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Abstract

We �t the logistic function, the reduced form of epidemic behaviour, to the data for deaths

from Covid-19, for a wide variety of countries, with a view to estimating a causal model of

the covid virus�progression. We then set out a structural model of the Covid virus behaviour

based on evolutionary biology and social household behaviour; we estimated and tested this by

indirect inference, matching its simulated logistic behaviour to that found in the data. In our

model the virus�progression depends on the interaction of strategies by household agents, the

government and the virus itself as programmed by evolution. Within these interactions, it turns

out that there is substitution between government topdown direction (such as lockdown) and

social reaction to available information on the virus�behaviour. We also looked at experience of

second waves, where we found that countries successfully limited second waves when they had

had longer �rst waves and followed policies of localised reaction in the second.

Keywords: coronavirus, Covid-19, evolution, optimisation, indirect inference, lockdown
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1 Introduction

In this paper we propose a causal model of coronavirus behaviour and estimate it and test it

empirically by its ability to match the behaviour of infections and deaths observed in the UK and

in other parts of the world. We then use the model to evaluate the e¤ectiveness of the contrasting

government policies in di¤erent countries for dealing with the virus. It might be asked why there is

a need for such a model, when there are virological models of the corona virus disease. We suggest

that these models do not take account of the reactions by agents, the virus itself and governments

to the shocks created by the arrival of the pandemic in a population. These models essentially

assume a deterministic process of susceptibility, infection and recovery; yet, as we shall show, there

are many points in the process where there are both choices and stochastic processes; we build on

both economic theory and evolutionary biology for our relatively simple utility-maximising causal

model There is now a large body of data which can be explored for the purposes of modelling these

processes; our main contribution is to estimate this causal model by the powerful estimation and

testing mechanism of indirect inference which uses both the logistic reduced form estimates for the

disease and the causal model predictions to pin down the causal parameters.

We begin in section 2 by describing the logistic model�s description of the data behaviour

produced by the virus� progress. In section 3, we set out our structural (�. causal) model of

the virus�and households�behaviour in response to shocks, including from government policy. In

section 4 we explain the estimation method and how we use it to evaluate our structural model

by its ability to match the data behaviour revealed by our descriptive logistic model, termed the

�auxiliary model� in this method. We then, in section 5, show the results of our estimation and

testing of the structural model. Next we comment on some key estimates from the model and

discuss their implications for policy, before concluding in the �nal section.

To anticipate our main results, we use our models to contrast the experiences of the UK and

Sweden, and also those of 28 countries experiencing second waves. We �nd from the Sweden/UK

comparison that there is substitution between government topdown direction (such as lockdown)

and social reaction to available information on the virus�behaviour; and that the government�s

optimal role is in providing information and coordinating social reaction at a decentralised level,

so avoiding topdown disruption to the economy. From the experience of second waves we found
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that countries successfully limited second waves when they had had longer �rst waves and followed

policies of localised reaction in the second.

2 Describing the data � the logistic curve

Figure 1: Con�rmed Deaths by Day Since Total Passed 20

The chart of the progress of deaths shown in Figure 11 � plotted on a log (�. proportional)

scale � show a common and coherent pattern, which comes from an underlying �logistic stock-

�ow�model of the virus; such a model is widely used to project how innovations spread through a

population � whether it is new ideas, new technologies, or as here infections. Imagine that you

have a population free of the virus, ranged from those with easy infectability at the one end to

some at the other with great immunity. Enter the virus, with a mechanism of transmission from

person to person via coughing, touching etc. In the initial slow stage, the virus will take time to

infect a substantial group. In the second rapid stage, there will be a high speed of infection as

the susceptible will quickly catch it and pass it on to other susceptible people of whom many are

available. At this point the virus�reproductive rate (R0) will be high, with each infection leading

to several others in a short time. The progress will look �exponential�(an exponential curve grows

without limit) but it is not, because there is a further stage.

1Source of data: Johns Hopkins University Center for Systems Science and Engineering
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As the stock of infected people accumulates, the virus needs to spread to people with greater

natural immunity. The rate of infection (the �ow of new infections) and that R0 rate will slow. As

the stock of infected people reaches the last tranche of people with the highest immunity, the rate

will gradually fall to a stop. In the end the whole infectable population will have the virus or have

had it.

These three stages � initial infection, rapid spread through widely available cases, and �nally

slowing in the face of saturation � must occur regardless of the epidemiological details. These

details show up in the estimated parameters of the describing logistic curve, which therefore is

a reduced form representation in the data for all epidemics and similar population-penetrating

processes, whatever their structural details. The reduced form parameters are: the maximum

penetration, the rate of infection and the point of in�ection where saturation starts to set in. The

problem for epidemiological models is that so little is known about this virus. But with the logistic

curve we can observe for many countries what these estimated parameters, that re�ect this unknown

virus�character, are. From this diverse experience we can estimate the progression process in the

UK, our primary focus, and also the e¤ects of lockdown, the policy now being �ercely debated

across the world. Batista (2019) and Golinski and Spencer (2020) have estimated logistic models

for various countries.

But we can do more than �nd the best logistic curve description by building the structural (�.

causal) model of virus behaviour that underlies this logistic reduced form. This structural model,

if empirically reliable, can give us an understanding of how policy interventions a¤ect the virus�

progress. However, we need a means to establish the model�s empirical reliability. For this we use

the method of indirect inference where we check the model�s capacity to generate the reduced form

logistic behaviour we observe in the data. As we will show below when we discuss this method,

most familiar in its form as the method of simulated moments, it gives us substantial power to

discriminate against inaccurate or misspeci�ed models.

Hence our account of the virus�logistic progress is not intended to replace the careful modelling

of the detailed causal processes driving the virus epidemic; rather it is intended to describe the

data behaviour of the virus�progress. A structural model of the virus�behaviour, which we develop

below, can guide us on the e¤ects of policy interventions such as lockdowns. Medical interventions,

such as drugs and vaccines, require speci�cally medical research, which is being energetically pur-
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sued by clinical companies in search of a vaccine and e¤ective drug treatments. But so far none

have been found or used except experimentally. Apart from �nancing and encouraging this pursuit,

governments have intervened in two main ways: �rst by attempted denial of entry of the virus into

uninfected populations, through testing, tracing and quarantining and second by lockdown of in-

fected populations. The �rst has been used by Singapore and South Korea rather e¤ectively. Other

countries tried it for a time, the UK among them, but ine¤ectively, with general popular interac-

tion releasing the virus into general circulation in spite of their e¤orts. The second intervention of

lockdown then has had a plainly visible impact, namely in slowing the early rate of infection and

delaying the point of in�ection in time. Against this background, structural model estimates can

give us practical guidance on what will happen from what has happened so far. This guidance can

help to assess orders of magnitude for future cases and deaths which is important when one major

clinical group, at Imperial College London, have predicted that deaths would have reached half a

million had lockdown not occurred and will reach nearly 50,000 even with the lockdown in place

since late March.

