

is also efficient in the range since f c(θ) maximizes the total surplus,

n∑
i=0

πi(q, θ) =

∫ ∑n
i=1 qi

0

p(x)dx−
n∑
i=1

ci(qi, θ)

in state θ. This leads to the following result.

Corollary 2 Suppose Assumption A2 holds and the buyer is also one of the
participants in the regime. Then, f c is repeatedly implementable in subgame
perfect equilibrium with a pq-regime that satisfies forthrightness w.r.t. f c.

Note, however, f c is not the only SCF that is efficient in the range. For
example, fm that maximizes the joint profits of the firms, is also efficient in the
range. Even though, in every state θ, the total surplus is higher when f c(θ)
instead of fm(θ) is implemented, it is impossible to transfer any of additional
surplus to the firms because of the restriction that the payment from the buyer
to the firms takes the form p(Q)Q.

6.2 Hard Evidence

The literature that studies the impact of leniency programs on collusion, explic-
itly or implicitly assumes the existence of hard evidence, which proves collusion
by firms (see, for example, Motta and Polo, 2003; Spagnolo, 2004; Aubert, Rey,
and Kovacic, 2006). Therefore, we now extend the model of Section 4 by assum-
ing that the firms possess hard evidence, which varies with the state of the world.
Intuitively, the existence of hard evidence can help with implementation exactly
when either pq-stationary monotonicity of f or pq-monotonicity of (f, v(f)) fails.
We build on Kartik and Tercieux (2012) who studied one-shot implementation
with evidence, and we show that a condition, called evidence monotonicity, is
necessary and sufficient for repeated implementation of SCFs (under certain as-
sumptions). It says that for any deception that violates either pq-stationary
monotonicity of f or pq-monotonicity of (f, v(f)), it must be that either the de-
ception cannot be supported with evidence or a firm can supply evidence that
would not be available if the firms were not deceiving.

Thus, we now assume that in each period t, firm i ∈ I possesses a set of
evidence Ei(θ

t) 6= ∅, which only depends on the state of the world of that period,
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θt ∈ Θ. A generic piece of evidence of firm i is denoted as ei. In state θ,
firm i can only present evidence that it has, that is, ei ∈ Ei(θ). We refer to
{Ei(θ)}i∈I,θ∈Θ as an evidence structure. For simplicity, the evidence structure
does not change over time. Let E(θ) = E1(θ) × . . . × En(θ) for every θ and
E = ∪θ∈ΘE(θ), with a generic element e = (e1, . . . , en). Besides the firms’
messages, the outcome function of a mechanism now also depends on the evidence
supplied by the firms, g : Mn×E → Rn

+.13 We also slightly modify µt by including
the evidence that is provided by the firms, in the history of messages. That is,
let now µt = (µt−1, (mt−1, et−1)) for all t > 0. No other changes in notation are
required. In particular, the definitions of regime and strategies remain the same
(given the modified history of messages).

We refer to e : Θ→ E s.t. e(θ) ∈ E(θ) for all θ as an evidence function.

Definition 10 A pq-regime r satisfies forthrightness w.r.t. f if there exists a
subgame perfect equilibrium s s.t. s(ht, θt) = (m(θt), e(θt)) and r(ht)(m(θt), e(θt)) =
f(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) > 0 and e is some evidence function.

Let A be the set of all deceptions which violate either pq-stationary mono-
tonicity of f or pq-monotonicity of (f, v(f)), that is, for any α ∈ A, part (a) in
either Definition 7 or Definition 8 holds, but part (b) does not.

Definition 11 f satisfies evidence monotonicity if there is an evidence function
e s.t. for every α ∈ A, there exist i ∈ I and θ ∈ Θ s.t. either ei(α(θ)) 6∈ Ei(θ) or
Ei(θ) 6⊆ Ei(α(θ)).

To keep matters simple, we make the following assumption:

Assumption A5 f is s.t. f(θ) 6= f(θ′) for all θ, θ′ ∈ Θ.

Given this assumption, we can replace Λf
i (f(α(θ))) with Li(f(α(θ)), v(f), α(θ))

in Definitions 7 and 8.

Proposition 10 Suppose f satisfies Assumption A5. If f is repeatedly imple-
mentable in subgame perfect equilibrium with a pq-regime that satisfies forthright-
ness w.r.t. f , then f satisfies evidence monotonicity.

Proposition 11 Suppose Assumptions A3 and A5 hold. If f satisfies evidence
monotonicity, then f is repeatedly implementable in subgame perfect equilibrium
with a pq-regime that satisfies forthrightness w.r.t. f .

13This formulation assumes that firm i can only submit a single piece of evidence. To allow
it to submit more than one piece of evidence, we can assume that if ei, e

′
i ∈ Ei(θ) for some θ,

then there is also e′′i ∈ Ei(θ) such that e′′i = {ei} ∪ {e′i}.

21



Even though we assume the symmetry of firms and the SCF, we do not require
that the evidence structure is also symmetric in Proposition 11.

We finish this section by providing an example of natural evidence structure,
which guarantees that f c is repeatedly implementable.

Example 5. Suppose that f c is such that Assumption A4 holds. (Hence, As-
sumption A5 also automatically holds.) Assume that the evidence structure is
such that for any θ, θ′ ∈ Θ, if πi(f

c(θ′), θ) > πi(f
c(θ′), θ′) for all i ∈ I, then

Ej(θ) 6⊆ Ej(θ
′) for some j ∈ I. The motivation for this assumption is that firm j

can prove in state θ that it can earn higher profits with the output profile f c(θ′)
than in state θ′. (It seems reasonable to assume that it is easier to under-report
profits than to over-report them.) We argue that in this case, f c satisfies evidence
monotonicity. We know that (f c, v(f c)) satisfies pq-monotonicity. Therefore, A
only contains those deceptions that violate pq-stationary monotonicity of f c.

Take any deception α ∈ A such that vi(f
c ◦ α) > vi(f

c) for all i. (Note that
we are in a symmetric setup.) There must exist a state θ such that α(θ) > θ,
that is, the firms exaggerate their costs in order to produce less. Therefore,
πi(f

c(α(θ)), θ) > πi(f
c(α(θ)), α(θ)) holds for all i ∈ I. Given the assumed evi-

dence structure, Ej(θ) 6⊆ Ej(α(θ)) for some j ∈ I. From the definition of evidence
monotonicity, any such α cannot violate evidence monotonicity of f c.

Take now any deception α ∈ A such that vi(f
c) ≥ vi(f

c ◦ α) for all i. In this
case, Li(f

c(α(θ)), v(f c◦α), θ) ⊆ Li(f
c(α(θ)), v(f c), θ) holds for all i and θ. There-

fore, if pq-stationary monotonicity of f c fails for this α, then pq-monotonicity of
(f c, v(f c)) must also fail for the same α, which is a contradiction.

We conclude that f c satisfies evidence monotonicity given the assumed evi-
dence structure and, according to Proposition 11, f c is repeatedly implementable
in SPE with a pq-regime that satisfies forthrightness w.r.t. f c. Finally, note that
in this example, the evidence function in the definition of evidence monotonicity
can be anything.

7 Concluding Remarks

To our knowledge, we are the first to study repeated collusion by firms as an
implementation problem. This research can be extended in several directions.
For example, one could allow the evidence structure in Section 6.2 to change over
time depending on the past messages or outputs. We mention two more possible
extensions. First, there are no restriction on the regime r in Proposition 7 once
a deviation from the equilibrium path has occurred. However, in a more realistic
setup, CA would face constraints on rewards and punishments that it can apply.
That is, besides forthrightness, we may want to impose further restrictions on r
off the equilibrium path. Second, in the model, CA controls the output, while
the firms can only influence it indirectly via their messages. In a more complex
model with several profit-relevant variables, the firms could directly decide on
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some of these variables, while the other variables would be controlled by CA.
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Appendix

A Proofs of Section 3

We first introduce some additional notation and define a “modulo” game. Let
qi be such that πi((qi, 0−i), θ) < πi(f(θ′), θ) for all (θ, θ′). qi represents a bad
outcome for firm i. Let ∂Λf

i (q) denote the boundary of the set Λf
i (q). That is, if

q′ ∈ ∂Λf
i (q), then there does not exist q′′−i < q′−i such that (q′i, q

′′
−i) ∈ Λf

i (q). Note

that Λf
i (f(θ)) ⊆ Li(f(θ), θ′) if and only if ∂Λf

i (f(θ)) ⊂ Li(f(θ), θ′). Finally, let
|X| denote the cardinality of set X.
The modulo game. Suppose firms have announced outputs q. For all i ∈ I,
let zi be defined as follows: if qi is an irrational number, then zi = 0. If qi
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is a rational number, then it can be written as a ratio of two integer numbers
whose only common divisor is number 1. Then, zi is the number given by the
last blog10 nc + 1 digits of the integer in the numerator. (If the numerator has
less than blog10 nc + 1 digits, then zi is simply equal to the numerator.) Let

i :=
(∑

j∈I zj

)
( mod n) + 1. We say that i is the winner of the modulo game

given q.
Note that for any q and ε > 0, we can always find a rational number q′i such

that |qi − q′i| < ε and i is the winner of the modulo game if i announces q′i, while
the others announce q−i.
Proof of Proposition 1: Necessity. Suppose g implements f in Nash equi-
librium and satisfies forthrightness w.r.t. f . Since mi is an announcement
about a quantity, we will use qi instead of mi to denote the message. Let
Gi(q−i) := {g(qi, q−i)|qi ∈ M}. This is the set of output profiles that firm i
can induce given that the other firms announce q−i. Take any i and θ. Be-
cause f(θ′′) = (fi(θ

′′), f−i(θ)) ∈ NE(g, θ′′) for all θ′′ ∈ f−1(f−i(θ)), Gi(f−i(θ)) ⊆
Li(f(θ′′), θ′′) for all θ′′ ∈ f−1(f−i(θ)). Hence, Gi(f−i(θ)) ⊆ Λf

i (f(θ)).
Suppose there is a pair (θ, θ′) such that Λf

i (f(θ)) ⊆ Li(f(θ), θ′) for all i ∈ I.
Then, Gi(f−i(θ)) ⊆ Li(f(θ), θ′) for all i ∈ I and f(θ) ∈ NE(g, θ′). Because g
implements f , it must be that f(θ′) = g(f(θ)) = f(θ).

