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1.2 Introduction

The Black-Scholes formula, one of the major breakthroughs of modern finance,
allows for an easy and fast computation of option prices. But some of its
assumptions, like constant volatility or log-normal distribution of asset prices,
do not find justification in the markets. More complex models, which take into
account the empirical facts, often lead to more computations and this time
burden can become a severe problem when computation of many option prices
is required, e.g. in calibration of the implied volatility surface. To overcome
this problem Carr and Madan (1999) developed a fast method to compute
option prices for a whole range of strikes. This method and its application are
the theme of this chapter.

In Section 1.3, we briefly discuss the Merton, Heston and Bates models con-
centrating on aspects relevant for the option pricing method. In the following
section, we present the method of Carr and Madan which is based on the fast
Fourier transform (FFT) and can be applied to a variety of models. We also
consider briefly some further developments and give a short introduction to the
FFT algorithm. In the last section, we apply the method to the three analyzed
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models, check the results by Monte Carlo simulations and comment on some
numerical issues.

1.3 Modern pricing models

The geometric Brownian motion (GBM) is the building block of modern fi-
nance. In particular, in the Black-Scholes model the underlying stock price is
assumed to follow the GBM dynamics:

dSt = rStdt + σStdWt, (1.1)

which, applying Itô’s lemma, can be written as:

St = S0 exp
{(

r − σ2

2

)
t + σWt

}
. (1.2)

The empirical facts, however, do not confirm model assumptions. Financial
returns exhibit much fatter tails than in the Black-Scholes model (1.1), e.g. the
common big returns that are larger than six-standard deviations should appear
less than once in a million years if the Black-Scholes framework were accurate.
Squared returns, as a measure of volatility, display positive autocorrelation
over several days, which contradicts the constant volatility assumption. Non-
constant volatility can be observed as well in the option markets where “smiles”
and “skews” in implied volatility occur. These properties of financial time series
lead to more refined models. We introduce three such models in the following
paragraphs.

1.3.1 Merton Model

If an important piece of information about the company becomes public it may
cause a sudden change in the company’s stock price. The information usually
comes at a random time and the size of its impact on the stock price may be
treated as a random variable. To cope with these observations Merton (1976)
proposed a model that allows discontinuous trajectories of asset prices. The
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model extends (1.1) by adding jumps to the stock price dynamics:

dSt

St
= rdt + σdWt + dZt, (1.3)

where Zt is a compound Poisson process with a log-normal distribution of jump
sizes. The jumps follow a (homogeneous) Poisson process Nt with intensity λ,
which is independent of Wt. The log-jump sizes Yi ∼ N(µ, δ2) are i.i.d random
variables with mean µ and variance δ2, which are independent of both Nt and
Wt.

The model becomes incomplete which means that there are many possible
ways to choose a risk-neutral measure such that the discounted price process
is a martingale. Merton proposed to change the drift of the Wiener process
and to leave the other ingredients unchanged. The asset price dynamics is then
given by:

St = S0 exp

(
µM t + σWt +

Nt∑

i=1

Yi

)
,

where µM = r − σ2 − λ{exp(µ + δ2

2 )− 1}. Jump components add mass to the
tails of the returns distribution. Increasing δ adds mass to both tails, while a
negative/positive µ implies relatively more mass in the left/right tail.

For the purpose of Section 1.5 it is necessary to introduce the characteristic
function (cf) of Xt = ln St

S0
:

φXt(z) = exp
[
t

{
−σ2z2

2
+ iµMz + λ

(
e−δ2z2/2+iµz−1

)}]
, (1.4)

where Xt = µM t + σWt +
∑Nt

i=1 Yi.