3 The rationale of a causal model

We now develop a structural model of the coronavirus�behaviour. Our intention is to test and

estimate this model by indirect inference, in which we compare the model�s simulated behavior

with actual data behaviour and evaluate the match statistically, in a way we explain below in

detail. We will �t it to data for the UK and Sweden, with the aim of identifying di¤erential policy

e¤ects between the two countries, both in terms of lockdown and general public health protection;

in both, policies di¤ered starkly enough for us to identify the e¤ects with moderate precision. In

future work these methods could be extended to other countries to evaluate the e¤ects of the wide

variety of policies they all followed.

In our structural model there are two (representative) agents: the coronavirus and the house-

hold. We treat the coronavirus as having an optimised strategy for infecting a population it has

been donated by chance to infect. We can think of this optimisation as having been crafted by

natural selection over a long period of evolution; in other words today�s virus has evolved to sur-

vive because its strategy has been optimised for survival. These ideas belong partly to evolutionary
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biology (Nesse et al, 2010) and partly to recent DSGE modelling in macroeconomics (Le et al,

2011) where agents are treated as if they are optimising strategic decision-makers; here the virus is

treated as an optimising agent, whose strategy has been selected by mutation and evolution. We

think of the virus as having mutated by natural selection over previous episodes of contact with

populations. However, we are currently modelling a particular episode�s population that consti-

tutes a new environment, with di¤erences from the previous ones. We divide this environment into

elements the virus cannot control but must simply react to, due to the �surprises�in the current

population: these include the death rate, which will re�ect the particular make-up of the population

(e.g. more or fewer old and unhealthy people), and detailed shocks introduced for example by other

diseases present and policies adopted by governments. The virus adopts reactions to these elements

that re�ect behaviour that has proved optimal for evolution to maximise surviving viruses: this

maximand is its �utility�.

It may seem puzzling that a virus, lacking consciousness, can �respond�. However, this �response

is simply the result of evolution in the behaviour of surviving mutations. Any given virus at one

time will consist of many surviving strains, or mutated versions, each infecting in a di¤erent way.

For example, we know that some versions spread quickly via asymptomatic �superspreaders�, who

even after quarantine may be infectious. On the other hand other strains that hospitalise people

tend to die out, as people either recover with strong antibodies, that kill the virus, or die. When

people self-isolate, the virus stops spreading in the blocked channels but continues to spread via

channels still open, such as superspreader chains. This is pre-programmed reactivity from the virus,

picked up in our model as optimising behaviour.

Furthermore, we include in the model household agents, who also act strategically to avoid

the costs the virus generates. In this element, underlined as a key one by Cochrane (2020), our

work links with a large earlier literature on agents�behavioural responses within epidemics, largely

related to the AIDS virus- examples are Geo¤ard and Philipson (1996, 1997), Philipson and Posner

(1993) and Kremer (1996). In this work, the authors could draw on surveys of individual behaviour

as well as a wide range of cross-country and timeseries data, besides a good clinical understanding

of the virus. Unfortunately such rich data is not yet available on the Covid-19 virus. Hence our

agents here are treated as homogeneous in utility; though it is already known that the young and

healthy are much less at risk than the old and unhealthy, we assume that all care about not getting
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the disease, even the robust group if only because they could pass it onto to others less robust. Our

�representative agent�is a population-weighted average of the di¤erent types.

We must �rst go through the biology of susceptibility, infection and recovery, which is used

in S-I-R models (Atkeson, 2020) usually with �xed parameters that de�ne a mechanical progress

of the virus. S people are those Susceptible to being infected. If infected, they become I people.

Having been infected, they then after some time either die or develop powerful enough antibodies

to kill the virus; or �nally they may recover without killing the virus, so that the virus continues

in them in a coexisting state, and they remain susceptible to further infection; those who die

or recover and kill the virus are denoted R (Recovered) people. We then obtain the following

relationships: �St = ��Rt; �Rt = ��It�d; �It =  tSt. The moving parameter  t is the rate at

which susceptible people get infected on day t by the virus; � is the share of those infected that

either die or recover, killing the virus.

Hence the virus�utility rises with the expected number infected who have not either died or killed

o¤ the virus in recovery. These represent all living clusters of the virus; so we assume it is aiming

for as many living virus clusters as possible at any future point of time. As it is in�nitely lived, with

time preference and risk-aversion, it gives value to all these future clusters, discounted by its time

preference and in logs, re�ecting its risk-aversion (diminishing marginal utility of its �consumption�).

It plans on an in�nite life, surviving to infect a future population that may be donated to it. We

assume there is some cost of the speed of infection, rt; we think of this as due to increasing infection

�e¤ort�which in turn represents the rising risk of policy resistance by the population the faster the

infection rate, e.g. the faster development of vaccine or drugs, which will kill the virus. The biology

of the actual infection speed implies that the higher the infected proportion of the population, the

slower it is, and we add a term, �t, which represents social reactions, and a policy intervention

response to the infection, such as lockdowns. These interventions and the existing rate of infection

increase the cost to the virus of achieving infection.

The usual epidemiological model treats infection rates as exogenous to the virus. It then in-

troduces population characteristics, and calculates the interaction of the infection rates with these

characteristics in an essentially mechanical way (Atkeson, 2020, surveys these S-I-R group models).

In these models, the key parameter is the rate,  t at which the infected I group who have not

recovered or died (the R group) pass the virus on to the uninfected susceptible group, S; this para-
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meter can be directly controlled by lockdown and other measures controlling people�s interactions.

However, this is to treat the virus as unresponsive to circumstances, which would plainly endanger

its survival chances. The optimising framework we use here endogenises infection rates, allowing

the virus to respond in the best way for its ultimate success in surviving. Beenstock and Xieer

(2020) point out there are large variations in contagion rates across countries and over time.

As we will see, in our model here, the contagion rate is a¤ected by both known and unknown

factors, responding to these as stochastic elements. Our approach allows us to estimate a complete

structural model of virus behaviour, and test it powerfully against a reduced form of the data

behaviour which we know to be a logistic curve process. By estimating model parameters and

the exogenous shocks, we can identify, from di¤erent countries�estimated behaviour, policy e¤ects

on death rates, and on the parameters of the virus� response to the environment. This allows

us to estimate the e¤ects of a range of policy interventions � such as the huge variety adopted

across many di¤erent countries � rather than simply those directly controlling people�s interactive

behaviour.

