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Abstract 

Many recent papers have investigated the role played by volatility in determining the 

cross-section of currency returns. This paper employs two time-varying factor models: 

a threshold model and a Markov-switching model to price the excess returns from the 

currency carry trade. We show that the importance of volatility depends on whether the 

currency markets are unexpectedly volatile. Volatility innovations during relatively 

tranquil periods are largely unrewarded in the market, whereas during the volatile 

period, this risk, has a substantial impact on currency returns. The empirical results 

show that the two time-varying factor models fit the data better and generate a smaller 

pricing errors than the linear model, while the Markov-switching model outperforms 

the threshold factor models not only by generating lower pricing errors but also 

distinguishing two regimes endogenously and without any predetermined state 

variables.  
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1. Introduction 

The carry trade anomaly that exploits the failure of uncovered interest rate parity 

(Cumby and Obstfeld 1981, Fama,1984) is a long-established fact among market 

professionals and has attracted a lot of attention in the academic literature in recent 

years. Fama (1984) suggested that the cause may be a time-varying risk premium, 

setting off a hunt for plausible factors. In recent years, attention has centred on the role 

of volatility as the key variable driving returns. In particular, Menkhoff et al. (2012) 

demonstrated that two factors accounted for a substantial proportion of carry trade 

returns: a so-called dollar factor acting as the equivalent of the market return in equity 

market research, and the volatility of exchange rates in general.  

More recently, Copeland and Lu (2016) showed that returns to the carry trade 

depended on whether the currency markets were in a high- or low-volatility state. This 

indicates that the volatility risk is priced differently in high- and low-volatility states, 

suggesting an investigation of currency carry trades through the use of conditional 

factor models: Ang et al. (2006) and Lettau et al. (2014) proposed a model in which the 

factor loadings in the CAPM are made conditional on the state of the market, 

specifically whether returns are positive or negative. Atanasov and Nitschka (2014) and 

Dobrynskaya (2014) use conditional factor models in the currency carry trade context, 

while all three focus on downside stock market risk.  

In this paper, we propose the volatility innovation factor as a new conditional risk 

factor to model the excess returns from the carry trade portfolios. The approach we take 

differs insofar as we start from the proposition that volatility innovation, not market 

return, is the factor that conditions attitudes to risk. In other words, we postulate that 

markets may well be more sensitive to increases in volatility when the markets are 

unexpectedly volatile (the volatility innovation is high), whereas when the markets are 

relatively tranquil, investors are likely to be less concerned about changes in volatility. 

This proposition is consistent with the extensive literature on asset pricing in crisis and 

downside risk factor model (e.g., Brunnermeier, Nagel et al., 2008; Farhi and Gabaix, 

2008; Atanasov and Nitschka, 2014; Farago and Tédongap 2018).  

Notably Farago and Tédongap (2018) argue that the volatility downside factor, as 

one of the three disappointment-related factors, plays an important role in pricing the 
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carry trade and other assets, an approach which is closely related to our models.  

However, our paper differs in several respects from Farago and Tédongap (2018). First 

and most importantly, we follow Menkhoff et al. (2012) and use the dollar factor as the 

currency market return and calculate the currency market volatility from daily currency 

returns, whereas Farago and Tédongap (2018) use the stock market return and volatility 

as a proxy for currency market return and volatility. Second, Farago and Tédongap 

(2018) define the downside risk when the stock market return is negative (or below a 

certain threshold), while we define downside risk (or “abnormal” state) when the 

currency market volatility is above a certain threshold. As a result, we find that only 

volatility in the “abnormal” (more volatile) state has explanatory power with respect to 

cross-sectional currency asset returns, while Farago and Tédongap (2018) show both 

volatility and downside volatility have explanatory power for currency asset return. 

This implies that investors only require compensation for taking volatility risk when 

the market is more volatile than expected. Third, in addition to the threshold model1, 

we also propose a Markov-switching model, where the two states, “normal” or 

“abnormal”, are determined endogenously by the data. The Markov-switching model 

allows the probability in the two states to be different for different portfolios, which is 

more flexible than the threshold model. Indeed, our results show that the threshold and 

Markov-switching factor models both outperform the linear factor model of Menkhoff 

et al. (2012).  However, the Markov-switching factor model yields a smaller pricing 

error than the threshold factor model. Further, we also show that the probability of the 

“abnormal” state is positively and significantly correlated with high-volatility 

innovation, which is evidence of the intrinsic link between the threshold and the 

Markov-switching factor model.  

The remainder of this paper is organized as follows. In Section 2, we present the 

theoretical setup from which we derive the implied cross-sectional model. Section 3 is 

the data and empirical methods section. Section 4 contains the empirical analysis with 

several robustness checks. Section 5 includes more robustness checks and comparisons 

with results provided in the appendix. Section 6 concludes. 

 

 

1Ang et al. (2006), Lettau et al. (2014), Atanasov and Nitschka (2014) and Dobrynskaya (2014) Farago and 

Tédongap (2018) all use threshold model to study the downside risk.  
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2. Theoretical motivation and testable implications 

2.1 The ICAPM and the conditional ICAPM 

In the setting of the Intertemporal Capital Asset Pricing Model (ICAPM) 

(Merton1973, Merton 1980 and Chen 2002), apart from market returns, risk-averse 

investors also want to directly hedge against changes in future market volatility, thus 

the pricing kernel of the ICAPM takes the form of a two-factor SDF with the market 

excess return and volatility innovations as risk factors: 

 

𝑚𝑡 = 1 − 𝛽1𝑟𝑡
𝑚 − 𝛽2Δ𝑉𝑡 (1) 

 

where 𝑟𝑡
𝑚 is the log market excess return at time t and Δ𝑉𝑡denotes volatility innovations 

at time t. The ICAPM has been found to outperform the traditional CAPM in both stock 

and exchange rate markets (Ang et al., 2006 and Menkhoff et al., 2012). Note that in 

the pricing kernel, rather than the level of volatility, it is the unexpected changes in 

volatility (volatility innovations) which appear as a pricing factor as volatility is usually 

highly serially autocorrelated. This is consistent with the empirical applications of this 

model for both stock and exchange rate markets, i.e. Ang et al. (2006) employ changes 

in the VIX index rather than the level of the VIX to price the cross sectional excess 

return from the stock market and Menkhoff et al. (2012) use the change in realized 

volatility to price the cross sectional excess return from the carry trade.  

The pricing kernel of the ICAPM takes the form of a two-factor SDF with the 

market excess return and volatility innovations regardless of all possible different states. 

This is to assume that the pricing kernel is linear, i.e., the correlations between excess 

return and risk factors do not change significantly under different states. However, 

economists have long recognized that investors care differently about downside losses 

versus upside gains.  (Ang et al.,2006). In our case, agents who place greater weight on 

volatility risk during volatile periods demand additional compensation for holding 

assets which comove negatively during market turmoil periods. To consider this, we 

release the assumption and propose an ICAPM model in which we have two different 

states and we allow the risks to be priced differently under different states. Such a model 

allows us to measure the changes in correlations between risk and return under different 
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states. We name it the conditional ICAPM to distinguish it from the unconditional 

ICAPM.  

