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Abstract

We provide a full characterisation of the set of trading equilibria (in which all goods are traded

at a positive price) in a strategic market game (as introduced by Shapley and Shubik), for both

the “buy and sell” and the “buy or sell” versions of this model under standard assumptions on the

utility functions. We also interpret and illustrate our main equilibrium-characterising condition,

using simple examples.
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1 INTRODUCTION

The strategic market game as introduced by Shapley and Shubik (Shubik,1973; Shapley, 1976; Shapley

and Shubik 1977; Dubey and Shubik, 1977, 1978) perhaps is the most well-analysed model, outside

the realm of the general equilibrium theory, to understand the formation of market-price as a strategic

mechanism. In this non-cooperative game, individual traders (players) can influence the market price

of any good through their buy and sell orders (strategies) when a specified commodity is used as the

monetary medium (“money”) for buying and selling all other commodities; the price of any good is

simply the ratio of the amount of money and the amount of good at that trading-post. Other variations

of this simple “buy and sell” game are “sell-all” (in which all commodities other than money are brought

for sale) and “buy or sell” (in which traders cannot both buy and sell a particular good).

The strategic market game has the properties of a resource reallocation mechanism and the prop-

erties of a non-cooperative game. Traders select their (buying and selling) strategies to maximise their

respective utilities; these strategies form an allocation (redistribution) of the existing resources. The

definition of the non-cooperative equilibrium in this context is simply that of Nash equilibrium (in

pure strategies) of the game, in which all traders, given the bids of others, are playing their respective

best responses. As a consequence, “no-trade”, by all players, always is an equilibrium for such a market

game. This simple game has generated a vast literature over the last four decades and more complicated

models and solution concepts out of this basic game have been analysed; as readers will appreciate, we

are not listing all recent developments here (see survey papers by Giraud, 2003; Levando, 2012 and

Dickson and Tonin, 2018).

Starting with Dubey and Shubik (1977), there is a literature on general existence and multiplicity

of equilibria (see Peck, et al, 1992) for such games; moreover, the equilibria of such games are typically

inefficient (see Dubey and Rogawski, 1992). Despite having a huge literature, we unfortunately lack a

usable formal characterisation of the set of (Nash) equilibria even for a simple strategic market game.

Perhaps as a result, we do not have many explanatory worked-out examples of equilibrium profile (with

a possible exception of Ray, 2001 which is not really based on any formal characterisation either); even

within the specific case of “bilateral oligopolies” (Gabszewicz and Michel, 1997), there is hardly any

numerical example in the literature (see Dickson and Tonin, 2018 for examples derived from the first

principle of Nash equilibrium behaviour in such models).

Given the importance of the strategic market games in different areas in microeconomics, macroeco-

nomics and in finance, it would be natural to characterise the set of equilibrium outcomes for strategic

market games. However, to the best of our knowledge, there is no such explicit study of equilibrium

conditions (resulting from the utility maximisation problem of the traders). We address this issue in this

paper by identifying conditions for trading equilibria and thereby fully characterising the set of trading
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equilibria for a basic buy and sell game (under some standard assumptions on the utility function of

each trader). We also derive equilibrium conditions when traders are allowed to either buy or sell but

are not allowed to do both in this game. Our key equilibrium condition applies to any interior profile in

which no trader brings the entire endowment of any good (or money) to the market and thus everyone

consumes at least some amount of all the goods and money.

The main result in this paper states that the equilibrium price of each good is a specific ratio, a

constant for all traders. We interpret this characterising condition as follows: for any interior outcome

to be an equilibrium requires that for each traded commodity , the product of (i) the marginal rate

of substitution between good  and money for any agent  and (ii) the ratio of the amount of good

 bought and sold by all agents other than agent , must be a constant across agents; moreover, this

constant is indeed the (equilibrium) price of good .

There are clear benefits of deriving such a characterisation for specific forms of market games, as we

have demonstrated in this paper, using Cobb-Douglas utility functions. One can also easily construct

specific numerical examples of equilibrium profiles for a given market game, as shown here. More

importantly, one may check whether a particular outcome is an equilibrium outcome for a game or not.