We will focus on the growth rate of infection as the instrument chosen by the virus. The growth

identity is It = rtIt�1, where I is the number of infected people and r is the gross rate of infection.

This implies that � ln It = ln rt; since from the SIR relationships � ln It =  tSt==It�1, it follows

that choosing ln rt implies a simultaneous choice of  t. Our most reliable data is on deaths, as

reported cases su¤er from downward reporting bias on actual. We assume the death rate, �; is

constant, with a constant lag of d days; so deaths Dt = �It�d, just as Rt = �It�d. We will use the

model to predict deaths, the most reliable data we have, and compare the model predictions with

the data behaviour of deaths (normally those that get hospitalised), using the indirect inference

simulation method of testing and estimation. We will also estimate a reporting ratio of reported

cases, Ct, to actual cases, It: Ct = 	It: We will also estimate 	 so that reported cases can also be

predicted.

Let the virus�utility at the start of the infection be given by:

UV =
1X
t=0

�t
�
ln[It �Rt]�Art

�
It�1
POP

��
�t

�
The second term in the utility function is the cost to the virus both of a higher infection rate
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and of a rising lagged population share of infected people; both of these require the virus to work

harder in terms of �nding more cases to infect. �t is a variable re�ecting the varying infection-

countering behaviour found in di¤erent sections of the population � which we will model shortly;�
It�1
POP

��
re�ects special measures of protection taken by the government (lockdown etc.), as well

as resistance rising with the expanding population share of infected people. t is days.

The virus maximises this utility subject to the infection state model above, viz It = rtIt�1, or

in logs, ln It = ln rt + lnSt�1 The number of days over which the epidemic lasts is in�nite because

its progress is asymptotic, never reaching full infection of the population. As noted above, the virus

needs to survive and so there must be infected people carrying the live virus for ever.

The �rst order conditions are simply found by creating the Lagrangean, while substituting the

model of Recovered into the utility function and noting that ln(It � Rt) =
1
1�� ln It �

�
1�� [ln � +

ln It�d] =
1
1�� ln It �

�
1�� [ln � + ln It�d]; the virus maximises, with respect to Rt and It the La-

grangean

L =
1X
t=0

E0

�
�t
�

1

1� � ln It �
�

1� � [ln �+ ln It�d]�A[rt]
�t

�
It�1
POP

���
+ �t[ln It � ln rt � ln It�1]

�

to yield:

0 =
dL

drt
= ��tArt�1�t

�
It�1
POP

��
� �tr�1t

whence:

��tArt�t
�
It�1
POP

��
= �t

Secondly, the �rst order condition w.r.t It yields:

0 =
dL

dIt
= �t

1

1� �I
�1
t � �t+d �

1� �I
�1
t � �t+1A[rt+1]�t+1�

�
It

POP

��
I�1t + (�t � �t+1)I�1t

and so:

9



0 =
dL

dIt
= �t

1

1� � � �
t+d �

1� � � �
t+1[rt+1]

�t+1�

�
It

POP

��
A+ (�t � �t+1)

= �t
1

1� � � �
t+d �

1� � + �
�


�t+1 + (�t � �t+1)

It follows that:

�
1�

�
1� ��


B�1

��
�t = �

�
�t

1

1� � � �
t+d �

1� �

�
where B�1 is the forward expectations operator leading the variable and keeping the expectations

date given.

Hence

�t = �
�
�t

1

1� � � �
t+d �

1� �

�
=

�
1�

�
1� ��



��
Now note that

�t = ��trt�t
�
It�1
POP

��
A

then we have:

0 = ��trt�t
�
It�1
POP

��
A = �

�
�t

1

1� � � �
t+d �

1� �

�
=

�
1�

�
1� ��



��
or

rt
�t

�
It�1
POP

��
A =

1

(1� �)
h
1�

�
1� � �

�i [1� ��d]
Finally in logs we obtain:

ln rt =
1



8<:ln
24 [1� �d�]
(1� �)

�
1� �[1� �

 ]
�
35� ln  � ln �t � � ln� It�1

POP

�
� lnA

9=; (1)

and so using ln It = ln rt + ln It�1

ln It =
1



8<:ln
24 [1� �d�]
(1� �)

�
1� �[1� �

 ]
�
35� ln  � ln �t + � lnPOP � lnA

9=;+
�
1� �



�
ln It�1 (2)
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Dt = �It�d;Rt = �It�d (3)

Ct = 	It (4)

The model tells us that the daily infection rate responds inversely to the current self-isolation

e¤orts of the population, �t, and the existing (lagged) share of infected population, o¤setting these

in order to keep the costs of infection smooth over time, while still ensuring that the population

gets steadily infected, ensuring new infections inde�nitely.

We now insert household behaviour into the model. We will assume that household utility is

reduced by infection but also by the personal inconvenience of avoiding infection by self-isolation

activity, �t. As this increases, the personal costs of not participating socially and economically rise

directly with the extent of isolation, and rise indirectly the more uninfected people there are, as this

lowers the personal risk of infection from participating, which raises the net costs of self-isolating

(the economic costs net of the gain in lower infection risk). There is also a preference error, �t:

So

UH =

1X
t=0

�t
�
� ln It � [�t(

POP

It
)��t]

�
Households maximise this utility with respect to �t subject to the virus�behaviour set out above.

Hence its Lagrangean is

LH0 =
1X
t=0

E0

0BB@ �t
�
� ln It � [�t(POPIt )

��t]
�

��t[ln It � 1


(
ln

"
[1��d�]

(1��)
�
1��[1��


]
�
#
� ln  � ln �t + � lnPOP � lnA

)
�
�
1� �



�
ln It�1]

1CCA
Going through analogous Lagrangean steps to �nd the �rst order conditions yields from 0 = dL

d�t
:

�t = ��t�t(
POP

It
)��t

and from
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0 =
dL

dIt
= ��tI�1t + �t��t(

POP

It
)��tI

�1
t � �tI�1t + [1� �


]�t+1I

�1
t

= ��t + �t��t(
POP

It
)��t � �t + [1�

�


]�t+1

= ��t � (�=)�t � �t + [1�
�


]�t+1

= ��t +
�
1 + (�=)� [1� �


]B�1

�
(��t)

= ��t +
�
1 + �= � �[1� �


]B�1

�
f�t�t(

POP

It
)��tg

= �1 +
�
1 + �= � �[1� �


]B�1

�
f�t(

POP

It
)��tg

so that: �t(POPIt )
��t = 1=

n
1 + �= + �[1� �

 ]
o

ln �t = � lnf1 + �= + �[1�
�


]g � ln  � ln �t � � lnPOP + � ln It

When this is substituted into the infections equation we obtain:

ln It =
1

 + �

8<:ln
24 [1� �d�]
(1� �)

�
1� �[1� �

 ]
�
35+ lnf1 + �= + �[1� �


]g+ (�+ �) lnPOP � lnA+ ln �t

9=;
+

�
 � �
 + �

�
ln It�1

The model is �tted to deaths, D. Unfortunately, we do not have data on the actual infections,

I, because tests have not been good enough to estimate these reliably. However, the model gives

us estimates of total infection rates, the death rate, infection growth rates and the reporting ratio

that are consistent with the actual data. We report these in section 5.