Sufficiency. We define a quantity mechanism and show that it satisfies forth-
rightness w.r.t. f and implements f in Nash equilibrium. Let D(q) := {i ∈
I|f−1(q−i) 6= ∅} denote the set of potential deviators when the firms announce q.

The mechanism is as follows. Given m = q,

i. If q = f(θ) for some θ ∈ Θ, then g(q) = q.

ii. If q 6= f(θ) for any θ ∈ Θ and D(q) = {i}, then g(q) = q′ ∈ ∂Λf
i (q) s.t.

q′i = qi and q′j = q′k for all j, k 6= i. If no such q′ exists, then let q′i = qi and
q′j = 0 for all j 6= i.14

iii. If q 6= f(θ) for any θ ∈ Θ and |D(q)| > 1, then g(q) = q′ where q′i = qi if
i ∈ D(q) and q′i = 0 if i 6∈ D(q).

iv. If q 6= f(θ) for any θ ∈ Θ and D(q) = ∅, then g(q) = (qi, 0−i) where i is the
winner of the modulo game given q.

We claim that there is no Nash equilibrium that falls under parts (ii)-(iv) of
the mechanism. Clearly, there is no Nash equilibrium corresponding to part (iv):
every firm has incentives to be the only firm in the market. If q falls under part
(ii), then every firm j 6∈ D(q) expects strictly less than its monopoly profit. (To

14Given qi, there exists at most one q′ ∈ ∂Λfi (q) s.t. q′i = qi and q′j = q′k for all j, k 6= i.
Thus, by announcing qi, firm i specifies not just its own output, but also the output of the
other firms. However, it can be that there does not exist q′ ∈ ∂Λfi (q) s.t. q′i = qi. This, for

example, happens if qi = 0, while the profit of firm i is strictly negative for all q′ ∈ Λfi (q).

25



see that this is also true for n = 2, note that if D(q) = {i} and q′ ∈ ∂Λf
i (q) with

q′i = qi = 0, then from the definition of ∂Λf
i (q), also qj = 0 for j 6= i. Thus,

firm j cannot be earning the monopoly profit when part (ii) applies.) Any firm
j 6∈ D(q) can trigger part (iv) of the mechanism and earn arbitrarily close to its
monopoly profit. Suppose q falls under part (iii). Then, every firm i ∈ D(q) can
trigger part (i) of the mechanism since by the definition of D(q), there exists q′i
such that (q′i, q−i) = f(θ) for some θ. From the definition of qi, such a deviation
is profitable.

Now, suppose the true state is θ. Suppose the firms announce q = f(θ), in
which case part (i) applies and the outcome is also f(θ). Any firm can deviate
and trigger part (ii) and possibly part (iii). Any deviation that triggers part (iii),
is clearly suboptimal. By triggering part (ii), firm i can obtain an outcome in
∂Λf

i (f(θ)) ⊂ Λf
i (f(θ)) ⊆ Li(f(θ), θ). Again, such a deviation is unprofitable.

Thus, announcing f(θ) when the state is θ, is a Nash equilibrium and the mech-
anism satisfies forthrightness w.r.t. f .

Suppose that in state θ, the firms announce q = f(θ′) for some θ′ 6= θ. We
claim that if no firm has incentives to deviate, it must be that ∂Λf

i (f(θ′)) ⊂
Li(f(θ′), θ) holds for all i. Note that firm i cannot obtain every q′ ∈ ∂Λf

i (f(θ′))
when it triggers part (ii). However, if there exists q′ s.t. q′ ∈ ∂Λf

i (f(θ′)), but
q′ 6∈ Li(f(θ′), θ), then it is also true that q′′ ∈ ∂Λf

i (f(θ′)) and q′′ 6∈ Li(f(θ′), θ)

for q′′ s.t. q′′i = q′i, q
′′
j =

(∑
k∈I\{i} q

′
k

)
/n for all j 6= i because firm i is indifferent

how other firms share their output among themselves. Thus, if no firm wants to
deviate, ∂Λf

i (f(θ′)) ⊂ Li(f(θ′), θ) holds for all i and q-monotonicity implies that
f(θ) = f(θ′). Hence, in the (unique) Nash equilibrium, the desired outcome is
implemented.

Proof of Proposition 2: Suppose g implements f in Nash equilibrium and
satisfies forthrightness w.r.t. f . We use qi to denote the message of firm i.
Let Gi(q−i) := {g(qi, q−i)|qi ∈ M}. Take any i and θ. Because of forthright-
ness, f(θ′) ∈ Gi(f−i(θ)) for all θ′ ∈ f−1(f−i(θ)), that is, firm i can induce
the output profile f(θ′) when the competitors announce f−i(θ). Also, because
f(θ) ∈ NE(g, θ), πi(f(θ), θ) ≥ πi(f(θ′), θ) holds for all θ′ ∈ f−1(f−i(θ)).

Proof of Proposition 3: Necessity. Suppose g implements f in Nash equilib-
rium and satisfies forthrightness w.r.t. f . Let G(m−i) := {g(mi,m−i)|mi ∈Mi}.
Take any θ. Because m(θ) ∈ NE(g, θ′′) for all θ′′ ∈ f−1(f(θ)), G(m−i(θ)) ⊆
Li(f(θ), θ′′) for all i ∈ I and θ′′ ∈ f−1(f(θ)). Hence, G(m−i(θ)) ⊆ Λf

i (f(θ)) for
all i ∈ I. Suppose there is θ′ such that Λf

i (f(θ)) ⊆ Li(f(θ), θ′) for all i ∈ I.
Then, G(m−i(θ)) ⊆ Li(f(θ), θ′) for all i ∈ I and m(θ) ∈ NE(g, θ′). Because g
implements f , it must be that f(θ′) = g(m(θ)) = f(θ).

Sufficiency. Letm = ((p1, q1), . . . , (pn, qn)). LetD(m) := {i ∈ I|∃m′i s.t. (m′i,m−i) =
m(θ) for some θ} denote the set of potential deviators when the firms announce
m. Note that if i ∈ D(m), it must be that the rest of the firms have announced
the same price, say, p. Also, because of Assumption A1, m′i in the definition of
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D(m) is unique and given by (p, q̂i) such that p
(∑

j∈I\{i} qj + q̂i

)
= p. In the

following mechanism, q̂i should be understood as having been constructed in this
way, given m and given that i ∈ D(m).

The mechanism is as follows:

i. If m = m(θ) for some θ ∈ Θ, then g(m) = f(θ).

ii. If m 6= m(θ) for any θ ∈ Θ and D(m) = {i}, then g(m) = q′ ∈ ∂Λf
i (q̂i, q−i)

s.t. q′i = qi and q′j = q′k for all j, k 6= i. If no such q′ exists, then let q′i = qi
and q′j = 0 for all j 6= i.

iii. If m 6= m(θ) for any θ ∈ Θ and |D(m)| > 1, then g(m) = q′ where q′i = qi
if i ∈ D(m) and q′i = 0 if i 6∈ D(m).

iv. If m 6= m(θ) for any θ ∈ Θ and D(m) = ∅, then g(m) = (qi, 0−i) where i is
the winner of the modulo game given q.

The proof that this mechanism implements f if it satisfies pq-monotonicity,
is analogous to the one of Proposition 1.

B Proofs of Section 4

Proof of Proposition 5: Suppose f is repeatedly implementable in SPE
with a pq-regime that satisfies forthrightness w.r.t. f . Thus, there exists an
SPE s s.t. s(ht, θt) = m(θt) and r(ht)(m(θt)) = f(θt) for all t, θt, and ht s.t.
ρ(ht|h0, s) > 0. Fix this s. Given s, we define another SPE ŝ, which we will then
use to prove that f must satisfy pq-stationary monotonicity. We first explain ŝ
in words. ŝ only differs from s when a unilateral deviation from the equilibrium
play occurs. Specifically, suppose that θ̂, θ̃ ∈ f−1(f(θ)) for some θ. Suppose
that firm i deviates from s in period t. Then, the continuation values that the
firms expect starting period t+ 1, can differ depending if period t state is θ̂ or θ̃
because the firms can condition their future play on period t state. ŝ will have a
property that the continuation values are the same whether period t state is θ̂ or
θ̃. The reason why such an equilibrium exists is that because of forthrightness,
CA cannot infer from the messages whether the state is θ̂ or θ̃ and, hence, cannot
offer different mechanisms in the continuation.