In the conditional ICAPM, we assume that there are two states: a “normal” state 

and an “abnormal” state and the SDF take the form in (1) only in the “normal” state. In 

the “abnormal” state, we replace (1) with the conditional SDF: 

 

𝑚𝑡 = 1 − 𝛽1
−𝑟𝑡

𝑚 − 𝛽2
−Δ𝑉𝑡 (2) 

 

which implies that each factor loading can take either of two possible values,   𝛽1 =

𝑐𝑜𝑣(𝑟𝑖,𝑟𝑚)

𝑣𝑎𝑟 (𝑟𝑚)
  and  𝛽2 =

𝑐𝑜𝑣(𝑟𝑖,𝑉)

𝑣𝑎𝑟 (𝑟𝑚)
   in “normal” times, or 𝛽1

− =
𝑐𝑜𝑣(𝑟𝑖,𝑟𝑚|𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑎𝑡𝑒)

𝑣𝑎𝑟 (𝑟𝑚)
 and  

𝛽2
− =

𝑐𝑜𝑣(𝑟𝑖,𝑉|𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑎𝑡𝑒)

𝑣𝑎𝑟 (𝑟𝑚)
   in “abnormal” times.  This allows us to capture the 

possible changes in correlation in the “abnormal” state.  According to Cochrane (2009), 

the expected return thus is: 

 

𝐸[𝑟𝑡] = 𝛽1𝜆1 + (𝛽1
− − 𝛽1)𝜆1

− + 𝛽2𝜆2 + (𝛽2
− − 𝛽2)𝜆2

− (3) 

 

where 𝛽𝑖  𝑖 = 1,2  are the loadings on the two factors in “normal” times, with associated 

risk prices 𝜆𝑖  𝑖 = 1,2  and 𝛽𝑖
−  𝑖 = 1,2  are the loadings in “abnormal” times where 

𝜆𝑖
−  𝑖 = 1,2 are the risk prices. In the event, we cannot reject the hypothesis that 𝛽𝑖

− =

𝛽𝑖 for both   𝑖 = 1,2  the conditional ICAPM framework reduces to the unconditional 

ICAPM framework 𝐸[𝑟𝑡] = 𝛽1𝜆1 + 𝛽2𝜆2. 

An “abnormal” state is defined as a state when the correlation between risks and 

returns are significantly different from that in a “normal” state. The intuition is that in 

such states, investors care differently about risks and hence price them differently. This 

is inspired by the conditional-CAPM of Ang et al. (2006), and in their model the market 

return is the only risk factor and thus the “abnormal” state is defined as when the market 

return is negative.  In our conditional-ICAPM, although both market return and market 

volatility innovation are risk factors, we emphasize the role of volatility and thus the 

“abnormal” state is defined as when the volatility innovation is higher than a threshold2. 

By doing so, we build a threshold conditional ICAPM. We then release this restriction 

 

2 The correlations between return and market return risk factor do not change significantly when the “abnormal 

state” is defined in this way.  
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and construct a Markov-switching ICAPM, where the “abnormal state” is determined 

endogenously by the dataset without any pre-determined state variables and threshold. 

Within a Markov-switching framework, we can also test if the “abnormal state” is 

determined by market return, volatility innovation, or any other state variables. 

2.2 The threshold regime-switching conditional ICAPM implication 

In the threshold conditional ICAPM, we assume that the volatility innovation is 

the state variable. In the event, we cannot reject the hypothesis 𝛽1
− = 𝛽1 , in other words 

that the loadings of the first factor are insignificantly affected by the level of volatility 

innovations, so imposing this restriction in equation (3), we work with the equation: 

 

𝐸[𝑟𝑡
𝑖] = 𝛽1𝜆1 + 𝛽2𝜆2 + (𝛽2

− − 𝛽2)𝜆2
− 

 

(4) 

 

Our econometric approach follows the standard Fama-Macbeth 2-stage procedure3, 

starting from time-series estimation of the factor loadings, which are then used as 

explanatory variables in cross-sectional regressions.  

In the first stage, we estimate the time series: 

 

𝑟𝑡
𝑖 = 𝑎𝑖 + 𝑏1𝑖𝐷𝑂𝐿𝑡 + 𝑏2𝑖Δ𝑉𝑡 + 𝜖𝑖𝑡 

 

(5) 

 

on each portfolio 𝑖 = 1 … 6 4 , for the whole sample  𝑡 = 1,2, … , 𝑇  , and for 𝑡 =

1,2, … , 𝑇− that is whenever volatility innovation is above a certain threshold5: 

 

𝑟𝑡
𝑖 = 𝑎𝑖

− + 𝑏1𝑖
− 𝐷𝑂𝐿𝑡 + 𝑏2𝑖

− Δ𝑉𝑡 + 𝜖𝑖𝑡 

 

(6) 

 

In the second stage, we estimate the cross-section: 

 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1̂ + 𝑏̂2𝑖𝜆2 + (𝑏̂2𝑖
− − 𝑏̂2𝑖)𝜆2

− + 𝜖𝑖 

 

(7) 

 

 

3 GMM could be used as an alternative estimator to the Fama-Macbeth 2-stage procedure, and the two 

estimators lead to consistent results as shown in Copeland and Lu (2016).  Note that GMM could be used in the 

threshold model, but not in the Markov-switching model.  
4 The portfolios are defined in the following data section.  
5 The threshold is defined in the empirical results section.  
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where 𝑟̅𝑖  is the average return for portfolio 𝑖 . 𝑏̂1𝑖 , 𝑏̂1𝑖
−  , 𝑏̂2𝑖  and 𝑏̂2𝑖

−  are the point 

estimates from the first stage. The market risk price 𝜆1 is restricted to be equal to the 

sample average of the market excess return as the market has a unit loading of market 

risk and therefore the risk price is equal to the average of the market return. From the 

second stage estimation, we can get the volatility risk price 𝜆2  and the additional 

volatility risk price 𝜆2
− for the high volatility state.  

2.3 The Markov regime-switching conditional ICAPM implication 

 The threshold model assumes the volatility innovation to be a state variable, which 

determines if the state is “abnormal” or not. However, the probability of being in an 

“abnormal state” at any time can either be indicated by market return (Ang et al. 2006, 

Farago and Tédongap 2018), or volatility innovation (Copeland and Lu 2016), or other 

state variables. The choice of the state variable, volatility innovation, and the threshold 

is arbitrary in this model. Although a lot of literature has been arguing that there is a 

nonlinear relationship between carry trade returns and volatility innovation, that “carry 

trades go up by the stairs and down by the elevator”, it is still not clear which variable(s) 

is (are) driving the process. To solve this problem, we go on to fit a Markov-switching 

model to price the returns of the carry trade, which has the advantage that it allows us 

to estimate the regression with data-determined unobservable state variables. We can 

also investigate the determinants of the regime probabilities on a selection of related 

variables that potentially influence the carry trade returns nonlinearly. 

The first stage estimation of a Markov-switching model of the ICAPM is shown in 

eq. 8 below on each portfolio  𝑖 = 1 … 6   and for  𝑡 = 1,2, … , 𝑇. 

 

𝑟𝑡
𝑖 = 𝑎𝑖(𝑠𝑡) + 𝑏1𝑖(𝑠𝑡)𝐷𝑂𝐿𝑡 + 𝑏2𝑖(𝑠𝑡)Δ𝑉𝑡 + 𝜖𝑖𝑡               𝜖𝑖𝑡 ~𝑖𝑖𝑑𝑁(0, 𝜎2) 

 

(8) 

 

where 𝑠𝑡  is the states (or regimes, 𝑠𝑡=1 or 𝑠𝑡 = 2 ) and each state will have distinct 

values for each of the three parameters, where the first state (𝑠𝑡=1) is the “abnormal” 

state and the second (𝑠𝑡=2) the “normal” state. We expect the loading of volatility 

innovation 𝑏2𝑖 to be noticeably greater in absolute terms in the first regime (𝑠𝑡 = 1) 

and relatively smaller in absolute terms, in the second regime (𝑠𝑡 = 2).  As for the 

constant term 𝑎𝑖  and the loadings of market risk 𝑏1𝑖  we expect them not to be 

significantly different between the first regime and the second regime. 
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 The Markov-switching model is then estimated by maximizing the likelihood 

function as discussed in Hamilton (1994).  From the model estimations, we generate 

the ex-ante probability 𝑝1,𝑡 = Pr(𝑠𝑡 = 1|𝐼𝑡−1), i.e. the probability of being in the first 

regime at the time t given the information at time t-1.  