Equations (1)-(4) constitute the structural model of the virus�behaviour, from the optimal �rst

order conditions and the state variables�evolution. The intuition is that as the infected population

share gets higher, infection becomes harder and the infection rate drops.

For simulation we can extract the random variable �t from the data and equation (2). In practice

we will use deaths in place of infections, applying a lag on deaths, Dt, of 21 days from infection;

so Dt = �It�d where d = 21, and �, the death rate, must be estimated. We will also estimate the
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reporting rate, 	, of infections, so that reported cases, Ct = 	It:.

4 Estimation Methodology and data applications

Survey data is available on the numbers in total infected by the virus in the UK and Sweden,

according to antibody tests which check whether people were infected two to three weeks before,

this being the period to antibody production. This data combined with data on deaths gives us a

strong estimate of the IFR, a key parameter of the model.

One widely-held hope among virologists opposed to lockdown, such as Prof Carl Heneghan at

Oxford and Anders Tegnell the state epidemiologist in Sweden was that a majority of the population

had contracted the virus without getting more than weak symptoms. This would imply that there

was close to herd immunity. This hope seemed to have been dashed by available surveys of speci�c

Covid-19 antibody prevalence in several countries, which turns out to be low, in the range of 5%�7%,

in the UK, in Sweden and in Spain, with big cities like London, Stockholm and Madrid reaching 20%

or less. Outside big cities large numbers of small areas have had prevalence close to zero. However,

the latest medical research �nds that only seriously infected people develop antibodies2 and that

another 40-60% of the population already have general immunity to coronaviruses3 and so may have

repelled weak infections. In the UK, in addition to these ONS surveys of those currently infected

(about 2%) and of those with antibodies speci�c to Covid-19 (about 7%), an online survey running

since end March at King�s College London, and known as ZOE (the name meaning �life�in Greek,

ZOE is a public company backed by King�s College researchers) has recorded those with symptoms

of Covid-19; to date it has found a cumulative total of 60% of the population reporting symptoms,

mostly fairly weak ones. Total UK deaths had reached (at the time of writing, summer 2020) around

41500, 620 per million � mostly in hospitals and care homes. Recent medical research, as just

noted, �nds that only those with serious infections develop speci�c antibodies, while there is general

immunity in the population against coronaviruses which can protect against weak infections.

We also �nd in the latest medical research that those mildly infected, as well as their unin-

fected family members, develop T-cell responses which are used by the immune system to �ght the

virus. Thus they have signi�cant immunity to Covid-19, even though they do not develop speci�c

2https://www.biorxiv.org/content/10.1101/2020.05.21.108308v1.full
3https://www.cell.com/action/showPdf?pii=S0092-8674%2820%2930610-3
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antibodies; furthermore this T-cell immunity is long lasting, over several years, as it seems T-cells

are kept in the immune system�s memory for long unlike antibodies. At the time of writing, the

details of this are not clear, awaiting more research. However it now seems that the 60% of the

UK population identi�ed by ZOE as having had the infection, have also probably acquired T-cell

based immunity against a second wave. If one adds this 60% to the 7% badly infected who acquired

antibodies (in addition presumably to T-cells), it suggests that the UK may well now have nearly

70% who have been infected, and who also have long term immunity (i.e. against a second wave),

implying herd immunity of the basic sort, namely that not requiring any social responses.

How should we take account of this extra data? It would seem that the o¢ cial PHE etc.

reported data very greatly underestimates the true extent of infection. Furthermore, the antibody-

based infection estimates greatly underestimate those with immunity, especially with long-term

immunity (i.e. against a second wave). By implication the IFR is much overestimated by the

o¢ cial �gures. On the latest �gures of deaths vs total so far infected it is 0.1%.

Before the results of the antibody surveys were announced, �gures like this were our best

estimates based on our modelling and other scraps of data. The antibody tests seemed to destroy

them. However, this later data and research suggests they were roughly correct after all. It would

seem we are dealing with a population with widely di¤ering pre-existing immunity and resistance

to the Covid-19 disease. Many, the vast majority, rapidly developed defences so that they were only

weakly symptomatic or even asymptomatic or nearly so. Others, a minority, were badly infected

and a proportion of these died.

The data from ZOE records those reporting symptoms of Covid-19 and the ZOE team�s esti-

mates of the percent infection rate in the population based on their sample of reports and swab tests

taken by reporting people. From these estimates it is possible to estimate daily new cases from the

identity �Infectionst = NewCasest�RecoveringCasest. To obtain the total who have ever been

infected at date t we can sum all NewCases up to and including t. Due to recent developments and

having access to more data ZOE has recently changed its Infections series from the 11th June. In

Figure 2 this change can be seen as a slight drop in the number of people infected. Accumulating

the number of people infected we get 40 million as the current number who have been infected �

approximately 60% of the population. Adding the 7% estimated to be seriously infected brings the

total infected to nearly 70%.
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Figure 2: ZOE: number of people calculated to have COVID symptoms

Accordingly, we estimate our main model for the UK, benchmarked to this estimate of the

total who have ever been infected; we �nd a good �t of the model with about 60% or more of the

population being predicted to be infected in the long run. We report below the results for the UK

on this basis, as �benchmarked to ZOE data�. This model represents our best estimate of what is

going on in the UK with all Covid infections, recoveries and deaths.