1.3.2 Heston Model

Another possible modification of (1.1) is to substitute the constant volatility
parameter σ with a stochastic process. This leads to the so-called “stochastic
volatility” models, where the price dynamics is driven by:

dSt

St
= rdt +

√
vtdWt,
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where vt is another unobservable stochastic process. There are many possible
ways of choosing the variance process vt. Hull and White (1987) proposed to
use geometric Brownian motion:

dvt

vt
= c1dt + c2dWt. (1.5)

However, geometric Brownian motion tends to increase exponentially which
is an undesirable property for volatility. Volatility exhibits rather a mean
reverting behavior. Therefore a model based on an Ornstein-Uhlenbeck-type
process:

dvt = κ(θ − vt)dt + βdWt, (1.6)

was suggested by Stein and Stein (1991). This process, however, admits nega-
tive values of the variance vt.

These deficiencies were eliminated in a stochastic volatility model introduced
by Heston (1993):

dSt

St
= rdt +

√
vtdW

(1)
t ,

dvt = κ(θ − vt)dt + σ
√

vtdW
(2)
t , (1.7)

where the two Brownian components W
(1)
t and W

(2)
t are correlated with rate ρ:

Cov
(
dW

(1)
t , dW

(2)
t

)
= ρdt. (1.8)

The term
√

vt in equation 1.8 simply ensures positive volatility. When the
process touches the zero bound the stochastic part becomes zero and the non-
stochastic part will push it up.

Parameter κ measures the speed of mean reversion, θ is the average level of
volatility and σ is the volatility of volatility. In (1.7) the correlation ρ is typ-
ically negative, what is known as the “leverage effect”. Empirical studies of
the financial returns confirm that volatility is negatively correlated with the
returns, Cont (2001).

The risk neutral dynamics is given in a similar way as in the Black-Scholes
model. For the logarithm of the asset price process Xt = ln St

S0
one obtains the

equation:
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dXt =
(

r − 1
2
vt

)
dt +

√
vtdW

(1)
t .

The cf is given by:

φXt(z) =
exp{κθt(κ−iρσz)

σ2 + iztr + izx0}
(cosh γt

2 + κ−iρσz
γ sinh γt

2 )
2κθ
σ2

·

exp

{
− (z2 + iz)v0

γ coth γt
2 + κ− iρσz

}
, (1.9)

where γ =
√

σ2(z2 + iz) + (κ− iρσz)2, and x0 and v0 are the initial values for
the log-price process and the volatility process, respectively.

1.3.3 Bates Model

The Merton and Heston approaches were combined by Bates (1996), who pro-
posed a model with stochastic volatility and jumps:

dSt

St
= rdt +

√
vtdW

(1)
t + dZt,

dvt = κ(θ − vt)dt + σ
√

vtdW
(2)
t ,

Cov(dW
(1)
t , dW

(2)
t ) = ρ dt. (1.10)

As in (1.3) Zt is a compound Poisson process with intensity λ and log-normal
distribution of jump sizes independent of W

(1)
t (and W

(2)
t ). If J denotes the

jump size then ln(1 + J) ∼ N(ln(1 + k) − 1
2δ2, δ2) for some k̄. Under the

risk neutral probability one obtains the equation for the logarithm of the asset
price:

dXt = (r − λk − 1
2
vt)dt +

√
vtdW

(1)
t + Z̃t,

where Z̃t is a compound Poisson process with normal distribution of jump
magnitudes.

Since the jumps are independent of the diffusion part in (1.10), the character-
istic function for the log-price process can be obtained as:
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φXt
(z) = φD

Xt
(z)φJ

Xt
(z),

where:

φD
Xt

(z) =
exp

{
κθt(κ−iρσz)

σ2 + izt(r − λk) + izx0

}

(
cosh γt

2 + κ−iρσz
γ sinh γt

2

) 2κθ
σ2

·

exp

{
− (z2 + iz)v0

γ coth γt
2 + κ− iρσz

}
(1.11)

is the diffusion part cf and

φJ
Xt

(z) = exp{tλ(e−δ2z2/2+i(ln(1+k)− 1
2 δ2)z − 1)}, (1.12)

is the jump part cf. Note that (1.9) and (1.11) are very similar. The difference
lies in the shift λk (risk neutral correction). Formula (1.12) has a similar
structure as the jump part in (1.4), however, µ is substituted with ln(1 + k)−
1
2δ2.