Note that the two states are identically defined in the model specification. The only 

way to distinguish the two states is the inputs of the initial parameters in the maximum 

likelihood estimation. Specifically, the first-state initial parameters {𝛽1(𝑠𝑡 =

1), 𝛽2(𝑠𝑡 = 1), 𝜎2(𝑠𝑡 = 1)} are taken from the conditional SDF estimates from the 

periods where volatilities are above the threshold. The second-state initial parameters 

{𝛽1(𝑠𝑡 = 2), 𝛽2(𝑠𝑡 = 2), 𝜎2(𝑠𝑡 = 2)} are likewise taken from the unconditional SDF 

estimates for the periods where volatilities are below the threshold. By doing so, we 

expect the first state to be the “abnormal” (high volatility) state and the second state to 

be the “normal” (low volatility) state. 

The Markov-switching ICAPM shares the same second stage estimation with the 

threshold ICAPM model. Similarly, we make use of the high-volatility state estimates 

in the second-stage estimation.  

3. Data 

The data covers the period from November 1983 to January 2017, at a monthly 

frequency. As in Copeland and Lu (2016), our sample consists of the 29 OECD 

countries: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Euro 

Area, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, South 

Korea, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, Spain, 

Sweden, Switzerland, United Kingdom and the United States.  

Following Menkhoff et al. (2012), we take the US dollar as domestic currency and 

other currencies as foreign currencies. We compute excess returns from the carry trade 

using the forward premium, on the assumption that covered interest rate parity holds at 

all times.  Hence, we define the (excess) return to the carry trade, 𝑟𝑥𝑡+1 for the currency 

(other than the US dollar) as follows: 

 

𝑟𝑥𝑡+1 = (𝑖𝑡
∗ − 𝑖𝑡) − (𝑠𝑡+1 − 𝑠𝑡) = (𝑓𝑡 − 𝑠𝑡) − (𝑠𝑡+1 − 𝑠𝑡) = 𝑓𝑡 − 𝑠𝑡+1 

 

(9) 
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where 𝑖𝑡 is the one-period risk-free interest rate for US dollar and 𝑖𝑡
∗ is the one-period 

risk-free interest rate for foreign currency, and 𝑠𝑡 and 𝑓𝑡 are logs of the spot and forward 

exchange rates in foreign currency per unit of the US dollar.  

The spot and forward exchange rates are end of month mid-rates obtained from 

BBI and Reuters (via DataStream). Our spot and forward exchange rates against the US 

dollar are closing mid-rates. The excess return is calculated by taking the difference 

between the 1-month forward rate at t and the spot rate at t+1. 

We sort currencies into 6 portfolios according to their risk-free interest rates 

differentials with US risk-free interest rate, which are equivalent to 1-month forward 

discounts, providing covered interest rate parity holds. After the sorting, portfolio 1 

contains currencies with the lowest interest rate while Portfolio 6 contains currencies 

with the highest interest rate. For each portfolio, currencies are equally weighted. 

Portfolios are rebalanced at the beginning of each month. The monthly rebalancing 

ensures that the portfolios resemble carry trade portfolios, the composition of which 

changes over time as the forward discounts change. 

Descriptive statistics are given in Table 1.   As can be seen from Table 1, the excess 

return on a long position in the highest-carry currencies combined with a short position 

in the lowest yielded an excess return of 6.65% and a Sharpe Ratio of 0.72, albeit with 

negative skewness. 

Monthly FX market return (DOLt ) is defined as the average return of all portfolios. 

It is also considered as the dollar risk factor as it is measuring the risk of borrowing one 

dollar and investing equally weighted in the other 29 currencies.  

Monthly exchange rate volatility is defined as in Menkhoff et al. (2012):  

 

𝑉𝑡 =
1

𝑇
∑ [∑

|Δ𝑠𝜏
𝑘|

𝐾𝜏
𝑘∈𝐾𝜏

]𝜏∈𝑇𝑡
  

 

 

 

where 𝐾𝜏 is the number of currencies for which data are available on day   𝜏  and there 

are   𝑇𝑡  days in month 𝑡. We concentrate on the unexpected change in monthly volatility 

as Chen (2002) argues that it is the unexpected change6 in future market volatility rather 

than the level of volatility itself that risk-averse investors want to hedge and this idea is 

 

6 Following Menkhoff et al. (2012), we also use the AR (1) residual (the volatility innovation) rather than the 

first difference to measure unexpected volatility change as volatility is found to have an AR (1) coefficient of 0.65.   
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empirically supported by Ang et al. (2006) in the stock market and by Menkhoff et al. 

(2012) in the currency market. 

We also consider another sample: a bigger 48-country sample, which was used in 

Menkhoff et al. (2012), as a robustness check. The details are reported in appendix A4.   

4. Empirical Results 

4.1 The threshold ICAPM Results 

In the setting of the threshold conditional ICAPM, we assume that the volatility 

innovation is the state variable and in periods when the volatility innovation exceeds 

the threshold of one standard deviation above the mean (zero) Δ𝑉𝑡 > 𝜎Δ𝑉
7.  

Table 2 shows the results of the 1st-stage regressions for the full sample of 399 

months (Panel A) and for the 49 high-volatility months (Panel B). All the estimates in 

both panels are significantly different from zero. The first thing to note is that, in both 

panels, while the loadings for the dollar (market) factor are all very close to 1.0, the 

loadings on volatility are diminishing from lowest- (#1) to highest-carry portfolios (#6). 

Secondly and most importantly, if we compare the two panels, we can see that the 

betas for volatility innovation are noticeably greater in absolute terms in the high-

volatility state, providing support for the superiority of the conditional over the 

unconditional model. Indeed, the difference is most marked at the two extremes - 

portfolios #1 and #6, hinting at a possible nonlinearity which we do not investigate here. 

In Figure 1, we plot the volatility risk loading 𝛽2 against the realized mean excess 

returns of 6 portfolios for the unconditional and conditional model in Panel A and B 

respectively. Clearly, the conditional model in Panel B fits the data better.  

The results for the second-stage cross-section regressions are given in Table 3, 

which provides the risk price for each risk factor. We present the results from the 

unconditional-ICAPM model in Panel A as a benchmark. Comparing the results in 

Panel A and Panel B, it is clear that the incremental volatility pricing makes an 

important contribution to explaining the return. Its coefficient is negative and 

significantly different from zero, and its inclusion makes the volatility factor price 𝜆2  

insignificant. Note also that the equation adjusted 𝑅2 raises from 0.83 to 0.93, very high 

 

7 Copeland and Lu (2016) used 75th percentile of volatility innovation as threshold, which is very close to the 

threshold we defined here.  
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in the context of monthly currency returns. Figure 2 illustrates graphically the superior 

fit of the conditional over the unconditional ICAPM for our portfolios. 

We also reduce our model to contain only the market risk factor and the extra 

volatility risk factor (Panel C) and we find that the model provides an even better fit. 

This suggests that it is the volatility risk during the unexpected volatile period that 

requires compensation. The excess return of the currency carry trade is mainly 

compensation for bearing volatility risk during the most volatile periods.  