In addition, we have estimated a model for serious infections alone, together with deaths stem-

ming from these (of course all deaths come from serious infections). As we have seen above, serious

infections in the UK have accumulated to around 7% of the population; and this is also the case

in Sweden. In this model the benchmarked IFR implied relative to (serious) infections is of course

higher than in our model benchmarked to the ZOE data of all infections. If we take a �gure of 7%

for end-May in both the UK and Sweden for total serious accumulated infections, this would imply

an IFR of 0.0054 in Sweden, and one of 0.0083 for the UK. We calibrate our models with these two

rates, and search for estimates in the region of these IFRs. We report these results below for the

two countries as �benchmarked to serious infections only�. These comparative results allow us to

draw some policy lessons from the comparison.

In a �nal exercise we model the latest evidence on second waves. On the basis of recent data,

28 countries have experienced second waves of infection, following the dying o¤ of a �rst wave.
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The countries fall into two groups, those with a small second wave, �small�group, and those with

a large one, the �large�group. We have used our methods here to estimate logistic curves for these

waves for the average of each country group, small and large; we also estimate a structural model

for each. Our aim is to compare the behaviour of each group for clues to the policies conducive to

a small second wave.

5 The Indirect Inference estimation and testing method

To test and estimate the model we use the method of Indirect Inference (for a detailed overview,

see Le et al, 2016). The method involves measuring how close the simulated model is to the actual

data, as in the familiar method of simulated moments. To do this it uses a descriptive model to

capture the behaviour of the data, one possible such description being moments; this can also be,

as here, the reduced form of the model, whose coe¢ cients can then be used as the descriptors,

the �auxiliary model�. We then measure how close the coe¢ cients found in the actual data are

to the mean of the coe¢ cients found when estimated from the model simulations. If those in the

actual data are within the 95% bounds of the distribution of those estimated on the simulated data

then the model is not rejected and can be considered a good causal account of the data. When

estimating the model we vary the structural parameters to �nd that set with the highest p-value,

which is the closest �t to the data. In this paper we use the logistic function to describe the data.

The logistic function is of the form:

f(x; a; b; c) =
c

1 + e�(x�b)=a

where x is time, and the three parameters are:

a is the infection speed

b is the day when the maximum number of new infections occurred

c is the total number of recorded infected people at the end of the infection

It is these three parameters that we will try to match in the Indirect Inference estimation

procedure. A detailed description of the Indirect Inference method is in Appendix 1.

To evaluate the reliability of this indirect inference test, we can use a Monte Carlo experiment

in which we check the power of the test as the structural model parameters deviate in accuracy
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from the true ones. In the experiment we assume a model of the type here to be true and generate

a large number of simulated samples from it. We then deliberately falsify the model paramaters by

some percentage, x, and see what percentage of these samples would reject the model. This gives

us a measure of the test power � i.e how frequently the test will reject a model of given falsity.

For our virus model we have found the results shown in the following Table 6. The rejection

rate rises steadily as the model parameters are falsi�ed. It reaches 100% as x% reaches 25%. This

implies our model is likely to lie not too far from the truth and so the test has reasonable power.

Falseness Rejection Rate
0 5:00
3 5:84
5 10:14
7 15:68
9 25:12
15 73:60
20 97:49
25 99:88

Table 1: Monte Carlo: Power Check

6 Estimated results for the UK and Sweden for model bench-

marked to serious infections only

To understand how the model works, consider the hurdles faced by the virus, all of which are

re�ected in its utility function. First, there is the death rate, inherited from its evolution through

whatever species it has inhabited. Second, there is , the measure of how far speed of infection

provokes increasing resistance from people with increasing immunity. This parameter is largely

set by the population structure � the proportions of types, such as by age, �tness and existing

health � since the faster the infection rate, the higher the proportion of people with immunity

that the virus will be attempting to infect. Third, there is �, measuring how far the proportion

of uninfected people in the population stimulates the rate of spread. This is policy-related, in

that targeting or lock down arrests the spread to the uninfected. Fourth, there is the household

parameter, �, measuring how households react to the risk of getting the virus by self-isolating, social

distancing, hygiene etc. Finally, there is the constant, which, when divided by � + �, measures

17



the population proportion that will eventually be infected. This is partly related to population

structure, partly to government policy and household reactions in stopping the spread via lockdown,

track/trace/isolate, and self-isolation. We should note that ,�;and � are identi�ed separately by

entering di¤erent utility functions and being attached to di¤ering variables.

These factors determine the speed with which the virus spreads and also the extent to which it

will spread in the end. The model is matched to the logistic data behaviour of deaths for the UK,

Sweden and a global average of 25 countries with a large number of deaths. The model estimated

parameters are shown in Table 2.

UK Sweden Global
� 0:0084 0:0052 0:0015
� 4:11 0:151 2:55
 59:53 40:59 79:02
� 0:17 2:95 0:62
(�+ �)=( + �) 0:07 0:07 0:04
Constant �11:94 �8:605 �10:36

% Population Infected to Date 7 7 7
% Population Infected Long Term 7 7 7
Reported/Actual Infections (inverse) 0:0499(20) 0:0442(23) 0:0337(30)
P-value 0:93 0:82 0:70

Table 2: Structural Model Parameter Estimates

The viral rate of spread depends directly on how many are uninfected by the joint parameter,

(�+�)=(+�), which measures the stimulus of the uninfected population share (reducing lockdown

and reactivity) relative to the resistance from population immunity and reactivity as infection

increases. The higher this measure, then when many in the population are uninfected, the spread

is faster. The measure is similar in both countries. Hence in both the virus spread fast, and has by

now infected about 7% of the population according to the model. E¤ectively lockdown and social

resistance are close substitutes in their e¤ect on virus prevalence.

The death rate is lower in Sweden, at 0.0052 vs 0.0084 in the UK. This lower death rate

is presumably associated with general public health policies that were more e¤ective in protecting

vulnerable groups with the high death rates; the UK�s problems with personal protective equipment

supplies in hospitals and with care home conditions have been well publicised.

Both the models predict the number of (serious) infections at around 7% of the population long
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term � low prevalence in line with the latest surveys of antibody presence. Our results �t well

statistically as can be seen. The match of the model to the logistic estimates is good with p-values

(the probability that the data does not reject the model); 0.82 for Sweden and 0.93 for the UK.

Nevertheless there is randomness and uncertainty at work. The error term, �t, measures the

variability in the model�s behaviour, which comes from biological and other (mostly policy) shocks

to the rate of infection. The consequence of these shocks for the behaviour of deaths can be seen in

the estimated shocks��t, and the resulting illustrative simulated histories below for the UK, which

vary substantially and are far from the smooth progressions imputed by the logistic curve. Faced

with spikes like these, it is not surprising that governments were driven to use drastic lockdowns

to make sure of suppression.