1.4 Option Pricing with FFT

In the last section, three asset price models and their characteristic functions
were presented. In this section, we describe a numerical approach for pricing
options which utilizes the characteristic function of the underlying instrument’s
price process. The approach has been introduced by Carr and Madan (1999)
and is based on the FFT. The use of the FFT is motivated by two reasons.
On the one hand, the algorithm offers a speed advantage. This effect is even
boosted by the possibility of the pricing algorithm to calculate prices for a
whole range of strikes. On the other hand, the cf of the log price is known and
has a simple form for many models considered in literature while the density
is often not known in the closed form.

The approach assumes that the cf of the log-price is given analytically. The
basic idea of the method is to develop an analytic expression for the Fourier
transform of the option price and to get the price by Fourier inversion. As the
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Fourier transform and its inversion work for square-integrable functions (see
Plancherel’s theorem, e.g. in Rudin (1991)) we do not consider directly the
option price but a modification of it.

Let CT (k) denote the price of a European call option with maturity T and
strike K = exp(k):

CT (k) =
∫ ∞

k

e−rT (es − ek)qT (s)ds,

where qT is the risk-neutral density of sT = log ST . The function CT is not
square-integrable because CT (k) converges to S0 for k → −∞. Hence, we
consider a modified function:

cT (k) = exp(αk)CT (k), (1.13)

which is square-integrable for a suitable α > 0. The choice of α may depend
on the model for St. The Fourier transform of cT is defined by:

ψT (v) =
∫ ∞

−∞
eivkcT (k)dk.

The expression for ψT can be computed directly after an interchange of inte-
grals:

ψT (v) =
∫ ∞

−∞
eivk

∫ ∞

k

eαke−rT (es − ek)qT (s)dsdk

=
∫ ∞

−∞
e−rT qT (s)

∫ s

−∞
(eαk+s − e(α+1)k)eivkdkds

=
∫ ∞

−∞
e−rT qT (s)(

e(α+1+iv)s

α + iv
− e(α+1+iv)s

α + 1 + iv
)ds

=
e−rT φT (v − (α + 1)i)

α2 + α− v2 + i(2α + 1)v
,

where φT is the Fourier transform of qT . A sufficient condition for cT to be
square-integrable is given by ψT (0) being finite. This is equivalent to

E(Sα+1
T ) < ∞.

A value α = 0.75 fulfills this condition for the models of Section 1.3. With
this choice, we follow Schoutens et al. (2003) who found in an empirical study
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that this value leads to stable algorithms, i.e. the prices are well replicated for
many model parameters.

Now, we get the desired option price in terms of ψT using Fourier inversion

CT (k) =
exp(−αk)

π

∫ ∞

0

e−ivkψ(v)dv.

This integral can be computed numerically as:

CT (k) ≈ exp(−αk)
π

N−1∑

j=0

e−ivjkψ(vj)η, (1.14)

where vj = ηj, j = 0, . . . , N − 1, and η > 0 is the distance between the points
of the integration grid.

Lee (2004) has developed bounds for the sampling and truncation errors of this
approximation. Formula (1.14) suggests to calculate the prices using the FFT,
which is an efficient algorithm for computing the sums

wu =
N−1∑

j=0

e−i 2π
N juxj , for u = 0, . . . , N − 1. (1.15)

To see why this is the case see Example 1 below, which illustrates the basic
idea of the FFT. In general, the strikes near the spot price are of interest be-
cause such options are traded most frequently. We consider thus an equidistant
spacing of the log-strikes around the log spot price s0:

ku = −1
2
Nζ + ζu + s0, for u = 0, . . . , N − 1, (1.16)

where ζ > 0 denotes the distance between the log strikes. Substituting these
log-strikes yields for u = 0, . . . , N − 1:

CT (ku) ≈ exp(−αk)
π

N−1∑

j=0

e−iζηjuei{( 1
2 Nζ−s0)vj}ψ(vj)η.