4.2 Markov Switching ICAPM Results 

In the previous section, the conditional ICAPM setting can price the carry trade 

returns better than the unconditional ICAPM. However, the choice of the state variable, 

volatility innovation, and the threshold is arbitrary. In this session, we employ a 

Markov-switching model to price the returns of the carry trade, which has the advantage 

that it allows us to estimate the regression with data-determined unobservable state 

variables. We can then investigate the determinants of the regime probabilities on a 

selection of related variables that potentially influence the carry trade returns 

nonlinearly.  

Table 4 shows the results of the 1st-stage regressions for the full sample of 399 

months (Panel A) and for the Markov-switching model as in equation (8) (Panel B). 

Again, all the estimates in both panels are significantly different from zero and the 

loadings for the market factor are all very close to 1.0, the loadings on volatility are 

diminishing from lowest- (#1) to highest-carry portfolios (#6). 

If we compare the two panels, we can see that the betas for volatility innovation 

are noticeably greater in absolute terms in the “abnormal” regime, providing support 

for the superiority of the conditional over the unconditional model. Indeed, the 

difference is most marked at the two extremes - portfolios #1 and #6.   

In Figure 2 Panels A and B, we plot the fitted mean excess returns from 6 portfolios 

against the realized mean excess returns of the 6 portfolios for all three models.  The 

distance from the points to the 45-degree line shows absolute pricing errors of the model. 

The conditional models (Threshold ICAPM and Markov-switch ICAPM) outperform 

the unconditional benchmark model by providing smaller pricing errors. In Panels C 

and D, we compare the conditional models with different factors – the full three-factor 

(estimated DOL, VOL and extra VOL) model and the significant two-factor (DOL, and 
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extra VOL) model. The latter is found to outperform the former and again this finding 

is consistent with the argument that it is the volatility risk during the unexpected volatile 

period that requires compensating. Again, we see that the excess return of the currency 

carry trade is for the most part compensation for bearing volatility risk during the 

“abnormal” periods.  

The results for the second-stage cross-section regressions are given in Table 5, 

which provides the risk price for each risk factor. Comparing the results in Table 2 

Panel A and Panel B, it is clear that the incremental volatility pricing makes an 

important contribution to explaining the return. Its coefficient is negative and 

significantly different from zero, and its inclusion makes the volatility factor price 𝜆2  

insignificant. Note also that the equation adjusted 𝑅2 raises from 0.83 to 0.93 in Panel 

A and even 0.94, when we drop the insignificant factor in Panel B, which is again very 

high in the context of monthly currency returns. The Markov-switching model provides 

a better fit and smaller pricing error, confirming the existence of the non-linear 

relationship between unexpected volatility and the carry trade returns.  

4.3 Determinants of “abnormal” regime probabilities  

How is the “abnormal” regime probability determined? What is the relationship 

between the “abnormal” regime and the state variable that has been chosen in the 

threshold model?  To answer these questions, we regress the ex-ante probability 𝑝1,𝑡 on 

its lag and a set of possible state variables which were in the threshold models: the 

volatility innovation, currency market return (DOL), high-minus-low carry return 

(HML), stock market return and FX-market skewness.  

The state variables are defined as the following: 

𝐻𝑀𝐿𝑡: is the high minus low currency portfolio return from Lustig et al. (2011) - 

a proxy for the slope factor from the second principal component. 

𝑆𝑘𝑒𝑤𝑡: is the skewness of currency market return. We use the same measure as 

Rafferty (2012) to proxy the global FX skewness. As argued by Rafferty (2012), 

differences in exposure to the global currency skewness risk factor can explain the 

systematic variation in average excess currency returns within the carry trade portfolios, 

the momentum portfolios and portfolios sorted based on the deviation from the PPP 
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implied exchange rates.  The high-interest rate currency portfolio and the carry trade 

portfolio are more negatively skewed indicating crash risk as argued by Brunnermeier 

et al. (2008).  

𝑆𝑀𝑅𝑡: is the global stock market return which is computed using the S&P500 

index. We also use this factor from the stock market as a robustness check as the two 

markets are highly correlated and factors in the stock market are used in pricing the 

excess return from the currency market. (Dobrynskaya, 2014; Farago and Tédongap, 

2018).  

The ex-ante probability 𝑝1,𝑡 = Pr(𝑠𝑡 = 1|𝐼𝑡−1), i.e., the probability of being in the 

first regime (the “abnormal” regime) at the time t given the information at time t-1, can 

be obtained after Markov-switching estimation8.  

Figure 3 plots the regime probabilities of being in the first regime (the “abnormal” 

regime) at time t given the information at time t-1 for each portfolio. The regime 

probabilities are found to be highly persistent and different across different portfolios. 

This is, as we mentioned earlier, another advantage of using the Markov-switching 

model as it allows heterogeneity among different portfolios so we have fewer 

restrictions to our conditional model compared with the threshold model.   

Then we regress the ex-ante probability 𝑝1,𝑡 on its lag and a set of possible state 

variables: 

 

𝑝1,𝑡 = 𝛽0 + 𝛽1𝑝1,𝑡−1 + 𝛽2𝑋𝑡 + 𝜖𝑡   

 

(10) 

 

where 𝑝1,𝑡−1 is the lag of the ex-ante probability, and 𝑋𝑡 is the possible state variable.  

Table 6 provides estimation results for the determinants of the regime probabilities. 

We report the results for portfolios 1 and 6. The coefficient for the lagged dependent 

variable is positive and close to one which is not surprising considering the regime 

probabilities are highly persistent. 

As per expectation, the volatility-innovation coefficient is positive and significant, 

suggesting that a high unexpected volatility period is associated with a high probability 

of being in the “abnormal” regime in this period. This is consistent with the findings of 

 

8 See the derivation of the ex-ante probabilities 𝑝1,𝑡 in Appendix A1. 
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Kim (2015) where a low volatility regime is more conducive to UIP, and Cenedese, et 

al. (2014) who report that larger future losses for carry trade positions are associated 

with high foreign exchange volatility. The results from this regression also link the 

threshold- and Markov-switching factor model we used, showing that the time-varying 

property of the ICAPM is driven by the nonlinearity of market volatility.  

Notably, Dobrynskaya (2014) and Farago & Tédongap (2018) used global stock 

market return as a state variable in their threshold models for carry trade returns. From 

table 6, we can see the stock market return coefficients are insignificant, which suggests 

that the probabilities of being in an “abnormal” state for portfolios 1 and 6 are not 

explained by the global stock market return. Other state variables, HML and FX market 

skewness, are also found insignificant for probabilities of being in “abnormal” states.  

Overall, the probabilities of being in an “abnormal” state for portfolios 1 and 6 are 

more likely to be explained by the carry trade volatility innovation, but not by global 

stock market return. 

4.4 Robustness Check 

As robustness checks, we re-estimate our two models using different thresholds 

and a wider sample of currencies. We also compare our results with existent literature. 

Our results are found to be consistent.  

 

Different thresholds 

We run a robustness check by choosing different thresholds, defining the 75-

percentile point and the 90-percentile point as the boundaries for the high unexpected -

volatility period and run the 2-stage Fama-Macbeth regression as in Section 4. The 

results are reported in Appendix A2 and A3, and they are found to be consistent with 

the threshold we use in the body of the paper.  