Figure 3: Innovations for the �t process and Resulting Illustrative Simulations of Deaths

Actual Lower 2.5% Upper 2.5% Mean
a 10:2775 2:2953 20:8867 8:3010
b 47:4228 30:8611 77:5785 46:2417
c 38738:1847 18601:3551 89002:1526 40782:6827

Table 3: The auxiliary model estimates and bounds are for the logistic curve, as �tted for UK data.

Fitting a logistic function to the deaths data results in the parameters shown in Table 3.

The bounds shown come from the simulated variation from the structural model � not from the

logistic estimates on the data, which are rather tightly estimated, as listed in section 2. They are

indicating that a wide variety of logistic models could emerge from the structural model with some

probability. The logistic model estimated on the UK deaths data is highly probable according to

the UK structural model with a p-value of 0.93, as we have seen.

We now go on to consider the implications for policy of the causal model estimates.
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6.1 Policy implications of the comparative model estimates benchmarked to

serious infections

We can now discuss the experience of the two countries and the di¤erent estimates we get from them

for these factors. From this we can learn a fair amount about the e¤ectiveness and costs of di¤erent

government policies. Our main focus in the policy discussion that follows is on the UK, using

Sweden as the main identifying benchmark, for outcomes of alternative policies, of no lockdown

but instead information and advice on social distancing, together with other general public health

policies.

Comparing the UK and Sweden we �nd that the parameter of natural resistance to the virus�

rate of progression () is much the same; but the Swedish IFR is substantially lower. This will be

related to the e¤ectiveness of controlling the access of the disease to vulnerable groups, like the ill

and elderly; the better the protection against infection within hospitals and care homes, the less

this access. In the UK, problems with PPE in the NHS and care homes have been well publicised.

Also the Swedish � estimate, re�ecting social reaction, is much higher than in the UK, where

it is close to zero, while the � parameter re�ecting government-imposed policies like lockdown is

around zero in Sweden, much lower than in the UK. These two parameters are of course close

substitutes, since the social reaction compensates for lack of policy reaction.

Our interest in policy lies particularly in the e¤ect of the UK lockdown. According to our

model, this is found in the policy-reaction parameter �. However, as we have seen, the higher this

parameter the lower the social reaction parameter �; there is strong substitution. It is the two

together that determine the equilibrium progress of the virus, both its end infected share of the

population and its rate of spread. The model suggests that there is no di¤erence in the behaviour

of the virus between the two economies. We can illustrate this from the almost identical paths of

actual deaths shown in Figure 4.

The implication is that lockdown achieved nothing extra compared with what a decentralised

social reaction strategy, as pursued in Sweden, would have achieved. We could assume that the

Swedish and UK relative policy costs are re�ected in the relative Consensus Forecasts made in

September 2020 for the fall in their 2020 GDP: for Sweden this is about 4.3%. but for the UK it is

10.1% in 2020, 5.8% more, or about £ 116 billion. According to the model the UK lockdown saved
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Figure 4: Cumulative Con�rmed Deaths (log scale)

no deaths but cost the UK economy a GDP loss of over £ 100 billion. Plainly relying on social

responses as in Sweden would have been far more cost-e¤ective than lockdown, for much the same

outcome in deaths. We do not need to appeal to any cost per life saved as in transport policy where

typically £ 11 million per life saved4 is used as a benchmark; the point is that lockdown has cost a

lot for no lives saved at all.

However, the Swedish experience suggests other policies there, of a general public health nature,

succeeded in reducing deaths by lowering the death rate. Had Swedish health policies been applied

in the UK, the population infected would have been the same but the death rate 0.3% lower at

0.52%. UK deaths would have been about 24000, some 16000 less than the total at the time of

writing.

UK policy in the �rst wave aimed to lift the lockdown quickly but introduce stringent test/trace/isolate

policies of localised lockdown, stopping localised outbreaks fast. However, the Swedish experience

suggests that decentralised social reaction will do the same job without this heavy-handed gov-

ernment action. All that the government needs to contribute is any information it can provide,

such as from surveys and local hospital reports: the people will do the rest, including sheltering

4The J-value (cost per life saved by safety measures) used by the US Dept of Transportation is
between £ 4 and £ 10 million per life saved through road safety measures, with the UK value be-
ing around £ 9 million.https://www.bristol.ac.uk/media-library/sites/policybristol/PolicyBristol-Report-April-2018-
value-human-life.pdf
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the most vulnerable. Given that there are random shocks to the model, we can think of these

as random starts of mini-waves; however, they provoke social reactions which bring the case and

deaths outcomes back to the equilibrium path.

7 Estimation results for the UK based on ZOE benchmarking

We now turn to estimates for the UK based on the ZOE benchmark for total infections. The

main di¤erence this creates compared with our previous benchmarking on serious infections only, is

that the implied IFR is considerably lower, at around 0.1%. Again, we �t our structural model to

deaths, searching for the best estimates with an IFR close to this. Not surprisingly, since the model

is matching the deaths logistic curves as before, the estimated parameters are close to the previous

ones. The main di¤erence lies in the constant and the IFR, given that we are benchmarking the

model to generate total infections in line with ZOE and also total deaths in line with those reported

as can be seen in Table 4

UK
� 0:000975
� 5:14
 50:9
� 0:14
(�+ �)=( + �) 0:103
Constant �2:80

% population infected long term 65
Reported/Actual Infections 0:0069
P-value 0:22

Table 4: Structural Model Parameter Estimates

8 Estimation results: modelling the dynamics of second waves

There is by now substantial evidence about second waves, since 28 countries have experienced one.

We can compare the logistic curve estimates for the two waves, and attempt to �nd the policy

implications for containment of the second.

In these second waves, the same virus has attacked the same population, having already com-

pleted a �rst attack. Evolutionary biology tells us that two main things could have changed between
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the two waves. First, all organisms come in numerous copies or mutations, from which natural se-

lection weeds out the least �t to survive; hence the surviving virus mutations in the second wave

will exclude those that died in the �rst, whether by killing their host or by being killed by their host

recovering from a nasty bout of covid-19 which produced killer antibodies. Second, the population

being attacked in the second wave may have more or less immunity than the one attacked in the

�rst; probably more since it will include those who survived from the �rst wave, while it will no

longer sadly include those who did not. So, to sum up it is likely that the virus has �weakened�and

the population has �strengthened�.