This will immediately help us to identify testability conditions (see the survey by Carvajal, et al, 2004)

for such games, as analysed by Carvajal, et al (2013) for the Cournot model. In a parallel working

paper (Mitra, et al, 2020), we address this particular issue.

2 MARKET GAMES

For the sake of completeness, we first briefly present our game, the strategic market game, a la Shapley

and Shubik (Shubik (1973), Shapley (1976), and Shapley and Shubik (1977)).

A market is denoted by a four-tuple Ξ = (), where  = {1     } is a finite set of traders;
 = (1 ×   ×) ×+1≡ ∈ <+1+ is the commodity space, where the ( + 1)th commodity is the

numeraire, “money”;  = ( = (1      ) :  ∈ ) is an indexed collection of points in 

representing the endowments of the traders;  = ( :  ∈ ) is an indexed collection of functions from

 to < representing the utility functions of the traders.
Consider a market Ξ = (). Let us imagine  separate trading posts, one for each of

the  commodities. Each individual  supplies  ,  ≥ 0, to each trading post  ∈ {1     }. Let
() =

P
∈  , assumed to be positive, for all  ∈ {1     }. Denote  := (1     ). Each trader

 ∈  makes bids by allocating amounts  of his money (that is, the (+1)-th commodity) to trading

post , for each  ∈ {1     }. We shall denote his buying strategy by the vector  = (1     ), with
the constraints (a)

P
=1  ≤  and (b)  ≥ 0. The price emerges as a result of the simultaneous

bids of all buyers, specifically  = (()()) where () :=
P

∈  .
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With slight abuse of notation, define ( ) := (( )∈ ) as an indexed collection of strategies or a

strategy profile.

Given a market Ξ = (), if we assume that each trader can either buy or sell but not both,

then we have a buy or sell strategic market game. The difference between a strategic market game and

a buy or sell strategic market game is just in terms of admissible strategy profiles; while any strategy

profile ( ) for a buy or sell strategic market game is also a strategy profile for the strategic market

game, the converse is not true.

Given a collection of strategies (( )∈\{}) of all agents other than , denote:

( ) = (1( )     ( ) ( )) ∈ , where,

( ) =  −  + () for each  ∈ {1     }, and ( ) =  −
P

=1  +
P

=1  .

Now agent ’s utility maximisation problem (UMP) is to choose ( ) to maximise (( ))

subject to  ∈ [0 ],  ≥ 0 for each  = 1     , and
P

=1  ≤ .

Definition 1 Given a market Ξ = (), a strategy profile ( ) is a trading equilibrium of the

corresponding market game if the following two conditions hold:

1. For each good  ∈ {1     },  =
¡P

∈ 
P

∈ 
¢
 0.

2. For each agent  ∈  , given (( )∈\{}) of all agents in  \{}, ( ) is a solution to agent
’s UMP.

The strategy profile ( ) with  =  = 0, for all  ∈  and all  ∈ {1     } is trivially a Nash
equilibrium. Here all traders are inactive in the sense that they are neither buying nor selling any

commodities.

We now make a couple of assumptions on the utility function, (( )), for each trader  ∈  ,

for the rest of the paper.

Assumption 1a. (( )), for any  ∈  , is continuously differentiable.

Consider any  ∈  and fix any trading decision (  )∈\{} ∈ <2×(−1)++ for all agents other than

. For each ( ) ∈ <2++, define ( ) := ((( ) (  )∈\{})). Therefore, for any given

trading decision of others, (  )∈\{} ∈ <2×(−1)++ , the associated function  : <2++ → < represents
the utility that trader  can have for different choices of ( ).

The gradient vector of the function ( ) is denoted by:

∇( ) =
³
()

1
    

()



()

1
    

()



´
.