We now proceed with defining ŝ formally. First, let ŝ(ht, θt) = s(ht, θt) =
m(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) > 0. Next, take any t, θt, ht = (µt, ζt−1)
s.t. ρ(ht|h0, s) > 0. Suppose that period t state is some θ̂t ∈ f−1(f(θt)). Note
that s(ht, θ̂t) = m(θt). Take any firm i. We now define the output-value pair
that firm i induces by announcing some mi 6= mi(θ

t):

(q, v(θ̂t)) := (r(µt)(mi,m−i(θ
t)), v(s|((µt, (mi,m−i(θ

t))), (ζt−1, θ̂t)))).
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While, given (mi,m−i(θ
t)), q does not depend on θ̂t, v(θ̂t) can depend on it since

firms can condition their future messages on the state in period t. Firm i will not
have incentives to deviate from mi(θ

t) in state θ̂t if (q, v(θ̂t)) ∈ Li(f(θt), v(f), θ̂t).
While it is not guaranteed that (q, v(θ̃t)) ∈ Λf

i (f(θt)) for all θ̃t ∈ f−1(f(θt)),
this must be true for the state in which vi(θ̃

t) is minimal among θ̃t ∈ f−1(f(θt)).
Suppose that this state is θ̂t, that is, (q, v(θ̂t)) ∈ Λf

i (f(θt)) holds.
ŝ will be defined in such a way that for every θ̃t ∈ f−1(f(θt)), the continuation

value after the history ((µt, (mi,m−i(θ
t))), (ζt−1, θ̃t)) is v(θ̂t) rather than v(θ̃t).

Thus, let ζt = (ζt−1, θ̃t) for any θ̃t ∈ f−1(f(θt)) and let ζ̂t = (ζt−1, θ̂t). For all τ >
t and all θτ , let ζτ = (ζτ−1, θτ ) and ζ̂τ = (ζ̂τ−1, θτ ). Let µt+1 = (µt, (mi,m−i(θ

t)).
For all τ > t+ 1 and all mτ , let µτ+1 = (µτ ,mτ ). Let ŝ be such that ŝ(µτ , ζτ ) =
s(µτ , ζ̂τ ) for all τ > t. Intuitively, ŝ does not depend on which exact state in
f−1(f(θt)) is realized in period t (given ht and (mi,m−i(θ

t))). By construction,
it follows that v(ŝ|(µt+1, ζt)) = v(s|(µt+1, ζ̂t)) and

(r(µt)(mi,m−i(θ
t)), v(ŝ|(µt+1, ζt))) ∈ Λf

i (f(θt)). (5)

Since s are SPE strategies of the subgame starting after history (µt+1, ζ̂t) and
because profits from period t + 1 onwards do not depend on period t history
of states, it must be that ŝ forms SPE strategies of the subgame starting after
history (µt+1, ζt).

Now, repeat the above process for all t, θt, ht s.t. ρ(ht|h0, s) > 0, and all
i and mi 6= mi(θ

t). The only remaining histories are the ones that occur after
there has been a multilateral deviation from the equilibrium path of s. For any
such history ht in any period t and any θ, let ŝ(ht, θ) = s(ht, θ).

The constructed ŝ is also SPE of the game induced by r. By construction, (5)
holds for all t, θt, ht = (µt, ζt−1) s.t. ρ(ht|h0, s) > 0, and all i and mi 6= mi(θ

t),
which means that no unilateral deviation from the equilibrium path is profitable.
Also, from the definition of ŝ, it follows that ŝ forms NE strategies in the subgames
that are reached after a (unilateral or multilateral) deviation from the equilibrium
path.

We now use ŝ to prove that f must satisfy pq-stationary monotonicity. Thus,
suppose it does not satisfy pq-stationary monotonicity. That is, there exists α
such that in Definition 7, part (a) holds, but part (b) does not. Fix this α. Given
ŝ and α, we now define another strategy profile s̃. We first explain s̃ in words.
Under s̃, the firms follow strategies ŝ, but they deceive according to α as long as
no deviation has occurred. If a deviation ever occurs, the firms start conditioning
s̃ on the true states, but they still behave as if the states that were drawn up to
and including the period of first deviation, were the ones given by the deception.

Formally, s̃ is defined recursively with the help of a couple of auxiliary vari-
ables. Let ζ̃0 = α(θ0) and d(µ0, ζ0) = 1. The period 0 strategies are s̃(µ0, ζ0) =
ŝ(µ0, ζ̃0). Also, let d(µ1, ζ1) = d(µ0, ζ0) · 1{(m0,ζ0)=(ŝ(µ0,ζ̃0),ζ0)}, where 1{X} is an
indicator function taking value 1 if X is true and 0 otherwise. In period 1, if
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d(µ1, ζ1) = 1, then ζ̃1 = (ζ̃0, α(θ1)); otherwise, ζ̃1 = (ζ̃0, θ1). Let s̃(µ1, ζ1) =
ŝ(µ1, ζ̃1) and d(µ2, ζ2) = d(µ1, ζ1) · 1{((µ1,m1),ζ1)=((µ1,ŝ(µ1,ζ̃1)),ζ1)}. Suppose we have

defined the variables up to period t − 1. In period t, if d(µt, ζt) = 1, then ζ̃t =
(ζ̃t−1, α(θt)); otherwise, ζ̃t = (ζ̃t−1, θt). Let s̃(µt, ζt) = ŝ(µt, ζ̃t) and d(µt+1, ζt+1) =
d(µt, ζt) · 1{(µt,mt),ζt)=((µt,ŝ(µt,ζ̃t)),ζt)}.

By assumption, there exists θ such that f(α(θ)) 6= f(θ). Therefore, the
constructed strategy profile s̃ selects undesirable outcomes on its path. Since it
is assumed that r implements f , s̃ cannot be an SPE. Because the future profits
do not depend on the history of states, by construction, s̃ implies NE play in the
subgames that follow after a deviation from the path of s̃ has occurred. That is,
if s̃ are not SPE strategies, it must be because there is a profitable deviation on
the path. Thus, there exist t, θt, ht = (µt, ζt−1) s.t. ρ(ht|h0, s) > 0, i, and mi

such that15

(q, v) = (r(µt)(mi,m−i(α(θt))), v(s̃|((µt, (mi,m−i(α(θt)))), (ζt−1, θt))))

6∈ Li(f(α(θt)), v(f ◦ α), θt).

By part (a) in Definition 7, (q, v) 6∈ Λf
i (f(α(θt))). Also, from the definition of s̃,

there exists ζ̃t−1 such that

(q, v) = (r(µt)(mi,m−i(α(θt))), v(ŝ|((µt, (mi,m−i(α(θt)))), (ζ̃t−1, α(θt))))).

However, this contradicts (5), which must hold for all t, θ̃t, h̃t s.t. ρ(h̃t|h0, s) > 0,
and all i and mi 6= mi(θ̃

t), including θ̃t = α(θt) and h̃t = (µt, ζ̃t−1). It follows
that for any α, if part (a) in Definition 7 holds, then part (b) must also hold.
That is, f must satisfy pq-stationary monotonicity.

Proof of Proposition 6: Suppose f is repeatedly implementable in SPE with
a pq-regime that satisfies forthrightness w.r.t. f . Consider again SPE ŝ that we
constructed in the proof of Proposition 5. We will use this strategy profile to
prove that (f, v(f)) must satisfy pq-monotonicity. Thus, suppose there exists α
such that part (a) in Definition 8 holds. Given this α and ŝ, we define another
strategy profile s̃. Let ζ0 = θ0, ζ̂0 = α(θ0), and s̃(θ0) = ŝ(α(θ0)) for all θ0. For
all t > 0 and all θt, let ζt = (ζt−1, θt) and ζ̂t = (ζ̂t−1, θt). For all t > 0 and all mt,
let µt = (µt−1,mt−1). For all t > 0, let s̃ be such that s̃(µt, ζt) = ŝ(µt, ζ̂t).

Since the future profits do not depend on period 0 state, by construction, s̃
implies subgame perfect play from period 1 onwards for all h1. To show that s̃
are SPE strategies, it remains to check that there is no profitable deviation in
period 0. From the definition s̃ and from (5), we have that for all i, mi, and θ0,

(r(µ0)(mi,m−i(θ
0)), v(s̃|(µ1, ζ0)))

= (r(µ0)(mi,m−i(α(θ0))), v(ŝ|(µ1, ζ̂0))) ∈ Λf
i (f(α(θ0))),

15Even though the firms use a stationary deception, the regime itself does not need to be
stationary. Therefore, we cannot restrict attention to t = 0.
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where µ1 = (mi,m−i(θ
0)). That is, any output-value pair that firm i can obtain

by deviating in any state θ0, will lie in Λf
i (f(α(θ0))). Because, according to part

(a) in Definition 8, Λf
i (f(α(θ0))) ⊆ Li(f(α(θ0)), v(f), θ0) for all i and θ0, no firm

has a profitable deviation in period 0. Thus, s̃ is an SPE. Because it is assumed
that f is repeatedly implementable, it must be that part (b) in Definition 8 also
holds, or else an undesirable output profile would be produced in some state θ0.

Before proving Proposition 7, we introduce some further notation and define
a dynamic deception. For each i, let qi(Q−i, θ) := arg maxqi πi(qi, Q−i, θ) and
vi(Q−i) :=

∑
θ l(θ)πi(qi(Q−i, θ), Q−i, θ). (Note vi(0) = vi.) Also, let vi(qi) :=∑

θ l(θ)πi((qi, 0−i), θ). Let qi be such that (1−δ)πi((qi, 0−i), θ) < (1−δ)πi(f(θ′), θ)+
δmin{0, vi(f)} for all (θ, θ′). qi represents an even worse outcome than qi for firm
i. Also, an outcome-value pair (q′, v) belongs to the boundary of Λf

i (q), that is,
(q′, v) ∈ ∂Λf

i (q) if there does not exist v′ s.t. (q′, v′) ∈ Λf
i (q) and vi < v′i ≤ vi.