Now, the FFT can be applied to

xj = ei{( 1
2 Nζ−s0)vj}ψ(vj), for j = 0, . . . , N − 1,
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provided that

ζη =
2π

N
. (1.17)

This constraint leads, however, to the following trade-off: the parameter N
controls the computation time and thus is often determined by the computa-
tional setup. Hence the right hand side may be regarded as given or fixed.
One would like to choose a small ζ in order to get many prices for strikes near
the spot price. But the constraint implies then a big η giving a coarse grid
for integration. So we face a trade-off between accuracy and the number of
interesting strikes.

Example 1

The FFT is an algorithm for computing (1.15). Its popularity stems from its
remarkable speed: while a naive computation needs N2 operations the FFT
requires only N log(N) steps. The algorithm was first published by Cooley and
Tukey (1965) and since then has been continuously refined. We illustrate the
original FFT algorithm for N = 4. Writing u and j as binary numbers:

u = 2u1 + u0, j = 2j1 + j0,

with u1, u0, j1, j0 ∈ {0, 1} u = (u1, u0), j = (j1, j0) the formula (1.15) is given
as:

w(u1,u0) =
1∑

j0=0

1∑

j1=0

x(j1,j0)W
(2u1+u0)(2j1+j0),

where W = e−2πi/N . Because of

W (2u1+u0)(2j1+j0) = W 2u0j1W (2u1+u0)j0 ,

we get

w(u1,u0) =
1∑

j0=0

(
1∑

j1=0

x(j1,j0),W
2u0j1)W (2u1+u0)j0 .
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Now, the FFT can be described by the following three steps

w1
(u0,j0)

=
1∑

j1=0

x(j1,j0)W
2u0j1 ,

w2
(u0,u1)

=
1∑

j0=0

w1
(u0,j0)

W (2u1+u0)j0 ,

w(u1,u0) = w2
(u0,u1)

.

While a naive computation of (1.15) requires 42 = 16 complex multiplications
the FFT needs only 4 log(4) = 8 complex multiplications. This explains the
speed of the FFT because complex multiplications are the most time consuming
operations in this context.

1.5 Applications

In this section, we apply the FFT option pricing algorithm of Section 1.4 to
the models described in Section 1.3. Our aim is to demonstrate the remark-
able speed of the FFT algorithm by comparing it to Monte Carlo simulations.
Moreover, we present an application of the fast option pricing algorithm to the
calibration of implied volatility (IV) surfaces. In Figure 1.1 we present the IV
surface of DAX options on January 4th, 1999 where the red points are the ob-
served implied volatilities and the surface is fitted with the Nadaraya-Watson
kernel estimator. For analysis of IV surfaces consult Fengler et al. (2002).

In order to apply the FFT-based algorithm we need to know the characteristic
function of the risk neutral density which has been described in Section 1.3
for the Merton, Heston, and Bates models. Moreover, we have to decide on
the parameters α, N , and η of the algorithm. Schoutens et al. (2003) used
α = 0.75 in a calibration procedure for the Eurostoxx 50 index data. We
follow their approach and set α to this value. The computation time depends
on the parameter N which we set to 512. As the number of grid points of the
numerical integration is also given by N , this parameter in addition determines
the accuracy of the prices. For parameter η, which determines the distance of
the points of the integration grid, we use 0.25. A limited simulation study
showed that the FFT algorithm is not sensitive to the choice of η, i.e. small
changes in η gave similar results. In Section 1.4, we have already discussed the
relation between these parameters.
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Figure 1.1: Implied volatility surface of DAX options on January 4, 1999.
STFfft01.xpl