 

Different samples 

We run another robustness check by choosing a larger sample of 48 countries. We 

use the same 48 countries as in Menkhoff et al. (2012) from November 1983 to January 

2017.  Six currency portfolios are sorted and the portfolios are adjusted every month. 

The threshold and Markov-switching ICAMP are estimated.  The results are reported 

in Appendix A4 and are found to be consistent with our 29 countries sample. 
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5. Conclusion 

As far as currency market behaviour is concerned, the evidence presented in this 

paper suggests that investors are more concerned with volatility in states when it is 

unexpectedly high than when it is low, and that these concerns are reflected in the 

difference in risk premia in the two states. In modelling terms, the implication is that 

the conditional ICAPM which takes account of this effect fits the facts better than the 

unconditional ICAPM and that ignoring this conditioning gives misleading results. The 

most likely behavioural explanation is that our results are a consequence of the sort of 

patterns observed in the large empirical literature documenting nonlinear adjustment in 

the exchange rate process (see for example Michael, Nobay and Peel, 1997 and Taylor, 

Peel and Sarno, 2001). If there is a band of low-amplitude fluctuations around the long-

run equilibrium exchange rate, investors may well be quite relaxed about changes in 

the level of volatility ("noise") within this zone, especially if in this region transaction 

costs are relatively high compared to the returns to currency trading (Dumas, 1992). It 

should be noted in this regard that Copeland and Lu (2016) showed that results of 

estimating the threshold model were largely unaffected by the introduction of bid-ask 

spreads. 

Overall, our contribution can be seen as a partial resolution of the uncovered 

interest rate puzzle. Knowledge gained from this investigation is useful for all types of 

participants in the carry trade, including in particular those traders who rely on estimates 

of day-to-day crash risk probabilities to implement an appropriate currency hedge.  
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Table 1: Excess Returns from Currency Portfolios 

Portfolio 1 2 3 4 5 6 DOL HML 

Mean -1.49 0.30 1.58 1.69 2.75 5.16 1.665 6.65 

Std. Dev. 9.56 10.07 9.70 9.56 10.07 10.30 8.89 9.19 

Skewness 0.08 -0.14 -0.08 -0.37 -0.78 -0.63 -0.33 -1.08 

SR -0.16 0.03 0.16 0.18 0.27 0.50 0.19 0.72 

In this table, 29 currencies have been allocated into 6 portfolios according to the size of the 

forward discount against the dollar. Portfolios are adjusted monthly.  

 

 

 

Table 2: The 1st Stage of FMB Regression for the Threshold Model 

Panel A. For all observations  (399-

month) 
 

Panel B. For observations 

when 𝛥𝑉𝑡> mean+1sd (49-month) 

𝑟𝑡
𝑖 = 𝑎𝑖 + 𝑏1𝑖𝐷𝑂𝐿𝑡 + 𝑏2𝑖Δ𝑉𝑡 + 𝜖𝑖𝑡                 𝑟𝑡

𝑖 = 𝑎𝑖
− + 𝑏1𝑖

− 𝐷𝑂𝐿𝑡 + 𝑏2𝑖
− Δ𝑉𝑡 + 𝜖𝑖𝑡                

PF Alpha DOL 𝛥V 𝑅2  PF Alpha DOL 𝛥V 𝑅2 
1 -0.003 0.968 3.982 0.794  1 -0.017 1.062 11.873 0.894 
 [0.001] [0.044] [1.052]    [0.004] [0.065] [2.099]  

2 -0.001 1.047 1.711 0.844  2 -0.006 1.078 3.953 0.912 
 [0.001] [0.041] [0.638]    [0.004] [0.064] [2.099]  

3 -0.000 1.038 1.706 0.893  3 -0.001 1.020 1.987 0.928 
 [0.001] [0.024] [0.559]    [0.003] [0.054] [1.940]  

4 0.000 0.999 -1.337 0.876  4 -0.005 1.035 0.851 0.944 
 [0.000] [0.028] [0.608]    [0.003] [0.050] [2.165]  

5 0.001 1.016 -2.726 0.835  5 0.010 0.948 -8.022 0.889 
 [0.001] [0.045] [0.920]    [0.005] [0.060] [3.109]  

6 0.003 0.932 -3.336 0.682  6 0.022 0.874 -12.22 0.787 
 [0.001] [0.047] [1.035]    [0.005] [0.075] [2.710]  

This table reports the results from the 1st stage time series FMB regression. The test assets are 

excess returns to the five carry trade portfolios. Factors are the dollar risk (DOL) factor, and the 

volatility risk (𝛥V) factor. Panel A provides estimation for the full sample while Panel B 

provides estimation when the volatility innovations are beyond the threshold. Newey-West 

standard errors are reported in the brackets.  
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Table 3: The 2nd Stage of FMB Regression for the Threshold Model 

Panel A. Unconditional ICAPM model 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1 + 𝑏̂2𝑖𝜆2 + 𝜖𝑖                

 
Market 
Return 

 

Market 
Volatility 

risk 
 𝑅2 MAE 

𝜆 0.138*** -0.060***  0.825 3.07e-6 
S.E. [0.036] [0.014]    

 

Panel B. Conditional ICAPM model (1) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1̂ + 𝑏̂2𝑖𝜆2 + (𝑏̂2𝑖
− − 𝑏̂2𝑖)𝜆2

− + 𝜖𝑖                

 
Market 
Return 

Market 
Volatility 

risk 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆 0.138 -0.018 -0.023*** 0.930 1.1e-6 
S.E.  [0.017] [0.008]   

Panel C. Conditional ICAPM model (2) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1 + 𝑏̂2𝑖
− 𝜆2

− + 𝜖𝑖                

  
Market 
Return 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆  0.132 -0.021*** 0.938 1.09e-6 
S.E.  [0.021] [0.006]   

This table reports the results from the 2nd stage time series FMB regression. The test assets are 

excess returns to the six carry trade portfolios. Factors are the market return factor, market 

volatility risk factor and the extra market volatility risk factor. Newey-West standard errors are 

reported in the brackets. R2 and mean absolute errors (MAE) are provided. *** denotes 

significant at 1% level.  
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Table 4: The 1st Stage of FMB Regression for the Markov-switching Model 

Panel A. For all observations  (399-

month) 
 Panel B. Markov-switch high regime  

𝑟𝑡
𝑖 = 𝑎𝑖 + 𝑏1𝑖𝐷𝑂𝐿𝑡 + 𝑏2𝑖Δ𝑉𝑡 + 𝜖𝑖𝑡                 𝑟𝑡

𝑖 = 𝑎𝑖
𝐻 + 𝑏1𝑖

𝐻 𝐷𝑂𝐿𝑡 + 𝑏2𝑖
𝐻 Δ𝑉𝑡 + 𝜖𝑖𝑡                

PF Alpha DOL 𝛥V 𝑅2  PF Alpha DOL 𝛥V 𝐿𝐿 
1 -0.003 0.968 3.982 0.794  1 -0.003 1.006 5.267 -1208.76 
 [0.001] [0.044] [1.052]    [0.001] [0.025] [1.148]  

2 -0.001 1.047 1.711 0.844  2 0.000 1.096 1.787 -1265.78 
 [0.001] [0.041] [0.638]    [0.002] [0.019] [1.237]  

3 -0.000 1.038 1.706 0.893  3 0.005 1.033 0.682 -1325.41 
 [0.001] [0.024] [0.559]    [0.003] [0.019] [1.708]  

4 0.000 0.999 -1.337 0.876  4 0.001 0.980 -0.494 -1295.50 
 [0.000] [0.028] [0.608]    [0.000] [0.018] [0.510]  

5 0.001 1.016 -2.726 0.835  5 -0.001 0.996 -4.079 -1227.80 
 [0.001] [0.045] [0.920]    [0.001] [0.024] [1.060]  

6 0.003 0.932 -3.336 0.682  6 -0.002 0.924 -5.908 -1116.87 
 [0.001] [0.047] [1.035]    [0.005] [0.031] [2.793]  