A dynamic deception allows the firms to deceive differently in different pe-
riods. Thus, a dynamic deception β specifies a state θ̃t ∈ Θ for every t and
ζt = (ζt−1, θt): β(ζt−1, θt) = θ̃t.16 Given t and ζt, let l(ζt|ζt) = 1 and for any
τ > t, let

l(ζτ+1|ζt) =

{
l(ζτ |ζt)l(θ) if ζτ+1 = (ζτ , θ),
0 otherwise.

For any t and ζt, the discounted value of future profits of firm i if the firms follow
the dynamic deception β is

vi(f ◦ β(ζt)) = (1− δ)
∑
τ>t

∑
ζτ−1

∑
θτ

δτ−t−1l(ζτ−1|ζt)l(θτ )πi(f(β(ζτ−1, θτ )), θτ ).

Proof of Proposition 7: We start by defining a pq-regime. After any history,
the regime will call one of two mechanisms and this will be done with the help of
an auxiliary mapping d.

Regime r. Let d(µ0) = (0, 0). For any t ≥ 0 and µt, if d(µt) = (0, 0), then
r(µt) = ĝ; otherwise, r(µt) = ǧ. How d is determined for t > 0 and µt is given in
the description of mechanisms below.

Mechanism ĝ. Suppose the mechanism is called after the message history µt.
Given m = ((p1, q1), . . . , (pn, qn)), let D(m) := {i ∈ I|∃m′i s.t. (m′i,m−i) =
m(θ) for some θ}. Because of Assumption A3, mi(θ) = mj(θ) for all i, j ∈ I
and |D(m)| ∈ {0, 1, n}. |D(m)| = n and m 6= m(θ) for any θ can only occur
when n = 2. Otherwise, when n > 2, |D(m)| = n only if m = m(θ) for some θ.

The outcome function of the mechanism is as follows:

16Firms could also condition their deception on the history of messages that they send and
on the history of mechanisms that are selected by the regime. However, because the firms select
their messages deterministically and the regime also selects the mechanisms deterministically,
it is sufficient to condition the deception only on the history of states.
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i. If m = m(θ) for some θ ∈ Θ, then g(m) = f(θ). Set d∗ = (0, 0).

ii. If m 6= m(θ) for any θ ∈ Θ and D(m) = {i}, then g(m) = q′ s.t. q′i = qi and
q′j = max{0, (p−1(pi)− qi)/(n− 1)} for all j 6= i provided that there exists

v s.t. (q′, v) ∈ ∂Λf
i (q̂i, q−i) where q̂i = qj for some j 6= i. Set d∗ = (i, vi).

If no such v exists, then g(m) = (qi, 0−i). Set d∗ = (i, vi(qi)).

iii. If m 6= m(θ) for any θ ∈ Θ and |D(m)| = n = 2, then g(m) = (q1, q2). Set
d∗ = (1, v1(q1)).

iv. If m 6= m(θ) for any θ ∈ Θ and D(m) = ∅, then g(m) = (qi, 0−i) where i is
the winner of the modulo game given q. Set d∗ = (i, vi).

Let µt+1 = (µt,m) and d(µt+1) = d∗.

Mechanism ǧ. Suppose the mechanism is called after the message history µt

and d(µt) = (i, vi). Given m = ((p1, q1), . . . , (pn, qn)), if max{0, vi(qi)} < vi ≤ vi,
then g(m) = (qi, q

′
−i) s.t. vi(

∑
j 6=i q

′
j) = vi. (It is irrelevant how

∑
j 6=i q

′
j is divided

among j 6= i.) If vi ≤ max{0, vi(qi)}, then g(m) = (q′i, 0−i) s.t. vi(q
′
i) = vi.

Let µt+1 = (µt,m) and d(µt+1) = d(µt).

Lemma 1 There exists a subgame perfect equilibrium s s.t. s(ht, θt) = m(θt)
and r(ht)(m(θt)) = f(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) > 0.

Proof of Lemma 1: For all t, θt, and ht = (µt, ζt−1), let s be defined as follows:

� If d(µt) = (0, 0), then si(h
t, θt) = mi(θ

t) for all i.

� If d(µt) = (i, vi), then si(h
t, θt) = (·, qi(Q−i, θt)) where Q−i is s.t. vi(Q−i) =

max{0, vi}. (The first coordinate in i’s message can be any pi.) sj(h
t, θt)

for j 6= i can be anything.

If the firms follow the specified strategies, then the mechanism ĝ is selected
for every t, and the outcome is f(θt) for every θt, that is, the desired output
is implemented in every period. Next, we verify that no firm has incentives to
deviate from s. First we consider deviations in the subgames off the path and
next we consider deviations in the subgames on the path.

Consider any t, θt, and ht = (µt, ζt−1) s.t. d(µt) = (i, vi) for some i ∈ I and
vi ≤ vi. Thus, the firms face the mechanism ǧ. Since the firms are also facing
exactly the same problem in all future periods irrespective of what their period
t messages are, the best that firm i can do is to announce mi = (·, qi(Q−i, θt))
where Q−i is s.t. vi(Q−i) = max{0, vi}. Any messages by other firms are optimal
because their messages do not affect the outcome. (If vi ≤ max{0, vi(qi)}, then
the message of firm i also does not affect the outcome.) Also note that given s,
after history ht, but before period t state is realized, firm i expects exactly the
continuation value of vi.
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Consider any t, θt, and ht = (µt, ζt−1) s.t. d(µt) = (0, 0), in which case the
firms face the mechanism ĝ. Given that other firms follow s, if firm i deviates,
the messages will fall under part (ii) of the mechanism or possibly part (iii)
when n = 2. By construction, any deviation will result in an output-value pair
(q′, v) ∈ Λf

i (f(θt)) and, therefore, is not profitable. (From the definition of qi,
note that ((qi, 0−i), (vi(qi), 0−i)) ∈ Λf

i (f(θ)) for all θ.) We conclude that s is
indeed an SPE. It also follows that r satisfies forthrightness w.r.t. f .

In the continuation, for any t and ht = (µt, ζt−1) s.t. d(µt) = (i, vi) for some
i ∈ I and vi ≤ vi, it should be understood that firm i behaves as specified in the
second bullet point in the proof of Lemma 1. This guarantees that it receives the
continuation value of vi, which is the best it can get.

Lemma 2 There does not exist a subgame perfect equilibrium s s.t. r(ht) = ǧ
for some t and ht s.t. ρ(ht|h0, s) > 0.

Proof of Lemma 2: If ǧ is played on the equilibrium path, there must be
some τ < t, θτ , and hτ = (µτ , ζτ−1) s.t. ρ(hτ |h0, s) > 0, d(µτ ) = (0, 0), and
s(hτ , θτ ) 6= m(θ) for any θ. That is, period τ messages fall under parts (ii)-(iv) of
mechanism ĝ. If s(hτ , θτ ) falls under part (ii), any firm j 6∈ D(s(hτ , θτ )) expects
strictly less than (1− δ)πj((qj(0, θτ ), 0−j), θτ ) + δvj(0), while it can obtain profits
arbitrarily close to these by deviating to a message that triggers part (iv) of ĝ
and wins the modulo game. (If d(µτ , s(hτ , θτ )) = (i, vi) with vi 6= 0, then firm i
must be producing a positive output in every period τ ′ > τ and firm j 6= i cannot
be a monopolist, while if vi = 0, then from the description of ǧ, it follows that
qτ
′
j = 0.) Similarly, if s(hτ , θτ ) falls under part (iv), each firm has incentives to

win the modulo game. If n = 2 and s(hτ , θτ ) falls under part (iii), there exists θ
s.t. s2(hτ , θτ ) = m2(θ) = (p2, q2). Firm 1 can trigger part (ii) and obtain profits
arbitrarily close to (1 − δ)π1(f(θ), θτ ) + δv1(f) by announcing m1 = (p2 + ε, q2)
where ε is a small positive number. (If it announced m1 = (p2, q2), then because
of Assumption A3, part (i) of ĝ would apply.) By definition of q1, these profits
are strictly higher than (1 − δ)π1((q1, q2), θτ ) + δv1(q1) that firm 1 obtains if
part (iii) of ĝ applies. We conclude that s s.t. r(ht) = ǧ for some t and ht s.t.
ρ(ht|h0, s) > 0 cannot be an SPE.

Lemma 3 In any subgame perfect equilibrium s, s(ht, θt) = m(θt) and r(ht)(m(θt)) =
f(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) > 0.

Proof of Lemma 3: From Lemma 2, we know that in any SPE s, the mech-
anism ĝ is always selected on the equilibrium path. Therefore, for every t, θt,
and ht s.t. ρ(ht|h0, s) > 0, it must be that s(ht, θt) = m(θ̃t) for some θ̃t. Fix
some SPE s. Given s, dynamic deception β is defined as follows. For every t
and ζt = (ζt−1, θt), let β(ζt) = θ̃t where θ̃t is s.t. s(µt, ζt) = m(θ̃t) and µt is the
history of messages that is induced by s and ζt−1. In fact, as long as no deviation
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from s has occurred, we can think that firms’ strategies are given by β. Also,
given any t, θt, and ζt−1, firm i expects a profit of

(1− δ)πi(f(β(ζt−1, θt)), θt) + δvi(f ◦ β(ζt−1, θt))

if the firms follow s or, equivalently, β.
We can think that for a given t and ζt, β(ζt, ·) specifies a static deception

that the firms use in period t+ 1 and which we denote as αζ
t
. (Thus, the static

deception that the firms use in period 0, is denoted αζ
−1

(·) := β(ζ−1, ·).) Since
Θ is assumed to be finite, the number of possible static deceptions is also finite.
Among all static deceptions αζ

t
for all t ≥ −1 and ζt, find the one for which

v(f ◦ αζt) is maximal. (Recall that the firms are symmetric.) Suppose this
deception is played in period τ +1 when period τ history of states is ζτ and let us
denote this deception simply as α(·). Further, suppose that α(θ) 6∈ f−1(f(θ)) for
some θ. Since f satisfies pq-stationary monotonicity, then for any i (since firms
are symmetric) and some θ′, there exists (q, v) ∈ ∂Λf

i (f(α(θ′))) s.t.