We divide the 28 countries with second waves into two groups: 12 with a big second wave relative

to the �rst (the �Large�group), and 16 with a small one (the �Small�group). The Large includes the

US, Japan and Vietnam; the Small Germany, Netherlands and Singapore. What distinguishes the

second group is that it had a longer �rst wave (typically four months against three for the other),

and seems to have had a good localised test-trace-isolate system operating second time around, if

not also in the �rst wave. What all 28 countries have in common is a rapidly falling death rate

per reported case. This supports the idea of a weaker virus meeting a stronger population. It

could also be due to better treatment, but this had already occurred by the end of the �rst wave,

where the cumulative death rate came down impressively to 10% from a peak of 40%; the fall in

the second wave has however been proportionately much bigger, to about 3%. This can be clearly

seen in Figure 5, showing the average cumulative death rate for all 28 countries in each wave.

If we use this data to estimate the underlying causes at work, we estimate a much larger �social

reaction�response for the small second wave group than for the other, con�rming that they had

better policies for �whack-a-mole�. These we now know involve local area o¢ cials providing good

local guidance for local behaviour.

The di¤erences between the Small and Large second wave groups is shown in chart form in

Appendix 2. What the �rst group share is a long-lasting �rst wave and a policy of localised test-

trace-and-isolate after it. All their logistic curves lie below that of the �rst wave; they all have

a lower c, so they reach a lower cumulative total. Mostly they also have a lower b implying that

infections peak sooner in the wave: and a lower a, so they fall faster. The second group of twelve

tend to the opposite. All their logistic curves lie above that of the �rst wave; they all have a higher

c, so they reach a higher cumulative total. Mostly they have a larger a , so infections fall o¤ more
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Figure 5: Cumulative Deaths/Cumulative Cases 21 days before, since start of wave. Simple average
for 28 countries with second waves

slowly. They also tend to have a lower b implying that infections peak sooner in the second wave.

To discover more of what propels these two di¤erent second wave trajectories, we estimated a

full structural model for the average Small second wave group and the average Large group country,

using their average logistic curve behaviour as the matching criterion � the auxiliary model. We

estimated their (�augmented�) behaviour over the two waves of deaths combined, since the second

wave alone furnishes too little data. The data behaviour reveals that the augmented curve for the

Small group resembles closely that for its �rst wave alone (Figure 6) � since only limited extra cases

occur in the second wave. However, for the Large second wave group, the augmented behaviour is

heavily dominated by the large second wave �tail�(Figure 7). Accordingly the model estimates for

the Large group, compared with the Small group as shown in Table 5, show weaker government

(�) and social reaction (�) parameters, together with weaker general immunity (). Furthermore,

the Small group has a longer �rst wave than the Large group: its length of �rst wave is around 4

months versus around 3 months for the Large group In sum, the results suggest that the source of

the better outcomes for the Small group second wave is a combination of more immunity in the

population (perhaps from more active sheltering of those more at risk), more government reaction

and more social reaction, together with a longer exposure to the �rst wave (perhaps giving more

24



immunity in the second wave).

Figure 6: The Augmented Small Second Wave Deaths

Figure 7: The augmented large second wave deaths

9 Conclusions

In this paper we have �tted the logistic function, the reduced form of epidemic behaviour, to the data

for deaths from Covid-19, for a wide variety of countries, with a view to estimating a causal model

of the covid virus�progression that can match this logistic behaviour. We then set out a structural

model of the Covid virus behaviour based on evolutionary biology and social household behaviour;

we estimated and tested this by indirect inference, matching its simulated logistic behaviour to that

found in the data. In our model the virus�progression depends on the interaction of strategies by

household agents, the government and the virus itself (as programmed by evolution). Within these
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Small second wave-augmented Large second wave-augmented
� 0:000194 0:00107
� 8:5 3:62
 82:7 49:0
� 31:47 17:15
(�+ �)=( + �) 0:35 0:31
Constant �11:18 �10:27

% population infected long term 75 38

P-value 0:96 0:17

Table 5: Structural Model Parameter Estimates For the Second Wave

interactions, it turns out that there is substitution between government topdown direction (such

as lockdown) and social reaction to available information on the virus�behaviour. We examined

this substitution particularly in the case of the UK and Sweden, which we chose because they

followed di¤erent policies, especially on lockdown. Our basic policy �nding was that the general

public health policies pursued in Sweden with no lockdown were more e¤ective in reducing deaths

than UK public health policies plus lockdown; and that the UK lockdown was no more e¤ective

in reducing deaths than the Swedish reliance on voluntary socially aware behaviour, whereas the

economic cost of the UK policy was enormously bigger. We also looked at experience of second

waves, where we found that countries successfully limited second waves when they had had longer

�rst waves and followed policies of localised reaction in the second.
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10 Appendix 1: How indirect inference is carried out

Suppose we have hit on a way to describe the data: this description is the auxiliary model. Here

it is the known model describing the data behaviour of an epidemic: the logistic curve model set

out earlier. Remember that we may want to come back to this choice if we �nd that it implies too

much or too little power; we will want to do a Monte Carlo experiment with our model and our

data to check this � as we will explain below.

Thus we have our sample of data and our auxiliary model describing its behaviour succinctly.

We also have our structural model which we propose to test. This model contains error terms,

�shocks�(here �t ) which follow some simple univariate time-series model, we will assume. We begin

by specifying the model with a set of numerical parameter values which could be taken from micro-

studies or otherwise �calibrated�(meaning that their values re�ect some previous idea we or others

have had about them). Sometimes when no such values can be found the model can be estimated in

some way, e.g. by Bayesian means, to �nd a set of such values to start with. Once these structural

parameter values have been set, we have the model in a testable quantitative form. The �nal step is

to deduce the errors, given the data and the parameters. Where there are no expectations terms in

the structural model equations, as in this model, the error is simply whatever makes the equation

add up properly, given the data for the variables in the equation.

We now have a model with some estimates of errors and by simple estimation also their uni-

variate time-series processes. The model to be tested now is fully speci�ed quantitatively and is,

through its errors, consistent with the data. Notice that after the errors�time-series processes have

been estimated we have errors consisting of lagged e¤ects (from past errors) and �innovations�or

�shocks� (current events assumed to be i.i.d.). This model is a description of a causal world in

which shocks a¤ect agents�behaviour given the existing optimised rules of behaviour these agents

are following; and these shocks generate �impulses�to variables in the economy. The implication is

that any sample behaviour is the result of shocks that occurred randomly. In other words history

would have been di¤erent had di¤erent shocks occurred.

The empirical indirect inference test can be thought of as a way of rewriting history many

di¤erent times for this sample period. Our model is the history-generating construct � the causal

engine of history. We can ask what histories it could have produced under randomly varied shock
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combinations. We know that by construction one of these histories is the actual one that happened

and that we have as our sample. But the question is: how probable would it have been had this

model been the causal engine?