Observe that for any ( ) (
0
 

0
) ∈ <2++, ∇( )·[(0 0)−( )] =

P
=1(

0
−)()

+P
=1(

0
 − )

()


.
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Definition 2 A continuously differentiable utility function () is pseudo-concave if for any given

(  )∈\{} ∈ <2×(−1)++ , the associated real-valued differentiable function  : <2 → < satisfies the
following property:

for all ( ) (
0
 

0
) ∈ <2++ such that

P
=1(

0
 − )

()


+
Pl
k=1(b

0
ik − bik)Vi(qibi)bik

≤ 0,
we have (

0
 

0
) ≤ ( ).

Pseudo-concavity implies a restriction on the function ( ). As is well-known, note that, if the util-

ity function () is twice differentiable in ( ), then the property of pseudo-concavity is equivalent

to that of quasi-concavity (see Chapter 2, page 88 in Kall and Mayer, 2006).

Assumption 1b. (), for any  ∈  , is pseudo-concave.

The assumption of pseudo-concavity of the utility function of any trader  in this game ensures that

the Kuhn-Tucker conditions are sufficient for the trader ’s utility maximisation problem and thus will

be used to prove our results in the next section. Specifically, if the objective function is pseudo-concave

and all constraints are quasi-convex, then Kuhn-Tucker necessary conditions are also sufficient for a

maximum. One may not in general know whether the objective function in a maximisation problem

is pseudo-concave or not (see Chapter 9, pages 559 − 560 in Miller, 2011). In such a case, one has to
identify the set of solutions to the optimisation problem by trying out all the solutions generated by the

Kuhn-Tucker necessary conditions.

For any strategy profile ( ), for any  ∈  , call −() = () −  and −() = () −  .

Following our on-going (slightly abusing) notations, we may write ( ) := ((−) ( −)). We

now identify the following crucial ratio for any  ∈  and any  = 1     :

∆( ) := ∆(( −) ( −)) = [−() {(( ))}]  [−() {(( ))}].
Finally, we identify a class of strategy profiles for a market game that we call interior for which the

final allocations for all traders are interior points.

Definition 3 A strategy profile ( ) is a B-profile if there exists  ∈  and there exists  ∈ {1     }
such that  = 0 and

P
=1  = .

In a B-profile, there must be at least one trader who spends the entire money endowment and does
not sell at least one good (and thus consumes at least as much the endowment for that good).

Definition 4 A strategy profile ( ) is a Q-profile if there exists  ∈  and there exists  ∈ {1     }
such that  = 0 and  = .

In a Q-profile, there must be at least one trader who sells the whole endowment for at least one
good and does not spend any money to buy back that good (and hence does not consume that good in

the final allocation).
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Definition 5 A strategy profile ( ) is said to be an interior strategy profile if it is neither a B-profile
nor a Q-profile.

In an interior profile, no trader brings the entire endowment of any good (or money) to the market

and thus everyone consumes at least some amount of all the goods and money. For the case of a market

game with two-goods (that is, one commodity and money, when  = 1), an interior strategy profile is

given by (( )∈ ) such that 0    1 and 0    , for all  ∈  .

For any strategy profile ( ) and any  ∈ {1     }, let Q( ) = { ∈  |  = 0 &  = } and
B( ) = { ∈  |  = 0 &

P
=1  = }. By Definition 5, for any interior strategy profile ( ),

Q( ) ∪ B( ) = ∅ for all  ∈ {1     }, whereas, for any non-interior strategy profile ( ), there
exists  ∈ {1     } such that Q( ) ∪ B( ) 6= ∅.

3 RESULTS

For the sake of clarity, we state and prove our main result in several steps. We first state a couple of

lemmata about bids () and offers () at a trading equilibrium as below. The first lemma is related to

the offers () at equilibrium.

Lemma 1 At a trading equilibrium, for any  ∈  and any  ∈ {1     },

(a) if  ∈ (0 ), then 2 = ∆( ),

(b) if  = 0, then 2 ≤ ∆( ),

(c) if  =   0, then 2 ≥ ∆( ).

Similarly, we provide conditions related to the bids () at equilibrium in our next lemma.

Lemma 2 At a trading equilibrium, for any  ∈  and any  ∈ {1     },

(a) if
P

=1   , then 2 ≥ ∆( ),

(b) if   0, then 2 ≤ ∆( ).