(1− δ)πi(q, θ′) + δvi > (1− δ)πi(f(α(θ′)), θ′) + δvi(f ◦ α)

≥ (1− δ)πi(f(β(ζτ , θ′), θ′) + δvi(f ◦ β(ζτ , θ′)).

Because firm i only cares about the total output of its competitors, we can
assume that q is s.t. qj = qk for all j, k 6= i. Further, firm i can secure (q, vi) after
the history (ζτ , θ′) by announcing (p(

∑
j∈I qj), qi), which triggers part (ii) of ĝ.17

Since (q, vi) gives higher profit to firm i, it wants to deviate from the deception
β, which contradicts that s is an SPE.

Thus, among the static deceptions that are selected by β, any deception α
that results in the highest continuation value, is s.t. α(θ) ∈ f−1(f(θ)) for all θ
and, hence, v(f ◦α) = v(f) holds. That is, v(f) is the maximal continuation value
that the firms can obtain by deceiving. (Therefore, if α is s.t. v(f ◦ α) = v(f),
then α(θ) ∈ f−1(f(θ)) for all θ.) It also follows that for all t ≥ −1 and ζt, αζ

t
is

s.t. v(f ◦ αζt) ≤ v(f).
Now, if for some t ≥ 0 and ζt = (ζt−1, θt), αζ

t
is s.t. v(f ◦ αζt) < v(f), then

v(f ◦ β(ζt)) < v(f) also holds. We claim that any firm i again has a profitable
deviation: it can trigger part (ii) of ĝ in period t and obtain profits arbitrarily
close to (1−δ)πi(f(β(ζt)), θt)+δvi(f) by announcing mt

i = (pj + ε, qj) for a small
ε where (pj, qj) := mj(β(ζt)) for any j 6= i. Thus, it is true that for all t ≥ 0 and
ζt, αζ

t
(θ) ∈ f−1(f(θ)) for all θ.

The only remaining case is that αζ
−1

is s.t. v(f ◦ αζ−1
) < v(f). (Here we

cannot invoke the argument of the previous paragraph because a firm would
need to deviate before the start of period 0, which we do not allow.) Because

17Given q, vi is the same for all v s.t. (q, v) ∈ ∂Λfi (f(α(θ′))). Thus, by announcing
(p(
∑
j∈I qj), qi), firm i not only specifies q, but also vi. The exact v−i is irrelevant because the

present discounted profit of firm i does not depend on it.
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v(f ◦αζ−1
) < v(f), it must be that αζ

−1
(θ) 6∈ f−1(f(θ)) for some θ. Since (f, v(f))

satisfies pq-monotonicity, then for any i, there exists (q, v) ∈ ∂Λf
i (f(αζ

−1
(θ)))

s.t.18

(1− δ)πi(q, θ) + δvi > (1− δ)πi(f(αζ
−1

(θ)), θ) + δvi(f)

= (1− δ)πi(f(β(ζ−1, θ), θ) + δvi(f ◦ β(ζ−1, θ)).

Again, we can assume that q is s.t. qj = qk for all j, k 6= i because the profit of
firm i only depends on

∑
j∈I\{i} qj. Firm i can secure (q, vi) by triggering part

(ii) of ĝ in state θ of period 0 and, therefore, it will want to deviate from the
deception β. Thus, αζ

−1
(θ) ∈ f−1(f(θ)) must hold for all θ.

We have shown that for s to be an SPE, it must be the case that for all t ≥ 0
and ζt = (ζt−1, θt), αζ

t−1
(θt) = β(ζt−1, θt) ∈ f−1(f(θt)) holds. Since m(θ) =

m(θ′) for all θ, θ′ ∈ f−1(f(θt)), it follows that s(ht, θt) = m(β(ζt−1, θt)) = m(θt)
for all t, θt, and ht s.t. ρ(ht|h0, s) > 0. Also, the description of ĝ implies that
r(ht)(s(ht, θt)) = f(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) > 0. Finally, since s
was an arbitrary SPE, the same applies to all SPE and, hence, r implements f
in SPE.

C Proofs of Section 5

Proof of Proposition 8: Since we are in a symmetric environment, we will
consider the incentives of firm 1 to deviate from a deception. We start with a
couple of observations. First, we know from Proposition 4 that f c satisfies pq-
stationary monotonicity for δ = 0. Therefore, in the following, we assume that
δ ∈ (0, 1). Second, because of Assumption A4, 0 < f c1(θ) < f c1(θ′) if θ > θ′. One
implication is that f c−1(f c(θ)) = {θ} and Λfc

1 (f c(θ)) = L1(f c(θ), v(f c), θ) for all
θ ∈ Θ.

Consider any stationary deception α s.t. α(θ′) 6= θ′ for some θ′ ∈ Θ. This
deception would result in an undesirable output profile in state θ′. To incentivize
firm 1 to deviate when the firms deceive according to α, but not to deviate when
they behave truthfully, we need to find (q, v1) s.t.

(1− δ)π1(f c(θ), θ) + δv1(f c) ≥ (1− δ)π1(q, θ) + δv1, (6)

(1− δ)π1(f c(θ), θ′) + δv1(f c ◦ α) < (1− δ)π1(q, θ′) + δv1, (7)

for some θ, θ′ s.t. α(θ′) = θ 6= θ′. Suppose that v1(f c◦α) ≤ v1(f c) holds. Then, we
can choose v1 = v1(f c) and, according to Proposition 4, we can find q that satisfies
(6) and (7). Therefore, in the continuation, we assume that v1(f c ◦ α) > v1(f c)

18It is enough to consider αζ
−1

s.t. αζ
−1

(θ′) = θ′ for all θ′ 6= θ because the firms do not
deceive after period 0 anymore.
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holds. It means that there must exist θ, θ′ s.t. α(θ′) = θ > θ′. That is, the firms
will increase their profits if they produce less than the competitive output, which
requires that they exaggerate their costs. Next, we ask when firm 1 will have
incentives to deviate from α in this particular state θ′.

We can equivalently rewrite (6) and (7) as:

(1− δ)[θ(c(q1)− c(f c1(θ)) + p(nf c1(θ))f c1(θ)− p(Q)q1] + δv1(f c) ≥ δv1

> (1− δ)[θ′(c(q1)− c(f c1(θ)) + p(nf c1(θ))f c1(θ)− p(Q)q1] + δv1(f c ◦ α). (8)

(8) tells what values v1 can take, given q. It can, however, be that any v1 that
satisfies the inequalities in (8), is not feasible because it exceeds the ex ante
monopoly profit of firm 1, v1. It is easier to satisfy the feasibility constraint if
we set q−1 = 0−1, which we can always do. That is, if (q, v1) satisfies (8), then so
does ((q1, 0−1), v′1) where v′1 is given by δ(v′1 − v1) = (1− δ)(p(Q)− p(q1))q1 ≤ 0.
Thus, in the continuation, we assume that q−1 = 0−1 and p(Q) = p(q1) in (8).

If we take the right-most and left-most expressions in (8) and simplify, we
find that q1 must satisfy the following inequality:

(1− δ)(θ − θ′)c(q1) > (1− δ)(θ − θ′)c(f c1(θ)) + δ(v1(f c ◦ α)− v1(f c)). (9)

From (9), it follows that q1 > f c1(θ) because θ > θ′ and v1(f c ◦ α) > v1(f c).
To sum up, if we can select q1 that satisfies (9) and v1 that satisfies (8) (with

q−1 = 0−1), then we can incentivize firm 1 to deviate from deception α in state
θ′. Now, for any δ ∈ (0, 1), we can always find q1 that satisfies (9). Therefore, we
only need to determine when we can find v1 ≤ v1 that satisfies (8).

Let q∗1 and v∗1 be the values of q1 and v1, respectively, such that both inequal-
ities in (8) are in fact equalities. (Hence, (9) also holds with equality.) Using (9)
when q1 = q∗1 and v1 = v∗1, we can eliminate δ in the first line of (8) to obtain
that

v∗1 = v1(f c) +
v1(f c ◦ α)− v1(f c)

θ − θ′

{
θ − p(q∗1)q∗1 − p(nf c1(θ))f c1(θ)

c(q∗1)− c(f c1(θ))

}
. (10)

If v∗1 < v1, then we can always find q1 > q∗1 and v1 ≤ v1 that satisfy (8) and (9).
Therefore, next we study when v∗1 < v1 holds.
Part 1: The term in the curly brackets of (10) can be written as

−(p(q∗1)− p(nf c1(θ)))q∗1 + θ[c(q∗1)− c(f c1(θ))− c′(f c1(θ))(q∗1 − f c1(θ))]

c(q∗1)− c(f c1(θ))

where we have used that p(nf c1(θ)) = c′(f c1(θ)). When q∗1 is sufficiently close
to f c1(θ), the above expression is negative because the expression in the square
brackets is close to zero and p(q∗1) > p(nf c1(θ)). Hence, v∗1 < v1 holds. From (9),
there is an increasing one-to-one relationship between δ and q∗1. Therefore, we
can conclude that there exists δ > 0 such that v∗1 < v1 is satisfied for δ ∈ (0, δ).
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Since α and θ′ were arbitrary, this completes the proof of the first part of the
proposition.
Part 2: For any ε > 0, we can pick q̃1 such that the term in the curly brackets of
(10) is less than θ + ε for all q∗1 > q̃1. If v1 > v1(f c) + maxθ θ(v1(fm)−v1(fc))

minθ,θ′|θ>θ′ θ−θ′
holds,

then there exists q̃1 or, equivalently, δ such that v∗1 < v1 is satisfied for all q∗1 > q̃1

or, equivalently, for all δ ∈ (δ, 1). This proves the second part of the proposition.
Part 3: Finally, the term in the curly brackets of (10) can be upper-bounded, for

example, with θ+
p(nfc1 (θ))fc1 (θ)

c(nfc1 (θ))−c(fc1 (θ))
for all q∗1 > f c1(θ) or, equivalently, all δ ∈ (0, 1).