This table reports the results from the 1st stage time series FMB regression. The test assets are 

excess returns to the five carry trade portfolios. Factors are the dollar risk (DOL) factor, and the 

volatility risk (𝛥V) factor. Panel A provides estimation for the full sample while Panel B 

provides estimation for the Markov-switching high regime. Newey-West standard errors are 

reported in the brackets. LL denotes log-likelihood. 
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Table 5: The 2nd Stage of FMB Regression for the Markov-switching Model 

Panel A. Markov-switching Conditional ICAPM model (1) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1̂ + 𝑏̂2𝑖𝜆2 + (𝑏̂2𝑖
− − 𝑏̂2𝑖)𝜆2

− + 𝜖𝑖                

 
Market 
Return 

Market 
Volatility 

risk 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆 0.138 -0.041 -0.052** 0.930 1.26e-6 
S.E.  [0.026] [0.018]   

Panel B. Markov-switching Conditional ICAPM model (2) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1 + 𝑏̂2𝑖
− 𝜆2

− + 𝜖𝑖                

  
Market 
Return 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆  0.117 -0.045*** 0.941 1.04e-6 
S.E.  [0.023] [0.006]   

This table reports the results from the 2nd stage time series FMB regression. The test assets are 

excess returns to the six carry trade portfolios. Factors are the dollar risk (DOL) factor, and the 

volatility risk (𝛥V) factor. Newey-West standard errors are reported in the brackets. Adjusted 

R2and mean absolute errors (MAE) are provided. *** denotes significant at 5% level. 
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Table 6: The relationship between regime probabilities and market volatility innovation   

𝑝1,𝑡 = 𝛽0 + 𝛽1𝑝1,𝑡−1 + 𝛽2𝑋𝑡 + 𝜖𝑡                

 𝛽0 𝑝1,𝑡−1 Δ𝑉𝑡  𝐻𝑀𝐿𝑡  𝐷𝑂𝐿𝑡  𝑆𝑀𝑅𝑡 𝑆𝑘𝑒𝑤𝑡  

P1 0.040*** 0.919*** 13.792***     
 [0.012] [0.020] [7.004]     

P6 0.060*** 0.719*** 19.249***     
 [0.010] [0.034] [6.978]     
        

P1 0.042*** 0.918***  -0.140    
 [0.013] [0.020]  [0.257]    

P6 0.060*** 0.721***  -0.751***    
 [0.010] [0.035]  [0.255]    
        

P1 0.041*** 0.918***   -0.086   
 [0.012] [0.020]   [0.264]   

P6 0.060*** 0.720***   0.174   
 [0.010] [0.035]   [0.264]   
        

P1 0.041*** 0.918***    0.022  
 [0.012] [0.020]    [0.158]  

P6 0.061*** 0.723***    -0.201  
 [0.010] [0.035]    [0.158]  
        

P1 0.040*** 0.919***     0.008 
 [0.012] [0.020]     [0.036] 

P6 0.059*** 0.721***     0.020 
 [0.010] [0.035]     [0.036] 

This table provides estimation results for the determinants of the regime probabilities. 𝑝1,𝑡 =
Pr(𝑠𝑡 = 1|𝐼𝑡−1) is the probability of the observation lies in regime 1 (high volatility regime) at 

time t. Only the results for portfolio 1 and 6 are reported. P1 denotes the portfolio 1. P6 denotes 

portfolio 2. *** denotes significant at 5% level.  
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Figure 1: Risk-return relations for Unconditional and Conditional ICAPM Models 

 
Panel A Panel B Panel C 

   
Plotted are risk-return relations for six currency portfolios monthly re-sampled based on the 

interest rate differential with the US. Panel A plots the realized mean excess return versus the 

ICAPM betas. Panel B plots the realized mean excess return versus the threshold conditional 

relative betas. Panel C plots the realized mean excess return versus the Markov-switching 

conditional relative betas. 
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Figure 2: Pricing Error Plots for Unconditional and Conditional ICAPM Models 

Panel A Panel B 

  

Panel C Panel D 

\   

This figure plots the fitted mean excess returns from 6 portfolios against the realized mean 

excess returns of the 6 portfolios for both the unconditional ICAPM model and conditional 

ICAPM model (both threshold and Markov-switch). The distance from the points to the 45-

degree line shows absolute pricing errors of the model. The sample period is 12/1983 to 01/2017.   

ICAMP 1 denotes the full three-factor (DOL, VOL and extra VOL) model, which is from the 

estimates of Penal A in table 4 and 5. ICAMP 2 denotes the two-factor (DOL and extra VOL) 

model, which is from the estimates of Penal B in table 4 and 5.  
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Figure 3: Regime probabilities  

 

 
 

This figure plots the regime probabilities of being in the first regime (the “abnormal” 

regime) at time t given the information at time t-1 for each portfolio. 
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Appendix  

Appendix A1: The ex-ante probability and Log-likelihood function of the 

Markov switching model 

The unobservable state variable 𝑠𝑡 is assumed to evolve according to the following 

time-varying transition probabilities. The first-order Markov Chain, with transition 

probability 

Pr(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖) = 𝑃𝑖𝑗,𝑡 (10) 

  

That indicates the probability of switching from state i at time t−1 into state j at t. 

These probabilities are grouped into the transition matrix 

11 21

12 22

(1 )
P

1

p p p q

p p p q

−   
= =   

−    

(11) 

where 𝑃𝑖𝑗,𝑡  are the probabilities of moving from state 𝑖  in period 𝑡 − 1 to state 𝑗  in 

period 𝑡.  

An essential ingredient is an ex-ante probability 𝑝1,𝑡 = Pr(𝑠𝑡 = 1|𝐼𝑡−1), i.e. the 

probability of being in the first regime at the time t given the information at time t, 

whose specification is  

𝑝1,𝑡 = Pr(𝑠𝑡 = 1|𝐼𝑡−1) = (1𝑞) [
𝑓(𝑦𝑡−1|𝑠𝑡−1 = 2)(1−𝑝1,𝑡−1)

𝑓(𝑦𝑡−1|𝑠𝑡−1 = 1)𝑝1,𝑡−1+𝑓(𝑦𝑡−1|𝑠𝑡−1 = 2)(1−𝑝1.𝑡−1)
]   +

 𝑝 [
𝑓(𝑦𝑡−1|𝑠𝑡−1 = 1)𝑝1,𝑡−1

𝑓(𝑦𝑡−1|𝑠𝑡−1 = 1)𝑝1,𝑡−1+𝑓(𝑦𝑡−1|𝑠𝑡−1 = 2)(1−𝑝1.𝑡−1)
]                                                (12) 

 

where the ergodic probability (that is the unconditional probability (Hamilton, 1994) of 

being in the state 𝑠𝑡 = 1 is given by 𝜋1 = (1 − 𝑝)/(2 − 𝑝 − 𝑞). So ex-ante probability 

𝑝𝑖,𝑡 can be calculated recursively. Thus, the log-likelihood function can be written as  

 

𝑙 = ∑ log [𝑝1,𝑡𝑓(𝑦𝑡|𝑠𝑡 = 1, 𝐼𝑡−1) + (1 − 𝑝1,𝑡)𝑓(𝑦𝑡|𝑠𝑡 = 2, 𝐼𝑡−1)]𝑇
𝑡=1               (13) 

 

where 𝑓(. |𝑠𝑡 = 𝑖) is the conditional distribution given that regime i occurs at time t. 
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Appendix A2:  Robustness check with 75 percentile as the boundary 