For comparison, we computed the option prices also by Monte Carlo simulations
with 500 time steps and 5000 repetitions. Such simulations are a convenient way
to check the results of the FFT-based algorithm. The calculations are based
on the following parameters: the price of the underlying asset is S0 = 100,
time to maturity T = 1, and the interest rate r = 0.02. For demonstration
we choose the Heston model with parameters: κ = 10, θ = 0.2, σ = 0.7,
ρ = −0.5 and v0 = 0.2. To make our comparison more sound we also calculate
prices with the analytic formula. In the left panel of Figure 1.2 we show the
prices of European call options as a function of the strike price K. As the
prices obtained with the analytical formula are close to the prices obtained
with the FFT-based method and the Monte Carlo prices oscillate around them,
this figure confirms that the pricing algorithm works correctly. The different
values of the Monte Carlo prices are mainly due to the random nature of this
technique. One needs to use even more time steps and repetitions to get better
results. The minor differences between the analytical and FFT-based prices

http://www.quantlet.de/codes//STFfft01.html�
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Option prices in the Heston model
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Figure 1.2: Left panel: European call option prices obtained by Monte Carlo
simulations (filled circles), analytical formula (crosses) and the FFT
method (solid line) for the Heston model. Right panel: Percentage
differences between analytical and FFT prices.

STFfft02.xpl

come form the fact that the latter method gives the exact values only on the
grid (1.16) and between the grid points one has to use some interpolation
method to approximate the price of the option. This problem can be more
clearly observed in the right panel of Figure 1.2, where percentage differences
between the analytical and FFT prices are presented. In order to preserve
the great speed of the algorithm we simply use linear interpolation between
the grid points. This approach, however, slightly overestimates the true prices
since the call option price is a convex function of the strike. It can be clearly
seen that near the grid points the prices obtained by both methods coincide,
while between the grid points the FFT-based algorithm generates higher prices
than the analytical solution.

Although these methods yield similar results they need different computation
time.

In Table 1.1 we compare the speed of C++ implementations of the Monte Carlo
and the FFT methods. We calculate Monte Carlo prices for 20 different strikes

http://www.quantlet.de/codes//STFfft02.html�
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Table 1.1: The computation times in seconds for the FFT method and the
Monte Carlo method for three different models. Monte Carlo prices
were calculated for 20 different strikes, with 500 time steps and 5000
repetitions.

Model FFT MC
Merton 0.01 31.25
Heston 0.01 34.41
Bates 0.01 37.53

for each of the three models. The speed superiority of the FFT-based method
is clearly visible. It is more than 3000 times faster than the Monte Carlo issues.

As an application of the fast pricing algorithm we consider the problem of
model calibration. Given option prices observed in the market we look for
model parameters that can reproduce the data well. Normally, the market
prices are given by an implied volatility surface which represent the implied
volatility of option prices for different strikes and maturities. The calibration
can then be done for the implied volatilities or for the option prices. This
decision depends on the problem considered. As a measure of the fit one can
use the Mean Squared Error (MSE):

MSE =
1

number of options

∑

options

(market price - model price)2

market price2 , (1.18)

but other choices like the Mean Absolute Percentage Error (MAPE) or Mean
Absolute Error (MAE) are also possible:

MAPE =
1

number of options

∑

options

| market price - model price |
market price

,

MAE =
1

number of options

∑

options

| market price - model price | .

Moreover, the error function can be modified by weights if some regions of the
implied volatility surface are more important or some observations should be
ignored completely.
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The calibration results in a minimization problem of the error function MSE.
This optimization can be carried out by different algorithms like simulated
annealing, the Broyden-Fletcher-Goldfarb-Shanno-algorithm, the Nelder-Mead
simplex algorithm or Monte Carlo Markov Chain methods. An overview of
optimization methods can be found in Č́ıžková (2003). As minimization algo-
rithms normally have to compute the function to be minimized many times an
efficient algorithm for the option prices is essential. The FFT-based algorithm
is fairly efficient as is shown in Table 1.1. Moreover, it returns prices for a whole
range of strikes at one maturity. This is an additional advantage because for
the calibration of an implied volatility surface one needs to calculate prices for
many different strikes and maturities.