The proofs of Lemma 1 and Lemma 2 heavily use the Kuhn-Tucker conditions for the optimisation

problem for each individual trader. These proofs have been postponed to the Appendix of this paper.

Above lemmata lead to the following proposition.

Proposition 1 A strategy profile ( ) is a trading equilibrium if and only if the following conditions

hold for any  ∈  and any  ∈ {1     }:
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(K1) If  ∈ (0 ), then 2 = ∆( ).

(K2) If  = 0 and
P

=1   , then 2 = ∆( ).

(K3) If  = 0 and
P

=1  = , then 2 ≤ ∆( ).

(K4) If  =  and   0, then 2 = ∆( ).

(K5) If  =  and  = 0, then 2 ≥ ∆( ).

Proposition 1 asserts that given our Assumptions 1 and 1 and given that the constraints in the

individual maximisation problem are linear (hence, quasi-convex), the Kuhn-Tucker conditions are both

necessary and sufficient to characterise equilibrium outcomes. The necessary conditions stated in Propo-

sition 1, (1)-(5), follow immediately from Lemma 1 and Lemma 2. In particular, from Lemma 1(),

we get (1); from Lemma 1() and Lemma 2(), we get condition (2). Given condition (2), from

Lemma 2(), we get (3). From Lemma 1() and Lemma 2(), we get condition (4). Given condition

(4), from Lemma 1(), we get (5). The complete proof of Proposition 1 would thus require confir-

mation of the sufficiency part (that (1)-(5) are sufficient for maximisation), using pseudo-concavity

of the utility functions. The details of this part of the proof is in the Appendix.

We are now ready to state our main result.

Theorem 1 Consider a market game with a market Ξ = (), under Assumptions 1a and 1b.

1. An interior strategy profile ( ) is a trading equilibrium for this game if and only if 2 = ∆( ),

for any  ∈  and any ∈ {1     }.

2. A non-interior strategy profile ( ) is a trading equilibrium for this game if and only if we have

the following for all  ∈  :

(a) 2 ≤ ∆( ), for any  for which  ∈ B( ),

(b) 2 ≥ ∆( ), for any  for which  ∈ Q( ) and

(c) 2 = ∆( ), for any  for which  6∈ [Q( ) ∪ B( )].

Using Proposition 1, the proof of Theorem 1 is now immediate. We have mentioned the specific

details in the Appendix.

3.1 Buy or Sell

We could easily rephrase our main theorem for any buy or sell market game as well.
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For any given market Ξ = (), a strategy profile ( ) for a strategic game is also feasible

for a buy or sell strategic market game if and only if  ∈  and all  ∈ {1     },  ≥ 0,  ≥ 0 and
  = 0.

Subject to the above restriction, we can define B-profile, Q-profile and the interior strategy profile
for any buy or sell market game exactly the same way as we did for a strategic market game earlier.

To identify the conditions for a trading equilibrium for such a buy or sell model, we have the following

result.

Theorem 2 Consider a buy or sell strategic market game with a market Ξ = (), under

Assumptions 1a and 1b.

1. An interior strategy profile ( ) for this game is a trading equilibrium if and only if 2 = ∆( ),

for any  ∈  and any ∈ {1     }.

2. A non-interior strategy profile ( ) for this game is a trading equilibrium if and only if we have

the following for all  ∈  :

(a) 2 ≤ ∆( ), for any  for which  ∈ B( ) and
(b) 2 ≥ ∆( ), for any  for which  ∈ Q( ).

Proof of Theorem 2 is very similar to that Theorem 1 (using Proposition 1) above and thus has been

postponed to the Appendix.

3.2 Interpretation

We now interpret and illustrate our key equilibrium condition, ∆( ) = 2 , obtained for a trading

equilibrium with interior strategy profile (the first condition in Theorem 1).