One can verify that as long as f c1(θ) > 0,
dfc1 (θ)

dn
< 0, while

dnfc1 (θ)

dn
≥ 0. Thus, the

term in the curly brackets is decreasing in n. Likewise, v1(fm)
dn

< 0 and v1(fc)
dn
≤ 0;

the latter with strict inequality if v1(f c) > 0. Since v1(fm) ≥ v1(f c◦α), v1(f c◦α)
must also tend to 0 as n increases. We conclude that there exists n such that
v∗1 < v1 is satisfied for all n > n. This proves the final part of the proposition.

D Proofs of Section 6 [Not for publication]

Note that some of the notation that is used in the proofs of this section, is defined
in Sections A and B.
Proof of Proposition 9: In the proof, we will often refer to the firms and the
buyer as agents. Let D(m) := {i ∈ I0|∃m′i s.t. (m′i,m−i) = m(θ) for some θ} de-
note the set of potential deviators when the agents announcem = ((p0, q0), . . . , (pn, qn)).
Note that if i ∈ D(m), then there exists p > 0 s.t. pj = p for all j ∈ I0\{i}.
Also, p = p(

∑n
j=1 qj) must hold if i = 0 and p = p(q0) must hold if i 6= 0. Fi-

nally, m′i in the definition of D(m) is given by m′i = (p,
∑n

j=1 qj) if i = 0 and
m′i = (p, q0 −

∑
j∈I\{i} qj) if i 6= 0.

We first prove the claim that if m 6= m(θ) for any θ, then the set of potential
deviators either only consists of the buyer or a subset of firms, but not both
together. It means that if we want to punish the potential deviators, we do not
need to punish the buyer and firms at the same time.

Claim 1 If for some m, 0 < |D(m)| < n + 1, then either D(m) = {0} or
D(m) ⊆ I. If |D(m)| = n+ 1, then m = m(θ) for some θ.

Proof of Claim 1: If 0 ∈ D(m), then there exists p > 0 s.t. pi = p for all i ∈ I
and p = p(

∑n
i=1 qi). If |D(m)| < n+1, then it must be that (p0, q0) 6= (p,

∑n
i=1 qi).

(Or, otherwise, m = m(θ) for some θ and, hence, |D(m)| = n + 1.) In this case,
because n ≥ 2, one cannot find m′i for any i ∈ I s.t. (m′i,m−i) = m(θ) for some
θ. Therefore, D(m) = {0}. This proves the first part of the claim.

If |D(m)| = n + 1, then there exists p > 0 s.t. pi = p for all i ∈ I0 and
p = p(q0) = p(

∑n
j=1 qj) and, hence, q0 =

∑n
i=1 qi. Consider any i ∈ I. Because

i ∈ D(m), there exists m′i s.t. (m′i,m−i) = m(θ) for some θ. It must be that
m′i = (p, q0 −

∑
j∈I\{i} qj) = (p, qi) = mi. Thus, m = m(θ) for some θ.
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The pq-regime is similar to the one given in the proof of Proposition 7.

Regime r. Let d(µ0) = (0, 0). For any t ≥ 0 and µt, if d(µt) = (0, 0), then
r(µt) = ġ; otherwise, r(µt) = g̈. How d is determined for t > 0 and µt is given in
the description of mechanisms below.

Mechanism ġ. Suppose the mechanism is called after the message history µt.
Given m = ((p0, q0), . . . , (pn, qn)), the outcome function of the mechanism is

as follows:

i. If D(m) = I0 and, hence, m = m(θ) for some θ ∈ Θ, then g(m) = f(θ).
Set d∗ = (0, 0).

ii. If D(m) = {0}, then g(m) = (q1, . . . , qn). Set d∗ = (0, v0(f)).

iii. If D(m) = {i} for some i ∈ I, then g(m) = q′ s.t. q′i = qi and q′j =
max{0, (p−1(pi)− qi)/(n− 1)} for all j ∈ I\{i}, provided that there exists
v s.t. (q′, v) ∈ ∂Λf

i (q̂i, q−i) where q̂i = q0 −
∑

j∈I\{i} qj. Set d∗ = (i, vi).

If no such v exists, then g(m) = q′ s.t. q′i = qi and q′j = 0 for all j ∈ I\{i}.
Set d∗ = (i, vi(qi)).

iv. If 1 < |D(m)| < n + 1, then g(m) = q′ s.t. q′i∗ = qi∗ where i∗ := min{i|i ∈
D(m)}, q′j = qj for all j ∈ D(m)\{i∗}, and q′j = 0 for all j ∈ I\D(m). Set
d∗ = (i∗, vi∗(qi∗)).

v. If D(m) = ∅, then g(m) = q′ s.t. q′i = qi and q′j = 0 for all j ∈ I\{i}
where i ∈ I is the winner of the modulo game given q. (The buyer does not
participate in the modulo game.) Set d∗ = (i, vi).

Let µt+1 = (µt,m) and d(µt+1) = d∗.

Mechanism g̈. Suppose the mechanism is called after the message history µt

and d(µt) = (i, vi). Given m = ((p0, q0), . . . , (pn, qn)),

i. If i = 0, then g(m) = q′ where q′i = Q/n for all i ∈ I and Q is s.t.

−
∫ Q

0
p′(x)xdx = v0(f).

ii. If i 6= 0 and max{0, vi(qi)} < vi ≤ vi, then g(m) = q′ s.t. q′i = qi and q′j for
all j ∈ I\{i} satisfy vi(

∑
j∈I\{i} q

′
j) = vi.

iii. If i 6= 0 and vi ≤ max{0, vi(qi)}, then g(m) = q′ s.t. q′j = 0 for all j ∈ I\{i}
and q′i satisfy vi(q

′
i) = vi.

Let µt+1 = (µt,m) and d(µt+1) = d(µt).

Lemma 4 There exists a subgame perfect equilibrium s s.t. s(ht, θt) = m(θt)
and r(ht)(m(θt)) = f(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) > 0.
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Proof of Lemma 4: For all t, θt, and ht = (µt, ζt−1), let s be defined as follows:

� If d(µt) = (0, 0), then si(h
t, θt) = mi(θ

t) for all i.

� If d(µt) = (i, vi) and i 6= 0, then si(h
t, θt) = (·, qi(Q−i, θt)) where Q−i is

s.t. vi(Q−i) = max{0, vi}. (The first coordinate in i’s message can be
anything.) sj(h

t, θt) for all j ∈ I0\{i} can be anything.

� If d(µt) = (0, v0(f)), then sj(h
t, θt) for all j ∈ I0 can be anything.

If the agents follow the specified strategies, then the mechanism ġ is selected
for every t, and the outcome is f(θt) for every θt, that is, the desired output is
implemented in every period. Next, we verify that no agent has incentives to
deviate from s. First we consider deviations in the subgames off the path and
next we consider deviations in the subgames on the path.

Consider any t, θt, and ht = (µt, ζt−1) s.t. d(µt) = (i, vi) for some i 6= 0 and
vi ≤ vi. Thus, the agents face the mechanism g̈. Since the agents will also face
exactly the same problem in all future periods irrespective of what their period
t messages are, the best that firm i can do is to announce mi = (·, qi(Q−i, θt))
where Q−i is s.t. vi(Q−i) = max{0, vi}. Any messages by other agents are
optimal because their messages do not affect either current or future outcomes.
If d(µt) = (0, v0(f)), no message by any agent affects current or future outcomes
and, hence, all messages are optimal.

Consider any t, θt, and ht = (µt, ζt−1) s.t. d(µt) = (0, 0), in which case the
agents face the mechanism ġ. Given that the firms follow s, if the buyer deviates,
the messages will fall under part (ii) of the mechanism. In this case, the period
t outcome will still be f(θt) and the continuation value of the buyer will still be
v0(f). Thus, it is not profitable for the buyer to deviate. If instead some firm i
deviates, the messages will fall under either part (iii) or (iv) of the mechanism. By
construction, any deviation will result in an output-value pair (q′, v) ∈ Λf

i (f(θt))
and, therefore, is not profitable. We conclude that s is indeed an SPE. It also
follows that r satisfies forthrightness w.r.t. f .

In the continuation, for any t and ht = (µt, ζt−1) s.t. d(µt) = (i, vi) for some
i ∈ I and vi ≤ vi, it should be understood that firm i behaves as specified in the
second bullet point in the proof of Lemma 4. This guarantees that it receives the
continuation value of vi, which is the best it can get.