As an example we present the results for the Bates model calibrated to the IV
surface of DAX options on January 4th, 1999. The data set, which can be found
in MD*Base, contains 236 option prices for 7 maturities (for each maturity
there is a different number of strikes). We minimize (1.18) with respect to 8
parameters of the Bates model: λ, δ, k, κ, θ, σ, ρ, v0. Since the function (1.18)
has many local minima, we use the simulated annealing minimization method,
which offers the advantage to search for a global minimum, combined with the
Nelder-Mead simplex algorithm. As a result we obtaine the following estimates
for the model parameters: λ̂ = 0.13, δ̂ = 0.0004, k̂ = −0.03, κ̂ = 4.23, θ̂ =
0.17, σ̂ = 1.39, ρ̂ = −0.55, v̂0 = 0.10, and the value of MSE is 0.00381.
In Figure 1.3 we show the resulting fits of the Bates model to the data for
4 different maturities. The red circles are implied volatilities observed in the
market on the time to maturities T = 0.21, 0.46, 0.71, 0.96 and the blue lines
are implied volatilities calculated from the Bates model with the calibrated
parameters. In the calibration we used all data points. As the FFT-based
algorithm computes prices for the whole range of strikes the biggest impact
on the speed of calibration has the number of used maturities, while the total
number of observations has only minor influence on the speed.

On the one hand, the Carr-Madan algorithm offers a great speed advantage
but on the other hand its applications are restricted to European options. The
Monte Carlo approach instead works for a wider class of derivatives including
path dependent options.

Thus, this approach has been modified in different ways. The accuracy can be
improved by using better integration rules. Carr and Madan (1999) considered
also the Simpson rule which leads – taking (1.17) into account – to the following

http://www.quantlet.org/mdbase�
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Figure 1.3: The observed implied volatilities of DAX options on January 4,
1999 (circles) and fitted Bates model (line) for 4 different maturity
strings.

STFfft03.xpl

formula for the option prices:

CT (ku) ≈ exp(−αk)
π

N−1∑

j=0

e−iζηjuei{( 1
2 Nζ−s0)vj}ψ(vj)

η

3
{3 + (−1)j − I(−j = 0)}.

http://www.quantlet.de/codes//STFfft03.html�
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This representation again allows a direct application of the FFT to compute
the sum.

An alternative to the original Carr-Madan approach is to consider instead of
(1.13) other modifications of the call prices. For example, Cont and Tankov
(2004) used the (modified) time value of the options:

c̃T (k) = CT (k)−max(1− ek−rT , 0).

Although this method also requires the existence of α satisfying E(Sα+1
T ) < ∞

the parameter does not enter into the final pricing formula. Thus, it is not
necessary to choose any value for α. This freedom of choice of α makes the
approach easier to implement. On the other hand, option price surfaces that
are obtained with this method often have a peak for small maturities and
strikes near the spot. This special form differs from the surfaces typically
observed in the market. The peak results from the non-differentiability of the
intrinsic value at the spot. Hence, other modifications of the option prices have
been considered that make the modified option prices differentiable (Cont and
Tankov, 2004).

The calculation of option prices by the FFT-based algorithm leads to different
errors. The truncation error results from substituting the infinite upper inte-
gration limit by a finite number. The sampling error comes from evaluating
the integrand only at grid points. Lee (2004) gives bounds for these errors and
discusses error minimization strategies. Moreover, he presents and unifies ex-
tensions of the original Carr-Madan approach to other payoff classes. Besides
the truncation and the sampling error, the implementation of the algorithm
often leads to severe roundoff errors because of the complex form of the char-
acteristic function for some models. To avoid this problem, which often occurs
for long maturities, it is necessary to transform the characteristic function.

Concluding, we can say that the FFT-based option pricing method is a tech-
nique that can be used whenever time constraints are important. However,
in order to avoid severe pricing errors its application requires careful decisions
regarding the choice of the parameters and the particular algorithm steps used.
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