A simplification of this condition is:

(( ))






= −(( ))






 (1)

Condition (1) states that, in equilibrium, the marginal rise in utility due to a rise in the consumption of

 caused by an incremental fall in  must be equal to the absolute value of the marginal fall in utility

due to a fall in the consumption of  caused by this incremental fall in  . Using 



+



= 0

and 



+ 


= 0, one can rewrite condition (1) as follows:

(( ))






= −(( ))






 (2)

Like condition (1), condition (2) has a similar interpretation in terms of  . The general requirements

that 



+



= 0 and 



+ 


= 0 ensures that we have only one equilibrium condition for

interior strategy profiles, that is, ∆ = 2 .
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Consider now () of the second condition in Theorem 1 obtained for a B-profile, which states that,
if, in equilibrium, we have  = 0 and

P
=1  = , then either 

2
 = ∆( ) or 

2
  ∆( ). In

case, in equilibrium, we end-up with 2  ∆( ), then it is not possible to equate 
2
 and ∆( );

neither by decreasing  (since,  = 0), nor by increasing  (since,
P

=1  = ).

Similarly, consider () of the second condition in Theorem 1 obtained for a Q-profile, which states
that, if, in equilibrium, we have  =  and  = 0, then either 

2
 = ∆( ) or 

2
  ∆( ). Here

as well, in case, in equilibrium, we end-up with 2  ∆( ), then it is not possible to equate 
2
 and

∆( ); neither by increasing  (since,  = ) nor by decreasing  (since,  = 0).

The equilibrium conditions for any interior condition are now quite transparent. It requires that for

each traded commodity , the marginal rate of substitution (MRS) between good  and money for any

agent  ( ) times the ratio of the amount of good  bought and sold by all agents other than

 must be a constant across agents. Moreover, this constant is the equilibrium price of good .

Formally, for each commodity  ∈ {1     },

∗ =

³
−()
∗

´



−() 


=

Ã
−()
∗−()

!
 (

∗(∗ ∗)) ∀  ∈ 

3.3 Illustration (C-D utility)

Consider a specific market, denoted by Ξ−2 , with just two agents, 1 and 2, with the following prefer-

ences and endowments: for agent 1, 1( ) = 1
11−1 , 1  0, 1 ∈ (0 1), 1 = (1 1)  0

and for agent 2, 2( ) = 2
21−2 , 2  0, 2 ∈ (0 1), 2 = (2 2)  0. We have the following

characterisation for any interior equilibrium for the corresponding market game.

Proposition 2 Any strategy profile ( ) with 1 − 1 = 2 − 2 =   0 (implying 1   and 2  )

for a market game with the market Ξ−2 constitutes an interior equilibrium with the equilibrium price

 = (1 + 2)(1 + 2) = 1 if and only if:

12
1
 = (1− 1)2

1
 + [12 + (1− 1)2] 

1
 ≥ 1 

1
 ≥ 1 ≥  (3)

(1− 2)1
2
 = 21

2
 ++[21 + (1− 2)1] 

2
 ≥ 2 ≥  2 ≥ 2 (4)

The proof is in the Appendix.

3.4 Examples

We first present a numerical example using the conditions in Proposition 2.

Example 1 Consider a market game with two agents 1 and 2 with the following preferences and en-

dowments: for agent 1, 1( ) = 1
1
3 

2
3 , 1  0, 1 = 21 and 1 = 51 + 7 with 1 ≥ 1 and for

9



agent 2, 2( ) = 2
3
4 

1
4 , 2  0, 

2
 = 482 + 14 and 2 = 82 with 2 ≥ 1. Then the trade vector

(; ) = (1 = 4 1 = 2; 2 = 8 2 = 10) is an equilibrium strategy profile with equilibrium price ∗ = 1.

One may check the conditions in Proposition 2 to show that the strategy profile in Example 1

(1 = 4 1 = 2; 2 = 8 2 = 10) with  = 2 and  = 1 is indeed an equilibrium. Note that this profile is

in equilibrium for a range of games with different endowments, determined by the choice of parameters,

1 ≥ 1 and 2 ≥ 1; in particular, for 1 = 2 = 1, we have the endowment vectors (2 12) and (62 8).