Lemma 5 There does not exist a subgame perfect equilibrium s s.t. r(ht) = g̈
for some t and ht s.t. ρ(ht|h0, s) > 0.

Proof of Lemma 5: If g̈ is played on the equilibrium path, there must be
some τ < t, θτ , and hτ = (µτ , ζτ−1) s.t. ρ(hτ |h0, s) > 0, d(µτ ) = (0, 0), and
s(hτ , θτ ) 6= m(θ) for any θ. That is, period τ messages fall under parts (ii)-(v) of
mechanism ġ. If s(hτ , θτ ) falls under part (ii), there exists firm j ∈ I that expects
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strictly less than its discounted monopoly profits (1− δ)πj((qj(0, θτ ), 0−j), θτ ) +
δvj(0), while it can obtain profits arbitrarily close to these by deviating to a
message that triggers part (v) and wins the modulo game. Similarly, if s(hτ , θτ )
falls under part (iii), then any firm j 6∈ D(s(hτ , θτ )) expects strictly less than
(1− δ)πj((qj(0, θτ ), 0−j), θτ ) + δvj(0). (To see that it is also true for n = 2, note
that for firm j to earn monopoly profit in any period τ ′ > τ , it must be that
firm i does not produce anything in that period, which means that vi = 0 must
hold. But then, by part (iii) of g̈, firm j does not produce anything either.)
Again, it can obtain profits arbitrarily close to these by deviating to a message
that triggers part (v) and wins the modulo game. Suppose s(hτ , θτ ) falls under
part (iv). Then, by the definition of D(s(hτ , θτ )), for every firm i ∈ D(s(hτ , θτ )),
there exists m′i = (p′i, q

′
i) s.t. (m′i, s−i(h

τ , θτ )) = m(θ) for some θ. By announcing
m′′i = (p′i + ε, q′i), firm i can trigger part (iii) and secure profits arbitrarily close
to (1− δ)πi(f(θ), θτ ) + δvi(f), which is strictly more than what the firm expects
under part (iv). Finally, if s(hτ , θτ ) falls under part (v), each firm has incentives
to win the modulo game. We conclude that s s.t. r(ht) = g̈ for some t and ht s.t.
ρ(ht|h0, s) > 0 cannot be an SPE.

Lemma 6 In any subgame perfect equilibrium s, s(ht, θt) = m(θt) and r(ht)(m(θt)) =
f(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) > 0.

Proof of Lemma 6: From Lemma 5, we know that in any SPE s, the mech-
anism ġ is always selected on the equilibrium path. Therefore, for every t, θt,
and ht s.t. ρ(ht|h0, s) > 0, it must be that s(ht, θt) = m(θ̃t) for some θ̃t. Fix
some SPE s. Given s, β is defined as follows. For every t and ζt = (ζt−1, θt),
let β(ζt) = θ̃t where θ̃t is s.t. s(µt, ζt) = m(θ̃t) and µt is the history of messages
that is induced by s and ζt−1. Given any t and ζt = (ζt−1, θt), agent i expects a
payoff of (1− δ)πi(f(β(ζt)), θt) + δvi(f ◦ β(ζt)) if the agents follow s.

Suppose that v(f ◦ β(ζt)) 6= v(f) for some t ≥ 0 and ζt = (ζt−1, θt). Because
f is efficient in the range, there is an agent i ∈ I0 s.t. vi(f ◦ β(ζt)) < vi(f). We
claim that agent i has a profitable deviation. If this agent is the buyer, that is,
i = 0, he can trigger part (ii) of ġ by announcing any mt

0 = (p0, q0) s.t. p0 6= p(q0).
This will secure him a strictly higher utility of (1− δ)π0(f(β(ζt)), θt) + δv0(f). If
this agent is a firm, it can trigger part (iii) of ġ by announcing mt

i = (pi + ε, qi)
for a small ε where (pi, qi) = mi(β(ζt)). This gives firm i profits arbitrarily close
to (1− δ)πi(f(β(ζt)), θt) + δvi(f). Thus, it must be that v(f ◦ β(ζt)) = v(f) for
all t ≥ 0 and ζt = (ζt−1, θt).

Suppose that β(ζt) 6∈ f−1(f(θt)) and, hence, f(β(ζt)) 6= f(θt) for some t ≥ 0
and ζt = (ζt−1, θt). Since (f, v(f)) satisfies pq-monotonicity, then there exist a
firm i and an output-value pair (q, v) ∈ ∂Λf

i (f(β(ζt))) s.t.

(1− δ)πi(q, θt) + δvi > (1− δ)πi(f(β(ζt)), θt) + δvi(f).

We can assume that q is s.t. qj = qk for all j, k ∈ I\{i} because the profit of
firm i only depends on

∑
j∈I\{i} qj. Firm i can secure (q, vi) by triggering part
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(iii) of ġ and, therefore, it will want to deviate from the deception β in period
t after the history of states ζt = (ζt−1, θt). Thus, β(ζt) ∈ f−1(f(θt)) must hold
for all t ≥ 0 and ζt = (ζt−1, θt). Since m(θ) = m(θ′) for all θ, θ′ ∈ f−1(f(θt)), it
follows that s(ht, θt) = m(β(ζt−1, θt)) = m(θt) for all t, θt, and ht = (µt, ζt−1) s.t.
ρ(ht|h0, s) > 0. Also, the description of ġ implies that r(ht)(s(ht, θt)) = f(θt) for
all t, θt, and ht s.t. ρ(ht|h0, s) > 0. Finally, since s was an arbitrary SPE, the
same applies to all SPE and, hence, r implements f in SPE.

Proof of Proposition 10: Suppose f is repeatedly implementable in SPE with
a pq-regime that satisfies forthrightness w.r.t. f . Fix an SPE ŝ s.t. ŝ(ht, θt) =
(m(θt), e(θt)) and r(ht)(m(θt), e(θt)) = f(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) >
0 and e is some evidence function. Also, suppose f does not satisfy evidence
monotonicity. That is, for every evidence function e′, there exists αe

′ ∈ A s.t. for
all i ∈ I and θ ∈ Θ, e′i(α

e′(θ)) ∈ Ei(θ) and Ei(θ) ⊆ Ei(α
e′(θ)). In particular, this

is also true for e that is implied by ŝ.
Given ŝ and αe, we define another strategy profile s̃. Let s̃ be defined exactly

as in the proof of Proposition 5 if αe violates pq-stationary monotonicity of f .
Otherwise, let s̃ be defined exactly as in the proof of Proposition 6. Note that for
any t, s̃(ht, θt) = (m(αe(θt)), e(αe(θt))) if ρ(ht|h0, s̃) > 0. Because it is assumed
that ei(α

e(θ)) ∈ Ei(θ) for all i and θ, evidence e(αe(θt)) is indeed feasible.
Since αe ∈ A, there exists θ such that f(αe(θ)) 6= f(θ). Therefore, the

constructed strategy profile s̃ selects an undesirable outcome on its path. Since
we assume that the regime implements f , s̃ cannot be an SPE. Because the future
profits do not depend on the history of states, by construction, s̃ implies NE play
in the subgames that follow after a deviation from the path of s̃ has occurred.
Therefore, if there exists a profitable deviation, it must be on the path. Thus,
suppose there exist t, θt, ht = (µt, ζt−1) s.t. ρ(ht|h0, s) > 0, i, and (mi, ei) such
that

(q, v) = (r(µt)((mi, ei), s̃−i(h
t, θt)), v(s̃|ht+1)) 6∈ Li(f(αe(θt)), v(f ◦ αe), θt),

where ht+1 = ((µt, ((mi, ei), s̃−i(h
t, θt))), (ζt−1, θt)). Because αe ∈ A (and because

of Assumption A5), (q, v) 6∈ Li(f(αe(θt)), v(f), αe(θt)).
Note that because Ei(θ) ⊆ Ei(α

e(θ)) holds for all i and θ, it is feasible for
firm i to provide evidence ei if period t state is αe(θt). Also, from the definition
of s̃, there exists h̃t = (µt, ζ̃t−1) s.t. ρ(h̃t|h0, s) > 0 and

(q, v) = (r(µt)((mi, ei), ŝ−i(h̃
t, αe(θt)), v(ŝ|h̃t+1)),

where h̃t+1 = ((µt, ((mi, ei), ŝ−i(h̃
t, αe(θt)))), (ζ̃t−1, αe(θt))). That is, firm i can

also secure outcome (q, v) when the firms follow strategies ŝ. And because (q, v) 6∈
Li(f(αe(θt)), v(f), αe(θt)), ŝ is not an SPE, which is a contradiction. It follows
that if f is repeatedly implementable in SPE with a pq-regime that satisfies
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forthrightness w.r.t. f , then it cannot be the case that for every evidence function
e, there exists αe ∈ A s.t. for all i ∈ I and θ ∈ Θ, ei(α

e(θ)) ∈ Ei(θ) and
Ei(θ) ⊆ Ei(α

e(θ)). That is, f must satisfy evidence monotonicity.

Proof of Proposition 11: Let e(·) denote the evidence function given in
Definition 11. We still use the pq-regime given in the proof of Proposition 7,
but we modify the mechanism ĝ. (In the case of mechanism ǧ, any evidence
submitted by the firms is simply ignored.)