Table A2.1: The 1st Stage of FMB Regression for the Threshold Model 

Panel B. For observations 
when 𝛥𝑉𝑡> 75 percentile  

Panel C. Markov-switch high regime 

𝑟𝑡
𝑖 = 𝑎𝑖 + 𝑏1𝑖𝐷𝑂𝐿𝑡 + 𝑏2𝑖Δ𝑉𝑡 + 𝜖𝑖𝑡                𝑟𝑡

𝑖 = 𝑎𝑖
− + 𝑏1𝑖

− 𝐷𝑂𝐿𝑡 + 𝑏2𝑖
− Δ𝑉𝑡 + 𝜖𝑖𝑡                

PF Alpha DOL 𝛥V 𝑅2 Alpha DOL 𝛥V 𝐿𝐿 
1 -0.008 0.967 7.414 0.848 -0.003 1.006 5.267 -1208 
 [0.003] [0.042] [1.669]  [0.001] [0.025] [1.148]  

2 0.000 1.073 1.752 0.913 0.000 1.096 1.787 -1265 
 [0.002] [0.035] [1.385]  [0.002] [0.019] [1.237]  

3 0.001 1.000 1.742 0.929 0.005 1.033 0.682 -1325 
 [0.002] [0.029] [1.160]  [0.003] [0.019] [1.708]  

4 -0.001 1.016 -1.271 0.907 0.001 0.980 -0.494 -1295 
 [0.002] [0.035] [1.395]  [0.000] [0.018] [0.510]  

5 0.002 0.991 -3.901 0.875 -0.001 0.996 -4.079 -1227 
 [0.002] [0.041] [1.640]  [0.001] [0.024] [1.060]  

6 0.007 0.952 -5.737 0.769 -0.002 0.924 -5.908 -1116 
 [0.004] [0.059] [2.335]  [0.005] [0.031] [2.793]  

 

Table A2.2: The 2nd Stage of FMB Regression for the Threshold Model 

Panel A. Unconditional ICAPM model 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1 + 𝑏̂2𝑖𝜆2 + 𝜖𝑖                

 
Market 
Return 

 

Market 
Volatility 

risk 
 𝑅2 MAE 

𝜆 0.138*** -0.060***  0.825 3.07e-6 
S.E. [0.036] [0.014]    

Panel B. Threshold ICAPM model (1) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1̂ + 𝑏̂2𝑖𝜆2 + (𝑏̂2𝑖
− − 𝑏̂2𝑖)𝜆2

− + 𝜖𝑖                

 
Market 
Return 

Market 
Volatility 

risk 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆 0.138 0.029 -0.053** 0.880 1.52e-6 
S.E.  [0.047] [0.028]   

Panel C. Markov-switching ICAPM model (2) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1̂ + 𝑏̂2𝑖𝜆2 + (𝑏̂2𝑖
− − 𝑏̂2𝑖)𝜆2

− + 𝜖𝑖                

 
Market 
Return 

Market 
Volatility 

risk 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆 0.138 0.024 -0.060*** 0.944 1.01e-6 
S.E.  [0.025] [0.017]   

This table reports the results from the 2nd stage time series FMB regression. The test assets 

are excess returns to the six carry trade portfolios. Factors are the dollar risk (DOL) fact or, 

and the volatility risk (𝛥V) factor. Panel A provides estimation for the full sample while Panel 

B provides estimation when the volatility innovations exceed the threshold. Newey-West 

standard errors are reported in the brackets. R2and mean absolute errors (MAE) are provided. 

*** denotes significant at 5% level.  
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Appendix A3: Robustness check with 90 percentile as the boundary 

Table A3.1: The 1st Stage of FMB Regression for the Threshold Model 

Panel B. For observations 
when 𝛥𝑉𝑡> 90 percentile  

Panel C. Markov-switch high regime 

𝑟𝑡
𝑖 = 𝑎𝑖 + 𝑏1𝑖𝐷𝑂𝐿𝑡 + 𝑏2𝑖Δ𝑉𝑡 + 𝜖𝑖𝑡                𝑟𝑡

𝑖 = 𝑎𝑖
− + 𝑏1𝑖

− 𝐷𝑂𝐿𝑡 + 𝑏2𝑖
− Δ𝑉𝑡 + 𝜖𝑖𝑡                

PF Alpha DOL 𝛥V 𝑅2 Alpha DOL 𝛥V 𝐿𝐿 

1 -0.017 1.053 11.334 0.873 -0.003 1.006 5.267 -1208 
 [0.006] [0.066] [2.780]  [0.001] [0.025] [1.148]  

2 -0.002 1.057 2.601 0.900 0.000 1.096 1.787 -1265 
 [0.006] [0.061] [2.557]  [0.002] [0.019] [1.237]  

3 -0.003 1.032 3.675 0.939 0.005 1.033 0.682 -1325 
 [0.004] [0.045] [1.899]  [0.003] [0.019] [1.708]  

4 -0.004 1.053 0.319 0.933 0.001 0.980 -0.494 -1295 
 [0.005] [0.050] [2.083]  [0.000] [0.018] [0.510]  

5 0.010 0.937 -7.235 0.885 -0.001 0.996 -4.079 -1227 
 [0.006] [0.064] [2.698]  [0.001] [0.024] [1.060]  

6   0.017 0.868 -10.694 0.774 -0.002 0.924 -5.908 -1116 
 [0.009] [0.094] [3.958]  [0.005] [0.031] [2.793]  

 

Table A3.2: The 2nd Stage of FMB Regression for the Threshold Model 

Panel A. Unconditional ICAPM model 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1 + 𝑏̂2𝑖𝜆2 + 𝜖𝑖                

 
Market 
Return 

 

Market 
Volatility 

risk 
 𝑅2 MAE 

𝜆 0.138*** -0.060***  0.825 3.07e-6 
S.E. [0.036] [0.014]    

Panel B. Threshold ICAPM model (1) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1̂ + 𝑏̂2𝑖𝜆2 + (𝑏̂2𝑖
− − 𝑏̂2𝑖)𝜆2

− + 𝜖𝑖                

 
Market 
Return 

Market 
Volatility 

risk 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆 0.138 -0.010 -0.026*** 0.894 1.31e-6 
S.E.  [0.035] [0.013]   

Panel C. Markov-switching ICAPM model (2) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1̂ + 𝑏̂2𝑖𝜆2 + (𝑏̂2𝑖
− − 𝑏̂2𝑖)𝜆2

− + 𝜖𝑖                

 
Market 
Return 

Market 
Volatility 

risk 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆 0.138 0.021 -0.058*** 0.937 1.12e-6 
S.E.  [0.026] [0.018]   

This table reports the results from the 2nd stage time series FMB regression. The test assets are 

excess returns to the six carry trade portfolios. Factors are the dollar risk (DOL) factor, or and 

the volatility risk (𝛥V) factor. Panel A provides estimation for the full sample while Panel B 

provides estimation when the volatility innovations exceed the threshold. Newey-West standard 

errors are reported in the brackets. R2and mean absolute errors (MAE) are provided. *** 

denotes significant at 5% level.  
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Appendix A4:  Robustness check with 48-country sample 

Table A4.1: Excess Returns from 48-country Currency Portfolios 

Portfolio 1 2 3 4 5 6 DOL HML 

Mean -1.45 0.35 1.63 1.51 2.56 5.15 1.63 6.60 

Std. Dev. 9.12 10.08 9.79 9.21 9.87 10.11 8.97 9.01 

Skewness 0.07 -0.12 -0.15 -0.46 -0.19 -0.71 -0.31 -1.02 

SR -0.16 0.03 0.17 0.16 0.26 0.51 0.18 0.73 

In this table, 48 currencies have been allocated into 6 portfolios according to the size of the 

forward discount. Portfolios are adjusted monthly.  