Our final example is from Dickson and Tonin (2018) and it uses a “bilateral oligopoly” (Gabszewicz

and Michel, 1997) in which all agents have positive endowments in only one of the two goods.

Example 2 Consider a market game with two goods and four agents of who agents 1 and 2 are identical

with utility function and endowment given by ln(1 + ) + , (3 0) and agents 3 and 4 are identical

with preferences and endowments 3 − 1
2
2 + , (0 5). The strategy profile given by the trade vector

(1 = 2 =
7−√17
2

; 3 = 4 =
√
17− 3) is an equilibrium price ∗ =

√
17−1
4

.

The fact that the strategy profile in Example 2 is an equilibrium has been proved directly from the

first principles of maximisation in Dickson and Tonin, 2018 (Example 3 in their paper). We can check

these values with our equilibrium condition easily. To see this, let’s take the condition just for agent 1

(or 2) in this example. The allocation for agent 1 at equilibrium is given by  =
√
17−1
2

and  =
√
17−3.

At these values, our ratio ∆1( ) becomes:

∆1( ) =
4(
√
17−3)(√17−1)
8(7−√17) =

(
√
17−1)(√17−3)(√17+3)
2(7−√17)(√17+3) =

√
17−1√
17+1

=
(
√
17−1)2
16

,

which is equal to (
√
17−1
4

)2 = 2, confirming our condition obtained in Theorem 1.
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4 APPENDIX (PROOFS)

We collect the proofs of our results in this section.

Proof of Lemma 1. Given a market game with the market Ξ = (), if ( ) is a

trading equilibrium, then for each  ∈  , ( ) (given (  )∈\{}) maximises (( )) subject

to  ∈ [0  ],  ≥ 0 for  = 1     , and
P

=1  ≤ .

In general, we have



= −(1 − 
()

) ≤ 0, 



+



= 0, 


= −(1 − 
()

) ≤ 0 and





+ 


= 0.

Define  = (1     ) ∈ <+,  = (1     ) ∈ <+,  = (1     ) ∈ <+ and  ∈ <+. The
Lagrangian function for the optimisation problem of traders  ∈  is the following:

(     ) = (( ))+

X
=1

+

X
=1

 ( − )+

X
=1

+

Ã
 −

X
=1



!
 (5)

The Kuhn-Tucker conditions are the following:




=








+








+  −  ≤ 0 and 




= 0, for each good , (6)

 ≥ 0  ≥ 0 and  = 0, for each multiplier  , given , (7)

 ≥ 0  ≥  and ( − ) = 0, for each multiplier  , given , (8)




=








+








+  −  ≤ 0 and 




= 0, for each good , (9)

 ≥ 0  ≥ 0 and  = 0, for each multiplier  given , and (10)

 ≥ 0  ≥
X

=1

 and 

Ã
 −

X
=1



!
= 0 for the multiplier  (11)

From the first part of condition (6) it follows that for each good ,

−
µ
−()
()

¶



+ 

µ
−()
()

¶



+  −  ≤ 0 (12)

and from the first part of condition (9) it follows that for each good ,

1



µ
−()
()

¶



−
µ
−()
()

¶



+  −  ≤ 0 (13)

From (12) it follows that

µ
−()
()

¶




¡
2 −∆( )

¢ ≤ − +   (14)

If  ∈ [0 ), then given ( − ) = 0 and    we get  = 0. Hence, using  = 0,

[−()][()]  0 and 


 0, from (14) we get the following:
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(R1) If  ∈ [0 ), then 2 ≤ ∆( ).

Pre-multiplying (12) by  and using  = 0 and  [ ] = 0, we get,



∙
−
µ
−()
()

¶



+ 

µ
−()
()

¶



− 

¸
= 0 (15)

If   0, then we have µ
−()
()

¶




¡
2 −∆( )

¢
=   (16)

Since  ≥ 0, −()()  0 and 


 0, (16) implies 2 ≥ ∆( ). Hence, we have,

(R2) If   0, then 2 ≥ ∆( ).