We can discover this probability by repeatedly drawing sets of shocks to create many di¤erent

histories, each of which implies a di¤erent data behaviour � a process known as �bootstrapping�to

obtain �simulated samples�(each sample being one of our histories). Going to our auxiliary model

we estimate it on each of these histories and record the values of the auxiliary model coe¢ cients.

This gives us a distribution of possible coe¢ cient values.

Take a simple example of an auxiliary model of the economy which records two descriptive

coe¢ cients only, the autocorrelation of interest rates and that of in�ation. Figure 8 illustrates the

joint distribution of these two autocorrelations coming from our structural model simulations.
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Figure 8: Bivariate Normal Distributions with correlation of 0 and 0:9. Two possible data points
shown: x=0.1, 0.9 and y=0.0

One can see by inspection that the top distribution is one where the two autocorrelations are

quite unconnected across di¤erent sample histories, creating a rounded mountain. This means that

when, for example, in�ation is very persistent over a history, interest rates have no tendency to be

more or less persistent than normal. Now in the bottom distribution one can see by contrast that

the two autocorrelations are closely correlated, creating a �ridge-like�mountain.

Both these mountains are possible in principle from di¤erent structural models. However,

consider a typical causal macro model of the economy: any such model will have an equation
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linking interest rates to in�ation because the nominal interest rate is equal to the expected real

interest rate plus expected in�ation by de�nition. For simplicity assume expected real interest rates

vary little. Now consider two samples: one where in�ation is highly persistent and one where it

is not persistent at all. In the �rst expected in�ation and in�ation will be highly correlated, so

in�ation will also be persistent and so therefore will interest rates due to its expected in�ation

component. In the second, in�ation and expected in�ation will not be correlated; in�ation will

have no persistence and expected in�ation will always be zero. Interest rates will not vary due to

expected in�ation, only due to real interest rate variation which is minimal; hence interest rates will

have no tendency towards persistence due to in�ation persistence. We see from these two samples

that the autocorrelations of in�ation and interest rates will be linked; when in�ation is persistent

so will interest rates be, when it is not, so too will they not be.

This example illustrates a general �nding in causal models: their equations create tight link-

ages between variables so that these variables�behaviour is also closely linked. Thus most model

distributions of pairs of auxiliary model coe¢ cients look like the bottom panel of Figure 8, with a

ridge-like shape indicating a high covariance across di¤erent samples. In our virus model here there

is link between the speed of infection, which shows up in a, and the date of maximum infection

speed, b;which will come sooner (a lower b) the faster the infection rate. In a sample with a high

a, b will tend to be low..

Now look at the two dots, red and blue, on Figure 8. These are two examples of data from the

actual historical sample that we might have. The red dot shows two autocorrelations that are both

low (zero in fact). The blue dot shows one that is very high and one that is very low.

The rising height of the mountain shows the rising probability of encountering the autocorre-

lation combinations. One can see that on the top mountain the blue dot has some probability, the

red dot has none. But on the second mountain, the red dot has some probability and the blue

dot has none. This is because of the covariance. When it is low, the distance between the two

autocorrelations, which is high on the blue dot, does not matter so it does well, and the red dot

badly (as on average it is a long way from the mean); when the covariance is high, the distance

matters and the low distance red dot does well as a result.

Since autocorrelations are averages over a whole sample, the Central Limit Theorem implies

that their distribution will be jointly normal. The likelihood, L, of any combination, �s, is given
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by the height of the mountain and its formula is:

L(�s) =
1

(2�)k
���
(�[b�])���e�0:5[as��S(b�)]0f
(�[b�])g�1[as��S(b�)]:

where k is the number of simulated auxiliary model coe¢ cients, �s (two in this illustration). 


is the variance-covariance matrix of these coe¢ cients as simulated by the DSGE model (with coe¢ -

cients �). The exponent is (-0.5 times) the Wald statistic (IIW) based on the bootstrap distribution

(implied by the assumed DSGE model coe¢ cients b�) of aS around their bootstrap means, �S(b�):
[as � �S(b�)]0f
(�[b�])g�1[as � �S(b�)]: This has an approximate Chi-squared distribution (with k
degrees of freedom). �S(b�) is the mean of �S across all the histories, which are all functions of �,
the parameters of the structural model (including the error time-series parameters). It follows that

the lower the Wald statistic for a given data combination �T given by Wald

(�T ) = [aT � �S(b�)]0f
(�[b�])g�1[aT � �S(b�)]
the higher the likelihood of the combination,

L(�T ) =
1

(2�)k
���
(�[b�])���e�0:5[aT��S(b�)]0f
(�[b�])g�1[aT��S(b�)]

One can see that the Wald and the likelihood are related to the distance between the data combi-

nation and the model-simulated mean coe¢ cient.

From here on the Indirect Inference (II) procedure is simple in principle but in practice requires

a lot of computer time. One records the Wald statistic for the originally calibrated DSGE model.

Probably it will be rejected due to the bias in the estimation procedures that have been used (such

as FIML) or due to there being no estimation at all. At this point the researcher needs to de�ne

the limits theory places on the DSGE parameters and search for a set of parameters within those

limits that minimises the distance above. At that point the model can be tested properly allowing

for estimation so that mere numerical approximation does not create rejection. It turns out that

this II estimator has very low small sample bias.

In what follows we will go over some of the features of the testing procedure.
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To evaluate the reliability of our indirect inference test we can use a Monte Carlo experiment

in which we check the power of the test as the structural model parameters deviate in accuracy

from the true ones. In the experiment we assume a model of the type here to be true and generate

a large number of simulated samples from it. We then deliberately falsify the model parameters

by some percentage, x, each alternately plus or minus and see what percentage of these samples

would reject the model. This gives us a measure of the test power � i.e. how frequently the test

will reject a model of given falsity.

For our virus model we have found the results shown in the following Table 6. The rejection

rate rises steadily as the model parameters are falsi�ed. It reaches 100% as x% reaches 25%. This

implies our model is likely to lie not too far from the truth and so the test has reasonable power.

Falseness Rejection Rate
0 5:00
3 5:84
5 10:14
7 15:68
9 25:12
15 73:60
20 97:49
25 99:88

Table 6: Monte Carlo: Power Check

11 Appendix 2: data on �rst and second waves for 28 countries
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Figure 9: Cumulative Cases for Countries with Small Second Wave
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Figure 10: Cumulative Cases for Countries with Large Second Wave
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