 

 

Table A4.2: The 1st Stage of FMB Regression for the Threshold Model 

Panel A. For all observations  [399-month) 
 

 
Panel B. For observations 

when 𝛥𝑉𝑡> mean+1sd [49-month) 
 

𝑟𝑡
𝑖 = 𝑎𝑖 + 𝑏1𝑖𝐷𝑂𝐿𝑡 + 𝑏2𝑖Δ𝑉𝑡 + 𝜖𝑖𝑡                  𝑟𝑡

𝑖 = 𝑎𝑖
− + 𝑏1𝑖

− 𝐷𝑂𝐿𝑡 + 𝑏2𝑖
− Δ𝑉𝑡 + 𝜖𝑖𝑡                

PF Alpha DOL 𝛥V 𝑅2   PF Alpha DOL 𝛥V 𝑅2 
1 -0.003 0.975 3.666 0.799   1 -0.016 1.061 11.137 0.890 
 [0.001] [0.024] [0.655]     [0.005] [0.055] [2.367]  

2 -0.001 1.040 1.776 0.843   2 -0.004 1.069 3.148 0.911 
 [0.001] [0.023] [0.601]     [0.004] [0.052] [2.204]  

3 -0.000 1.030 1.810 0.895   3 -0.003 0.997 3.344 0.936 
 [0.000] [0.018] [0.473]     [0.003] [0.040] [1.714]  

4 -0.000 1.003 -1.555 0.872   4 -0.005 1.047 0.503 0.944 
 [0.001] [0.020] [0.524]     [0.004] [0.042] [1.802]  

5 0.001 1.006 -2.461 0.840   5 0.010 0.929 -6.854 0.890 
 [0.001] [0.023] [0.603]     [0.005] [0.056] [2.378]  

6 0.003 0.944 -3.236 0.690   6 0.020 0.898 -11.28 0.798 
 [0.001] [0.033] [0.878]     [0.007] [0.082] [3.491]  

This table reports the results from the 1st stage time series FMB regression. The test assets are 

excess returns to the five carry trade portfolios. Factors are the dollar risk (DOL) factor, and the 

volatility risk (𝛥V) factor. Panel A provides estimation for the full sample while Panel B 

provides estimation when the volatility innovations are beyond the threshold. Newey-West 

standard errors are reported in the brackets.  
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Table A4.3: The 2nd Stage of FMB Regression for the Threshold Model 

Panel A. Unconditional ICAPM model 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1 + 𝑏̂2𝑖𝜆2 + 𝜖𝑖                

 
Market 
Return 

 

Market 
Volatility 

risk 
 𝑅2 MAE 

𝜆 0.135*** -0.059***  0.769 3.92e-6 
S.E. [0.040] [0.016]    

 

Panel B. Conditional ICAPM model [1) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1̂ + 𝑏̂2𝑖𝜆2 + (𝑏̂2𝑖
− − 𝑏̂2𝑖)𝜆2

− + 𝜖𝑖                

 
Market 
Return 

Market 
Volatility 

risk 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆 0.135 -0.013 -0.027** 0.917 1.43e-6 
S.E.  [0.020] [0.010]   

Panel C. Conditional ICAPM model [2) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1 + 𝑏̂2𝑖
− 𝜆2

− + 𝜖𝑖                

  
Market 
Return 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆  0.135*** -0.022*** 0.911 1.51e-6 
S.E.  [0.025] [0.006]   

This table reports the results from the 2nd stage time series FMB regression. The test assets are 

excess returns to the six carry trade portfolios. Factors are the dollar risk (DOL) factor, and the 

volatility risk (𝛥V) factor. Panel A provides estimation for the full sample while Panel B 

provides estimation when the volatility innovations exceed the threshold. Newey-West standard 

errors are reported in the brackets. R2and mean absolute errors (MAE) are provided. *** 

denotes significant at 5% level.  
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Table A4.4: The 1st Stage of FMB Regression for the Markov-switching Model 

Panel A. For all observations    Panel B. Markov-switch high regime  

𝑟𝑡
𝑖 = 𝑎𝑖 + 𝑏1𝑖𝐷𝑂𝐿𝑡 + 𝑏2𝑖Δ𝑉𝑡 + 𝜖𝑖𝑡                 𝑟𝑡

𝑖 = 𝑎𝑖
𝐻 + 𝑏1𝑖

𝐻 𝐷𝑂𝐿𝑡 + 𝑏2𝑖
𝐻 Δ𝑉𝑡 + 𝜖𝑖𝑡                

PF Alpha DOL 𝛥V 𝑅2  PF Alpha DOL 𝛥V 𝐿𝐿 
1 -0.003 0.975 3.666 0.799  1 -0.003 1.006 5.317 624.61 
 [0.001] [0.024] [0.655]    [0.001] [0.024] [1.153]  

2 -0.001 1.040 1.776 0.843  2 -0.000 1.095 1.769 567.16 
 [0.001] [0.023] [0.601]    [0.002] [0.019] [1.237]  

3 -0.000 1.030 1.810 0.895  3 0.005 1.030 0.804 508.17 
 [0.000] [0.018] [0.473]    [0.003] [0.019] [1.769]  

4 -0.000 1.003 -1.555 0.872  4 0.001 0.980 -0.534 537.22 
 [0.001] [0.020] [0.524]    [0.000] [0.018] [0.511]  

5 0.001 1.006 -2.461 0.840  5 -0.001 0.996 -3.998 605.37 
 [0.001] [0.023] [0.603]    [0.001] [0.024] [1.075]  

6 0.003 0.944 -3.236 0.690  6 -0.003 0.925 -6.041 716.36 
 [0.001] [0.033] [0.878]    [0.005] [0.031] [3.082]  

This table reports the results from the 1st stage time series FMB regression. The test assets are 

excess returns to the five carry trade portfolios. Factors are the dollar risk (DOL) factor, and the 

volatility risk (𝛥V) factor. Panel A provides estimation for the full sample while Panel B 

provides estimation when the volatility innovations are beyond the threshold. Newey-West 

standard errors are reported in the brackets.  

 

 
Table A4.5: The 2nd Stage of FMB Regression for the Markov-switching Model 

Panel A. Markov-switching Conditional ICAPM model [1) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1̂ + 𝑏̂2𝑖𝜆2 + [𝑏̂2𝑖
𝐻 − 𝑏̂2𝑖)𝜆2

𝐻 + 𝜖𝑖                

 
Market 
Return 

Market 
Volatility 

risk 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆 0.135 -0.038*** -0.054** 0.922 1.36e-6 
S.E.  [0.012] [0.020]   

Panel B. Markov-switching Conditional ICAPM model [2) 

𝑟̅𝑖 = 𝑏̂1𝑖𝜆1 + 𝑏̂2𝑖
𝐻 𝜆2

𝐻 + 𝜖𝑖                

  
Market 
Return 

Extra 
Market 

Volatility 
risk 

𝑅2 MAE 

𝜆  0.115*** -0.044*** 0.928 1.23e-6 
S.E.  [0.023] [0.006]   

This table reports the results from the 2nd stage time series FMB regression. The test assets are 

excess returns to the six carry trade portfolios. Factors are the dollar risk (DOL) factor, and the 

volatility risk (𝛥V) factor. Panel A provides estimation for the full sample while Panel B 

provides estimation when the volatility innovations exceed the threshold. Newey-West standard 

errors are reported in the brackets. Adjusted R2and mean absolute errors (MAE) are provided. 

*** denotes significant at 5% level. 

 