Combining (1) and (2), we get Lemma 1. ¥

Proof of Lemma 2. We prove Lemma 2 following the proof of Lemma 1.

From (13) it follows that

Ã
−()
2()

!




¡
∆( )− 2

¢ ≤ − +  (17)

If
P

=1   , then given ( −
P

=1 ) = 0 and
P

=1    we get  = 0. Hence, using

 = 0, [−()][2()]  0 and



 0, from (17) we get Lemma 2().

Pre-multiplying (13) by  and using  = 0 and using  [ ] = 0 we get,



∙µ
1



¶µ
−()
()

¶



−
µ
−()
()

¶



− 

¸
= 0 (18)

If   0, we have, µ
1



¶µ
−()
()

¶



−
µ
−()
()

¶



−  = 0 (19)

From (19) it follows that if   0, then

∆( ) = 2 +
2³

−()
()

´³



´  (20)

Since  ≥ 0, −()()  0 and 


 0, from (20) we get 2 ≤ ∆( ). Hence, we have

established Lemma 2(). ¥

Proof of Proposition 1. To complete the proof of this proposition, we need to check why pseudo-

concavity is sufficient for the conditions (1)-(5). One can verify that for any  ∈  , any trading

decision (  )∈\{} ∈ <2×| |++ and any commodity  ∈ {1     }, we have the following restrictions
on the partial derivatives of the associated function  : <2++ → <.
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(i)
()


=
³
−()
()

´


−
³
−()
()

´



=
³
−()
2()

´



[∆ − 2 ] and

(ii)
()


= −

³
−()
()

´



+
³
−()
()

´



=
³
−()
()

´



[2 −∆ ].

We also have the restriction () below (that follows immediately from () and ()):

(iii) 
()


+

()


= 0.

For any  ∈ {1     } and any pair of trading decisions (0 0) ( )) ∈ <2++ for trader , define
() := [(0 − )− (

0
 − )] [∆ − 2]. From () and () and by using 


 0 in (2), we get

the following condition:

If

X
=1

()

µ
−()
2()

¶
≤ 0 then (

0
 

0
) ≤ ( ) (21)

Suppose ( ) satisfies (1)-(5), for all  ∈ {1     }. Consider any (0 0)(6= ( )) and then
consider the sum

P
=1()[−(){2()}].

If 2 = ∆, then () = 0.

If  = 0,
P

=1  =  and 2 ≤ ∆ holds, then 0 ≤  and 0 ≥  implying () ≤ 0.
Finally, if  = ,  = 0 and 2 ≥ ∆ holds, then 0 ≥  and 0 ≤  implying () ≤ 0.
Hence, if for trader , ( ) satisfies the conditions (1)-(5), then it follows that for any (

0
 

0
)( 6=

( )), we have
P

=1()
³
−()
2

()

´
≤ 0 since

³
−()
2

()

´
 0 and() = [(0 − )− (

0
 − )] [∆−

2] ≤ 0 for all . By pseudo-concavity, we then have ( ) ≥ (
0
 

0
) implying that the conditions

(1)-(5) are also sufficient. ¥

Proof of Theorem 1. Specifically, from (1), (2) and (4), we get the first condition and ()

of the second condition in Theorem 1; from (3), we get () of the second condition and from (4),

we get () of the second condition in Theorem 1. ¥

Proof of Theorem 2. If ( ) is a trading equilibrium for a buy or sell strategic market game, then

for each  ∈  , ( ) (given ((  )∈\{}) maximises (( )) subject to  ∈ [0  ],  ≥ 0 for
 = 1     ,

P
=1  ≤  and  = 0. Define  = (1     ) ∈ <+,  = (1     ) ∈ <+,

 = (1     ) ∈ <+,  ∈ <+ and  ∈ <+. Given the Lagrangian function (     ) from
(5) for the strategic market game, the Lagrangian function ̄() for the optimisation problem of traders

 ∈  in the buy or sell strategic market game is the following:

̄(      ) = (     ) +   (22)

The new added constraint for the Lagrangian function ̄(      ) is that  ≥ 0,  ≥ 0,
 ≥ 0 and  = 0 for the new multiplier . The proof of this theorem becomes easy from the

following observations.
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1. ̄


= 


+  .