Mechanism ĝ. Suppose the mechanism is called after the message history µt

and the firms send messages m = ((p1, q1), . . . , (pn, qn)) and evidence e.
The outcome function of the mechanism is as follows:

i. If (m, e) = (m(θ), e(θ)) for some θ ∈ Θ, then g(m) = f(θ). Set d∗ = (0, 0).

ii. If m = m(θ) for some θ ∈ Θ, but e 6= e(θ), then g(m) = (q1, q2, . . . , qn).
Set d∗ = (1, v1(q1)).

iii. If there exist i and θ s.t. mj = mj(θ) for all j 6= i, and mi 6= mi(θ) if n ≥ 3
or mi 6= mi(θ

′) for any θ′ if n = 2, then

(a) If ei 6∈ Ei(θ), then g(m, e) = (qi, 0−i). Set d∗ = (i, vi).

(b) If ei ∈ Ei(θ), then g(m, e) = q′ s.t. q′i = qi and q′j = max{0, (p−1(pi)−
qi)/(n − 1)} for all j 6= i provided that there exists v s.t. (q′, v) ∈
∂Λf

i (m(θ)). Set d∗ = (i, vi).

If no such v exists, then g(m, e) = (qi, 0−i). Set d∗ = (i, vi(qi)).

iv. If n = 2 and there exist θ and θ′ s.t. θ 6= θ′, mi = m(θ), and mj = m(θ′),
then g(m) = (q1, q2). Set d∗ = (1, v1(q1)).

v. For all other (m, e), g(m, e) = (qi, 0−i) where i is the winner of the modulo
game given q. Set d∗ = (i, vi).

Let µt+1 = (µt,m) and d(µt+1) = d∗.

Lemma 7 There exists a subgame perfect equilibrium s s.t. s(ht, θt) = (m(θt), e(θt))
and r(ht)(m(θt), e(θt)) = f(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) > 0.

Proof of Lemma 7: For all t, θt, and ht = (µt, ζt−1), let s be defined as follows:

� If d(µt) = (0, 0), then si(h
t, θt) = (m(θt), e(θt)) for all i.

� If d(µt) = (i, vi), then si(h
t, θt) = ((·, qi(Q−i, θt)), ·) where Q−i is s.t.

vi(Q−i) = max{0, vi} and the first and last coordinates can be anything
(feasible). sj(h

t, θt) for j 6= i can be anything.
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If the firms follow the specified strategies, then the mechanism ĝ is selected
for every t, and the outcome is f(θt) for every θt, that is, the desired output
is implemented in every period. Next, we verify that no firm has incentives to
deviate from s. First we consider deviations in the subgames off the path and
next we consider deviations in the subgames on the path.

Consider any t, θt, and ht = (µt, ζt−1) s.t. d(µt) = (i, vi) for some i and
vi ≤ vi. Thus, the firms face the mechanism ǧ. Since the firms are also facing
exactly the same problem in all future periods irrespective of what their messages
and evidence in period t are, the best that firm i can do is to announce mi =
(·, qi(Q−i, θt)) where Q−i is s.t. vi(Q−i) = max{0, vi} and supply any feasible
evidence. Any messages and evidence by the other firms are optimal because
they do not affect either current or future outcomes.

Consider any t, θt, and ht = (µt, ζt−1) s.t. d(µt) = (0, 0), in which case the
firms face the mechanism ĝ. Given that other firms follow s, if firm i deviates,
the messages will fall either under part (ii), (iii.b) or possibly (iv) of ĝ. By
construction, any deviation will result in an output-value pair (q′, v) ∈ Λf

i (f(θt))
and, therefore, is not profitable. We conclude that s is indeed an SPE. It also
follows that r satisfies forthrightness w.r.t. f .

In the continuation, for any t and ht = (µt, ζt−1) s.t. d(µt) = (i, vi) for some
i ∈ I and vi ≤ vi, it should be understood that firm i behaves as specified in the
second bullet point in the proof of Lemma 7. This guarantees that it receives the
continuation value of vi, which is the best it can get.

Lemma 8 There does not exist a subgame perfect equilibrium s s.t. r(ht) = ǧ
for some t and ht s.t. ρ(ht|h0, s) > 0.

Proof of Lemma 8: If ǧ is played on the equilibrium path, there must be
some τ < t, θτ , and hτ = (µτ , ζτ−1) s.t. ρ(hτ |h0, s) > 0, d(µτ ) = (0, 0), and
s(hτ , θτ ) 6= (m(θ), e(θ)) for any θ. That is, period τ messages fall under parts
(ii)-(v) of mechanism ĝ. If s(hτ , θτ ) falls under part (iii), any firm j 6= i expects
strictly less than (1− δ)πj((qj(0, θτ ), 0−j), θτ ) + δvj(0), while it can obtain profits
arbitrarily close to these by deviating to a message that triggers part (v) of ĝ
and wins the modulo game.19 Similarly, if s(hτ , θτ ) falls under part (v), each
firm has incentives to win the modulo game. If s(hτ , θτ ) = (m(θ), ·) falls under
part (ii), then firm 1 can profitably deviate: either firm 1 can trigger part (iii.a),
which is clearly profitable, or firm 1 can trigger part (iii.b) and obtain profits
arbitrarily close to (1 − δ)π1(f(θ), θτ ) + δv1(f) by announcing m1 = (p1 + ε, q1)
where (p1, q1) = m1(θ) and ε is a small positive number. These profits are strictly
higher than (1− δ)π1((q1, q2, . . . , qn), θτ ) + δv1(q1) that firm 1 obtains if part (ii)
of ĝ applies. The argument is similar if n = 2 and s(hτ , θτ ) falls under part (iv),
in which case there exists θ s.t. s2(hτ , θτ ) = ((p2, q2), e2) and (p2, q2) = m2(θ). If

19The argument why this is true when n = 2 and part (iii.b) applies, is the same as in the
proof of Lemma 2.
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firm 1 can trigger part (iii.a), then it is clearly profitable to do so. If firm 1 can
trigger part (iii.b), it can obtain profits arbitrarily close to (1− δ)π1(f(θ), θτ ) +
δv1(f) by announcing m1 = (p2 + ε, q2) where ε is a small positive number. We
conclude that s s.t. r(ht) = ǧ for some t and ht s.t. ρ(ht|h0, s) > 0 cannot be an
SPE.

Lemma 9 In any subgame perfect equilibrium s, s(ht, θt) = (m(θt), e(θt)) and
r(ht)(m(θt), e(θt)) = f(θt) for all t, θt, and ht s.t. ρ(ht|h0, s) > 0.

Proof of Lemma 9: From Lemma 8, we know that in any SPE s, the mecha-
nism ĝ is always selected on the equilibrium path. Therefore, for every t, θt, and
ht s.t. ρ(ht|h0, s) > 0, it must be that s(ht, θt) = (m(θ̃t), e(θ̃t)) for some θ̃t. Fix
some SPE s. Given s, let a dynamic deception β be defined as follows. For every
t and ζt = (ζt−1, θt), let β(ζt) = θ̃t where θ̃t is s.t. s(µt, ζt) = (m(θ̃t), e(θ̃t)) and
µt is the history of messages that is induced by s and ζt−1.

As in the proof of Lemma 3, given β, we can define static deceptions αζ
t

for all t ≥ −1 and ζt. Let α denote a static deception that gives the highest
continuation value: v(f ◦ α) ≥ v(f ◦ αζt) for all t ≥ −1 and ζt. Suppose that
α(θ) 6= θ or, because of Assumption A5, f(α(θ)) 6= f(θ) for some θ. If α 6∈ A,
then as in the proof of Lemma 3, we can find a profitable deviation for any firm
from β. If α ∈ A, then because f satisfies evidence monotonicity, there exist i
and θ′ s.t. either ei(α(θ′)) 6∈ Ei(θ

′) or Ei(θ
′) 6⊆ Ei(α(θ′)) holds. In the former

case, β and, consequently, s are, in fact, not feasible because the firms cannot
submit evidence ei(α(θ′)) in state θ′, and we arrive at a contradiction. In the
latter case, firm i can profitably deviate by triggering part (iii.a) of mechanism
ĝ in the period when the firms deceive according to α and the state is θ′.

We conclude that if s is an SPE, then α(θ) = θ for all θ. Consequently,
v(f) ≥ v(f ◦αζt) for all t ≥ −1 and ζt. Suppose that for some t ≥ −1, ζt, and θ,
αζ

t
(θ) 6= θ. Hence, it must be that v(f) > v(f ◦ αζt). As in the proof of Lemma

3, we can rule this case out for all t ≥ 0. It remains to consider the case when
αζ
−1

(θ) 6= θ for some θ. If αζ
−1 6∈ A, then as in the proof of Lemma 3, we can find

a profitable deviation for any firm from β. If αζ
−1 ∈ A, then because f satisfies

evidence monotonicity, there exists firm i and θ′ s.t. either ei(α
ζ−1

(θ′)) 6∈ Ei(θ′)
or Ei(θ

′) 6⊆ Ei(α
ζ−1

(θ′)) holds. In the former case, β and, consequently, s are, in
fact, not feasible and we arrive at a contradiction. In the latter case, firm i can
profitably deviate by triggering part (iii.a) of mechanism ĝ in period 0 when the
state is θ′.

We have shown that for s to be an SPE, it must be the case that for all
t ≥ 0 and ζt = (ζt−1, θt), αζ

t−1
(θt) = β(ζt−1, θt) = θt holds. It follows that

s(ht, θt) = (m(β(ζt−1, θt)), e(β(ζt−1, θt))) = (m(θt), e(θt)) for all t, θt, and ht s.t.
ρ(ht|h0, s) > 0. Also, the description of ĝ implies that r(ht)(s(ht, θt)) = f(θt) for
all t, θt, and ht s.t. ρ(ht|h0, s) > 0. Finally, since s was an arbitrary SPE, the
same applies to all SPE and, hence, r implements f in SPE.
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