2. 
̄


= 



+  = 



= 0 (since  = 0).

3. ̄


= 


+  .

4. 
̄


= 



+  = 



= 0.

Hence, by using arguments similar to the ones used earlier, one can also prove lemmata corresponding

to Lemma 1 and Lemma 2 for this buy or sell strategic market game. Specifically, one can show the

following:

(a) If  ∈ (0 ), then 2 = ∆( ).

(b) If  = 0, then 2 ≤ ∆( ).

(c) If  =  , then 2 ≥ ∆( ).

(d) If
P

=1   , then 2 ≥ ∆( ).

From ()-(), it follows that for any  ∈  and any  = 1     , the following conditions hold:

(k1) If  ∈ (0 ) and  = 0, then 2 = ∆( ).

(k2) If  = 0 and
P

=1   , then 2 = ∆( ).

(k3) If  = 0 and
P

=1  = , then 2 ≤ ∆( ).

(k4) If  =  and  = 0, then 2 ≥ ∆( ).

Specifically, from () we get condition (1) using the buy or sell restriction. From () and () we get

condition (2). Given condition (2), from () we also get condition (3). From (), we get condition

(4) using the buy or sell restriction. Finally, from (1) and (2), we get (1) and (2)() in the

statement of Theorem 2; we get (2)() from (3) and, from (4), we get (2)().

Given our assumption that the utility function (( )) of each trader  ∈  is continuously

differentiable and pseudo-concave and given that the constraints are quasi-convex, the Kuhn-Tucker

conditions are both necessary and sufficient to characterise the equilibrium outcomes. The arguments

for checking why pseudo-concavity is sufficient for the Kuhn-Tucker conditions (1)-(4) above is similar

to the arguments used in the proof of Theorem 1 (and Proposition 1) and hence is omitted. ¥

Proof of Proposition 2. In a market game with the market Ξ−2 , the equilibrium consumptions

of the two goods  and  for the two agents are:
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• 1 = 1 + 1− 1 so that 1 = 1 + 1 − 1 = 1 + ,

• 1 = 1 − 1 + 1 so that 1 = 1 − 1 + 1 = 1 − ,

• 2 = 2 + 2− 2 so that 2 = 2 + 2 − 2 = 2 − , and

• 2 = 2 − 2 + 2 so that 2 = 2 − 2 + 2 = 2 + .

Given the Cobb-Douglas utility function, for any  ∈ {1 2},  =
()



()


=

((1− ))().

Equilibrium condition of the market game is
³
2
2

´
1 =

³
1
1

´
2 = 2 = 1. From the

equilibrium condition, we have the following implications.

For agent 1, we have³
2
2

´³
1
1−1

´³
1−
1+

´
= 1 ⇒ 12(

1
 − ) = (1− 1)2(

1
 + )

⇒ 12(
1
 − ) = (1− 1)(2 + )(1 + )

⇒ 12
1
 = (1− 1)(2 + )1 + [(1− 1)(2 + ) + 12]

⇒ 12
1
 = (1− 1)(2 + )1 + [2 + (1− 1)]

⇒ 12
1
 = (1− 1)2

1
 + [12 + (1− 1)2].

Therefore, for agent 1, we have (3) as a restriction for an interior equilibrium.

Similarly, for agent 2, we have³
1
1

´³
2
1−2

´³
2+

2−
´
= 1 ⇒ 21(

2
 + ) = (1− 2)1(

2
 − )

⇒ 21(
2
 + ) = (1− 2)(1 − )(2 − )

⇒ (1− 2)(1 − )2 = 21
2
 + [(1− 2)(1 − ) + 21]

⇒ (1− 2)(1 − )2 = 21
2
 ++[1 − (1− 2)]

⇒ (1− 2)1
2
 = 21

2
 ++[21 + (1− 2)1].

Thus, for agent 2, (4) is a restriction for an interior equilibrium. ¥
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